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ABSTRACT
The problem raised by incremental encryption is the overhead due to the larger storage space required
by the provision of random blocks together with the ciphered versions of a given document. Besides,
permitting variable-length modifications on the ciphertext leads to privacy preservation issues. In this paper
we present incremental encryption schemes which are space-efficient, byte-wise incremental and which
preserve perfect privacy in the sense that they hide the fact that an update operation has been performed
on a ciphered document. For each scheme, the run time of updates performed turns out to be very efficient
and we discuss the statistically adjustable trade-off between computational cost and storage space required
by the produced ciphertexts.
KEY WORDS: Incremental cryptography, Perfect privacy, Parallel cryptography, Secure cloud storage

I. INTRODUCTION

Incremental cryptography, introduced by Bellare, Goldreich and Goldwasser in [1], [2], [3], is used to
maintain up-to-date outputs of cryptographic algorithms at low computational costs. Given the encryption
of the current version of a file, it is preferable to avoid to recompute from scratch the encryption algorithm
applied to the entire file whenever a modification, often minor, is performed on that file. Such a low
computational efficiency for update operations finds application in various situations, as for example when
we want to maintain constantly changing databases or editable documents on remote servers, such as for
managing remote storage in secure clouds or mobile embedded networks. More precisely, when a document
stored on a server is accessed concurrently by several users who perform some modifications on it, it is
preferable for a given user that the running time to perform a local modification on the file depends as
little as possible of the modifications performed by other users as well as the size of the updated document.
Ideally, the run time of an update should be proportional to the amount of data changed. When a traditional,
non-incremental cryptographic algorithm is used to perform a modification on the file, a critical access has
to be considered and preserved for the entire file whenever a modification is performed. Note that having a
“byte-wise” or “bit-wise” incremental scheme is primarily of importance. Even though this latter convention
is more general, “byte-wise” incremental updates are adapted to changes in a document which often involves
replacements, insertions or deletions of a bytes string. Moreover, an other essential interest of incremental
cryptographic schemes is their inherent parallelism which will allow the use of multi-processors/cores for
improving performances whenever required by the applications.

Related works: The standard authenticated encrytion mode GCM (Galois/Counter Mode [4]) does
not support secure replace operations (although the standalone authentication scheme GMAC [5] does).
Some other standard encryption or authenticated encryption schemes (such as XEX, XTS [6], OCB [7]
or inc-IAPM [8]) support at best replace operations because they include a form of block indexation. A
few incremental encryption schemes supporting efficient insert operations exist. We can distinguish one
mode defined in [2] and two modes defined in [8]. Moreover, the first one [2] is not oblivious, that is to
say, one can distinguish between a new ciphered document and an updated one. Computational efficiency
is not really a problem for incremental encryption schemes. Indeed, in best cases the run time of an
update is proportional to the amount of blocks changed (or inserted) in the document and remains constant



2

when deleting blocks. The real problem of current incremental encryption schemes relates to the too large
expansion of a ciphered document due to the provision of random bit strings. For instance, the best secured
mode rECB [8] (for randomized ECB) produces ciphertexts that are twice larger than plaintexts and the
authenticated encryption mode RPC [8] produces ciphertexts even much larger. Besides, all these modes do
not allow insertion of arbitrary sized bytestrings without the need to re-align and recipher all subsequent
data blocks. Some schemes supporting efficient variable-length data insertions (or deletions) by insuring
the oblivioussness property use a synchronisation scheme of random walks [9]. Nevertheless, the method
described in [9] does not solve the problem of cryptographic form sizes.

Contributions: The AsiaCCS paper [9] has quickly introduced a generic construction to extend a
block-wise incremental cryptographic scheme into a fully byte-wise one. The focus of the present paper is
to deal with byte-wise incremental encryption schemes which produce smaller ciphertexts and still ensure
the privacy of modifications:
• The first one is an incremental block-based encryption scheme having the ability to produce a size

overhead of about (only) n bits for a document of n blocks. Its extension into a byte-wise incremental
scheme can be done following the method described in [9].

• The method of [9] proposed to use a block-based incremental scheme as a black box without worrying
about the sizes of produced cryptographic forms. We show that the same approach can be used
to design byte-wise incremental cryptographic schemes that alleviate this problem. Contrary to the
approach taken in [9], we describe here a scheme which relies on a stateless mode of encryption,
which is used as a fine-grained primitive. For a particular distribution of probability, we give a new
tight upper bound of the number of block-cipher evals needed when performing an update and discuss
about the trade-off between average ciphertexts size and efficiency of the update.

• Then a most interesting third solution combining the advantages of the previous schemes is proposed.
If we can not fully and extensively describe the algorithms by lack of space, the first constructions
are presented in a logical, incremental manner that allows to easily deduce them.

• We also give proofs of their ind-CPA security. Since this paper focus on (non authenticated) encryption
schemes, chosen plaintext attacks are the best attacks we can prevent against.

• For these schemes offering the same security levels, we give a brief comparison in terms of space
and time efficiencies.

• We discuss their extensions into authenticated encryption schemes. In particular, we notice that when
composing them with incremental MAC, the resulting incremental authenticated encryption schemes
are more space-efficient than previous solutions [8].

Outline of the paper: The rest of this paper is organised as following. Required preliminaries such
as, among others, precise security definitions, are given in Section 2. Our incremental modes of encryption
with their efficiency analysis are each described in Section 3, 4 and 5 respectively. The proofs of security
are given in Section 6. Finally, Section 8 concludes this paper.

II. BACKGROUND AND DEFINITIONS

Encryption schemes take as input a document D which is usually divided into a sequence of fixed-size
blocks σ1, ..., σn. Cryptographic schemes were defined til now thanks to a so-called mode of operation over
such blocks. Thus, documents were viewed as strings over an alphabet

∑
B = {0, 1}8N where N is the

given block-size in bytes.
Let us denote by T ∗ a set of probability measures φ on the set S = {1, ..., L}, where φ(i) > 0 ∀ i ∈ S.

For byte-wise incremental schemes, the bytestring D is divided into variable sized blocks (Bi)i=1..n whose
corresponding lengths (ui)i=1..n follow a strictly positive and discrete probability distribution φ. Documents
are then viewed as strings over an alphabet

∑
b = {0, 1}8l

l ∼ φ.

A. Updating documents
The space of modifications MB defined so far was a block-wise space of modification [8]. This one

allows operations such as (delete, i), (insert, i, P ∗) or even (replace, i, P ∗) corresponding respectively to



3

the deletion of the i-th block, the insertion of a block P ∗ just after index i or the replacement of the i-th
block by P ∗.

For our purpose, we have to define a byte-wise space of modificationMb allowing fine-grained operations
M = (substitute, i, j, β). Such an operation substitutes byte i+1 to byte j−1 (included) by β, a bytestring
of any length (possibly empty). We use hereafter the following conventions:
• If j = i+ 1, this operation corresponds to an insertion just after byte i;
• If β is empty, this operation corresponds to a deletion from byte i+ 1 to byte j − 1 (included);
• If |β| = j−i−1, this operations corresponds to a replacement from byte i+1 to byte j−1 (included).

Note that these conventions are not abusive, considering a n-byte string document D = b1b2 . . . bn, a modifi-
cation (substitute, i, j, β) can be interpreted as taking the string b1b2 . . . bi−1bibjbj+1 . . . bn−1bn and inserting
β just after the byte index i so that we obtain the new document D′ = b1b2 . . . bi−1biβbjbj+1 . . . bn−1bn. The
resulting document after a modification operation M is denoted D〈M〉. The resulting document after the
ordered modification operations M1,M2, ...,Mi is denoted D〈M1,M2, ...,Mi〉 where D〈M1,M2, ...,Mi〉 ≡
(((D〈M1〉)〈M2〉)...)〈Mi〉.

B. Incremental mode of encryption
Definition 1: An incremental encryption scheme is specified by a 4-tuple of algorithms Ψ = (G, E , I,D)

in which:
• G, the key generation algorithm, is a probabilistic polynomial time algorithm which takes as input a

security parameter k and returns a symmetric key K.
• E , the encryption algorithm, is a probabilistic polynomial time algorithm which takes as input K and

a document D ∈
∑+ and returns the ciphertext C = EK(D).

• I, the incremental update algorithm, is a probabilistic polynomial time algorithm which takes as input
a key K, (a document D), a modification operation M ∈ M, and the encrypted form C (related to
D) and returns the modified ciphertext C ′.

• D, the decryption algorithm, is a deterministic polynomial time algorithm which takes as input a key
K and a ciphertext C = EK(D) and returns a document D.

The behaviour of an incremental encryption scheme is depicted in the commutative diagram Figure 1. Con-
sidering a modified document D′ = D〈M〉, it is required that DK(IK(M,D, EK(D))) = D′. Note that the
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Fig. 1: Incremental mode of encryption

input document D is shown in brackets in the update
algorithm of the above definition. The reason is that,
depending on the fact whether we have a block-based
or a byte-wise incremental encryption scheme, as well
as the convention used in the implementation, I may or
may not require access to the document D.

For example, let us consider the use of a random
permutation EK , where a specific instantiation will be
a 16-byte block cipher such as AES. We then recall
the encryption phase rECB of a block-based incremental
authenticated encryption scheme defined according to the
encrypt-then-MAC composition in [8]. This scheme has
the property to be perfectly private. Given a document D
parsed as a sequence of 16-byte blocks D1, . . . , Dn, the
encryption algorithm E is constructed in the following
way:

1) For each i = 0, ..., n we pick ri uniformly at random. The randomized input is R = r0r1...rn.
2) Let C0 = EK(r0). For each i = 1, ..., n let Ci = (EK(ri ⊕ r0), EK(ri ⊕ Di)). The ciphertext is

C = C0C1...Cn.
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The encrypted message is simply C. Concerning the incremental algorithm I, an insertion (or replacement)
of one block is simply done by generating a new random value r∗ (or respectively regenerating the existing
one) and performing two block-cipher operations.

Table1 I summarises efficiency of schemes proposed by [8] supporting delete and insert operations. Note
that RPC is an authenticated encryption scheme following the model of integrated checksum. Concerning
rECB-XOR, if we extract the standalone encryption scheme rECB from rECB-XOR, one can notice that
there is no need to cipher the random values, indistinguishability will be always ensured even without
this overhead of encryption. The real problem with incremental cryptography is that we have to generate
and supply a lot of random values to remove dependencies between the ciphered blocks and thus allowing
efficient update operations. This can result, as in the case of rECB, in ciphertexts twice as long as plaintexts.

Algorithms Ciphertext
size

Block cipher
evals Indistinguishability

rECB-XOR
(rECB composed with the

incremental XORMAC [2])
4n 6n µl

2128

rECB 2n 2n µl
2128

rECB* 2n n µl
2128

RPC 4n 4n
qinc
248

TABLE I: Summary of incremental modes of operation proposed by Buonanno et al, instantiated with a 128-bit block cipher.
The parameters n, l and µ are expressed in number of blocks. Queries (qinc) to the update oracle concern only one block.

C. Indistinguishability
For a traditional encryption scheme, indistinguishability measures the un-ability for an adversary to

distinguish ciphertexts. In the case of an incremental encryption scheme, we consider that an adversary must
in addition be unable to distinguish modifications performed on a same ciphertext. Besides, for insuring
indistinguishability of modifications, some stringent conditions have to be applied. Indeed, if the incremental
algorithm I has a good running time complexity (for instance, linear in the amount of changes), some parts
of a modified ciphertext remain unchanged. So, we require these modifications to be of the same type,
same lengths and performed at the same location in the plaintext. Otherwise the adversary makes no effort
to distinguish between them by looking the resulting updated ciphertext.

We define an adversary A in a find-then-guess game where the incremental update algorithm is taken
into account. This model of security was described for the first time in [8] and defines such an adversary
as a two-phase algorithm:

1) “find” phase : A makes queries to its encryption oracle EK(.) and updating oracle IK(., ., .) and
eventually submits to the challenger either a pair of distincts chosen plaintext (D0, D1) of same
length l, or a ciphertext C with a pair of modification operations (M0,M1) (of the same type and
modifying the same location).

2) “guess” phase : The challenger selects a bit b ∈ {0, 1} uniformly at random, encrypts the message
Db with EK or applies the update Mb on C with IK , and the result is given to A which may then
make more oracle queries. Finally A must output a guess for the value of b.

We are interested in the property of indistinguishability under an adaptive-chosen-plaintext attack (CPA).
The adversary wins if it correctly identifies which of the two documents has been ciphered (or which
one of the two modifications has been applied) in the challenge. The encryption scheme is said to be
secure if reasonable adversaries cannot win significantly more than half the time. In the following, we
define precisely two experiments, one for ciphertext indinstinguishability and an other one for modification
indistinguishability.

1Since we will refer to these elements of comparison in the rest of the paper, please note that the number n can represent the size of the
document either in number of 16-byte blocks or in number of bytes and change the number of cipher evals as appropriate.
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Message secrecy: Let Ψ be an incremental encryption scheme whose security parameter is k. Let
A = (A1, A2) be an adversary that has access to the oracles EK(.) and IK(., ., .). Now, let us consider the
following random experiment: k being set to a fixed value, we run the algorithm G to obtain a secret key
K. The algorithm A1 takes as input k and outputs a triplet (D0, D1, s). The components D0 and D1 are two
distinct plaintexts of same length l, the component s contains information about the system state, known by
A1, which will be passed to A2. A bit b0 is chosen uniformly at random in {0, 1} and is kept secret from
A2. The encryption algorithm EK is then launched over the plaintext Db0 and returns a ciphertext C which
constitutes the challenge ciphertext proposed to the algorithm A2. Thus, A2 has as inputs (D0, D1, s, C).
Eventually, the algorithm A2 outputs a bit b (whose the adversary hopes it equal to b0).

Keeping in mind these notations, the random experiment described previously can be detailed in the
following way:

ExptI-CPA
Ψ,FG (A,k)

K ← G(k)
(D0, D1, s)← A1(k)

(D0 and D1 are distincts and of same length)
b0 ← {0, 1}
C ← EK(Db0)
b← A2(D0, D1, s, C)
if b = b0 then return 1 else return 0

Definition 2: Let Ψ = (G, E , I,D) be an incremental encryption scheme over modification space M,
and let A be an adversary for an attack CPA. We define the adversary advantage AdvI-CPAΨ by :

AdvI-CPAΨ (A, k) =

∣∣∣∣Pr
(
ExptI-CPAΨ,FG (A, k) = 1

)
− 1

2

∣∣∣∣ .
We say that Ψ is (t, qe, µ, qinc, ε)-secure in the sense of I-CPA if, for any adversary A which runs in time
t, making qe queries to the EK(.) oracle and qi valid queries to the IK(., ., .) oracle (with the total number
of ciphered data2 in all encryption and incremental update queries equal to µ), AdvI-CPAΨ (A, k) is less than
ε.

Update secrecy: Let Ψ be an incremental encryption scheme whose security parameter is k. Let
A = (A1, A2) be an adversary that has access to the oracles EK(.) and IK(., ., .). Now, let us consider the
following random experiment: k being set to a fixed value, we run the algorithm G to obtain a secret key K.
The algorithm A1 takes as input k and returns a 4-tuple (C,M0,M1, s) where M0 and M1 are two possible
modifications on D (of the same type and modifying the same location) and where s contains information
about the system state, known by A1, which will be passed to A2. A bit b0 is chosen uniformly at random
in {0, 1} and is kept secret from A2. The algorithm of modification IK is then launched over Mb0 , D, C
and returns an updated ciphertext C ′ = IK(Mb0 , D, C). The ciphertext C ′ constitutes the challenge update
proposed to the algorithm A2. Thus, the algorithm A2 takes as inputs (M0,M1, s,D,C,C

′) and outputs a
bit b (whose the adversary hopes it equal to b0).

Keeping in mind these notations, the random experiment described previously can be detailed in the
following way (IM-CPA stands for indistinguishability of modifications under CPA attack):

2An appropriate unit of measurement is selected, as the case might be.
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ExptIM-CPA
Ψ,FG (A,k)

K ← G(k)
(C,M0,M1, s)← A1(k)

(M0 = (substitute, i0, j0, β0) and
M1 = (substitute, i1, j1, β1) are such
that i0 = i1, j0 = j1 and |β0| = |β1|)
b0 ← {0, 1}
C ′ ← IK(Mb0 , D, C)
b← A2(M0,M1, s,D,C,C

′)
if b = b0 then return 1 else return 0

Definition 3: Let Ψ = (G, E , I,D) be an incremental encryption scheme over modification space M,
and let A be an adversary for an attack CPA. We define the adversary advantage AdvIM-CPA

Ψ by :

AdvIM-CPA
Ψ (A, k) =

∣∣∣∣Pr
(
ExptIM-CPA

Ψ,FG (A, k) = 1
)
− 1

2

∣∣∣∣ .
We say that Ψ is (t, qe, µ, qinc, ε)-secure in the sense of IM -CPA if, for any adversary A which runs in
time t, making qe queries to the EK(.) oracle and qi valid queries to the IK(., ., .) oracle (with the total
number of ciphered data in all encryption and incremental update queries equal to µ), AdvIM-CPA

Ψ (A, k) is
less than ε.

We provide in Table I the security of the schemes from [8]. As can be observed, the combined au-
thenticated encryption rECB-XOR and the standalone encryption rECB are secure. However, this is not
the case for RPC which, moreover, suffers from a high expansion of the ciphertext. If this expansion is
parametrisable, trying to reduce it worsens the security of the scheme.

D. Perfect privacy
A simple way to design an incremental encryption algorithm is the following. Instead of applying

modifications to the plaintext message and recipher the new one from scratch, take the current version
of the ciphertext and append a ciphered description of modifications to obtain the new ciphertext. Such a
scheme may be not acceptable since it is not history free in the sense that it can reveal to someone who
knows the decryption key all previous versions of the document. Moreover, this method is not efficient and
produces a ciphertext which is becoming larger at each modification.

Suppose Alice sends a ciphertext to Bob. The latter might be disappointed if he realizes that the ciphered
document has been obtained by an incremental update. This problem could arise with documents such
as commitments, contracts whose cryptographic forms must not disclose any information at all about
modifications, not even the fact that update operations have been performed.

We will say that an incremental encryption scheme is oblivious (or perfectly private) if the behaviour
of the composition of application of the encryption algorithm followed by incremental update operations
is indistinguishable from the behaviour of the application of the encryption algorithm alone. A formal
definition, taken from [10], [8], is the following:

Definition 4: Let Ψ be an incremental encryption scheme over modification space M. We say that Ψ is
oblivious (or perfectly private) if, for any two documents D, Di, for any sequence of modifications M1, ...,
Mi ∈M such that Di = D〈M1, . . . ,Mi〉, and for all keys K, we have

{EK(Di)} ≡ {IK(Mi, Di, ..., IK(M1, D, EK(D))...)}.

Note that we could be interested in computational indistinguishability between encrypted documents and
updated ones. Let us consider a privacy property defined by the following simple game: the adversary
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A interacts with its encryption oracle EK(.) and updating oracle IK(., ., .) and eventually submits to the
challenger a document D along with a modification M ∈M. The challenger selects a bit b0 ∈ {0, 1} uni-
formly at random. If b0 = 0 then the challenger returns EK(D〈M〉), otherwise it returns IK(M,D, EK(D)).
The result is given to A which may then make more oracle queries. Finally A must output a guess b for
the value of b0. We consider that A wins if b0 = b and we say that the scheme is private if reasonable
adversaries cannot win significantly more than half the time. We will denote by ExptPriv-CPA

Ψ (A,k) the
corresponding experiment which returns 1 if b0 = b and 0 otherwise.

Definition 5: Let Ψ = (G, E , I,D) be an incremental encryption scheme over modification space M,
and let A be an adversary for an attack CPA. We define the adversary advantage AdvPriv-CPAΨ by :

AdvPriv-CPAΨ (A, k) =

∣∣∣∣Pr
(
ExptPriv-CPAΨ (A, k) = 1

)
− 1

2

∣∣∣∣ .
We say that Ψ is (t, qe, µ, qinc, ε)-secure in the sense of Priv-CPA if, for any adversary A which runs in
time t, making qe queries to the EK(.) oracle and qi valid queries to the IK(., ., .) oracle (with the total
number of ciphered data in all encryption and incremental update queries equal to µ), AdvPriv-CPAΨ (A, k)
is less than ε. If AdvPriv-CPAΨ (A, k) = 0 we say that Ψ is perfectly private.

The case of byte-wise incremental schemes: A simple way to construct a byte-wise incremental
encryption scheme is to use a block-based incremental encryption scheme in which we assign only one
byte of the document per block, but at the cost of both a large number of block-cipher evals and a very
large ciphertext. A more interesting solution is to assign a variable number (chosen from a probability
distribution) of contiguous bytes of the document per block in order to decrease both the computational and
the size overheads. Concerning the privacy of modifications performed on a document, an adversary should
not find a scenario of successive modifications which leads to a bias in the distribution of block lengths.
Thus, an incremental update algorithm has to ensure that statistical tests will not reveal outlying regions in
the sequence of variable-length parts and therefore the location of insertions. Secondly, concerning the size
of the document, it has to conserve (on average) the overhead for both the ciphertext size and the number of
operations to perform in the decryption algorithm. This should be implied by the perfect privacy property.

Definition 6: An incremental variable-length block-based encryption scheme is perfectly private if and
only if: (i) The distribution of blocks’ lengths does not depend on information about modifications per-
formed, that is, update operations are implemented so that this distribution is preserved; (ii) The way
to operate these blocks during an update is itself perfectly private, that is, after a modification, the set
of relations between these blocks is indistinguishable from the set of relations between the blocks of a
non-updated message.

E. Relation among these notions
It is not difficult to see that if an incremental encryption scheme Ψ is perfectly private and ensures

update secrecy then this same scheme ensures message secrecy as well. Intuitively, if Ψ is perfectly private
an updated encryption is indistinguishable from an initial encryption and we could obtain a large-sized
encrypted message by essentially making several updates on a initial small encrypted message3. In such
a situation distinguishing the encryption of two distinct messages (of same length) is almost the same as
distinguishing two distinct updates (of the same type and modifying the same location in the document).
Note that this property is particularly usefull when providing proofs of security and constructing algorithms.
Despite this, the paper stays conservative in the description of our incremental schemes by giving different
algorithms for encryption and update and by providing proofs of security for perfect privacy, update secrecy
and message secrecy while this latter appears to be redundant.

Theorem 1: Let Ψ = (G, E , I,D) be an incremental encryption scheme over modification spaceM. If Ψ
is (t, qe, µ, qinc, ε)-secure in the sense of IM -CPA and (t′, q′e, µ

′, q′inc, ε
′)-secure in the sense of Priv-CPA

then Ψ is also (t+ t′, qe + q′e, µ+ µ′, qinc + q′inc, ε+ ε′)-secure in the sense of I-CPA.

3To be more explicit in the underlying idea, we could imagine an intial empty message.
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Proof of theorem 1: Consider the message secrecy experiment ExptI-CPA
Ψ,FG (A,k) and change it a little

as follows: the algorithm A1 takes as input k and outputs the triplet (D,M0,M1, s) where M0 and M1 are
two modifications (of the same type and modifying the same location) such that D〈M0〉 and D〈M1〉 are two
distinct documents. Note that these modifications could change D completely. A bit b0 is chosen uniformly
at random in {0, 1} and is kept secret from A2. A random ciphertext C of D〈Mb0〉 which constitutes
the challenge ciphertext is then proposed to the algorithm A2. This slightly changed experiment, denoted
Expt-bI-CPA

Ψ,FG (A,k), can be detailed in the following way:

Expt-bI-CPA
Ψ,FG (A,k)

K ← G(k)
(D,M0,M1, s)← A1(k)

(M0 = (substitute, i0, j0, β0) and
M1 = (substitute, i1, j1, β1) are such
that i0 = i1, j0 = j1 and |β0| = |β1|)
b0 ← {0, 1}
C ← EK(D〈Mb0〉)
b← A2(D,M0,M1, s, C)
if b = b0 then return 1 else return 0

This new experiment being equivalent to the previous one, we therefore have:

Pr
(
Expt-bI-CPAΨ,FG (A, k) = 1

)
= Pr

(
ExptI-CPAΨ,FG (A, k) = 1

)
.

On the basis of the last defined experiment, make the following change which consists to replace the chal-
lenge encryption EK(D〈Mb0〉) by the composition of an encryption followed by an update IK(Mb0 , D, EK(D)).
This new experiment, denoted Expt-bIM-CPA

Ψ,FG (A,k), can be detailed in the following way:

Expt-bIM-CPA
Ψ,FG (A,k)

K ← G(k)
(D,M0,M1, s)← A1(k)

(M0 = (substitute, i0, j0, β0) and
M1 = (substitute, i1, j1, β1) are such
that i0 = i1, j0 = j1 and |β0| = |β1|)
b0 ← {0, 1}
C ′ ← IK(Mb0 , D, EK(D))
b← A2(D,M0,M1, s, C

′)
if b = b0 then return 1 else return 0

Assume that we have a distinguishing algorithm Dist which takes as input a bit a. If a = 0 Dist
runs Expt-bI-CPA

Ψ,FG (A,k), otherwise it runs Expt-bIM-CPA
Ψ,FG (A,k). By assumption of an incremental en-

cryption scheme ensuring the privacy of modifications, the distinguishing advantage of Dist is at most
AdvPriv-CPAΨ (k) where AdvPriv-CPAΨ (k) = maxA{AdvPriv-CPAΨ (A, k)}.

We note, moreover, that in the “guess” phase of the experiment Expt-bIM-CPA
Ψ,FG (A,k) the intermediate ci-

phertext C (before update) is not known to A2. Consequently, we have
∣∣Pr
(
Expt-bIM-CPA

Ψ,FG (A, k) = 1
)
− 1

2

∣∣ ≤∣∣Pr
(
ExptIM-CPA

Ψ,FG (A, k) = 1
)
− 1

2

∣∣.
We then conclude from the triangle inequality that: AdvI-CPAΨ (A, k) ≤ AdvPriv-CPAΨ (A, k)+AdvIM-CPA

Ψ (A, k) ≤
ε′ + ε.
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III. A SPACE-EFFICIENT BLOCK-WISE INCREMENTAL ENCRYPTION SCHEME

In this section we describe our block-wise incremental encryption scheme that we will call swrECB,
as the idea is to use a sliding window over the randomizers. Depending on the parametrisation used, this
scheme can be quite space-efficient. Let us consider a pseudorandom functions family F with input-length
and output-length both equal to 8N . Let us also consider an instance FK of F and two fixed integers e,
d ∈ N∗2 such that 8N = ed with d ≥ 2. We assume the use of a key generation algorithm that takes as
input a security parameter k and returns a symmetric key K. In the following subsections we describe the
three remaining algorithms.

A. Encryption and decryption algorithms
The algorithm 1 describes the encryption operation. It takes as input a key K and a document of n

blocks of size 8N -bits. First of all, it generates uniformly at random n+ d− 1 blocks of size e-bits. Then
it applies FK on the concatenation of the first d random blocks, and XORes (Exclusive-Or) the result with
the first plaintext block to obtain the first ciphered block. Then, it repeatedly performs the following steps:
it considers the last d − 1 random blocks of the current window and the immediately following random
block. FK is applied on the concatenation of these d “shifted” random blocks and the result is Xored with
the following plaintext block to obtain the corresponding ciphered block.

Algorithm 1 E
Input: A blockstring D = {P1P2 . . . Pn}, a key K

1: for j = 1→ d− 1 do
2: rj ← {0, 1}e;
3: for j = 1→ n do
4: rd−1+j ← {0, 1}e;
5: Cj ← FK(rj‖rj+1‖ . . . ‖rj+d−1)⊕ Pj;
6: return ((ri)i=1...n+d−1, (Ci)i=1...n);

The algorithm 2 describes the deterministic decryption operation. It takes as input a key K, the ciphered
document and applies the same operations that the encryption algorithm by replacing the plaintext by the
ciphertext.

Algorithm 2 D
Input: A ciphertext ((ri)i=1...n+d−1, (Ci)i=1...n), a key K

1: for j = 1→ n do
2: Pj ← FK(rj‖rj+1‖ . . . ‖rj+d−1)⊕ Cj;
3: return (Pi)i=1...n;

B. Incremental update algorithms
As seen before, by sliding a window over the sequence (ri)i=1...n+d−1, we can obtain n blocks of size

8N bits. For convenience, we will refer to a window of index i as the block ri‖ri+1‖ . . . ‖ri+d−1. The
update operations (algorithms 3, 4 and 5) are described on a case-by-case basis due to different (cautious)
approaches when dealing with the involved random blocks. As we can see, when a random block is affected,
a certain number of upstream and downstream windows need to be reevaluated and the corresponding
plaintext blocks reciphered. Besides, for security purposes in the algorithms 4 and 5, we mandate the
redrawing of all the random blocks in the window which serves to cipher the replaced (or inserted) block.
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C. Efficiency analysis
Certain assumptions, like the fact that algorithms 3, 4 and 5 describe modifications of only one block,

have been taken for simplicity. In the followings, we discuss the efficiency of more general algorithms:
• The algorithm 3 assumes the presence in the document of d − 1 blocks before the deleted one. If

there is only k blocks before block m with k < d− 1, only k evaluations of FK is in fact required.
Besides, none of the random blocks need to be regenerated. The extension of this algorithm to the
deletion of any number q of contiguous blocks is clear. Whatever this number is, the number of
windows affected is at most d− 1. Consequently, the number of evaluations of FK stays to (at most)
d− 1.

Algorithm 3 Deletion of a block Pm
Input: the ciphertext ((ri)i=1...n+d−1, (Ci)i=1...n), the document D, a key K

1: for i = m− (d− 1)→ m− 1 do
2: C ′i ← FK(ri‖ri+1‖ . . . ‖rm−1‖rm+1‖ . . . ‖ri+d)⊕ Pi;
3: return ((ri)i=1...m−1, (ri)i=m+1...n+d−1, (Ci)i=1...m−d,

(C ′i)i=m−(d−1)...m−1, (Ci)i=m+1...n);

• In the algorithm 4 the d random blocks contained in the window of index m need to be regenerated.
The algorithm described assumes the presence in the document of d − 1 blocks before and after
block m. If there is only k blocks before block m and only l blocks after it with k < d − 1 and
l < d− 1, only k + l + 1 evaluations of FK are in fact required. The extension of this algorithm to
the replacement of any number q of contiguous blocks implies the regeneration of at most q + d− 1
random blocks, affecting at most q + 2(d− 1) windows. We deduct a number of evaluations of FK
of at most q + 2(d− 1).

Algorithm 4 Replacement of a block Pm by P ′m
Input: the ciphertext ((ri)i=1...n+d−1, (Ci)i=1...n), the document D, a key K

1: for j = m→ m+ d− 1 do
2: r′j ← {0, 1}e;
3: for j = m− (d− 1)→ m− 1 do
4: C ′j ← FK(rj‖ . . . ‖rm−1‖r′m‖ . . . ‖r′j+d−1)⊕ Pj;
5: C ′m ← FK(r′m‖r′m+1‖ . . . ‖r′m+d−1)⊕ P ′m;
6: for j = m+ 1→ m+ d− 1 do
7: C ′j ← FK(r′j‖ . . . ‖r′m+d−1‖rm+d‖ . . . ‖rj+d−1)⊕ Pj;
8: return ((ri)i=1...m−1, (r

′
i)i=m...m+d−1,

(ri)i=m+d...n+d−1, (Ci)i=1...m−1,

(C ′i)i=m−(d−1)...m+d−1, (Ci)i=m+d...n);

• In the algorithm 5 the d− 1 random blocks that follow rm are regenerated and a new random block
of size e-bits is inserted between rm and rm+1. Always with a view to simplification, the algorithm
assumes the presence in the document of d − 2 blocks before the block Pm and d − 1 blocks after.
Taking into account this insertion, a new window is appearing and 2d − 1 windows are affected so
that at most 2d evaluations of FK are required. The extension of this algorithm to the insertion of
any number q of contiguous blocks implies the generation of q random blocks, bringing the number
of evaluations of Fk to at most q + 2(d− 1).
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Algorithm 5 Insertion of a block P ′ right after Pm
Input: the ciphertext ((ri)i=1...n+d−1, (Ci)i=1...n), the document D, a key K

1: r′ ← {0, 1}e;
2: for j = m+ 1→ m+ d− 1 do
3: r′j ← {0, 1}e;
4: C ′m−(d−2) ← FK(rm−(d−2)‖ . . . ‖rm‖r′)⊕ Pm−(d−2);
5: for j = m− (d− 3)→ m do
6: C ′j ← FK(rj‖ . . . ‖rm‖r′‖r′m+1‖ . . . ‖r′j+d−2)⊕ Pj;
7: C ′ ← FK(r′‖r′m+1‖ . . . ‖r′m+d−1)⊕ P ′;
8: for j = m+ 1→ m+ d− 1 do
9: C ′j ← FK(r′j‖ . . . ‖r′m+d−1‖rm+d‖ . . . ‖rj+d−1)⊕ Pj;

10: return ((ri)i=1...m−1, r
′, (r′i)i=m+1...m+d−1,

(ri)i=m+d...n+d−1, (Ci)i=1...m−(d−1),

(C ′i)i=m−(d−2)...m, C
′, (C ′i)i=m+1...m+d−1,

(Ci)i=m+d...n);

The space occupied by the random blocks (ri)i=1...n+d−1 is exactly (ne + (d − 1)e) bits. This is to be
compared with the overhead of 8nN bits consumed by rECB. In other words, this means that the expansion
of a ciphertext produced by swrECB is about 1 + 1

d
whereas it is exactly a factor 2 when using rECB. The

ciphering of a n-block document requires n evaluations of FK . Finally, the number of evaluations of FK
for update operations is summarised in the following table:

Deletion of q
block

Replacement of
q block

Insertion of q
block

d− 1 q + 2(d− 1) q + 2(d− 1)

IV. A SPACE-EFFICIENT BYTE-WISE INCREMENTAL ENCRYPTION SCHEME

In this Section, we describe our space-efficient, byte-wise incremental and perfectly private incremental
encryption scheme. Unlike the previous scheme, this one relies on a stateless mode of encryption, that is to
say, a mode in which we do not maintain a state when ciphering the successive messages (the initialization

D the document is now seen as a bytestring
β bytestring to insert
D[a, b] substring of D from the byte a up to the byte b (included)

ui
φ← {1, . . . , L} ui is drawn from the set {1, . . . , L} according to φ

Bi i-th variable length block of size ui
u = (ui)i=1..n list/sequence of variable lengths ui
D = (Bi)i=1..n partitioned form of the bytestring D (sequence of parts Bi)
|.| size of a data in bytes or number of elements in a sequence
|u| number of parts in D
|β| size of the bytestring β, in number of bytes
k0 index of a part after which the repartition starts
k1 index of a part part before which the repartition terminates
u0, u|u|+1 sentinel lengths used by convention, and valued at 0
C0, C|u|+1 sentinel ciphered parts used by convention, whose contents

do not matter
r0, r|u|+1 sentinel random vectors used by convention, whose values do

not matter

TABLE II: Notations and conventions for mcXOR
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vector is chosen at random each time). As previously, we assume the use of a key generation algorithm
that takes as input a security parameter k and returns a symmetric key K. In the following subsections we
describe the three remaining algorithms, namely, encryption, decryption and update algoritms.

A. Notations
The main notations used are described in Table II. The use of sentinel indices are necessary in the case

of modification at the very beginning or the end of the document. For example, if we consider a n-byte
document, they will allow us to consider modifications of type (substitute, i, j, β) with i = 0 or j = n+ 1.

B. Encryption and decryption algorithms
The bytes string D is divided into variable sized blocks (Bi)i=1..n whose corresponding lengths (ui)i=1..n−1

(except the last term) follow a discrete probability distribution φ on a set {1, . . . , L}. Obviously, the size S
of D being fixed, an initially empty partition B is in practice built by repeating the following operations:
(i) Draw a number a from φ([1, L]) and set S = S − a; (ii) If S > 0 insert into B the part containing the
next a bytes. Otherwise, terminate by inserting the part of the remaining S + a bytes.

Stateless modes of encryption described in [11], such as OFB, CBC or XOR can be applied on variable
numbers of contiguous bytes of D so that a randomizer, used as an initial vector for the considered mode,
does not serve for one block but for several. The process is as follows. We partition the document into
several groups of variable number of contiguous bytes, the number being choosen according to a discrete
probability distribution (parameterized by a multiple lN of the block size, for instance U([1, lN ])). Then we
cipher independently each group with a stateless mode of operation from [11], [12] as if they were different
messages. Modes of operation that behave like a synchronous stream cipher (see stream cipher modes such
as OFB or XOR [11]), for which the plaintext is masked with a generated keystream, are preferable for
the reduction of the ciphertext expansion. We give an example of algorithm using the “stream cipher like”
mode XOR (stateless version of CTR, sometimes called randomized CTR) instantiated with a block cipher,
a good choice to keep a high degree of parallelism.

Let suppose a function XOR.EK which implements the encryption operation of XOR, takes as input a
symmetric key K, a message M and returns the ciphered message C of the same size together with the
associated random initialization vector IV . We do not recall the description of this well known algorithm
[12] and we assume that the underlying pseudorandom functions family used is F . The encryption operation,
denoted mcXOR (multiple calls to the XOR mode) is described in Algorithm 6.

Algorithm 6 E
Input: A bytestring D = {b1b2 . . . bn}, a key K

1: n← |D|; e← 1; k ← 1; j ← 1;
2: while e 6= 0 do
3: uj

φ← {1, . . . , lN};
4: if n− (k + uj) > 0 then
5: (rj, Cj)← XOR.EK(D[k, k + uj − 1]);
6: k ← k + uj; j ← j + 1;
7: else
8: (rj, Cj)← XOR.EK(D[k, n]);
9: uj ← n− k + 1; e← 0;

10: C ← C1||C2|| . . . ||Cj;
11: return ((ri)i=1...j, (ui)i=1...j, C);

If we denote j0 the value of j at the termination of the algorithm, the resulting ciphertext is composed of
the sequences of random vectors (rj)j=0...j0 , blocks lengths (uj)j=0...j0 and ciphered bytes C. Let suppose
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a function XOR.DK,IV which implements the decryption operation of XOR, takes as input a symmetric
key K, a ciphertext C together with the associated random IV and returns the corresponding plaintext D
of the same size. The deterministic decryption is described in Algorithm 7.

Algorithm 7 D
Input: A ciphertext ((ri)i=1...j0 , (ui)i=1...j0 , C), a key K

1: k ← 1;
2: for i = 1→ j0 do
3: Bi ← XOR.DK,ri(C[k, k + uj − 1]); k ← k + uj;
4: D ← B1||B2|| . . . ||Bj0;
5: return D

C. Incremental update algorithm
We recall that a random step in a walk corresponds to a random draw ui ∼ φ. Let us assume that we have

to insert a bytestring β somewhere between the first byte of Bk−1 and the first byte of Bk in the sequence
of variable length blocks B1, . . . , Bn. The first approach which simply consists to partition β in the same
manner as we partition the document and insert β at the good location in D (possibly decomposing Bk−1 in
two parts) is not sufficient. Indeed, this method leads to a bias in the resulting distribution of blocks’ lengths
after multiple insertions. For the same reasons, any other method which focus strictly on the partitioning of
β is a losing proposition. The approach defined in [9] proposes to realise a synchronization of random walks
so that we do not distub the probability distribution of blocks’ lengths (ui), leading to the ensurance of the
perfect privacy property and the conservation of the average space and time overheads. Applying this method
allows to perform a modification while respecting the lengths distribution but leads almost systematically to
a repartitioning of an untouched but quite limited subpart of the document. Let the corresponding sequence
of length (ui)i=1..n be drawn i.i.d. (independently and identically distributed) from a discrete distribution.
The problem is to generate a sequence of i.i.d. draws (u′i)i=k..l from this distribution until we find a couple
of indices (l,m) satisfying the following equality

l∑
j=k

u′j =
m∑
j=k

uj + A

where A = |β| + |Bk−1| if the insertion if performed between two bytes of Bk−1 and A = |β| otherwise.
For instance, in this second case, the resulting sequence of variable sized data blocks is then B1, . . . ,
Bk−1, B

′
k, . . . , B

′
l, Bm+1, . . . , Bn where the subsequence of blocks (B′i)i=k..l (of respective lengths (u′i)i=k..l)

which contains the inserted data replaces the subsequence (Bi)i=k..m.
All the operations described (insertion, deletion and replacement) can be preformed thanks to a single

one, a substitute function. The resulting scheme is secure provided that update operations are done by
paying particular attention to the variable-length blocks that are changed (in content or length). Indeed,
the associated random values need to be regenerated and these blocks reciphered. This function, described
in Algorithm 8, takes as input an encrypted form ((ri)i=1...j0 , (ui)i=1...j0 , (Ci)i=1...j0) augmented by sentinel
values for the sake of algorithmic simplification, as they allow update modifications at the very beginning
or the end of the document.
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Algorithm 8 I
Input:

A ciphertext ((ri)i=0...j0+1, (ui)i=0...j0+1, (Ci)i=0...j0+1),
the document D, an operation M = (substitute, i, j, β), a key K

1: v ← 1; c← |β|;
2: k0 ← argmina (f(a) =

∑a
m=0 um|f(a) ≥ i);

3: if f(k0) > i then
4: β ← D[f(k0 − 1) + 1, i]‖β;
5: c← c+ |D[f(k0 − 1) + 1, i|;
6: k0 ← k0 − 1;
7: k1 ← argmina (f(a) =

∑a
m=0 um|f(a) ≥ j − 1);

8: if f(k1) > j − 1 then
9: β ← β‖D[j, f(k1)];

10: c← c+ |D[j, f(k1)]|;
11: k1 ← k1 + 1;
12: x

φ← {1, . . . , lN};
13: if x = c then
14: u′v ← x;
15: (r′v, C

′
v)← XOR.EK(β);

16: v ← v + 1;
17: go to step 34;
18: if x < c then
19: c← c− x; u′v ← x;
20: (r′v, C

′
v)← XOR.EK(β[1, x]);

21: β ← β[x+ 1, c];
22: v ← v + 1;
23: go to step 12;
24: else[x > c]
25: if k1 = j0 + 1 then
26: u′v ← c;
27: (r′v, C

′
v)← XOR.EK(β);

28: v ← v + 1;
29: go to step 34;
30: c← c+ uk1;
31: β ← β‖D[f(k1 − 1) + 1, f(k1)];
32: k1 ← k1 + 1;
33: go to step 13;
34: r ← ((ri)i=1...k0 , (r

′
i)i=1...v−1, (ri)i=k1...j0);

35: u← ((ui)i=1...k0 , (u
′
i)i=1...v−1, (ui)i=k1...j0);

36: C ← ((Ci)i=1...k0 , (C
′
i)i=1...v−1, (Ci)i=k1...j0)

37: return (r, u, C);

D. Efficiency analysis
Encryption efficiency: From now on we will consider a 16-byte block cipher. We estimate the average

number of block cipher evals required to encrypt a document as follows: Given that a part size X follows
a uniform distribution U([1, L]) where L is a multiple of the block-size, according to the Wald’s equation
[13] the average number of parts in a ciphertext is tightly upper bounded by |D|+L

E(X)
. The number nX of
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blocks in a part follows a distribution U([1, L/16]). Subsequently, the Wald’s equation allows us to upper
bound the average number of block cipher evals by the product |D|+L

E(X)
· 16+L

32
.

Update efficiency: More precisely, let (Xi)i≥1 and (Yi)i≥1 be the sequences of independent, identically
distributed and strictly positive random variables with common distribution φ. We set the random walks
Sn, Tm such that Sn =

∑n
i=1Xi and Tm =

∑m
i=1 Yi and the random subset Z of N2

Z = {(n,m) ∈ N2 ;Sn − Tm = C ;C ∈ N}.

We denote by C the number of contiguous bytes to insert. If (n,m) and (n′,m′) are distinct in Z
then either n < n′ and m < m′ or n′ < n and m′ < m. In other words n ≤ n′ and m′ ≤ m leads to
(n,m) = (n′,m′). Indeed, if n ≤ n′ and m′ ≤ m then

∑n
i=1Xi =

∑m
i=1 Yi+C and

∑n′

i=1 Xi =
∑m′

i=1 Yi+C

imply
∑n′

i=n+1 Xi = −
∑m

i=m′+1 Yi. Therefore Z has the form {(nk,mk); k ∈ N∗} and the sequences (nk)
and (mk) are strictly increasing. Consider the algorithm described below that takes as input an initial value
C0 for C. First, we notice that we have two ways to terminate the algorithm, the traces of execution (5,1,2)
or (9,2). We can reason about both the number n1 of draws X and the number m1 of draws Y .

1: X
φ← {1, . . . , L};

2: If X = C stop;
3: if X < C then
4: C ← C −X;
5: go to step 1;
6: if X > C then
7: Y

φ← {1, . . . , L};
8: C ← C + Y ;
9: go to step 2;

We notice also the followings:
• If C0 > L, the average number of consecutives executions of the step 3 is upper bounded by C0/E(X),

after which we have C ≤ L.
• If C0 ≤ L, whenever step 1 (or 7) is executed we have C ≤ L and then a non-zero probability

P (x = C) (or P (y = X − C) respectively) to terminate. Let us assume that φ is a uniform law and
let us denote d1 the total number of random draws (d1 = n1 + m1). It turns out that d1 follows a
geometric law of parameter p = 1

L
, therefore we have the system of equations:

E(n1) + E(m1) = L

E(n1)− E(m1) ≤ 2L

L+ 1

so that E(n1) ≤ 1+L/2. Similar but pessimistic upper bounds are possible for a binomial distribution
B(L− 1, p) + 1 or a geometric distribution G(p) with p a parameter to be set.

In more general terms, assuming a uniform distribution and C0 > L, let d0 denote the number of random
draws needed to satisfy the predicate C ≤ L for the first time and d1 the number of random draws needed to
terminate the algorithm since the first satisfaction of this predicate. So, d = d0 + d1 and we have the upper
bound E(n1) ≤ 2C0

1+L
+ L

2
+ 1. This upper bound corresponds to the average number of parts to (re-)cipher

when the insertion is performed between two parts. When the insertion is performed inside a part, this part
has to be included in the partial repartition. Given that a part size is at most L, the upper bound becomes:

E(n1) ≤ 2C0

1 + L
+
L

2
+ 3. (1)
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This latter constitutes a tight worst case upper bound for the average number of changes in the partition.
Continuing, if we denote nU the number of blocks to cipher during an update, we can give the following
upper bound:

E(nU) = E(n1)E(nX) ≤
(

2C0

1 + L
+
L

2
+ 3

)
16 + L

32
.

Theorem 2: Assuming a 16-byte block cipher, a uniform distribution on the set {1, . . . , L} where L is a
multiple of the block-size and an operation M = (substitute, i, j, β), the average number of block-cipher
evals, when performing an update, is upper bounded by

(
2|β|
1+L

+ L
2

+ 3
)

16+L
32

.
If we consider the case of a non-uniform distribution φ ∈ T ∗ with mean µ, by denoting pmin =
min

i∈{1,...,L}
φ(i) we can show in the same way that E(n1) is upper bounded by C0/µ + 2/pmin + 3L/µ.

This constitutes a loose bound. In the rest of the paper we consider the use of a uniform distribution.
Storage space: The average storage space required for the sequence u depends on the choice of the

distribution and is upper bounded by |D|+L
E(X)

⌈
logL

8

⌉
. That represents, even for a basic distribution such as

U([1, L]), a small storage overhead. The average number nr of random elements drawn from φ can be
statistically parameterized such that nr ≤ |D|+L

E(X)
. As a result, the average total size (in bytes) of the encrypted

message can be upper bounded by |D|+ |D|+L
E(X)

(
N +

⌈
logL

8

⌉)
where X ∼ U([1, L]).

Considering that n is the document size in bytes and L a multiple of the block-size such that L = lN , in
the following Table III we present the storage space and the running time for an encryption corresponding
with N = 16 and various values for l (note that we have rounded the factor of n and the constant to three
significant digits and two significant digits respectively).

Mode Distribution Encryption or
decryption

Synchronization Average size

U([1, 128]) ≤ 0.078n+ 10 ≤ 302 ≤ 1.264n+ 34
mcXOR U([1, 256]) ≤ 0.071n+ 18 ≤ 1114 ≤ 1.133n+ 34

U([1, 512]) ≤ 0.067n+ 34 ≤ 4274 ≤ 1.071n+ 36
rECB constant 0.063n block-wise 2n

TABLE III: Efficiency of mcXOR where the encryption/decryption and the random walks synchronization are expressed in
average number of block-cipher evals. Note further that n is the document size in bytes.

As a result, our scheme is able to reduce drastically the storage space overhead consumed by ciphertexts.
The synchronization complexity corresponds to the contribution

(
L
2

+ 3
)

16+L
32

and we observe that the
more we want to decrease the storage overhead, the longer is the delay for syncronizing the random
walks. For instance, if the distribution used is U([1, 512]), the expansion of the ciphertext is slight but the
synchronization needs to recipher approximately 70KB of data. Thus, such a high value for L is justified
for large sized documents.

How to index efficiently: When the document is large and a user accesses only a portion of a ciphered
document, one might wonder how to index efficiently the ciphered document, or in other words, how to
evaluate efficiently a sum

∑a
m=0 um. A solution is to use an history independent data structure, such as the

Oblivious Tree [10]. The use of such an oblivious data structure is important to keep the perfect privacy
property. Since the interest of self-balancing data structures is well known, we describe quickly its use as
following. The sequence of lengths (ui)i=1...|u| are assigned to each leaf of the tree and the value assigned
to a parent node is computed as the sum of the values of its childrens. Then an access to a byte index, an
update or an adding of a length value are all done in O(log |u|) add operations.

V. A NEW SCHEME COMBINING THE TWO APPROACHES

We have described two ways to improve the space efficiency: the first one consists in using a sliding
window over a sequence of small randomizers, and then to apply a block cipher algorithm to each successive
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window to obtain a keystream; the second one consists in applying several times a randomized mode
of operation to each sufficiently large part of a document so as to reduce the number of random input
vectors. To provide a provable perfect privacy property at each update in this latter scheme we employ a
synchronization of random walks (this remark could be true for the former if we extend it in a byte-wise
incremental version in a black-box manner). This synchronization produces a ciphering overhead which
increases with the average size of a part and any attempt to reduce this effect is welcome. For this purpose,
it is not difficult to imagine a byte-wise incremental encryption scheme combining these two approaches:
we partition the document in variable-sized parts and cipher each part with a slightly different version of
XOR mode in which an initialization vector is no longer generated uniformly at random but corresponds
to a window sliding over a sequence of randomizers. Such an operating mode, denoted swrXOR, is then
parameterized with two parameters, the parts’ lengths probability distribution and the randomizer size e.
If the update algorithms are deducible from our previous schemes, it is worth stressing on the need for
caution in the regeneration of the randomizers that should be involved in an update:
• The repartition of the document including the modification is composed of parts containing this

modification but also of some other ones induced by the synchronization of random walks. Let us
assume that this latter unchanged content corresponds to the parts Bi, Bi+1, . . . , Bi+n−1 in the original
partition. Let us denote by m the overall number of repartitioned parts and by B′i, B

′
i+1, . . . , B

′
i+m−1

the corresponding changed parts in the updated partition.
• In addition to these m parts, this variant of XOR has to be applyed to 2(d−1) adjacent parts. Indeed,

for similar reasons as for swrECB, as regards the last part, all the randomizers of the associated
input window need to be regenerated uniformly at random, implying the (re-)generation of a total
of m + d − 1 randomizers, with the objective to conserve update indistinguishability. As a result,
both the sequence of unchanged parts Bi−(d−1), Bi−(d−2), . . . , Bi−1 and Bi+n, Bi+n+1, . . . , Bi+n+d−2

need to be reciphered to maintain consistency with the sliding windows. Security and run times are
discussed in Section VI and VII respectively.

VI. SECURITY ANALYSIS

In the following subsections, we are interested in the security of our schemes concerning the message and
update secrecy and finally the perfect privacy property. Note that proofs of indistinguishability are given
assuming the use of a random function. They can be derived in a straightforward way in the pseudorandom
function model, we refer to [12] to observe a reduction of security between a mode of operation and the
underlying pseudorandom function used. These proofs being exactly the same, we do not present them in
this paper.

A. swrECB
The perfect privacy of this scheme is obvious and we focus on the message and update secrecy properties.

We proove that swrECB is still secure despite the use of incremental operations and the rationale for
regenerating at random all the blocks contained in the window associated with the inserted (or replaced)
block will become clear.

Theorem 3: Let the size l be in number of blocks and suppose the use of a random function instead
of FK . swrECB over modification space MB is a (t, qe, qinc, µ

∗, l, ε)-I-CPA-secure incremental encryption
scheme in the find-then-guess sense where:

ε ≤ 2lµ∗ + l(l − 1)

28N+1

and µ∗ is the greatest amount of ciphered blocks that the adversary can obtain during the queries phase,
when performing only replace or insert operations, that is to say, µ∗ =

∑qe
i=1 ni + qinc(2d− 1) where ni is

the block-length of the i-th document queried to the encryption oracle.
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Theorem 4: Suppose the use of a random function instead of FK . swrECB over modification space MB

is a (t, qe, qinc, µ
∗, ε)-IM-CPA-secure incremental encryption scheme in the find-then-guess sense where:

ε ≤ µ∗ + 2(d− 1)

28N

and µ∗ is the greatest amount of ciphered blocks that the adversary can obtain, as stated in the previous
theorem.

B. mcXOR
We assume the use of a distribution φ = U([1, L]) where L is a multiple of the block-size and the

proof of security in appendix considers a particular stateless mode of encryption (XOR). In fact, we can
generalize by replacing XOR by any stateless mode of encryption, the proof remains similar. As for swrECB
we proove that mcXOR is still secure despite the use of incremental operations.

Theorem 5: Let the size l be in number of bytes and suppose the use of a random function instead of FK .
mcXOR over modification space Mb is a (t, qe, qinc, µ

∗
1, l, ε)-I-CPA-secure incremental encryption scheme

in the find-then-guess sense where:

ε ≤ 1

N

(
8
l2

L
+ 40l + 18L+ 4µ∗1(l + L)

)
1

28N

and µ∗1 is the number of (re-)partitioned ciphered parts that the adversary can obtain during queries, that is
to say:

µ∗1 =
2(
∑qe

i=1 n
i
e +
∑qinc

i=1 n
i
u)

L+ 1
+ 2qe + (L/2 + 3)qinc

where nie is the byte-length of the i-th document queried to the encryption oracle and niu is the byte-length
of the i-th modification queried to the updating oracle.

Theorem 6: Suppose the use of a random function instead of FK . mcXOR over modification spaceMb is
a (t, qe, qinc, µ

∗
2, nuc, ε)-IM-CPA-secure incremental encryption scheme in the find-then-guess sense where:

ε ≤ 1

N

(
8
n2
uc

L
+ 40nuc + 18L+ 4µ∗2(nuc + L)

)
1

28N

with µ∗2 the amount of (re-)partitioned ciphered parts that the adversary can obtain during the queries phase,
augmented by the repartioned parts (of unmodified content) obtained during the challenge update, that is
to say µ∗2 = µ∗1 + L/2 + 3, and nuc the byte-length of the data to insert in the challenge update.

Theorem 7: For all document D = b1 . . . bn where (bi)i=1..n are the ordered bytes of D and for all
β (including the empty string), considering the encrypted document C = mcXOR.EK(D), the outputs
of mcXOR.EK(b1b2 . . . bi−1biβbjbj+1 . . . bn−1bn) and mcXOR.IK((substitute, i, j, β), D, C) are perfectly
indistinguishable.

C. swrXOR
We take the same assumptions about the distribution of parts’ lengths. The proof of security in appendix

describes only the differences when compared to the proofs supplied for mcXOR. It turns out that the upper
bounds on insecurity of swrXOR stay close to this latter up to a constant factor.

Theorem 8: Let the size l be in number of bytes and suppose the use of a random function instead of FK .
swrXOR over modification space Mb is a (t, qe, qinc, µ

∗
1, l, ε)-I-CPA-secure incremental encryption scheme

in the find-then-guess sense where:

ε ≤ 7L

N

(
8
l2

L
+ 40l + 18L+ 4µ∗1(l + L)

)
1

28N−1
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and µ∗1 is the number of (re-)partitioned ciphered parts that the adversary can obtain during queries, that is
to say:

µ∗1 =
2(
∑qe

i=1 n
i
e +
∑qinc

i=1 n
i
u)

L+ 1
+ 2qe + (L/2 + 3 + 2(d− 1))qinc

where nie is the byte-length of the i-th document queried to the encryption oracle and niu is the byte-length
of the i-th modification queried to the updating oracle.

Theorem 9: Suppose the use of a random function instead of FK . swrXOR over modification space Mb

is a (t, qe, qinc, µ
∗
2, nuc, ε)-IM-CPA-secure incremental encryption scheme in the find-then-guess sense where:

ε ≤ 7L

N

(
8
n2
uc

L
+ 40nuc + 18L+ 4µ∗2(nuc + L)

)
1

28N−1

with µ∗2 the amount of (re-)partitioned ciphered parts that the adversary can obtain during the queries phase,
augmented by the repartioned parts (of unmodified content) obtained during the challenge update, that is
to say µ∗2 = µ∗1 +L/2 + 3 + 2(d− 1), and nuc the byte-length of the data to insert in the challenge update.

Theorem 10: For all document D = b1 . . . bn where (bi)i=1..n are the ordered bytes of D and for all
β (including the empty string), considering the encrypted document C = swrXOR.EK(D), the outputs
of swrXOR.EK(b1b2 . . . bi−1biβbjbj+1 . . . bn−1bn) and swrXOR.IK((substitute, i, j, β), D,C) are perfectly
indistinguishable.

VII. SUMMARY OF RESULTS

For the extension of swrECB into a byte-wise incremental scheme, we assume the use of a slightly
different approach of [9] in which each variable-length part is ciphered thanks to the lowest possible
number of block cipher calls. For instance, if a part is of length p bytes, only dp/Ne block-cipher evals is
needed. Besides, as the construction of [9] was very generic, we discard the padding of the variable-length
parts and encrypt them so that their lengths remain the sames4. Table IV summarizes the efficiencies of
our schemes. We then notice that when we choose a very high parameter L for mcXOR the delay for
the synchronization of the random walks becomes prohibitive, and we observe in this case that swrECB
becomes more attractive with respect to the update operations. Indeed we can choose a smaller parameter
L∗ for the random walk used in the extended swrECB along with an appropriate choice for e so that the
space consumption is equivalent to what we observe with mcXOR parametrised with L. This observation
led us to consider the third scheme swrXOR. From a space/update time tradeoff perspective, by using just
a little bit more than e bits of overhead by ciphered part, swrXOR is the most interesting. If we select
correctly the involved parameters, combining the approach of the sliding window with mcXOR allows to
significantly reduce the expansion of the ciphertext while avoiding a too large increase of the constant in the
update average runtime (the contribution of the random walks synchronization). By varying the parameters
of our encryption schemes, the following observations can be made about the coefficients in the upper
bounds linear equations (Figure 2 depicts the lines for various parameters):
• If we increase the parameter L, or more generally, if we increase the average size of a part then the

expansion of the ciphertext is reduced.
• By increasing the average size of a part we increase the value of the constant in the update average

run time upper bound, making incremental updates of the ciphertext less efficient for small changes
in the corresponding document. On the other hand, this is accompagned of a slight decrease of the
line slope, making incremental updates more efficient for big changes.

• Using swrXOR instead of mcXOR with a smaller parameter L and an appropriate parameter e allows
to obtain a reduction of both the ciphertext expansion and the constant part in the update average run
time. In Figure 2, we can observe the behaviours of mcXOR with L = 512 and swrXOR with L = 128

4swrECB is a XORing mask mode, so we can cipher each part of length s-bit with the correspondings s highest (or lowest, depending on
the used convention) significant bits and discard the unused ones.
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Mode Encryption/decryption - Block-cipher evals in
average

Insertion of β - Block-cipher evals in
average Average size

mcXOR |D|+ 2(|D|+L)
L+1

(
N +

⌈
logL

8

⌉) (
2|β|
1+L

+ L
2

+ 3
)

16+L
32

extended
swrECB |D|+ 2(|D|+L)

(L+1)

(
e(16+L)

256
+
⌈
logL

8

⌉)
+

e(d−1)
8

(
2|β|
1+L

+ L
2

+ 3
)

16+L
32

+ 2(d− 1)
2(|D|+L)
(L+1)

· (16+L)
32

swrXOR |D|+ 2(|D|+L)
(L+1)

(
e
8

+
⌈
logL

8

⌉)
+

e(d−1)
8

(
2|β|
1+L

+ L
2

+ 3 + 2(d− 1)
)

16+L
32

TABLE IV: Summary of tight upper bounds for the space and time efficiencies, by assuming the use of a uniform distribution
U([1, L]) where L is a multiple of the block-cipher size. The space consumption is in number of bytes.

and e = 8. From a space consumption standpoint, swrXOR is the more advantageous. As regards
the update run times, swrXOR is more advantageous for insertion of less than 200KBytes. Finally,
when performing a small change at a given location we would like to avoid reciphering completely
the following bytes of the document (as frequently as possible). In this sense we emphasise that a
smaller constant in the update average run time is preferable for small document.
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Fig. 2: Upper bounds for the average space consumptions and average update run times

Remarks about composition paradigms: Incremental authenticated encryption schemes can be ob-
tained by the encrypt-then-MAC composition paradigm [14]: (i) The document is ciphered with an incre-
mental encryption scheme (instantiated with a key k1); (ii) The incremental MAC (message Authentication
Code) is computed over the resulting ciphertext (instantiated with a key k2). This composition is the most
secure, if the symmetric encryption (instantiated with a key k1) is IND-CPA and if the symmetric signature
scheme (instantiated with a key k2 6= k1) is INT-CTXT then the resulting authenticated encryption scheme
is IND-CCA. Using one of our algorithm in such a composition scheme leads not only to very substantial
savings on the space consumption but also sometimes to interesting gain in computational efficiency. Take,
for example, a variant of mcXOR based on the stateless variant of CBC, say mcCBC. We design a byte-
wise incremental authenticated encryption scheme in the following way: (i) Choose a distribution for the
random walk that well reduces the expansion of the ciphertext produced by mcCBC, for instance, choose a
distribution U([1, 512]), and encrypt the document; (ii) Apply XOR-MAC [2] on the resulting ciphertext.
Even though XOR-MAC is a block-wise incremental MAC, the resulting composed scheme still allows
update operations whose run time is affine (in average) in the amount of data changed. This is due to the
fact that mcCBC respects the alignement of the unchanged ciphered blocks. Finally the consumed space
is two times the expansion of the ciphertext. Consequently, the overall consumed space by the resulting
authenticated encryption is little more than two times the size of the document, which is much better than
the factor 4 implied by the composition of rECB with the incremental XOR-MAC [8].
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VIII. APPLICATIONS AND CONCLUSION

One can deduce a variant of the protocol of [15] which does make use of incremental encryption and
incremental MAC to update at low costs the cryptographic forms of outsourced documents. For instance, one
could choose a solution in which a user U can update documents stored on a server S while their contents
are kept secret from this latter but are authenticated by the two entities. Considering that U uses a secret
key k1 to encrypt documents and a key k2 (shared with S) to authenticate them, such a solution is obviously
possible with the encrypt-then-MAC composition: U updates himself (herself) a ciphered document on his
(her) local workspace with his (her) key k1 and sends the changed ciphered parts to S, which in turn updates
the corresponding MAC with the shared key k2.

Many modern applications have to deal with the handling of changes in large secure electronic documents
on remote servers for which the development of incremental cryptographic algorithms is required. Indeed
this is mandatory in order to reduce delays to maintain consistency. Block-wise incremental algorithms
defined so far have the advantage of being parallelisable and already allow interesting operations such
as block deletion/insertion. Unfortunately, their extension towards byte-wise incremental schemes [9] does
not solve the ciphertext expansion problem. In this paper, we propose new byte-wise incremental and
perfectly private encryption schemes that can be parametrised in order to produce smaller ciphertexts. Such
a characteristic is as critical as computational resources are in cloud storage.

A first approach is to design a space-efficient block-wise encryption scheme and extend it into a byte-
wise incremental one. Its security is proved assuming a good pseudorandom function. A second approach
is to use a stateless encryption mode as a fine-grained primitive. In this latter case, its security relies only
on the correct use of this primitive. The run time of the incremental update operations is very efficient
but the contribution of the random walks synchronization increases with the parameters of the distribution
and thus lessens its interest for small documents and updates. The question then arises as to how decrease
this synchronization overhead. A possible solution, our third approach denoted swrXOR, is a variant of the
mcXOR mode in which the input random blocks are replaced by sliding windows over a sequence of small
random blocks. In other words this means combining the advantages of mcXOR and swrECB. In such a
solution, by choosing a small value for L and the appropriate value for e for approaching the consumed
space of mcXOR, we can take advantage of the same space-efficiency while lowering the delay for the
random walks synchronization. Finally, it would be worthwhile to estimate performances and security of
these schemes by considering the use of a real synchronous stream cipher [16], [17].
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APPENDIX

A. swrECB
Proof of theorem 3: Let G1 be the multiset of windows involved during encryption and updating

oracle accesses and let G2 be the multiset of the l windows involved during the encryption of the challenge.
Let D1 be the event that the windows of G2 are distinct from the windows of G1, and let D2 be the event
that the windows of G2 are all distinct. For simplicity, we also define S to be the event of success of A in
the game ExptI-CPA

Ψ,FG (A,k).
Let us now consider the event D = D1 ∩ D2. When the event D occurs, the challenge ciphertext is

obtained by evaluating l times the random function to distinct and new points, new in the sense that
they have not appeared during queries. Thus, the corresponding outputs of the random function are l new
random draws from {0, 1}8N . By XORing such a random value with a plaintext block of the challenge,
we obtain a ciphered block which is still a new random draw. The l ciphered blocks of the challenge are
then independently and identically distributed over {0, 1}8N . Besides, this distribution is independent of the
previous ciphered blocks obtained during queries. Consequently, the adversary can at best make a random
guess. We have Pr(S | D) = 1/2 and it follows that

|Pr(S)− 1/2| ≤
∣∣∣∣Pr(S | D)− 1

2

∣∣∣∣Pr(D) ≤ 1

2
Pr(D).

Before continuing, consider the windows (wi)i=1...n in the same ciphertext, the probability that wi = wi+k
for all i, k > 0 is exactly 1/2ed. In other words, the fact that two windows within a same ciphertext share
a common (but shifted) sequence of randomizers or not, the probability that they collide is still the same.
Now it remains to estimate the probability of occurrence of the event D:
• Let us denote (wci )i=1...l the windows used in the challenge ciphertext. Let us denote (we1i )i=1...n1 ,

(we2i )i=1...n2 , ..., (weqei )i=1...nqe the windows used during encryption queries and (wu1
i )i=1...2d−1,

(wu2
i )i=1...2d−1, ..., (wuqinci )i=1...2d−1 the windows used during update queries. We assume update

queries of type replacement or insertion (only) since they bring more information to the adversary.
For i ∈ J1, lK, j ∈ J1, qeK and k ∈ J1, njK let us denote the event dijke = {wci = wejk } and for i ∈ J1, lK,
j ∈ J1, qincK and k ∈ J1, 2d−1K let us denote the event dijku = {wci = wujk }. The event D1 is included

in
⋃
i=1...l

 ⋃
j=1...qe

⋃
k=1...nj

dijke
⋃

j=1...qinc

⋃
k=1...2d−1

dijku

. We therefore have

Pr(D1) ≤ lµ∗

2ed

where µ∗ =
∑qe

i=1 ni + qinc(2d− 1). The contribution qinc(2d− 1) corresponds to the most favourable
update queries for the adversary (insertion or replacement only).
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• We define the event dij2 = {wci = wcj} for all i, j ∈ J1, lK with i 6= j. The event D2 being included in⋃
i=1...l

⋃
j=i+1...l

dij2 , we can subsequently upper bound its probability of occurence as follows:

Pr(D2) ≤
l∑

i=1

l∑
j=i+1

1

2ed
≤ l(l − 1)

2ed+1
.

Proof of theorem 4: Now let us consider the update secrecy game. Deletions at a same location being
obviously indistinguishable, the adversary will return in the “find“ phase operations of type insertion or
replacement.

Let us now consider the ”guess” phase. Notice that when the challenger applies one of the two operations
on the ciphertext, a certain amount (at most 2(d − 1)) of adjacent ciphered blocks change while the
corresponding plaintext blocks are unchanged. It is important to make clear that this is only due to the
changing of the 2(d− 1) adjacent input windows to the random function. Indeed, considering a challenge
update of type (insert, i, P ∗), the returned updated ciphertext C ′ contains at most 2d − 1 new windows.
One of them, w′, serves to cipher the inserted block and we call the other ones “the adjacents“. Let Gu be
the multiset of windows of G1 augmented by the new adjacent windows (w′j)j=i−d+1...i and (w′j)j=i+1...d−1.
We denote Du the event that w′ is distinct from the windows of Gu.

Now, let us consider the event Du. When the event Du occurs, whatever the operation choosed by the
challenger is, this new ciphered block is indistinguishable from a new random draw from {0, 1}8N . This is
due to the fact that the output of the random function is really a new random draw, and not a reused one. Just
as in the previous proof, by denoting again S the event of success of A in the game ExptIM-CPA

Ψ,FG (A,k),
we have

|Pr(S)− 1/2| ≤ 1

2
Pr(Du)

We fix an arbitrary order for the elements of Gu, that is to say, we write Gu = (wi)i=1...u∗+2(d−1). We
denote di the event that w′ = wi for i ∈ J1, u∗ + 2(d− 1)K. The events (di)i=1...u∗+2(d−1) are not mutually
exclusive, but we can upper bound the probability of occurence of Du as follows:

Pr(Du) ≤ µ∗ + 2(d− 1)

2ed
.

Why regenerate all the random blocks in the window w′: Taking the example of a replace op-
eration, assume that we do not regenerate all of them but only one, the first one. Consider the value
w = ri‖ri+1‖ . . . ‖ri+d−1 before an update and the corresponding value w′ = r′i‖ri+1‖ . . . ‖ri+d−1 after an
update. The probability that w′ equals w is exactly 1/2e. In this case update queries are more advantageous
for the adversary than encryption queries and annihilates the indistinguishability of the scheme. We conclude
that all the random blocks that serve to encrypt the inserted (or replacement block) need to be regenerated,
implying a change in the 2(d− 1) adjacent windows. This leads to the reencryption of 2(d− 1) unchanged
plaintext blocks, a necessary overhead of encryption.

B. mcXOR
Stochastic processes background: Let X1, X2, ... be i.i.d. random variables drawn according to

U([1, L]) and define the sum ST =
∑T

i=1Xi. Consider the first time T where ST ≥ l. We call T the
stopping time for the stopping rule minT (ST s.t. ST ≥ l). The following hold:
• Wald’s first equation: E(ST ) = E(T )E(X1),
• Wald’s second equation: E((ST − TE(X1))2) = V (X1)E(T ).
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We deduce the followings: (i) Fact 1. According to the first equation, we have 2l
1+L
≤ E(T ) < 2(l+L)

1+L
. (ii)

Fact 2. By developing the second equation and noticing that T l ≤ TST < T (l+L) we have the following
rough upper bound E(T 2) ≤ 4

(
l
L

)2
+ 20 l

L
+ 9.

Proof of theorem 5: The reasoning being almost the same that for swrECB we give only the important
steps. First of all, we suppose negligible the time taken to partition the bytestrings. Let us denote by r′

and r′′ the random vectors used to encrypt respectively the parts of length l′ and l′′, where r′, r′′ are
drawn randomly from {0, 1}8N and l′, l′′ are drawn randomly from {1, . . . , L}. We say that r′ and r′′

overlap in values if there exist k′, k′′ such that r′ + k′ = r′′ + k′′ where k′ ∈
{

0, 1, . . . ,
⌈
l′

N

⌉
− 1
}

and
k′′ ∈

{
0, 1, . . . ,

⌈
l′′

N

⌉
− 1
}

. Let us denote by Proverlap the probability of occurence of such an event. It is
clear that Proverlap ≤ 2L/N

28N
. Continuing, we need to use a certain number of notations:

• Te,i is the number of parts in the i-th encryption query,
• Tu,i is the number of parts in the i-th update query,
• Tl is the number of parts in the challenge ciphertext,
• G1 is the multiset of random vectors involved during encryption and updating oracle accesses. We

notice that G1 is of size
∑qe

i=1 Te,i +
∑qinc

i=1 Tu,i.
• G2 is the multiset of random vectors involved during the encryption of the challenge. This one is

then of size Tl.
Let D1 be the event that none of the vectors of G2 overlaps a vector of G1, and let D2 be the event that
none of the vectors of G2 overlap. As previously we only need to be concerned with D = D1 ∪D2:
• We use the update run time bound (inequation (1) Section IV-D) and fact 1 to evaluate the probability

of occurence of D1. By applying several times the union bound it follows that:

Pr(D1) ≤

(
qe∑
i=1

E(Te,i) +

qinc∑
i=1

E(Tu,i)

)
E(Tl) Proverlap

≤ 4µ∗1(l + L)

N28N
.

• We use the fact 1 to evaluate the probability of occurence of D2. By the union bound it follows that:

Pr(D2) ≤ E(T 2
l ) Proverlap ≤

(8 l
2

L
+ 40l + 18L)

N28N
.

Proof of theorem 6: In the update secrecy game, the adversary will return in the “find“ phase operations
such as (substitute, i, j, βb)b=0,1 where |β0| = |β1| > 0. Indeed, the case |β0| = |β1| = 0 yields the same
updated message in both cases. Let us now denote by Tuc the number of new parts produced during this
update. According to inequation (1) Section IV-D we have E(Tuc) <

2|β0|
1+L

+ L
2

+ 3. We need to split Tuc
in two times Tuc,1 and Tuc,2 where Tuc,1 corresponds to the time taken to produce the parts containing the
modified portion and Tuc,2 the time taken to resynchronize the random walks, that is, the parts containing
unmodified data in the message. Considering the challenge update, let G3 be the multiset G1 augmented by
the random vectors used to encrypt the parts that serve to resynchronize the random walks and let G4 be
the multiset of the random vectors used to encrypt the parts containing the modified portion of the message.
G1 is of size

∑qe
i=1 Te,i +

∑qinc
i=1 Tu,i + Tuc,2 and G4 is of size Tuc,1.

Let D3 be the event that none of the vectors of G3 overlaps a vector of G4, and let D4 be the event that
none of the vectors of G4 overlap. As previously we only need to be concerned with D = D3 ∪D4:
• We note that E(Tuc,2) is maximized when E(Tuc,1) is minimized so that E(Tuc,2) ≤ L/2 + 3. Then,

upper bounding the various average times, we deduce the following:

Pr(D3) ≤

(
qe∑
i=1

E(Te,i) +

qinc∑
i=1

E(Tu,i)

)
E(Tuc,2) Proverlap

≤ 4µ∗2(l + L)

N28N
.



25

• Here again, using the fact 2 and applying the union bound:

Pr(D4) ≤ E(T 2
uc,1) Proverlap ≤

(8n
2
uc

L
+ 40nuc + 18L)

N28N
.

Proof of theorem 7:
The assertion of this proposition is obvious. If we consider the blocks’ lengths in the partition of

the plaintext b1b2 . . . bi−1biβbjbj+1 . . . bn−1bn performed by mcXOR.EK(b1b2 . . . bi−1biβbjbj+1 . . . bn−1bn) or
mcXOR.IK((substitute, i, j, β), D, C), we see a sequence of terms independently and identically distributed
from a discrete probability distribution, except the last one (due to the termination condition in the
algorithm). Its probability of occurrence is conditioned by the length of the document and the summation
of all previous drawn terms, what still allows to say that the probability distribution of this latter term is
the same in both cases. Finally, in either case, each variable-length block is ciphered thanks to the mode
of operation XOR independently of the others.

C. swrXOR
Proofs of theorems 8 and 9: Let wi = riri+1 . . . ri+e−1 be the 2d-bit encoding of the i-th sliding

window, that is, the window used to encrypt the i-th part. Let us denote by li and lj the lengths of the
i-th and j-th parts, where li and lj are drawn randomly from {1, . . . , L} and i 6= j. Let us also denote
by S ′ the set

{
0, 1, . . . ,

⌈
li
N

⌉
− 1
}

and by S ′′ the set
{

0, 1, . . . ,
⌈
lj
N

⌉
− 1
}

. We say that wi and wj overlap
(in values) if there exist k′, k′′ such that wi + k′ = wj + k′′ where k′ ∈ S ′ and k′′ ∈ S ′′. Let us denote

overlap such an event. It follows that Pr

[
overlap

]
≤ Pr

[
∃ k′ ∈ S ′, k′′ ∈ S ′′ s.t. |wi − wj| = |k′′ − k′|

]
≤

Pr

[
|wi − wj| ≤ L/N

]
. Two cases may occur:

• |j − i| ≥ e, it is then clear that

Pr [|wi − wj| ≤ L/N ] ≤ L

N28N−1
. (2)

• 1 ≤ |j − i| ≤ e − 1 then let us denote o = |j − i|. Assuming that j > i, let the following 2d-bit
encodings Ai = riri+1 . . . ri+o−1, Ai+e = ri+e . . . ri+o+e−1 and Z = ri+o . . . ri+e−1. The string Z
corresponds to the (2d)e−o lower significants bits of wi, while this is the (2d)e−o most significants
bits of wi+e. We can rewrite wi and wi+o in the following way:

wi = Ai
(
2d
)e−o

+ Z,

wi+o = Z
(
2d
)o

+ Ai+e

so that |wi+o − wi| =
∣∣Ai+e − Ai2d(e−o) + Z

(
2do − 1

)∣∣. Note that the support of Ai and Ai+e is
J0,
(
2d
)o − 1K. We are interested in the support of the random variable Xi+e = Ai+e − Ai

(
2d
)e−o.

One can observe the followings: (i) if o ≤ e−o its support is a set of exactly 22do values on which Xi+e

is uniformly distributed; (ii) if o > e−o its support is a set of at least 2do values. More precisely, some
of the elements taken by Xi+e can indeed be described by two distinct couples (Ai, Ai+e), (A′i, A

′
i+e)

with Ai 6= A′i or Ai+e 6= A′i+e. Consequently, for any value x of this set we can upper bound its
probability of occurence by 2do−1. Since our interest is to upperbound Pr [|wi − wj| ≤ L/N ], we
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continue in the following way by denoting U = 2do − 1 for a convenient display:

Pr[|wi+o − wi| ≤ L/N ] ≤Pr

[
|Xi+e + ZU | ≤ L

N

∣∣∣∣ LN < U

]
+

Pr

[
|Xi+e + ZU | ≤ L

N

∣∣∣∣ LN ≥ U

]
≤

2d(e−o)−1∑
Z=0

Pr

[
|Xi+e + ZU | ≤ L

N

∣∣∣∣ LN < U

]
Pr [Z] +

Pr

[∣∣∣∣Xi+e

U
+ Z

∣∣∣∣ ≤ ⌈ L

NU

⌉ ∣∣∣∣ LN ≥ U

]
≤Pr

[
|Xi+e| ≤

L

N

∣∣∣∣ LN < U

]
Pr [Z = 0] +

Pr

[
|Xi+e + U | ≤ L

N

∣∣∣∣ LN < U

]
Pr [Z = 1] +

Pr

[∣∣∣∣Xi+e

U
+ Z

∣∣∣∣ ≤ 2L

NU

∣∣∣∣ LN ≥ U

]
≤2L/N

2de−1
+

4L/N

(2do − 1)2d(e−o) ≤
6L

N28N−1
. (3)

Whatever the case is, using 2 and 3 we conclude that Pr [overlap] ≤ 7L
N28N−1 .The rest of the proof is

similar to that provided for mcXOR except that the multisets G1, G2, G3 and G4 are composed of the
sliding windows used during the queries phase. In addition to the overhead of encryption implied by the
synchronization of random walks during an update, we need to take into account the overheads implied by
the sliding windows which force us to reencrypt 2(d − 1) unchanged parts. Since these additionnal parts
bring more information to the adversary, we just have to reestimate the cardinal of G1 to deduct an upper
bound of insecurity for the message secrecy. In the same way, by reestimating the cardinal of G3 we deduct
an upper bound of insecurity for the update secrecy.

Proof of theorem 10: As regards the distribution of blocks’ lengths, the proof is exactly the same
that for mcXOR. The exception is, whether we consider the encryption or the update, each variable-length
part is ciphered with an input vector which actually is a sliding window (d-wise chain) over a string of
random elements. The way in which the parts are ciphered is therefore the same in both cases. Consequently,
encryption and update output ciphertexts that are perfectly indistinguishable.


