
Reducing the Overhead of Cloud MPC

A. Choudhury?, A. Patra?? and N. P. Smart? ? ?

Abstract. We present a secure multi-party computation (MPC) protocol in the honest-majority setting, which aims
to reduce the communication costs in the situation where there are a large number of parties (as in a cloud scenario).
Our goal is to reduce the usage of point-to-point channels, so as to enable the cloud to be used for multiple different
protocol executions. We assume that the number of adversarially controlled parties is relatively small, and that
an adversary is unable to target the proactive corruption of a subset of the parties (technically we assume a static
corruption model for simplicity). As well as enabling a cloud provider to run multiple MPC protocols, our protocol
also has highly efficient theoretical communication costs as a general MPC protocol when compared with other
protocols in the literature; in particular the communication cost, for circuits of a suitably large depth, isO(|ckt|·κ7),
for security parameter κ and circuit size |ckt|.

Acknowledgements: This work has been supported in part by ERC Advanced Grant ERC-2010-AdG-
267188-CRIPTO, by EPSRC via grant EP/I03126X, and by Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory (AFRL) under agreement number FA8750-11-2-0079 and
the third author was supported in part by a Royal Society Wolfson Merit Award.

The US Government is authorized to reproduce and distribute reprints for Government purposes notwith-
standing any copyright notation thereon. The views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of Defense Advanced Research Projects Agency (DARPA) or the U.S. Government.

? Department of Computer Science and Engineering, Jadavpur University, India. Email: achoudhury@cse.jdvu.ac.in,
partho31@gmail.com.

?? Applied Statistics Unit, Indian Statistical Institute Kolkata. Email: arpitapatra10@gmail.com.
? ? ? Department of Computer Science, University of Bristol, United Kingdom. Email: nigel@cs.bris.ac.uk.

1 Introduction

Threshold secure multi-party computation (MPC) [29, 21] is a fundamental problem in secure distributed
computing. On a very high level it allows a set of n mutually distrusting parties with private inputs to
“securely” compute any publicly known function of their private inputs, even in the presence of a centralized
adversary who can control any t out of the n parties and force them to behave in any arbitrary manner. Now
consider the situation of an organization performing a multi-party computation on a cloud infrastructure.
The cloud infrastructure is likely to be very large; if the number of machines is n then one can expect
n ≥ 1000. However, the proportion of compromised machines (namely the ration t/n) is likely to be rather
small in comparison, say 5 percent. Using the entire cloud infrastructure to perform an MPC calculation is
wasteful in this situation, as typical (secret-sharing based) MPC protocols (such as [3, 5, 6, 9, 13]) require all
parties to simultaneously transmit data to all other parties. However, restricting to a small subset of parties
may lead to security problems. In this paper we consider the above scenario and show how one can obtain a
communication efficient robust MPC protocol which is actively secure against a computationally bounded
adversary. In particular we present a protocol in which the main computation is performed by a “smallish”
subset of the cloud infrastructure, with the whole cloud only being used occasionally so as to “checkpoint”
the computation. Note that by not utilizing the entire cloud infrastructure all the time enables the cloud
infrastructure to be utilized for many MPC calculations at once.

Asymptotically MPC protocols have been obtained which provide poly-log communication complexity,
in both the computational and the information-theoretic setting1 [10, 11]. These protocols become applicable
(and efficient) when n is very large, and the ratio of corrupted parties ε = t

n is relatively small, which is
exactly the situation described above. But all these prior works require communications between all parties
at all gate evaluations2. Our protocol not only reduces the need for the parties to be communicating with all
others at all stages in the protocol, but also asymptotically provides a better communication complexity than
these prior works. Specifically, for evaluating circuits of suitably large depth, we require a communication
complexity of O(|ckt| · κ7), where κ is the security parameter and |ckt| is the circuit size. Note there is no
dependence here on the number of parties n involved or the corruption threshold t; this is unlike the previous
best protocol of [11], which also considers a computationally bounded adversary and has the same resilience
as our protocol, but requires a communication complexity of O(|ckt| · poly(κ, log n, log |ckt|)).

We remark that the efficiency improvement of our protocol holds for circuits of sufficiently “large” depth
and for values of ε in [1/100, 1/2]. For smaller values of ε simpler protocols may be possible (more on this
later). However, we do not consider it a limitation because we view our result as asymptotic improvement.

Protocol Overview: Let 0 ≤ ε < 1
2 and κ be the security parameter (for example κ = 80 or 128). We

make use of two secret-sharing schemes. A secret-sharing scheme [·] which is an actively-secure variant of
the Shamir secret-sharing scheme [27] with threshold t. This first secret-sharing scheme is used to share
values amongst all of the n parties. The second secret-sharing scheme 〈·〉 is an actively-secure variant of an
additive secret-sharing scheme [28], amongst a well-defined subset C of the parties.

The inputs to the protocol are assumed to be [·] shared amongst the parties at the start of the protocol. We
first divide ckt to be evaluated into L levels, where each level consists of a sub-circuit. The computation now
proceeds in L phases; we describe phase i. At the start of phase i we have that all n parties hold [·] sharings
of the inputs to level i. The n parties then select (at random) a committee C of size c. If c is such that εc < 2−κ

1 The computational setting considers a computationally bounded adversary, while the information-theoretic setting considers a
computationally unbounded adversary.

2 Informally, in any generic MPC protocol, the function to be computed securely is expressed as a publicly known arithmetic
circuit and the goal of the protocol is to “securely” evaluate each gate of the circuit.

1

then statistically the committee C will contain at least one honest party, as the inequality implies that the
probability that the committee contains no honest party is negligibly small. The n parties then engage in
a “conversion” protocol so that the input values to level i are now 〈·〉 shared amongst the committee. The
committee C then engages in an actively-secure dishonest majority3 MPC protocol to evaluate the sub-
circuit at level i. If no abort occurs during the evaluation of the ith sub-circuit then the parties engage in
another “conversion” protocol so that the output values of the sub-circuit are converted from a 〈·〉 sharing
amongst members in C to a [·] sharing amongst all n parties. This step amounts to checkpointing data. This
ensures that the inputs to all the subsequent sub-circuits are saved in the form of [·] sharing which guarantees
recoverability as long as 0 ≤ ε < 1

2 . So the checkpointing prevents from re-evaluating the entire circuit from
scratch after every abortion of the dishonest-majority MPC protocol.

If however an abort occurs while evaluating the ith sub-circuit then we determine a pair of parties from
the committee C, one of whom is guaranteed to be corrupted and eliminate the pair from the set of active
parties, and re-evaluate the sub-circuit again. In fact, cheating can also occur in the 〈·〉 ↔ [·] conversions
and we need to deal with these as well. Thus if errors are detected we need to repeat the evaluation of the
sub-circuit at level i. Since there are at most t bad parties, the total amount of backtracking (i.e. evaluating
a sub-circuit already computed) that needs to be done is bounded by t. For large n and small t this provides
an asymptotically efficient protocol, which also maps into our cloud scenario above.

The main technical difficulty is in providing actively-secure translations between the two secret-sharing
schemes, and providing a suitable party-elimination strategy for the dishonest majority MPC protocol. The
party-elimination strategy we employ follows from standard techniques, as long as we can identify the pair
of parties. The requirement of a dishonest-majority MPC protocol which enables identification of cheaters,
without sacrificing privacy, leads us to the utilization of the protocol in [12]. This results in us needing to
use double-trapdoor homomorphic commitments as a basic building block. To ensure greater asymptotic
efficiency we also apply the packing technique from [10] to our Shamir based secret sharing.

To obtain an efficient protocol one needs to select L; if L is too small then the sub-circuits are large and
so the cost of returning to a prior checkpoint will also be large. If however L is too large then we will need
to checkpoint a lot, and hence involve all n parties in the computation at a lot of stages (and thus requiring
all n parties to be communicating/computing). The optimal value of L for our protocol turns out to be t.

Our protocol is not adaptively secure [20]. Whilst we only prove security in a static setting, we feel that
adaptive4 security is not required in the cloud scenario. Any external attacker to the cloud data centre will
have a problem determining which computers are being used in the committee, and an even greater problem
in compromising them adaptively. The main threat model in such a situation is via co-tenants (other users
processes) to be resident on the same physical machine. Since the precise machine upon which a cloud
tenant sits is (essentially) randomly assigned, it is hard for a co-tenant adversary to mount a cross-Virtual
Machine attack on a specific machine unless they are randomly assigned this machine by the cloud. Note,
that co-tenants have more adversarial power than a completely external attacker. A more correct security
model would be to have a form of adaptive security in which attackers pro-actively move from one machine
to another, but in a random fashion. We leave analysing this more complex situation to a future work.

We note that the idea of using small committees instead of involving the whole set of parties in the
protocol has been used earlier in the literature for the leader election [22, 25] and Byzantine agreement
problem [24, 23]. The above approach was also used for MPC in [14]; however the committee size there

3 In the dishonest-majority setting, the adversary may corrupt all but one parties. An MPC protocol in this setting aborts if a
corrupted party misbehaves.

4 A static adversary decides the set of t parties to corrupt at the beginning of the execution of a protocol. An adaptive adversary
can dynamically decide the set of parties to corrupt during the execution of a protocol based on the information obtained so far
during the execution, subject to the condition that at any point no more than t parties are under the control of the adversary.

2

is polylog(n) (which is dependent on n) and the communication complexity of their protocol is O(|ckt| ·
polylog(n)). So asymptotically our protocol is better as there is no dependence on n.

Notice that in our protocol we select committees of size c satisfying εc < 2−κ, which ensures that sta-
tistically the selected committee has dishonest majority with overwhelming probability. One may think that
instead we can randomly select committees of larger size and with overwhelming probability the selected
committee will have honest majority, and this is indeed true for very small values of ε. Thus for small ε our
protocol is sub-optimal. For example, at the κ = 80 security level and large n, with ε = 1/3 we need a
committee of size 51 to obtain committee with at least one honest member, whilst we need one of size 1388
to obtain a committee with honest majority (both with overwhelming probability). These figures reduce to
24 and 100 for ε = 1/10 and 12 and 32 for ε = 1/100. That is, our protocol is interesting when the fraction
of corrupted parties is not too small, in which case a simpler protocol working with a committee with honest
majority may be possible (where we need not have to worry about aborts).

2 Model, Notation and Preliminaries

We denote by P = {P1, . . . , Pn} the set of n parties who are connected by pair-wise private and authentic
channels. We assume that there exists a PPT static adversary A, who can maliciously corrupt any t parties
fromP at the beginning of the execution of a protocol, where t = n·ε and 0 ≤ ε < 1

2 . There exists a publicly
known randomized function f : Fnp → Fp, expressed as a publicly known arithmetic circuit ckt over the field
Fp of prime order p (including random gates to enable the evaluation of randomized functions), with party Pi
having a private input x(i) ∈ Fp for the computation. We let d and w to denote the depth and (average) width
of ckt respectively. The finite field Fp is assumed to be such that p is a prime, with p > max{n, 2κ}, where
κ is the computational security parameter. Apart from κ, we also have an additional statistical security
parameter s and the security offered by s (which is generally much smaller than κ) does not depend on the
computational power of the adversary.

The security of our protocol(s) will be proved in the universal composability (UC) model [7]. The UC
framework allows for defining the security properties of cryptographic tasks so that security is maintained
under general composition with an unbounded number of instances of arbitrary protocols running concur-
rently. This is exactly what is required in cloud scenario where multiple protocols may run in parallel. In the
UC framework, the security requirements of a given task are captured by specifying an ideal functionality
run by a “trusted party” that obtains the inputs of the participants and provides them with the desired outputs.
Informally, a protocol securely carries out a given task if running the protocol in the presence of a real-world
adversary amounts to “emulating” the desired ideal functionality. For more details, see Appendix A.

We do not assume a physical broadcast channel among the parties. Instead, we formalize broadcast
using an ideal broadcast functionality FBC (see Fig. 4; Appendix B) that allows a sender Sen ∈ P to
reliably broadcast a message to a group of parties X ⊆ P . The communication complexity of our protocols
has two parts: the communication done over the point-to-point channels and the broadcast communication.
The later is captured by BC

(
`, |X |

)
to denote that in total,O(`) bits is broadcasted in the associated protocol

to a set of parties of size |X |. For details about the instantiation of FBC, see Appendix C.
As mentioned in the introduction, two different types of secret-sharing are employed in our protocols.

The secret-sharings are inherently defined to include “verification information” of the individual shares in
the form of publicly known commitments. We use a variant of the Pedersen homomorphic commitment
scheme [26]. In our protocol, we require UC-secure commitments to ensure that a committer must know its
committed value and just cannot manipulate a commitment produced by other committers to violate what we
call as “input independence”. It has been shown in [8, 7] that a UC secure commitment scheme is impossible

3

to achieve without setup assumptions. The standard methods to implement UC-secure commitments is in the
Common Reference String (CRS) model where it is assumed that the parties are provided with a CRS that
is set up by a “trusted third party” (TTP). We follow [12], where the authors show how to build a multiparty
UC-secure homomorphic commitment scheme (where multiple parties can act as committer) based on any
double-trapdoor homomorphic commitment scheme.

Definition 1 (Double-trapdoor Homomorphic Commitment for Fp [12]). It is a collection of the follow-
ing five PPT algorithms (Gen,Comm,Open,Equivocate,TDExtract,�):
(1): Gen(1κ) → (ck, τ0, τ1): the generation algorithm outputs a commitment key ck, along with trapdoors
τ0 and τ1. (2): Commck(x; r0, r1)→ Cx,r0,r1: the commitment algorithm takes a message x ∈ Fp and ran-
domness r0, r1 from the commitment randomness space R 5 and outputs a commitment Cx;r0,r1 of x under
the randomness r0, r1. (3): Openck(C, (x; r0, r1))→ {0, 1}: the opening algorithm takes a commitment C,
along with a message/randomness triplet (x, r0, r1) and outputs 1 if C = Commck(x; r0, r1), else 0. (4):
Equivocate(Cx,r0,r1 , x, r0, r1, x, τi) → (r0, r1) ∈ R: using one of the trapdoors τi with i ∈ {0, 1}, the
equivocation algorithm can open a commitment Cx,r0,r1 with any message x 6= x with randomness r0 and
r1 where r1−i = r1−i.(5): TDExtract(C, x, r0, r1, x, r0, r1, τi)→ τ1−i: using one of the trapdoors τi with
i ∈ {0, 1} and two different sets of message/randomness triplet for the same commitment, namely x, r0, r1
and x, r0, r1, the trapdoor extraction algorithm can find the other trapdoor τ1−i if r1−i 6= r1−i.

The commitments are homomorphic meaning that Comm(x; r0, r1) � Comm(y; s0, s1) = Comm(x +
y; r0 + s0, r1 + s1) and Comm(x; r0, r1)

c = Comm(cx; cr0, cr1) for any publicly known constant c. We
require the following properties to be satisfied:

– Trapdoor Security: There exists no PPT algorithm A such that A(1κ, ck, τi)→ τ1−i, for i ∈ {0, 1}.
– Computational Binding: There exists no PPT algorithm A such that A(1κ, ck)→ (x, r0, r1, x, r0, r1),

with (x, r0, r1) 6= (x, r0, r1), but Commck(x; r0, r1) = Commck(x; r0, r1).
– Statistical Hiding: ∀x, x ∈ Fp and randomness r0, r1 ∈ R, let (r0, r1) = Equivocate(Cx,r0,r1 , x,
r0, r1, x, τi), with i ∈ {0, 1}. Then Commck(x; r0, r1) = Commck(x; r0, r1) = Cx,r0,r1; moreover the
distribution of (r0, r1) and (r0, r1) are statistically close. 2

We will use the following instantiation of a double-trapdoor homomorphic commitment scheme which is
a variant of the standard Pedersen commitment scheme over a group G in which discrete logarithms are
hard [12]. The message space is Fp and the randomness space isR = F2

p.

– Gen(1κ) → ((G, p, g, h0, h1), τ0, τ1), where ck = (G, p, g, h0, h1) such that g, h0, h1 are generators of
the group G of prime order p and gτi = hi for i ∈ {0, 1}.

– Commck(x; r0, r1)→ gxhr00 h
r1
1 = Cx,r0,r1 , with x, r0, r1 ∈ Fp.

– Openck(C, (x, r0, r1))→ 1, if C = gxhr00 h
r1
1 , else Openck(C, (x, r0, r1))→ 0.

– Equivocate(Cx,r0,r1 , x, r0, r1, x, τi)→ (r0, r1) where r1−i = r1−i and ri = τ−1i (x− x) + ri.
– TDExtract(C, x, r0, r1, x, r0, r1, τi)→ τ1−i, if r1−i 6= r1−i, then τ1−i = x−x+τi(ri−ri)

r1−i−r1−i .
– The homomorphic operation � is just the group operation i.e. Comm(x; r0, r1) � Comm(x; r0, r1) =
gxhr00 h

r1
1 · gxh

r0
0 h

r1
1 = gx+x · hr0+r00 · hr1+r11 = Comm(x+ x; r0 + r0, r1 + r1).

We can now define the various types of secret-shared data used in our protocols. We assume that there
exist n publicly known non-zero, distinct values α1, . . . , αn ∈ Fp, where αi is associated with Pi as the
evaluation point. The [·] sharing scheme is the standard Shamir-sharing [27], where the secret value will be
shared among the set of parties P with threshold t. Additionally, a commitment of each individual share will
be available publicly, with the corresponding share-holder possessing the randomness of the commitment.

5 For the ease of presentation, we assumeR to be an additive group.

4

Definition 2 (The [·] Sharing). Let s ∈ Fp; then s is said to be [·]-shared among P if there exist polyno-
mials, say f(·), g(·) and h(·), of degree at most t, with f(0) = s and every (honest) party Pi ∈ P holds
a share fi = f(αi) of s, along with opening information gi = g(αi) and hi = h(αi) for the commitment
Cfi,gi,hi = Commck(fi; gi, hi). The information available to party Pi ∈ P as part of the [·]-sharing of s is
denoted by [s]i = (fi, gi, hi, {Cfj ,gj ,hj}Pj∈P). All parties will also have the access to the commitment key
ck. Moreover, the collection of [s]i’s, corresponding to Pi ∈ P is denoted by [s].

Our second type of secret-sharing scheme, namely 〈·〉-sharing (which is a variation of additive sharing), will
be used to perform computation via a dishonest majority MPC protocol amongst our committees.

Definition 3 (The 〈·〉 Sharing). A value s ∈ Fp is said to be 〈·〉-shared among a set of parties X ⊆ P ,
if every (honest) party Pi ∈ X holds a share si of s along with the opening information ui, vi for the
commitment Csi,ui,ui = Commck(si;ui, vi), such that

∑
Pi∈X si = s. The information available to party

Pi ∈ X as part of the 〈·〉-sharing of s is denoted by 〈s〉i = (si, ui, vi, {Csj ,uj ,vj}Pj∈X). All parties will also
have access to the commitment key ck. The collection of 〈s〉i’s corresponding to Pi ∈ X is denoted by 〈s〉X .

It is easy to see that both types of secret-sharing are linear. For example, for the 〈·〉 sharing, given 〈s(1)〉X , . . . ,
〈s(`)〉X and publicly known constants c1, . . . , c`, the parties in X can locally compute their information cor-
responding to 〈c1 · s(1) + . . . + c` · s(`)〉X . This follows from the homomorphic property of the underlying
commitment scheme and the linearity of the secret-sharing scheme. This means that the parties in X can
locally compute 〈c1 · s(1) + . . .+ c` · s(`)〉X from 〈s(1)〉X , . . . , 〈s`〉X , since each party Pi in X can locally
compute 〈c1 · s(1) + . . .+ c` · s(`)〉i from 〈s(1)〉i, . . . , 〈s`〉i.

3 Main Protocol

In this section, we present an MPC protocol implementing the standard honest-majority (meaning ε < 1/2)
MPC functionality Ff presented in Figure 1 which computes the function f .

Functionality Ff

Ff interacts with the parties in P and the adversary S and is parametrized by an n-input function f : Fnp → Fp.

– Upon receiving (sid, i, x(i)) from the party Pi for every i ∈ {1, . . . , n} where x(i) ∈ Fp, the functionality computes y =
f(x(1), . . . , x(n)), sends (sid, y) to all the parties and the adversarya S and halts.

a The symbol S is used to denote the adversary in the ideal-world functionality in the UC model; see Appendix A.
Fig. 1. The Ideal Functionality for Computing a Given Function f

The underlying idea of our MPC protocol is discussed below. The protocol is set in a variant of the
player-elimination framework from [4]. During the computation either pairs of parties, each containing at
least one actively corrupted party, or singletons of corrupted parties, are identified due to some adversarial
behavior of the corrupted parties. These pairs, or singletons, are then eliminated from the set of eligible
parties. To understand how we deal with the active corruptions, we need to define a dynamic set L ⊆ P of
size n, which will define the current set of eligible parties in our protocol, and a threshold t which defines
the maximum number of corrupted parties in L. Initially L is set to be equal to P (hence n = n) and t is set
to t. We then divide the circuit ckt (representing f) to be evaluated into L levels, where each level consists
of a sub-circuit of depth d/L; without loss of generality, we assume d to be a multiple of L. We denote the
ith sub-circuit as ckti. At the beginning of the protocol, all the parties in P verifiably [·]-share their inputs
for the circuit ckt.

5

For evaluating a sub-circuit cktl, instead of involving all the parties in L, we rather involve a small and
random committee C ⊂ L of parties of size c, where c is the minimum value satisfying the constraint that
(ε)c ≤ 2−κ; recall ε = t/n. During the course of evaluating the sub-circuit, if any inconsistency is reported,
then the (honest) parties in P will identify either a single corrupted party or a pair of parties from L where
the pair contains at least one corrupted party. The identified party(ies) is(are) eliminated from L and the
value of t is decremented by one, followed by re-evaluation of cktl by choosing a new committee from the
updated set L. This is reminiscent of the player-elimination framework from [4], however the way we apply
the player-elimination framework is different from the standard one. Specifically, in the player-elimination
framework, the entire set of eligible parties L is involved in the computation and the player elimination
is then performed over the entire L, thus requiring huge communication. On the contrary, in our context,
only a small set of parties C is involved in the computation, thus significantly reducing the communication
complexity. It is easy to see that after a sequence of t failed sub-circuit evaluations, L will be left with only
honest parties and so each sub-circuit will be evaluated successfully from then onwards.

Note that the way we eliminate the parties, the fraction of corrupted parties in L after any un-successful
attempt for sub-circuit evaluation, is upper bounded by the fraction of corrupted parties in L prior to the
evaluation of the sub-circuit. Specifically, let εold = t/n be the fraction of corrupted parties in L prior to the
evaluation of a sub-circuit cktl and let the evaluation fail, with either a single party or a pair of parties being
eliminated from L. Moreover, let εnew be the fraction of corrupted parties in L after the elimination. Then
we have the following two cases:

1. Single Elimination: Here εnew = t−1
n−1 and so εnew ≤ εold if and only if n ≥ t, which will always hold.

2. Double Elimination: Here εnew = t−1
n−2 and so εnew ≤ εold if and only if n ≥ 2t, which will always hold.

Since a committee C (for evaluating a sub-circuit) is selected randomly, except with probability at most
(ε)c < 2−κ, the selected committee contains at least one honest party and so the sub-circuit evaluation
among C needs to be performed via a dishonest majority MPC protocol. We choose the MPC protocol
of [12], since it can be modified to identify pairs of parties consisting of at least one corrupted party in
the case of the failed evaluation, without violating the privacy of the honest parties. To use the protocol of
[12] for sub-circuit evaluation, we need the corresponding sub-circuit inputs (available to the parties in P in
[·]-shared form) to be converted and available in 〈·〉-shared form to the parties in C and so the parties in P do
the same. After every successful evaluation of a sub-circuit, via the dishonest majority MPC protocol, the
outputs of that sub-circuit (available in 〈·〉-shared form to the parties in a committee) are converted and saved
in the form of [·]-sharing among all the parties in P . As the set P has a honest majority, [·]-sharing ensures
robust reconstruction implying that the shared values are recoverable. Since the inputs to a sub-circuit come
either from the outputs of previous sub-circuit evaluations or the original inputs, both of which are [·]-shared,
a failed attempt for a sub-circuit evaluation does not require a re-evaluation of the entire circuit from scratch
but requires a re-evaluation of that sub-circuit only.

3.1 Supporting Functionalities

Our protocol makes use of ideal functionalities for (a): generating the CRS6 (FCRS), (b): for broadcast
(FBC), (c): for committee selection (FCOMMITTEE) and (d): for generating [·]-sharing of values (FGEN[·]). In
Appendix B we present these functionalities and then in Appendix C, we describe the protocols implement-
ing them and give proofs of their security in the UC framework.

6 The CRS is used to prove security in the UC model.

6

3.2 Supporting Sub-protocols

Our MPC protocol also makes use of the following four sub-protocols. In Appendix D we present these
sub-protocols and estimate their communication complexity. We do not prove the security of these sub-
protocols. Since we show that our main MPC protocol that invokes these sub-protocols is UC-secure, it is
not required to prove any form of security for these sub-protocols separately. (A) Protocol Π〈·〉→[·]: it takes
input 〈s〉X for a set X containing at least one honest party and either produces a sharing [s] (if all the parties
in X behave honestly) or outputs one of the following: the identity of a single corrupted party or a pair of
parties (with at least one of them being corrupted) from X . The protocol makes use of the functionalities
FGEN[·] and FBC. (B) Protocol Π[·]→〈·〉: the protocol takes as input [s] for any secret s and outputs 〈s〉X
for a designated set of parties X ⊂ P containing at least one honest party. This protocol further uses the
following sub-protocol Π〈·〉. (C) Protocol Π〈·〉: the protocol enables a designated party in P to verifiably
〈·〉-share an already committed secret f among a set of parties X containing at least one honest party. (D)
ProtocolΠRANDZERO[·]: the protocol is used for generating a random [·]-sharing of 0. To design the protocol,
we also require a standard Zero-knowledge (ZK) functionality FZK.BC (given in Appendix D) to publicly
prove a commitment to zero.

Apart from the above sub-protocols, we use a non-robust, dishonest-majority MPC protocol ΠNR
C with

the capability of fault-detection. The protocol presented in Figure 18 of Appendix E allows a designated set
of parties X ⊂ P , containing at least one honest party, to perform 〈·〉-shared evaluation of a given circuit C.
In case some corrupted party in X behaves maliciously, the parties in P identify a pair of parties from X ,
with at least one of them being corrupted. The starting point ofΠNR

C is the dishonest majority MPC protocol
of [12]. The MPC protocol of [12] takes 〈·〉-shared inputs of a given circuit, from a set of parties, say X ,
having dishonest majority. The protocol then achieves the following:

– If all the parties in X behave honestly, then the protocol outputs 〈·〉-shared circuit outputs among X .
– Else the honest parties in X detect misbehavior by the corrupted parties and abort the protocol.

We observe that for an aborted execution of the protocol of [12], there exists an honest party in X that can
locally identify a corrupted party from X , who deviated from the protocol. We exploit this property in ΠNR

C

to enable the parties in P identify a pair of parties from X with at least one of them being corrupted.
Protocol ΠNR

C proceeds in two stages, the preparation stage and the evaluation stage, each involving
various other sub-protocols (details available in the sequel). In the preparation stage, if all the parties in
X behave honestly, then they jointly generate CM + CR shared multiplication triples {(〈a(i)〉X , 〈b(i)〉X ,
〈c(i)〉X)}i=1,...,CM+CR

, such that c(i) = a(i) · b(i) and each (a(i),b(i), c(i)) is random and unknown to the
adversary; here CM and CR are the number of multiplication and random gates in C respectively. Otherwise,
the parties in P identify a pair of parties in X , with at least one of them being corrupted.

Assuming that the desired 〈·〉-shared multiplication triples are generated in the preparation stage, the
parties in X start evaluating C in a shared fashion by maintaining the following standard invariant for each
gate of C: Given 〈·〉-shared inputs of the gate, the parties securely compute the 〈·〉-shared output of the gate.
Maintaining the invariant for the linear gates in C is easy and does not require any interaction among the
parties inX , thanks to the linearity of 〈·〉-sharing. For a multiplication gate, the parties deploy a preprocessed
〈·〉-shared multiplication triple from the preparation stage (for each multiplication gate a different triple is
deployed) and use the standard Beaver’s trick [3] (see protocol ΠBEA in Appendix E). While applying the
Beaver’s trick, the parties in X need to publicly open two 〈·〉-shared values using a reconstruction protocol
ΠREC〈·〉 (presented in Appendix E). It may be possible that the opening is non-robust7, in which case the

7 As we may not have honest majority inX , we could not always ensure robust reconstruction; see protocolΠREC〈·〉 for the details.

7

circuit evaluation fails and the parties in P identify a pair of parties from X with at least one of them being
corrupted. For a random gate, the parties consider an 〈·〉-shared multiplication triple from the preparation
stage (for each random gate a different triple is deployed) and the first component of the triple is considered
as the output of the random gate. The protocol ends once the parties in X obtain 〈·〉-shared circuit outputs
〈y1〉X , . . . , 〈yout〉X ; so no reconstruction is required at the end.

The complete details of the protocol ΠNR
C is provided in Appendix E. The protocol invokes two ideal

functionalities FGENRAND〈·〉 and FBC where the functionality FGENRAND〈·〉 is used to generate 〈·〉-sharing of
random values (see Figure 16 in Appendix E). For our purpose we note that the protocol provides a statistical
security of 2−s and has communication complexity as stated in Lemma 1 and proved in Appendix E. Note
that there are two types of broadcast involved: among the parties in X and among the parties in P .

Lemma 1. For statistical security parameter s, protocolΠNR
C has communication complexity ofO(|X |2(|C|+

s)κ),BC
(
|X |2(|C|+ s)κ, |X |

)
and BC

(
|X |κ, n

)
.

3.3 The MPC Protocol

Finally, we describe our MPC protocol. Recall that we divide the circuit ckt into sub-circuits ckt1, . . . , cktL
and we let inl and outl denote the number of input and output wires respectively for the sub-circuit cktl.
At the beginning of the protocol, each party [·]-share their private inputs by calling FGEN[·]. The parties
then select a random committee of parties by calling FCOMMITTEE for evaluating the lth sub-circuit via the
dishonest majority MPC protocol of [12]. We use a Boolean flag NewCom in the protocol to indicate if a
new committee has to be decided, prior to the evaluation of lth sub-circuit or the committee used for the
evaluation of the (l− 1)th sub-circuit is to be continued. Specifically a successful evaluation of a sub-circuit
is followed by setting NewCom equals to 0, implying that the current committee is to be continued for the
evaluation of the subsequent sub-circuit. On the other hand, a failed evaluation of a sub-circuit is followed
by setting NewCom equals to 1, implying that a fresh committee has to be decided for the re-evaluation of
the same sub-circuit from the updated set of eligible parties L, which is modified after the failed evaluation.
After each successful sub-circuit evaluation, the corresponding 〈·〉-shared outputs are converted into [·]-
shared outputs via protocol Π〈·〉→[·], while prior to each sub-circuit evaluation, the corresponding [·]-shared
inputs are converted to the required 〈·〉-shared inputs via protocol Π[·]→〈·〉. The process is repeated till the
function output is [·]-shared, after which it is robustly reconstructed (as we have honest majority in P).

Without affecting the correctness of the above steps, but to ensure simulation security (in the UC
model), we add an additional output re-randomization step before the output reconstruction: the parties
call ΠRANDZERO[·] to generate a random [0], which they add to the [·]-shared output (thus keeping the same
function output). Looking ahead, during the simulation in the security proof, this step allows the simulator
to cheat and set the final output to be the one obtained from the functionality, even though it simulates the
honest parties with 0 as the input (see Appendix F for the details).

Let E be the event that at least one party in each of the selected committees during sub-circuit evaluations
is honest; the event E occurs except with probability at most (t + 1) · (ε)c ≈ 2−κ. This is because at most
(t + 1) (random) committees need to be selected (a new committee is selected after each of the t failed
sub-circuit evaluation plus an initial selection is made). It is easy to see that conditioned on E, the protocol
is private: the inputs of the honest parties remain private during the input stage (due to FGEN[·]), while each
of the involved sub-protocols for sub-circuit evaluations does not leak any information about honest party’s
inputs. It also follows that conditioned on E, the protocol is correct, thanks to the binding property of the
commitment and the properties of the involved sub-protocols.

The properties of the protocol Πf are stated in Theorem 1 and the proof is available in Appendix F. The
(circuit-dependent) communication complexity in the theorem is derived after substituting the calls to the

8

Protocol Πf (P, ckt)

For session ID sid, every party Pi ∈ P does the following:

Initialization. Set L = P , n = |L|, t = t and NewCom = 1. Divide ckt into L sub-circuits ckt1, . . . , cktL, each of depth d/L.
CRS Generation. Invoke FCRS with input (sid, i) and get back (sid, i,CRS), where CRS = (pk, ck).
Input Commitment. On input x(i), choose random polynomials f (i)(·), g(i)(·), h(i)(·) of degree ≤ t, such that f (i)(0) = x(i).

– Compute the commitment to the input as C
x(i),g

(i)
0 ,h

(i)
0

= Commck(x
(i); g

(i)
0 , h

(i)
0) where g(i)0 = g(i)(0), h

(i)
0 =

h(i)(0), and call FBC with message (sid, i,C
x(i),g

(i)
0 ,h

(i)
0

,P).

– Corresponding to each Pj ∈ P , receive (sid, i, j,C
x(j),g

(j)
0 ,h

(j)
0

) from FBC.

[·]-sharing of Committed Inputs.
– Act as a dealer D and call FGEN[·] with (sid, i, f (i)(·), g(i)(·), h(i)(·)).
– For every Pj ∈ P , call FGEN[·] with (sid, i, j,C

x(j),g
(j)
0 ,h

(j)
0

).

– For every Pj ∈ P , if (sid, i, j,Failure) is received from FGEN[·], substitute a default predefined public sharing [0] of 0 as
[x(j)], set [x(j)]i = [0]i and update L = L \ {Pj}, decrement t and n by one. Else receive (sid, i, j, [x(j)]i) from FGEN[·].

Start of While Loop Over the Sub-circuits. Initialize l = 1. While l ≤ L do:
– Committee Selection. If NewCom = 1, then call FCOMMITTEE with (sid, i,L) and receive (sid, i, C) from FCOMMITTEE.
– [·] to 〈·〉C Conversion of Inputs of Sub-circuit cktl. Let [x1], . . . , [xinl] denote the [·]-sharing of the inputs to cktl:

– For k = 1, . . . , inl, participate in Π[·]→〈·〉 with (sid, i, [xk]i, C).
– For k = 1, . . . , inl, output (sid, i, 〈xk〉i) in Π[·]→〈·〉, if Pi belongs to C. Else output (sid, i).

– Evaluation of the Sub-circuit cktl. If Pi ∈ C then participate in ΠNR
cktl

with (sid, i, 〈x1〉i, . . . , 〈xinl〉i, C), else participate
in ΠNR

cktl
with (sid, i, C).

– If (sid, i,Failure, Pa, Pb) is obtained as the output during ΠNR
cktl

, then update L as L = L \ {Pa, Pb}, t as t = t− 1,
n as n = n− 2, set NewCom = 1 and go to Committee Selection step.

– 〈·〉C to [·] conversion of Outputs of cktl. If (sid, i, Success, 〈y1〉i, . . . , 〈youtl〉i) or (sid, i, Success) is obtained during
ΠNR

cktl
, then participate in Π〈·〉→[·] with (sid, i, 〈yk〉i) or (sid, i) (respectively) for k = 1, . . . , outl.

– If (sid, i, Success, [yk]i) is the output in Π〈·〉→[·] for every k = 1, . . . , outl, then increment l and set NewCom = 0.
– If (sid, i,Failure, Pa, Pb) is the output fromΠ〈·〉→[·] for some k ∈ {1, . . . , outl}, then updateL asL = L\{Pa, Pb},

t as t = t− 1, n as n = n− 2, set NewCom = 1 and go to the Committee Selection step.
– If (sid, i,Failure, Pa) is the output from Π〈·〉→[·] for some k ∈ {1, . . . , outl}, then update L as L = L \ {Pa}, t as

t = t− 1, n as n = n− 1, set NewCom = 1 and go to the Committee Selection step.
Output Rerandomization. Let [y] denote the [·]-sharing of the output of ckt. Participate in ΠRANDZERO[·] with (sid, i), obtain

(sid, i, [0]i) and locally compute [z]i = [y]i + [0]i.
Output Reconstruction. Interpret [z]i as (fi, gi, hi, {Cfj ,gj ,hj}Pj∈P).

– Send (sid, i, j, fi, gi, hi) to every Pj ∈ P .
– Initialize a set Ti to ∅. On receiving (sid, j, i, fj , gj , hj) from every party Pj include party Pj in Ti if Cfj ,gj ,hj 6=

Commck(fj ; (gj , hj)).
– Interpolate the polynomial f(·) such that f(αj) = fj holds for every Pj ∈ P \ Ti. If f(·) has degree at most t, then

output (sid, i, z) and halt, where z = f(0); else output (sid, i,Failure) and halt.
Fig. 2. Protocol for UC-secure realizing Ff in the (FCRS,FBC,FCOMMITTEE,FGEN[·],FGENRAND〈·〉,FZK.BC)-hybrid Model

various ideal functionalities by the corresponding protocols implementing them. The broadcast complexity
has two parts: the broadcasts among the parties in P and the broadcasts among small committees.

Theorem 1. Let f : Fnp → Fp be a publicly known n-input function with circuit representation ckt over

Fp, with average width w and depth d (thus w = |ckt|
d). Moreover, let ckt be divided into sub-circuits

ckt1, . . . , cktL, with L = t and each sub-circuit cktl having fan-in inl and fan-out outl. Furthermore, let
inl = outl = O(w). Then conditioned on the event E, protocol Πf (κ, s)-securely realizes the functionality
Ff againstA in the (FCRS,FBC,FCOMMITTEE,FGEN[·],FGENRAND〈·〉,FZK.BC)-hybrid model8 in the UC secu-
rity framework. The circuit-dependent communication complexity of the protocol isO(|ckt| · (n·td +κ) ·κ2),
BC
(
|ckt| · n·t·κ2d , n

)
and BC

(
|ckt| · κ3, κ

)
.

8 See Appendix A for the meaning of g-hybrid model in the UC framework.

9

The following corollary to Theorem 1 follows easily when we instantiate the broadcast primitive with
the Dolev-Strong (DS) broadcast protocol (see Appendix C) over the point-to-point channels.

Corollary 1. If d = ω(n
4·t
κ4

) and if the calls to FBC are realized via the DS broadcast protocol, then the
circuit-dependent communication complexity of the protocol Πf is O(|ckt| · κ7).

When we restrict to widths w of the form w = ω(n2 · (n+ κ)), we can instantiate all the invocations to
FBC in the protocols Π〈·〉→[·] and Π[·]→〈·〉 (invoked before and after the sub-circuit evaluations) by the Fitzi-
Hirt (FH) multi-valued broadcast protocol [17] (see Appendix C). This is because, settingw = ω(n2·(n+κ))
ensures that the combined message over all the instances of Π〈·〉→[·] (respectively Π[·]→〈·〉) to be broadcast
by any party satisfies the bound on the message size of the FH protocol. Incorporating the above, we obtain
the following corollary, which allows us to obtain the same result but with a milder restriction on d.

Corollary 2. If d = ω(n
2·t
κ5

) andw = ω(n2·(n+κ)) (i.e. |ckt| = ω(n
4·t
κ5

(n+κ))), then the circuit-dependent
communication complexity of the protocol Πf is O(|ckt| · κ7).

We propose two optimizations for our MPC protocol that improves its communication complexity and
enables us to reduce the dependence on d in the previous corollaries.

[·]-sharing among a smaller subset of P . While for simplicity, we involve the entire set of parties in P
to hold [·]-shared values in the protocol, it is enough to fix and involve a set of just 2t + 1 parties among
P for the same. Indeed it is easy to note that all we require from the set involved in holding a [·]-sharing is
honest majority that can be attained by any set containing 2t + 1 parties. This optimization replaces n by
t in the complexity expressions mentioned in Theorem 1, Corollaries 1 and 2. By noting that n = t/ε with
0 ≤ ε < 1

2 , we remark that replacing n by t can give a big saving when ε becomes closer to zero.

Packed Secret-Sharing. We can employ packed secret-sharing technique of [18] to checkpoint multiple
outputs of the sub-circuits together in a single [·]-sharing. Specifically, if we involve all the parties in P to
hold a [·]-sharing, we can pack n − 2t values together in a single [·]-sharing by setting the degree of the
underlying polynomials to n− t− 1. It is easy to note that robust reconstruction of such a [·]-sharing is still
possible, as there are n− t honest parties in the set P and exactly n− t shares are required to reconstruct an
(n− t− 1) degree polynomial. For every sub-circuit cktl, the woutl output values are grouped so that each
group contains n− 2t secrets and each group is then converted to a single [·]-sharing.

If we restrict to circuits for which any circuit wire has length at most d/L = d/t (i.e. reaches upto at
most d/L levels), then we ensure that the outputs of circuit cktl can only be the input to circuit cktl+1. With
this restriction, the use of packed secret-sharing becomes applicable at all stages, and the communication
complexity becomesO(|ckt| · (td +κ) ·κ2), BC

(
|ckt| · t·κ2d , n

)
and BC

(
|ckt| ·κ3, κ

)
; i.e. a factor of n less in

the first two terms compared to what is stated in Theorem 1. The corollaries are then translated as follows:

Corollary 3. If d = ω(n
3·t
κ4

) and if the calls to FBC are realized via the DS broadcast protocol, then the
circuit-dependent communication complexity of the protocol Πf is O(|ckt| · κ7).

Corollary 4. If d = ω(n·t
κ5

) andw = ω(n2 ·(n+κ)) (i.e. |ckt| = ω(n
3·t
κ5

(n+κ))), then the circuit-dependent
communication complexity of the protocol Πf is O(|ckt| · κ7).

References
1. M. Abe and S. Fehr. Adaptively Secure Feldman VSS and Applications to Universally-Composable Threshold Cryptography.

In M. K. Franklin, editor, Advances in Cryptology - CRYPTO 2004, 24th Annual International CryptologyConference, Santa
Barbara, California, USA, August 15-19, 2004, Proceedings, volume 3152 of Lecture Notes in Computer Science, pages 317–
334. Springer Verlag, 2004.

10

2. G. Asharov and Y. Lindell. A Full Proof of the BGW Protocol for Perfectly-Secure Multiparty Computation. IACR Cryptology
ePrint Archive, 2011:136, 2011.

3. D. Beaver. Efficient Multiparty Protocols Using Circuit Randomization. In J. Feigenbaum, editor, Advances in Cryptology
- CRYPTO ’91, 11th Annual International Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1991,
Proceedings, volume 576 of Lecture Notes in Computer Science, pages 420–432. Springer Verlag, 1991.

4. Z. BeerliováTrubı́niová and M. Hirt. Perfectly-Secure MPC with Linear Communication Complexity. In R. Canetti, editor,
Theory of Cryptography, Fifth Theory of Cryptography Conference, TCC 2008, New York, USA, March 19-21, 2008, volume
4948 of Lecture Notes in Computer Science, pages 213–230. Springer Verlag, 2008.

5. R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias. Semi-homomorphic encryption and multiparty computation. In EURO-
CRYPT, volume 6632 of Lecture Notes in Computer Science, pages 169–188, 2011.

6. Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast privacy-preserving computations. In ES-
ORICS, volume 5283 of Lecture Notes in Computer Science, pages 192–206. Springer, 2008.

7. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS, pages 136–145, 2001.
8. Ran Canetti and Marc Fischlin. Universally composable commitments. In CRYPTO, pages 19–40, 2001.
9. R. Cramer, I. Damgård, and U. M. Maurer. General Secure Multi-party Computation from any Linear Secret-Sharing Scheme.

In B. Preneel, editor, Advances in Cryptology - EUROCRYPT 2000, International Conference on the Theory and Application
of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes in Computer
Science, pages 316–334. Springer Verlag, 2000.

10. I. Damgård, Y. Ishai, and M. Krøigaard. Perfectly secure multiparty computation and the computational overhead of cryptog-
raphy. In EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 445–465. Springer, 2010.

11. I. Damgård, Y. Ishai, M. Krøigaard, J.B. Nielsen, and A. Smith. Scalable multiparty computation with nearly optimal work
and resilience. In CRYPTO, volume 5157 of Lecture Notes in Computer Science, pages 241–261, 2008.

12. I. Damgård and C. Orlandi. Multiparty Computation for Dishonest Majority: From Passive to Active Security at Low Cost.
In Tal Rabin, editor, Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 15-19, 2010. Proceedings, volume 6223 of Lecture Notes in Computer Science, pages 558–576. Springer Verlag, 2010.

13. I. Damgård, V. Pastro, N.P. Smart, and S. Zakarias. Multiparty computation from somewhat homomorphic encryption. In
CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 643–662. Springer, 2012.

14. V. Dani, V. King, M. Movahedi, and J. Saia. Brief announcement: breaking the o(nm) bit barrier, secure multiparty computation
with a static adversary. In PODC, pages 227–228, 2012.

15. D. Dolev and H. R. Strong. Authenticated Algorithms for Byzantine Agreement. SIAM J. Comput., 12(4):656–666, 1983.
16. M. Fitzi. Generalized Communication and Security Models in Byzantine Agreement. PhD thesis, ETH Zurich, 2002. ftp:

//ftp.inf.ethz.ch/pub/crypto/publications/Fitzi03.pdf.
17. Matthias Fitzi and Martin Hirt. Optimally Efficient Multi-valued Byzantine Agreement. In Eric Ruppert and Dahlia Malkhi, ed-

itors, Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed Computing, PODC 2006, Denver,
CO, USA, July 23-26, 2006, pages 163–168. ACM, 2006.

18. M. K. Franklin and M. Yung. Communication complexity of secure computation (extended abstract). In S. R. Kosaraju,
M. Fellows, A. Wigderson, and J. A. Ellis, editors, Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
May 4-6, 1992, Victoria, British Columbia, Canada, pages 699–710. ACM, 1992.

19. R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and Fact-Track Multiparty Computations with Applications to
Threshold Cryptography. In B. A. Coan and Y. Afek, editors, Proceedings of the Seventeenth Annual ACM Symposium on
Principles of Distributed Computing, PODC ’98, Puerto Vallarta, Mexico, June 28 - July 2, 1998, pages 101–111. ACM, 1998.

20. O. Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University Press, 2004.
21. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem for protocols with honest

majority. In STOC, pages 218–229, 1987.
22. B. M. Kapron, D. Kempe, V. King, J. Saia, and V. Sanwalani. Fast asynchronous Byzantine agreement and leader election with

full information. ACM Transactions on Algorithms, 6(4), 2010.
23. V. King, S. Lonargan, J. Saia, and A. Trehan. Load balanced scalable Byzantine agreement through quorum building, with

information. In ICDCN, volume 6522 of Lecture Notes in Computer Science, pages 203–214. Springer Verlag, 2011.
24. V. King and J. Saia. Breaking the o(n2) bit barrier: Scalable Byzantine agreement with an adaptive adversary. J. ACM, 58(4):18,

2011.
25. V. King, J. Saia, V. Sanwalani, and E. Vee. Scalable leader election. In SODA, pages 990–999, 2006.
26. T. P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In J. Feigenbaum, editor, Advances

in Cryptology - CRYPTO ’91, 11th Annual International Cryptology Conference, Santa Barbara, California, USA, August 11-
15, 1991, Proceedings, volume 576 of Lecture Notes in Computer Science, pages 129–140. Springer Verlag, 1992.

27. A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, 1979.
28. D. R. Stinson. Cryptography - Theory and Practice. Discrete mathematics and its applications series. CRC Press, 2005.

11

29. A. C. Yao. Protocols for secure computations (extended abstract). In FOCS, pages 160–164, 1982.

Appendices

A The UC Security Model

We work in the standard Universal Composability (UC) framework of Canetti [7], with static corruption. The
UC framework introduces a PPT environment Z that is invoked on the computational security parameter κ,
the statistical security parameter s and an auxiliary input z and oversees the execution of a protocol in one
of the two worlds. The “ideal” world execution involves dummy parties P1, . . . , Pn, an ideal adversary S
who may corrupt some of the dummy parties, and a functionality F . The “real” world execution involves
the PPT parties P1, . . . , Pn and a real world adversary A who may corrupt some of the parties. In either of
these two worlds, a PPT adversary can corrupt t parties out of the n parties. The environment Z chooses the
input of the parties and may interact with the ideal world/real world adversary during the execution. At the
end of the execution, it has to decide upon and output whether a real or an ideal world execution has taken
place.

We let IDEALF ,S,Z(κ, s, z) denote the random variable describing the output of the environment Z
after interacting with the ideal execution with adversary S, the functionality F , on the computational
security parameter κ, the statistical security parameter s and z. Let IDEALF ,S,Z denote the ensemble
{IDEALF ,S,Z(κ, s, z)}κ,s∈N,z∈{0,1}∗ . Similarly let REALΠ,A,Z(κ, s, z) denote the random variable de-
scribing the output of the environment Z after interacting in a real execution of a protocol Π with adversary
A, the parties P , on the computational security parameter κ, the statistical security parameter s and z. Let
REALΠ,A,Z denote the ensemble {REALΠ,A,Z(κ, s, z)}κ,s∈N,z∈{0,1}∗ .

Definition 4. For n ∈ N, let F be an n-ary functionality and let Π be an n-party protocol. We say that
Π (κ, s)-securely realizes F in the UC security framework, if for every PPT real world adversary A, there
exists a PPT ideal world adversary S, corrupting the same parties, such that the following two distributions
are computationally indistinguishable in κ, with all but 2−s probability:

IDEALF ,S,Z
c
≈ REALΠ,A,Z .

We consider the above definition where it quantifies over different adversaries: passive or active, that corrupts
only certain number of parties. Note that the security offered by the statistical security parameter s does not
depend upon the computational power of the adversary.

Modular Composition: A great advantage of the UC model is that it allows to prove the security of the
protocols in a modular fashion. Specifically, the sequential modular composition theorem [7] states that in
order to analyze the security of a protocol πf for computing a function f that uses a subprotocol πg for
computing another function g, it suffices to consider the execution of πf in a model where a trusted third
party is used to ideally compute g (instead of the parties running the real subprotocol πg). This facilitates
a modular analysis of security: we first prove the security of πg (as per the UC definition) and then prove
the security of πf assuming an ideal party (functionality) for g. This model in which πf is analyzed using
ideal calls to g, instead of executing πg, is called the g-hybrid model because it involves both a real protocol
execution (for computing f) and an ideal trusted third party computing g.

12

B Supporting Functionalities

Below, we present a number of ideal functionalities defining sub-components of our main protocol. We start
with three basic functionalities for generating the CRS, for broadcast and for committee selection. We then
present the functionality to enable the sharing of values via [·]-sharings. In Appendix C, we describe the
protocols realizing these functionalities and give proofs of their security in the UC framework.

Basic Functionalities: The functionality FCRS for generating the common reference string (CRS) for
our main MPC protocol is given in Figure 3. The functionality outputs the commitment key of a double-
trapdoor homomorphic commitment scheme, along with the encryption key of an IND-CCA secure encryp-
tion scheme (to be used later for UC-secure generation of completely random 〈·〉-shared values as in [12];
see Appendix E).

The functionality FBC for group broadcast is given in Figure 4. This functionality broadcasts the mes-
sage sent by a sender Sen ∈ P to all the parties in a sender specified set of parties X ⊆ P; in our context,
the set X will always contain at least one honest party. In the rest of the paper, we will denote by BC

(
`, |X |

)
the complexity of broadcasting a message of size ` to a set of parties X .

The functionality FCOMMITTEE for a random committee selection is given in Figure 5. This functionality
is parameterized by a value c, it selects a set X of c parties at random from a specified set Y and outputs the
selected set X to the parties in P .

Functionality FCRS

FCRS interacts with the parties in P and the adversary S and is parameterized by κ.

– Upon receiving (sid, i) from every party Pi ∈ P , the functionality computes Gen(1κ)→ (ck, τ0, τ1) and G(1κ)→ (pk, sk),
where G is the key-generation algorithm of an IND-CCA secure encryption schemea and Gen is the key-generation algorithm
of a double-trapdoor homomorphic commitment scheme. The functionality then sets CRS = (ck, pk) and sends (sid, i,CRS)
to every party Pi ∈ P and the adversary S and halts.

a For use in the protocol of [12]
Fig. 3. The Ideal Functionality for Generating CRS

Functionality FBC

FBC interacts with the parties in P and the adversary S.

– Upon receiving (sid, Sen, x,X) from the sender Sen ∈ P such that X ⊆ P , the functionality sends (sid, j,Sen, x) to every
Pj ∈ X and to the adversary S and halts.

Fig. 4. The Ideal Functionality for Broadcast

Functionality Related to [·]-sharings: In Figure 6 we present the functionality FGEN[·] which allows a
dealer D ∈ P to verifiably [·]-share an already committed secret among the parties in P . The functionality
is invoked when it receives three polynomials, say f(·), g(·) and h(·) from the dealer D and a commitment,
say C, supposedly the commitment of f(0) with randomness g(0), h(0) (namely Cf(0),g(0),h(0)), from the
(majority of the) parties in P . The functionality then hands fi = f(αi), gi = g(αi), hi = h(αi) and commit-
ments {Cfj ,gj ,hj}Pj∈P to Pi ∈ P after ‘verifying’ that (a): All the three polynomials are of degree at most

13

Functionality FCOMMITTEE

FCOMMITTEE interacts with the parties in P and the adversary S and is parametrized by a constant c.

– Upon receiving (sid, i,Y) from every party Pi ∈ P , the functionality selects c parties at random from the set Y that is received
from the majority of the parties and denotes the selected set as X . The functionality then sends (sid, i,X) to every Pi ∈ P and
S and then halts.

Fig. 5. The Ideal Functionality for Selecting a Random Committee of Given Size c

t and (b): C = Commck(f(0); g(0), h(0)) i.e. the value (and the corresponding randomness) committed in
C are embedded in the constant term of f(·), g(·) and h(·) respectively. If either of the above two checks
fail, then the functionality returns Failure to the parties indicating that D is corrupted.

In our MPC protocol whereFGEN[·] is called, the dealer will compute the commitment C as Commck(f(0);
g(0), h(0)) and will broadcast it prior to making a call to FGEN[·]. It is easy to note that FGEN[·] generates
[f(0)] if D is honest or well-behaved. If FGEN[·] returns Failure, then D is indeed corrupted.

Functionality FGEN[·]

FGEN[·] interacts with the parties inP containing at most t corrupted parties, a dealer D ∈ P , and the adversary S and is parametrized
by a commitment key ck of a double-trapdoor homomorphic commitment scheme.

– On receiving (sid,D, f(·), g(·), h(·)) from D and (sid, i,D,C) from every Pi ∈ P , the functionality verifies the following:
• f(·), g(·) and h(·) are of degree at most t;

• C
?
= Commck(f(0); g(0), h(0)) holds; where C is received from the majority of the parties in P .

– If any of the above verifications fail then the functionality sends (sid, i,D,Failure) to every Pi ∈ P and S and halts.
– Else for every Pi ∈ P , the functionality computes the share fi = f(αi), the opening information gi = g(αi), hi = h(αi), and

the commitment Cfi,gi,hi = Commck(fi; gi, hi). It then sets [s]i = (fi, gi, hi, {Cfj ,gj ,hj}Pj∈P) and sends (sid, i,D, [s]i)
to every party Pi ∈ P and halts.

Fig. 6. The Ideal Functionality for Verifiably Generating [·]-sharing

We remark that the functionality FGEN[·] is slightly different from the standard ideal functionality (see
e.g. [2]) of verifiable secret sharing (VSS) where the parties output only their shares (and not the commitment
of all the shares). In most of the standard instantiations of a VSS functionality (in the computational setting),
for example the Pedersen VSS [26], a public commitment of all the shares and the secret are available to
the parties without violating any privacy. In order to make the commitments of the shares available to the
external protocol that invokes FGEN[·], we allow the functionality to compute and deliver the shares along
with the commitments to the parties. We note, [1] introduced a similar functionality for “committed VSS”
that outputs to the parties the commitment of the secret provided by the dealer due to the same motivation
mentioned above.

C UC-secure Instantiation of Various Functionalities

C.1 Protocol for Realizing FGEN[·]

We design a protocolΠ[·], presented in Figure 7, for realizing the functionalityFGEN[·] in the UC framework.
We closely follow the standard Pedersen VSS scheme [26] against a threshold static adversary. Specifically,
let C be the existing commitment available to the parties in P such that C = Commck(s; g, h) and let
(s, g, h) be available to D. To [·]-share s, the dealer D selects three random polynomials f(·), g(·) and h(·)
each of degree at most t such that f(0) = s, g(0) = g and h(0) = h. To every party Pi in P , D distributes

14

the share fi = f(αi) and opening information gi = g(αi) and hi = h(αi). Additionally, D publicly commits
to the shares of all the share-holders, with the corresponding opening information acting as the randomness
for the commitments. Namely D broadcasts {Cfj ,gj ,hj}Pj∈P via FBC.

Every honest party Pi then verifies three conditions: (1). if the commitments correspond to polynomials
of degree at most t (2). if the commitments are consistent with C in the sense that the constant terms of the
polynomials committed via the commitments {Cfj ,gj ,hj}Pj∈P are indeed embedded in C (3). if fi, gi, hi
received over the point-to-point channel is consistent with Cfi,gi,hi received via FBC. The first two tests can
be done appealing to the homomorphic property of the commitment scheme. If any of the first two tests fails,
then Pi concludes that D is corrupted and outputs Failure. If the last test fails (but first two tests succeed),
then Pi complains D (publicly) who resolves the complain by revealing fi, gi, hi via FBC. Subsequently,
the third test is checked with fi, gi, hi received from D publicly. If the test is successful, Pi accepts the new
fi, gi, hi and outputs [s]i = (fi, gi, hi, {Cfj ,gj ,hj}Pj∈P). Else Pi outputs Failure.

Intuitively the privacy of the shared secret s for an honest D follows from the fact that A may learn at
most t shares, which constitute t distinct points on f(·) having degree t; so from adversary’s point of view,
we have one “degree of freedom”; i.e. for every possible choice of s, there exists a unique f(·) polynomial
of degree t, which is consistent with the shares received by A. Note that the publicly known commitment
of the shares do not provide any additional information about the unknown shares to A, thanks to the
(statistical) hiding property of the commitment scheme and the fact that the corresponding randomness lie
on polynomials of degree at most t and A will be provided with at most t points on them, again implying
one degree of freedom.

The properties of the protocol Π[·] are formally stated in Lemma 2.

Lemma 2. Let D ∈ P be a dealer with secret s and randomness pair (g, h) and let C be a publicly known
commitment available to the parties in P . Then the protocol Π[·] UC-securely realizes the functionality
FGEN[·] in the FBC-hybrid model. The protocol has communication complexity O(nκ) bits and BC

(
nκ, n

)
.

PROOF: The communication complexity follows easily from the protocol. We next prove the security, con-
sidering the following two cases.

Case I — When D is honest: We first claim that in this case, no honest party will output Failure; this
easily follows from the fact that an honest D will distribute consistent shares and only the corrupted share-
holders (at most t) will accuse D and such accusations will be resolved correctly by D. Let T ⊂ P be the
set of parties under the control of A during the protocol Π[·]; we present a simulator SHD

[·] (interacting with
the functionality FGEN[·]) for A in Figure 8. The high level idea behind the simulator is the following: the
simulator interacts with FGEN[·] and obtains the shares and opening information of the corrupted parties,
along with all the committed shares and sends the same to the real-world adversary; the simulator then sim-
ulates the rest of the protocol steps of Π[·] on the behalf of the honest parties (including D). Any accusation
by a (corrupted) share-holder can be easily resolved by the simulator, as it knows the corresponding share
and opening information (as obtained from the functionality), which it can reveal. It follows easily that the
simulated view has exactly the same distribution as the view of the real-world adversary in Π[·].

Case 2 — When D is Corrupted: We first note that there exists at least t+ 1 honest parties in P and that
there exists only a unique polynomial of degree at most t passing through a set of t + 1 or more distinct
points. With these facts, we next prove the security with respect to a corrupted D. Let T ⊂ P be the set of
parties under the control ofA including D, during the protocol Π[·]; we present a simulator SCD

[·] (interacting
with the functionality FGEN[·]) for A in Figure 9.

15

Protocol Π[·]

The public input to the protocol is a publicly known commitment C available to the parties in P , while the private input for D is
a secret s and randomness pair (g, h), such that C = Commck(s; g, h) holds. For session ID sid, D and the parties in P do the
following:

Round 1 (Share Distribution and Broadcasting Commitments) — D does the following:
– Select three random polynomials f(·), g(·) and h(·) of degree at most t, subject to the condition that f(0) = s, g(0) = g

and h(0) = h.
– Corresponding to every Pi ∈ P , compute the share fi = f(αi) and the opening information gi = g(αi), hi = h(αi)

and the commitment Cfi,gi,hi = Commck(fi; gi, hi).
– Corresponding to every Pi ∈ P , send (sid, i, (fi, gi, hi)) to the party Pi. In addition, call FBC with

(sid,D, {Cfj ,gj ,hj}Pj∈P ,P).
Round 2 (Consistency Verification and Complaints) — Every party Pi ∈ P does the following:

– Receive (sid, i,D, (fi, gi, hi)) from D and (sid, i,D, {Cfj ,gj ,hj}Pj∈P) from FBC.
– Using the homomorphic property of commitments, verify
• if there exists polynomials of degree at most t, say f ′(·), g′(·) and h′(·) such that Cfj ,gj ,hj is

Commck(f
′(αj); g

′(αj), h
′(αj))

a for every Pj ∈ P .
• whether the C is same as Commck(f

′(0); g′(0), h′(0)).
If any of the above tests fail then output (sid, i,Failure) and halt.

– Verify whether Cfi,gi,hi
?
= Commck(fi; gi, hi). If the verification fails then call FBC with (sid, i, (Unhappy,D),P).

Local Computation (at the end of Round 2) — Every party Pi in P does the following:
– Construct a set Wi initialized to ∅ and add Pj ∈ P to Wi if corresponding to party Pj the message

(sid, i, j, (Unhappy,D)) is received fromb FBC.
– If |Wi| > t, then output (sid, i,Failure) and halt.

Round 3 (Resolving Complaints) — D does the following:
– Corresponding to each Pi ∈ WD, call FBC with the message (sid,D, (Resolve, Pi, fi, gi, hi),P).

Local Computation (at the end of Round 3) — every party Pi ∈ P does the following:
– If there exists a Pk ∈ Wi corresponding to which the message (sid, i,D, (Resolve, Pk, fk, gk, hk)) is received from
FBC such that Cfk,gk,hk 6= Commck(fk; gk, hk), then output (sid, i,Failure) and halt.

– Else output [s]i computed as follows and halt:
• If Pi ∈ P \Wi, then [s]i = (fi, gi, hi, {Cfj ,gj ,hj}Pj∈P) where fi, gi, hi is received from D in Round 1.
• If Pi ∈ Wi, then [s]i = (fi, gi, hi, {Cfj ,gj ,hj}Pj∈P) where fi, gi, hi is received from D in Round 3.

a This is done using a standard procedure based on the properties of Vandermonde matrix; see for example [19].
b The contents ofWi will be the same for each honest party Pi in P .

Fig. 7. Protocol for UC-secure realizing FGEN[·]

Simulator SHD
[·]

The simulator plays the role of the honest parties (including D) and simulates each step of the protocol Π[·] as follows. The
communication of the Z with the adversaryA is handled as follows: Every input value received by the simulator from Z is written
on A’s input tape. Likewise, every output value written by A on its output tape is copied to the simulator’s output tape (to be read
by the environment Z). The simulator then does the following for the session ID sid:

– Interact with FGEN[·] and obtain (sid, i, (fi, gi, hi, {Cfj ,gj ,hj}Pj∈P)) corresponding to every corrupted party Pi ∈ T .
– On the behalf of D, send (sid, i, (fi, gi, hi)) to A, corresponding to every Pi ∈ T . In addition, send

(sid,D, i, {Cfj ,gj ,hj}Pj∈P) to A on the behalf of FBC, corresponding to each Pi ∈ T .
– On receiving (sid, i,P, (Unhappy,D)) as the message to FBC from A on the behalf of any Pi ∈ T , send

(sid,D, i, (Resolve, Pi, fi, gi, hi)) to A as the message from FBC on the behalf of D.

The simulator then outputs A’s output and terminate.

Fig. 8. Simulator for the adversary A corrupting at most t parties in the set T ⊂ P \ D in the protocol Π[·].

It follows easily that the simulated view is computationally indistinguishable from the view of the real-
world adversary; otherwise we can use the corresponding distinguisher to break the binding property of the
underlying commitment scheme. 2

16

Simulator SCD
[·]

The simulator plays the role of the honest parties and simulates each step of the protocol Π[·] as follows. The communication of
the Z with the adversaryA is handled as follows: Every input value received by the simulator from Z is written onA’s input tape.
Likewise, every output value written byA on its output tape is copied to the simulator’s output tape (to be read by the environment
Z). The simulator then does the following for the session ID sid:

– Play the role of n− |T | honest parties and interact with A as per the protocol Π[·].
– If Failure is obtained during the simulated execution of the protocol due to the fact that the committed shares and the corre-

sponding randomness do not lie on polynomials of degree at most t, then send three arbitrary polynomials of degree more than
t on the behalf of D to the functionality FGEN[·].

– Else define three polynomials f̂(·), ĝ(·) and ĥ(·) of degree at most t, such that f̂(αi) = fi, ĝ(αi) = gi and ĥ(αi) = hi holds
for every honest party Pi 6∈ T , where fi and (gi, hi) are the corresponding share and opening information respectively which
are obtained by Pi during the simulated run of a of Π[·]. Then send the polynomials f̂(·), ĝ(·) and ĥ(·) on the behalf of D to
FGEN[·].

The simulator then outputs A’s output and terminate.

a Note that f̂(·), ĝ(·) and ĥ(·) are well defined as there exists |n| − |T | > t+ 1 honest parties in P .
Fig. 9. Simulator for the adversary A corrupting at most t parties in the set T ⊂ P including D during the protocol Π[·].

C.2 Protocols for Realizing FCOMMITTEE and FBC

The Committee Selection Protocol: Functionality FCOMMITTEE can be realized using various standard
ways; moreover, the functionality will be invoked at most (t + 1) times in our MPC protocol; t times
corresponding to t failed sub-circuit evaluations plus once for initial selection of a committee. As this cost
is independent of the circuit size |ckt| (but rather Poly(n)), we give only a high level sketch of one of the
possible instantiations of FCOMMITTEE, based on a computationally secure pseudo-random number generator
(PRNG) [28]. Assume we have a PRNG Rk(·) with seed k, which outputs values in the range 1, . . . , n.
Then each time a committee needs to be formed, the parties in P can agree on a random seed k; this can
be done via standard method, say by coin-flipping (or executing an instance of Π[·] on the behalf of each
party). Then the parties can (locally) run R with the obtained key, till they obtain the desired committee. It
follows via the security ofR, that the committee selected like this is indeed a uniformly random committee
of parties with high probability. We can simplify further by putting up a random seed in the CRS, rather than
sampling a random seed on the fly every time a committee needs to be formed.

The Broadcast Protocol: Assuming a PKI set-up, the well known Dolev-Strong (DS) broadcast protocol
[15] allows a sender Sen ∈ P to reliably broadcast a messagem of size ` to a set of parties X ⊆ P , provided
X has at least one honest party; the protocol can be used to realize FBC. As stated in [17], using the DS
protocol, it costs the parties in X ∪ {Sen} a total communication of O(|X |3 · ` · κ) bits over the point-to-
point channels to enable the Sen to broadcast m to the parties in X . As the protocol is well known in the
literature, we avoid giving the details here and instead refer the interested readers to [16] for the details. We
also note that [17] suggests an improved proposal for realizing FBC with a communication complexity of
O(|X | · `+ |X |4 · (|X |+κ)) bits, but with a restriction on the size of `, namely ` = ω(|X |2 · (|X |+κ)). We
make use of this proposal for estimating the communication complexity of our MPC protocol in Section 3.3.

D Supporting Sub-Protocols

In this appendix, we present the details for the sub-protocols which enable a number of tasks such as conver-
sion from [·]-sharing to 〈·〉-sharing and vice-versa, generating a random [·]-sharing of 0 and a protocol for

17

dishonest-majority sub-circuit evaluation in the player elimination framework. These sub-protocols are used
in our main protocol and we do not explicitly prove any security property of these sub-protocols. Rather
we focus on the security proof for our MPC protocol that invokes these sub-protocols. We note that it is
therefore not necessary to prove any form of security for these sub-protocols separately. To modularize the
complexity analysis of our main protocol, we however analyze the communication complexity of each of
the subprotocols in turn.

D.1 Protocol for Converting a 〈·〉-sharing to a [·]-sharing

The protocol in Figure 10 takes input 〈s〉X for a set X containing at least one honest party and either
produces a sharing [s] (if all the parties in X behave honestly) or outputs one of the following: the identity
of a single corrupted party or a pair of parties (with at least one of them being corrupted) from X . The
protocol makes use of functionalities FGEN[·] and FBC.

More specifically, let 〈s〉i denote the information (namely the share, opening information and the set
of commitments) of party Pi ∈ X corresponding to the sharing 〈s〉X . To achieve the goal of our protocol,
there are two clear steps to perform: first, the correct commitment for each share of s corresponding to its
〈·〉X -sharing, now available to the parties in X as a part of 〈s〉i, is to be made available to all the parties
in P; second, each Pi ∈ X is required to act as a dealer and verifiably [·]-share its already committed
share si among P . Note that the commitment to si is included in the set of commitments that will be already
available amongP due to the first step. Clearly, once [si] are generated for each Pi ∈ X , then [s] is computed
as [s] =

∑
Pi∈X [si]; this is because s =

∑
Pi∈X si.

Now there are two steps that may lead to the failure of the protocol. First, Pi ∈ X may be identified
as a corrupted dealer while calling FGEN[·]. In this case a single corrupted party is outputted by every party
in P . Second, the protocol may fail when the parties in P try to reach an agreement over the correct set of
commitments of the shares of s. Recall that each Pi ∈ X holds a set of commitments as a part of 〈s〉X . We
ask each Pi ∈ X to callFBC to broadcast amongP the set of commitments held by him. It is necessary to ask
each Pi ∈ X to do this as we can not trust any single party from X , since all we know (with overwhelming
probability) is that X contains at least one honest party. Now if the parties in P receive the same set of
commitments from all the parties in X , then clearly the received set is the correct set of commitments and
agreement on the set is reached among P . If this does not happen the parties in P can detect a pair of parties
with conflicting sets and output the said pair. It is not hard to see that indeed one party in the pair must be
corrupted. To ensure an agreement on the selected pair when there are multiple such conflicting pairs, we
assume the existence of a predefined publicly known algorithm to select a pair from the lot (for instance
consider the pair (Pa, Pb) with minimum value of a+ n · b). Intuitively the protocol is secure as the shares
of honest parties in X remain secure.

The communication complexity of protocol Π〈·〉→[·] is stated in Lemma 3, which easily follows from
the fact that each party in X needs to broadcast O(|X |κ) bits to P .

Lemma 3. The communication complexity of protocol Π〈·〉→[·] is BC
(
|X |2κ, n

)
plus the complexity of

O(|X |) invocations to the realization of the functionality FGEN[·].

18

Protocol Π〈·〉→[·]

For session id sid, every party Pi ∈ P participates with either (sid, i, 〈s〉i) or (sid, i) and does the following:

– If Pi ∈ X , interpret 〈s〉i as (si, ui, vi, {CPi
sj ,uj ,vj}Pj∈X) and invoke FBC with (sid, i, {CPi

sj ,uj ,vj}Pj∈X ,P)

– Receive (sid, i, k, {CPk
sj ,uj ,vj}Pj∈X) from FBC for every Pk ∈ X (who acted as the sender).

– If there exists a pair of parties Pa, Pb ∈ X , such that {CPa
sj ,uj ,vj}Pj∈X 6= {CPb

sj ,uj ,vj}Pj∈X , then output (sid, i,
Failure, Pa, Pb) and halt; if there are multiple such pairs (Pa, Pb) the select the one with the least index a and b. Else set
{Csj ,uj ,vj}Pj∈X = {CPα

sj ,uj ,vj}Pj∈X to be the reference set of commitments, where Pα is the least indexed party in P .
– If Pi ∈ X , act as a D and call FGEN[·] with (sid, i, f (i)(·), g(i)(·), h(i)(·)) where f (i)(·), g(i)(·) and h(i)(·) are random poly-

nomials of degree at most t, subject to the condition that f (i)(0) = si, g
(i)(0) = ui and h(i)(0) = vi. If Pi ∈ P \ X , invoke

FGEN[·] with (sid, i, k,Csk,uk,vk) for every Pk ∈ X , where Csk,uk,vk is obtained from the reference set of commitments.
Receive (sid, i, k,Failure) or (sid, i, k, [sk]i) from FGEN[·] for every Pk ∈ X

– Output (sid, i,Failure, Pk) and halt if (sid, i, Pk,Failure) is received from FGEN[·] corresponding to any Pk ∈ X . Otherwise,
locally compute [s]i =

∑
Pk∈X

[sk]i, output (sid, i, Success, [s]i) and halt.

Fig. 10. Protocol for Converting 〈·〉-sharing to [·]-sharing in the (FBC,FGEN[·])-hybrid Model

D.2 Protocol for Generating 〈·〉-sharing of a Committed Secret

To enable a dealer D ∈ P to verifiably 〈·〉-share an already committed secret f among a set of parties
X containing at least one honest party, we follow the same three round share-accuse-resolve approach as
used in the protocol Π[·] (for realizing FGEN[·] in Figure 8), except that now the resultant sharing is an
additive sharing instead of a Shamir-sharing. More specifically, every Pi ∈ P holds a (publicly known)
commitment Cf,g,h (see Figure 11). The dealer D holds the secret f ∈ Fp and randomness pair (g, h), such
that C = Commck(f ; g, h); and the goal is to generate 〈f〉X . In the protocol, D first additively shares f
as well as the opening information (g, h) among X . In addition, D is also asked to publicly commit each
additive-share of f , using the corresponding additive-share of (g, f). The parties can then publicly verify
whether indeed D has 〈·〉-shared the same f as committed in Cf,g,h, via the homomorphic property of the
commitments. Intuitively f remains private in the protocol for an honest D as there exists at least one honest
party in X . Moreover the binding property of the commitment ensures that a potentially corrupted D fails to
〈·〉-share an incorrect value f ′ 6= f .

If we notice carefully the protocol achieves a little more than 〈·〉-sharing of a secret among a set of
parties X . All the parties in P hold the commitments to the shares of f , while as per the definition of 〈·〉-
sharing the commitments to shares should be available to the parties in X alone. A closer look reveals that
the public commitments to the shares of f among the parties in P enable them to publicly verify whether
D has indeed 〈·〉-shared the same f among X as committed in Cf,g,h via the homomorphic property of the
commitments. The communication complexity of Π〈·〉 stated in Lemma 4 follows from the protocol steps.

Lemma 4. The communication complexity of protocol Π〈·〉 is O(|X |κ) and BC
(
|X |κ, n

)
.

19

Protocol Π〈·〉

For session ID sid, every Pi ∈ P participates with (sid, i,D,Cf,g,h,X) where Cf,g,h is a (publicly known) commitment.
The dealer D participates with (sid,D, f, g, h,X) where f is the secret and (g, h) is the randomness pair, such that C =
Commck(f ; g, h). The parties in P do the following:

Round 1 (Share Distribution and Broadcasting Commitments): Only D does the following:
– Corresponding to every Pi ∈ X , select a random share si and a random pair of opening information ui, vi, subject to

the condition that
∑
Pi∈X si = f,

∑
Pi∈X ui = g and

∑
Pi∈X vi = h, and compute the commitment Csi,ui,vi =

Commck(si;ui, vi). Send (sid, i,D, si, ui, vi) to the party Pi.
– Call FBC with (sid,D, {Csj ,uj ,vj}Pj∈X ,P) to broadcast {Csj ,uj ,vj}Pj∈X to all the parties in P .

Round 2 (Consistency Verification and Complaints): Every party Pi ∈ P does the following:
– Receive (sid, i,D, {Csj ,uj ,vj}Pj∈X) from FBC. Additionally if Pi ∈ X , then receive (sid, i,D, si, ui, vi) from D.

– Verify if �Pj∈XCsj ,uj ,vj
?
= Cf,g,h (homomorphically). If the verification fails, then output (sid, i,D,Failure) and halt.

– If Pi ∈ X then verify whether Csi,ui,vi
?
= Commck(si;ui, vi). If the verification fails then call FBC with (sid, i,

(Unhappy, i,D),P).
– Construct a set Wi initialized to ∅ and add Pj ∈ X to Wi if (sid, i, j, (Unhappy, j,D)) is received froma FBC corre-

sponding to Pj .
Round 3 (Resolving Complaints): Only D does the following:

– Corresponding to each Pi ∈ WD, call FBC with the message (sid,D, (Resolve, i, si, ui, vi),P).
Local Computation (at the end of Round 3): Every party Pi ∈ P does the following:

– If there exists a Pk ∈ Wi corresponding to which the message (sid, i,D, (Resolve, k, sk, uk, vk)) is received from
FBC such that Csk,uk,vk 6= Commck(sk;uk, vk), then output (sid, i,D,Failure) and halt.

– Else every Pi ∈ P \ X outputs (sid, i,D, Success) and halts, while every Pi ∈ X does the following:
• If Pi ∈ X \ Wi, then set 〈f〉i = (si, ui, vi, {Csj ,uj ,vj}Pj∈X), where (si, ui, vi) was received from D and
{Csj ,uj ,vj}Pj∈X was received from FBC at the end of Round 1. Output (sid, i,D, Success, 〈f〉i) and halt.

• Else if Pi ∈ Wi, then set 〈f〉i = (si, ui, vi, {Csj ,uj ,vj}Pj∈X), where (si, ui, vi) was received from FBC (corre-
sponding to D) at the end of Round 3 and {Csj ,uj ,vj}Pj∈X was received from FBC at the end of Round 1. Output
(sid, i, Success,D, 〈f〉i) and halt.

a The contents ofWi will be the same for each honest party Pi in P .
Fig. 11. Protocol Π〈·〉 for Verifiably 〈·〉-sharing an Existing Committed Secret

D.3 Protocol for Transforming [·]-sharing to 〈·〉-sharing

Protocol Π[·]→〈·〉 in Figure 12 takes as input [s] for any secret s and outputs 〈s〉X for a designated set of
parties X ⊂ P containing at least one honest party. Let f1, . . . , fn be the Shamir-shares of s. Then the
protocol is designed using the following two-stage approach: (1): First each party Pk ∈ P acts as a dealer
and verifiably 〈·〉-share’s its share fk via protocol Π〈·〉; (2) Let H be the set of |H| > t + 1 parties Pk who
have correctly 〈·〉-shared its Shamir-share fk; without loss of generality, letH be the set of first |H| parties in
P . Since the original sharing polynomial (for [·]-sharing s) has degree at most t with s as its constant term,
then there exists publicly known constants (namely the Lagrange’s interpolation coefficients) c1, . . . , c|H|,
such that s = c1f1 + . . . + c|H|f|H|. Since corresponding to each Pk ∈ H the share fk is 〈·〉-shared, it
follows easily that each party Pi ∈ X can compute 〈s〉i = c1〈f1〉i+ . . .+c|H|〈f|H|〉i. The correctness of the
protocol follows from the fact that the corrupted parties in P will fail to 〈·〉-share an incorrect Shamir-share
of s, thanks to the protocol Π〈·〉. The privacy of s follows from the fact that the Shamir shares of the honest
parties in P remain private, which follows from the privacy of the protocol Π〈·〉.

The communication complexity of the protocol Π[·]→〈·〉 is stated in Lemma 5 which follows from the
fact that n invocations to Π〈·〉 are done in the protocol.

Lemma 5. The communication complexity of protocol Π[·]→〈·〉 is O(n|X |κ) and BC
(
n|X |κ, n

)
.

20

Protocol Π[·]→〈·〉

For session ID sid, every party Pi ∈ P participates in the protocol with (sid, i, [s]i,X), where [s]i = (fi, gi, hi, {Cfj ,gj ,hj}Pj∈P)
and does the following:

Verifiably 〈·〉-sharing the Share and Opening Information in [s]i. Act as a dealer D and participate in an instance of Π〈·〉 with
input (sid, i, fi, gi, hi,X). For every Pk ∈ P , participate in the instance of Π〈·〉 corresponding to the dealer Pk with input
(sid, i, k,Cfk,gk,hk ,X).

Identifying the Correctly 〈·〉-shared Shares of s and Generating 〈s〉X . If Pi ∈ P \ X , then output (sid, i) and halt. Else con-
struct a setH initialized to ∅.

– Include Pk ∈ P toH if (sid, i, k,Success, 〈fk〉i) is the output for the instance of Π〈·〉 where Pk acted as the dealer.
– Without loss of generality, leta H = {P1, . . . , P|H|} and let c1, . . . , c|H| be the publicly known Lagrange interpolation

coefficients, such that c1f1 + . . . + c|H|f|H| = s. Then locally compute 〈s〉i = c1〈f1〉i + . . . + c|H|〈f|H|〉i, output
(sid, i, 〈s〉i) and halt.

a The setH will be of size more than t+ 1.
Fig. 12. Protocol Π[·]→〈·〉 for Converting an [·]-sharing to 〈·〉-sharing.

D.4 Protocol for Generating Random [·]-sharing of 0

We present a protocol ΠRANDZERO[·] to generate a random [·]-sharing of 0. Before presenting the protocol
ΠRANDZERO[·], we first describe the “zero-knowledge” (ZK) functionalityFZK.BC, used in protocolΠRANDZERO[·].

Functionality FZK.BC: The functionality (see Figure 13) is a “prove-and-broadcast ” functionality that
upon receiving a commitment and witness pair (C, (u, v)) from a designated prover Pj , verifies if C =
Commck(0;u, v) or not. If so it sends C to all the parties.

Functionality FZK.BC

FZK.BC interacts with a prover Pj ∈ P and the set of n verifiers P = {P1, . . . , Pn} and the adversary S and is parameterized by
the commitment key ck of a double-trapdoor homomorphic commitment scheme.

– Upon receiving (sid, j,C, u, v) from the prover Pj and (sid, j, i) from every party Pi ∈ P \ {Pj}, the functionality sends

(sid, i,C) to every party Pi ∈ P and S and halts if C ?
= Commck(0;u, v) is true. Else the functionality sends (sid, i,⊥) to

every party Pi ∈ P and S and halts.

Fig. 13. The Ideal Functionality for ZK Proof of Committing Zero

A protocol ΠZK.BC realizing FZK.BC can be designed in the CRS model using standard techniques (see
for example, [20]). Since we invoke it only n times (independent of |ckt|) in the MPC protocolΠf

9, we skip
the details of ΠZK.BC, except confirming that it costs O(Poly(n)κ) bits of communication.

Our protocol ΠRANDZERO[·] invokes the following ideal functionalities: FZK.BC,FGEN[·]. The idea is as
follows: Each party Pi ∈ P first broadcasts a random commitment of 0 and proves in a zero-knowledge
(ZK) fashion that it indeed committed 0. Next Pi calls FGEN[·] as a dealer D to generate [·]-sharing of 0 that
is consistent with the commitment of 0. The parties then locally add the sharings of the dealers who are
successful as dealers in their corresponding calls to FGEN[·]. Since there exists at least one honest party in
this set of dealers, the resultant sharing will be indeed a random sharing of 0. Since this protocol is invoked
only once in our main MPC protocol Πf , we avoid giving details of the communication complexity of the
protocol. However assuming standard realization of FZK.BC, the protocol has complexity O(Poly(n)κ).

9 Recall that we require only one call to ΠRANDZERO[·] in our MPC protocol for the output gate, which would in turn require
n invocations of ΠZK.BC.

21

Protocol ΠRANDZERO[·]

For the session id sid, every party Pi ∈ P participates with (sid, i) and does the following:

Publicly Committing 0:
– Set ri = 0 and randomly select ui, vi ∈ Fp and compute Cri,ui,vi = Commck(ri;ui, vi).
– Act as a prover and call FZK.BC with (sid, i,Cri,ui,vi , ui, vi). Corresponding to every prover Pj ∈ P \ Pi, participate in
FZK.BC with (sid, j, i).

– Construct a set Ti, initialized to ∅ and include Pj in Ti if corresponding to the prover Pj , (sid, i,Cri,uj ,vj) is received
from FZK.BC.

[·]-sharing 0:
– Select three random polynomials f (i)(·), g(i)(·) and h(i)(·) each of degree at most t, subject to the condition that
f (i)(0) = ri, g

(i)(0) = ui and h(i)(0) = vi.
– Act as a D and call FGEN[·] with (sid, Pi, f

(i)(·), g(i)(·), h(i)(·)). Corresponding to every dealer Pj ∈ Ti, participate in
FGEN[·] with (sid, i, j,Crj ,uj ,vj).

– If corresponding to any Pj ∈ Ti, (sid, i, Pj ,Failure) is received from FGEN[·], then remove Pj from Ti.
– Locally compute [0]i =

∑
Pj∈Ti [rj]i, where (sid, i, j, [rj]i) is received from FGEN[·] corresponding to Pj ∈ Ti. Output

(sid, i, [0]i) and halt.

Fig. 14. Protocol ΠRANDZERO[·] for generating a random [·]-sharing of 0.

E Protocol ΠNR
C for 〈·〉-shared Evaluation of a Circuit

As evident from the high level description of protocol ΠNR
C in Section 3.2, the major step of the protocol

ΠNR
C is the preparation stage for generating the shared-triplets. Towards constructing the preparation stage

protocol and protocol ΠNR
C , we begin with the building blocks and sub-protocols most of which are taken

from [12] and rest are modified according to our need. Many of the sub-protocols are described with respect
to a set of parties X ⊂ P , where we assume that X contains at least one honest party.

Strong Semi-honest Secure Two-party Multiplication Protocol. Protocol ΠMULT(a, b) → (c1, c2) is a
two-party protocol. The inputs of the first and second party are a and b respectively. The outputs to the first
and second party are c1 and c2 respectively. It holds that c1 is random in Fp and c1 + c2 = a · b. Informally
the protocol satisfies the following properties (for the complete formal details see [12]):

– The protocol is secure even if the adversary maliciously chooses the randomness for the corrupted parties
(this is the reason [12] calls the protocol as strong semi-honest secure).

– The view of the protocol commits the adversary to his randomness and given the view and the random-
ness it is possible to verify whether any party deviated from the protocol.

In our context, the second property ofΠMULT is very crucial, as it enables an honest party involved inΠMULT
to identify any malicious behavior of its partner in the protocol when the individual randomness are revealed.
There are various standard ways for instantiating ΠMULT(a, b), based on variety of standard assumptions,
such as homomorphic encryption, oblivious transfer (OT), etc. An instantiation based on Paillier encryption
with communication complexity O(κ) is provided in [12] (for details see [12]).

Semi-honest Secure Triple Generation Protocol. The protocol ΠTRIPLE (see Figure 15) uses the two
party protocol ΠMULT as a sub-protocol and allows a set of parties X ⊂ P to generate one 〈·〉-shared
multiplication triplet (〈a〉X , 〈b〉X , 〈c〉X). The protocol is executed assuming semi-honest adversary. The
protocol is based on the following idea: every party Pi ∈ X selects a random ai and bi and commits
the same. Then we set a and b to be the sum of all ais and bis. For setting c as a · b, every pair of parties
Pi, Pj ∈ X need to securely compute the “cross-terms” ai·bj and aj ·bi, for which they execute two instances

22

ofΠMULT. Once Pi computes its ci, it publicly commits the same. Instantiating the calls toΠMULT with that
of [12] (based on the Paillier encryption), protocol ΠTRIPLE has communication complexity of O(|X |2κ)
and BC

(
|X |κ, |X |

)
.

Protocol ΠTRIPLE

The public input to the protocol is a set of parties X ⊂ P containing at least one honest party. For the session id sid, every party
Pi ∈ X participates with (sid, i) and does the following:

– Randomly select shares ai, bi.
– For all Pj ∈ X \ Pi, run ΠMULT(ai, bj)→ (dij , eji) as party 1.
– For all Pj ∈ X \ Pi, run ΠMULT(aj , bi)→ (dji, eij) as party 2.
– Set ci = ai · bi +

∑
Pj∈X\Pi dij +

∑
Pj∈X\Pi eij .

– Randomly select qi, ri, si, ti, ui and vi and compute the commitments Cai,qi,ri = Commck(ai; qi, ri),Cbi,si,ti =
Commck(bi; si, ti) and Cci,ui,vi = Commck(ci;ui, vi). Call FBC with (sid, i,Cai,qi,ri ,Cbi,si,ti ,Cci,ui,vi ,X).

– Corresponding to each Pj ∈ X , receive (sid, i, j,Caj ,qj ,rj ,Cbj ,sj ,tj ,Ccj ,uj ,vj) from FBC.
– Set 〈a〉i = (ai, qi, ri, {Caj ,qj ,rj}Pj∈X), 〈b〉i = (bi, si, ti, {Cbj ,sj ,tj}Pj∈X) and 〈c〉i = (ci, ui, vi, {Ccj ,uj ,vj}Pj∈X).

Output (sid, i, 〈a〉i, 〈b〉i, 〈c〉i) and halt.
Fig. 15. Protocol for Generating One 〈·〉-shared Multiplication Triple Assuming No Active Corruptions.

Functionality for Generating 〈·〉-sharing of a Random Value. Functionality FGENRAND〈·〉 (presented in
Figure 16) generates an 〈·〉-shared random value within a designated set of parties X ⊂ P , where each party
in X “contributes” its “part” of the share and opening information for the shared random value.

Functionality FGENRAND〈·〉

The functionality interacts with a designated set of parties X ⊂ P containing at least one honest party and the adversary S and is
parametrized by the commitment key ck of a double-trapdoor commitment scheme. For the session id sid, the functionality does
the following:

– On receiving (sid, i, si, ui, vi) from each party Pi ∈ X , compute s =
∑
Pi∈X si, u =

∑
Pi∈X ui and v =

∑
Pi∈X vi

and Cs,u,v = Commck(s;u, v). In addition, for each Pi ∈ X , compute Csi,ui,vi = Commck(si;ui, vi). Finally send
(sid, i,Cs,u,v, {Csj ,uj ,vj}Pj∈X) to every Pi ∈ X and halt.

Fig. 16. Functionality for Generating 〈·〉-shared Random Value for a Designated Set X ⊂ P with Dishonest-majority.

In [12], a realization of FGENRAND〈·〉 based on UC-secure multi-party commitment scheme was presented
in the common reference string (CRS) model. The UC secure multi-party commitment scheme is further
constructed using a CCA-secure encryption and the double-trapdoor homomorphic commitment scheme
introduced in Section 2. Specifically, the following was shown; we refer to [12] for the details of the instan-
tiation of FGENRAND〈·〉.

Lemma 6 ([12]). Assuming CCA-secure encryption and double-trapdoor homomorphic commitment scheme,
it is possible to (κ, s)-securely realize FGENRAND〈·〉 in the (FCRS,FBC)-hybrid model in the UC frame-
work. The protocol generates ` 〈·〉-shared random values and has communication complexity BC

(
|X |(` +

s)κ, |X |
)
.

Protocol for Reconstructing 〈·〉-shared Value. Protocol ΠREC〈·〉 takes as input an 〈·〉-sharing, say 〈s〉X
and either allows the honest parties in X to robustly reconstruct s or ensures that the honest parties in X can

23

(locally) identify at least one corrupted party in X . The protocol is based on the following standard idea:
let 〈s〉i = (si, ui, vi, {Csj ,uj ,vj}Pj∈X) be the information available to party Pi ∈ X corresponding to 〈s〉X .
Then each Pi broadcasts si, ui, vi to the parties in X via FBC. Let each party Pi receive s̄j , ūj , v̄j from Pj .
Pi then verifies if Csj ,uj ,vj = Commck(s̄j ; ūj , v̄j). If the verification fails, Pi identifies Pj to be corrupted
and outputs (Failure, i, j); otherwise Pi sums up all the shares to obtain s and outputs (Success, i, s). In
the rest of the description, we will say that the parties in X participate in ΠREC〈·〉 with 〈s〉X and each
Pi ∈ X outputs either (Success, i, s) or (Failure, i, j) to mean the above. The protocol has communication
complexity BC

(
|X |κ, |X |

)
.

Beaver’s Multiplication Protocol. Protocol ΠBEA(〈x〉X , 〈y〉X , 〈a〉X , 〈b〉X , 〈c〉X) is a standard protocol
for securely computing 〈x · y〉X from 〈x〉X and 〈y〉X , at the cost of two public reconstruction. The protocol
assumes that the parties in X ⊂ P have access to an 〈·〉X -shared random multiplication triple (a, b, c)
unknown to the adversary, with c = a ·b. The protocol is based on the principle that x ·y = (x−a+a) ·(y−
b+ b) = de+ db+ ae+ c, where d = (x− a) and e = (y − b). Hence if the parties in X reconstruct d and
e, then they can locally compute 〈x · y〉X = de+ d · 〈b〉X + e · 〈a〉X + 〈c〉X . The security of x and y follows
even after the reconstruction of d and e, as x and y are masked by random and private a and b respectively.
To reconstruct d and e, the parties in X first locally compute 〈d〉X = 〈x − a〉X and 〈e〉X = 〈y − b〉X ,
followed by invoking ΠREC〈·〉 with inputs 〈d〉X and 〈e〉X . Depending on whether the instances of ΠREC〈·〉
are successful or not, an honest party in X may output (Success, i, 〈x ·y〉i) or (Failure, i, j). In the rest of the
description, we will say that the parties in X participate in ΠBEA(〈x〉X , 〈y〉X , 〈a〉X , 〈b〉X , 〈c〉X) and each
Pi output either (Success, i, 〈x · y〉i) or (Failure, i, j) to mean the above. The protocol has communication
complexity BC

(
|X |κ, |X |

)
.

E.1 The Preparation Stage of Protocol ΠNR
C

We are now ready to discuss the preparation stage of our protocol ΠNR
C . We pursue the same outline as

followed by the preparation stage of the MPC protocol of [12] and describe the same briefly below. This
is followed by the required adaptations in our context. The preparation stage of [12] provides security with
abort. Namely the protocol generates the required 〈·〉-shared triplets if all the parties behave honestly; oth-
erwise if the honest parties identify any wrong-doing then they simply abort.

– Triple Generation: The involved parties generate many random 〈·〉-shared triplets by executing many
instances of ΠTRIPLE, assuming no active corruptions.

– Verification of the Triples via Cut-and-choose: A random fraction of the triplets are verified via cut-
and-choose to detect any cheating attempts. Specifically, a random subset of generated triplets are se-
lected and the parties are asked to disclose the randomness that they used in the instances ofΠTRIPLE for
generating the selected triplets. If any cheating is detected then the involved parties abort, otherwise they
proceed to the next step. If the test passes then with high probability it is ensured that the majority of the
remaining untested triplets are “good” in the sense that they are honestly generated.

– Proof of Knowledge: The goal of this test is to ensure that for each remaining triplet, every party has the
knowledge of their shares, thus ensuring independence required for UC security. More specifically, dur-
ing the generation of an untested triplet, a corrupted party Pi could broadcast an arbitrary Cai,?,?,Cbi,?,?

or Cci,?,?, being oblivious to ai, bi and ci. This is prevented by the following steps: First parties gener-
ate random 〈·〉-shared values (by calling FGENRAND〈·〉) and then they open the difference of the triplets
and those random shared values via protocol ΠREC〈·〉. Opening these differences is indeed a very sim-
ple proof of knowledge (see [12]). A cheating is detected if some of the opening fail. In that case the
involved parties abort, otherwise they proceed to the next step.

24

– Verification of the Triplets via Sacrificing Trick: At this stage, the remaining triplets are verified
for correctness via the well-known “sacrificing” trick [13]. Namely for every pair of remaining shared
triplets (a, b, c) and (x, y, z), the parties generate a random r and recompute an 〈·〉-sharing of a · b, by
assuming rx, ry, r2z as a multiplication triplet; protocol ΠBEA is used for the same. Ideally if (a, b, c)
and (x, y, z) are multiplication triplets, then the difference of the sharing of c and the recomputed ab
should be a sharing of zero, which is verified by the parties publicly (using protocol ΠREC〈·〉). If any
cheating is detected then the parties abort, else they proceed to the next step after discarding (x, y, z),
whose security is sacrificed during the verification of (a, b, c). It follows that if the test passes then except
with probability 1/p over the choice of r, the triplet (a, b, c) is indeed a correct multiplication triplet (see
[12] for the details).

– Privacy Amplification: At this stage, the parties jointly perform privacy amplification and “distill”
CM +CR fully random private triplets from a set ofO((CM +CR) +X) triplets, where X of them might
not be private10; recall that CM and CR are the number of multiplication and random gates respectively
in the circuit C. For this, FGENRAND〈·〉 along with ΠBEA is used. If any cheating is detected during ΠBEA,
then the parties abort.

In our context, it is not enough to abort when a wrong-doing is detected. If some party Pi ∈ X identifies
any party Pj ∈ X cheating in any of the steps for preparation stage, Pi alarms the parties in P by raising
a complaint against Pj . This allows the parties in P to localize the fault to a pair of parties (Pi, Pj). To
simplify the fault-localization, we set a designated party PRef ∈ X with the smallest index Ref as the referee
to locally identify any fault and report the same to the parties in P . The fault localization step in each stage
of the preparation stage is emphasized below.

– Fault Localization During the Verification of the Triples via Cut-and-choose: The parties in X first
run the steps for the cut-and-choose triple-verification as in [12]. If any party Pi locally identifies any
fault then it raises an alarm for the parties in P . On receiving the alarm, every party in X broadcasts (to
the parties in X) their entire view (including the randomness used) in the generation of the triplets under
testing. The referee PRef then “recomputes” every message a party Pi ∈ X should send to every other
party Pj ∈ X and compares them with what Pi claims to send and what Pj claimed to receive. In case
there is any mis-match, then PRef raises a complaint against both Pi and Pj among P and urges Pi and
Pj to respond. Now depending upon the response, the parties can localize the fault to either (PRef , Pi) or
(PRef , Pj) or (Pi, Pj). The important observation is that fault will never be localized to a pair of honest
parties from X . This is because the property of ΠMULT ensures that if both the participating parties are
honest then they never conflict with each other. A located pair will contain at least one corrupted party.

– Fault Localization in Proof of Knowledge: The parties in X execute the same steps as in [12] for prov-
ing the knowledge of their shares. If any party Pi ∈ X locally identifies any fault during the instances
of ΠREC〈·〉 (used to open the differences of triplets and random shared values), then Pi raises an alarm
among the set P , while the referee PRef is assigned the task of publicly reporting the identity of the party
Pj it has caught cheating. The fault is then localized to (Pj , PRef). If an honest Pi raises an alarm, but
a corrupted PRef does not identify any cheater, then the fault is localized to (Pi, PRef). It is easy to note
that a located pair will contain at least one corrupted party.

– Fault Localization During the Verification of the Triplets via Sacrificing Trick: Here the parties in
X first apply the sacrificing trick on each pair of remaining triplets. Now there are three situations under
which a party Pi ∈ X can detect a fault. (a) The instances of ΠBEA is unsuccessful. In this case, the

10 For the specific instantiation of ΠMULT based on Paillier encryption, this is indeed the case if one of the participating parties in
ΠMULT is corrupted; see [12] for the details.

25

parties in P localize the fault in the same way as in the previous step. Namely Pi raises an alarm while
PRef is asked to identify the cheating party. (b) The instances of ΠREC〈·〉 to open the difference of ab and
c fails; the fault-localization in this case is also the same as in the previous step. (c) The difference of ab
and c is non-zero. Clearly in this case, at least one of the involved triplet (in the pair) is not generated
correctly and so the parties in P perform the fault-localization in the same way as in the cut-and-choose
step. Namely, all the parties in X publicly open (to the parties in X) their entire view produced during
the generation of the two triplets and PRef is then asked to find a pair of “conflicting” parties.

– Fault Localization in Privacy Amplification: The parties in X execute the steps for privacy amplifica-
tion [12]. If any cheating is detected by a party Pi ∈ X during the involved instances of ΠBEA, then the
parties in P perform the fault localization in the same way as it is done during for a failed instance of
ΠBEA in the previous stage.

The protocol steps for the preparation stage are given in Figure 17, where we give the formal steps for the
fault localization with respect to only the first two phases; the formal steps for the fault localization for the
remaining phases is not provided to avoid repetition.

In the protocol, B and λ are two parameters. In [12], it was shown that their preparation stage provides
a statistical security of 2−B log2(1+λ). They set B and λ as B = 3.6s and λ = 1/4 to achieve a statistical
security of 2−s. Since our preparation stage is almost the same as that of [12] bar the fault-localization steps
(which does not affect the statistical security at all), it follows easily via [12] that our preparation stage
also provides a statistical security of 2−B log2(1+λ). Intuitively this is due to the following reason: define a
triplet to be a good one if the adversary could open it correctly during the Cut-and-choose step and make
an honest party accept (this implies that such a triplet is generated honestly), otherwise call the triplet a
bad triplet (i.e. such triplets are not generated honestly and so adversary may know some information about
honest partys’ shares for such triplets). Then it follows from [12] that if the protocol reaches the Privacy
Amplification phase, then the probability that the triplets considered during this phase has more than B bad
(and hence non-private) triplets is at most (1 + λ)−B . As a result, adversary may know at most B points on
the polynomials F (·) and G(·) of degree at most d, implying CM + CR degree of freedom in the view of
the adversary. Note that as suggested in [12], instead of creating “big” polynomials F (·) and G(·) of huge
degrees, we can partition the remaining triplets inM into batches of smaller size and accordingly use many
polynomials of small degree, without affecting the security properties; we prefer to present the Privacy
Amplification phase the way presented in [12].

26

Preparation Stage of ΠNR
C

The public input to the protocol is a set of parties X ⊂ P containing at least one honest party and a referee PRef ∈ X , with the
smallest index Ref. For the session id sid, every party Pi ∈ P participates with (sid, i) and does the following:

Triple-generation Assuming No Active Corruption — If Pi ∈ X then participate in the protocol ΠTRIPLE (1 + λ)(4(CM +
CR) + 4B − 2) times to generate a setM of (1 + λ)(4(CM + CR) + 4B − 2) 〈·〉-shared triplets.

Testing the Triplets via Cut-and-Choose — If Pi ∈ X then do the following:
– Call FGENRAND〈·〉 to sample a random string str that determines a subset T ⊂ M of size λ(4(CM + CR) + 4B − 2).

Set M = M \ T . Let ViewTi denote the randomness used by Pi and the messages received from the other parties in
X , during the instances of ΠTRIPLE used for generating the triplets in T . Reveal ViewTi to the parties in X by calling
FBC with (sid, i,ViewTi ,X).

– Corresponding to each Pj ∈ X , receive (sid, i, j,ViewTj) from FBC. Using {ViewTj }Pj∈X , reproduce every message that
should have been sent by every sender Pa ∈ X to every receiver Pb ∈ X during the generation of the triplets in T , and
compare it with the corresponding value that the recipient Pb claims to have received. If any conflict is detected, then do
the following for the smallest indexed conflicting parties Pa, Pb:
• If Pi 6= PRef , then call FBC with (sid, i,Err,P) to indicate to the parties in P that a conflict has been detected.
• Else call FBC with (sid,Ref,Err, Pa, Pb, l, x, x,P) to indicate that referee Pi identified Pa, Pb ∈ X the least

indexed conflicting parties and a message with index l where Pa should have sent x but Pb claimed to receive x 6= x.
– If the message (sid, i,Ref,Err, Pa, Pb, l, x, x) is received from FBC and if Pa = Pi or Pb = Pi, then call FBC with

(sid, i,Agree, PRef ,P) to indicate that you agree with PRef , else call FBC with (sid, i,Disagree, PRef ,P).
Fault Localization —

– If the message (sid, i,Ref,Err, Pa, Pb, l, x, x) is received from FBC and subsequently (a) if (sid, i, a,Disagree, PRef) is
received from FBC, then output (sid, i,Failure, PRef , Pa) and halt (b) if (sid, i, b,Disagree, PRef) is received from FBC,
then output (sid, i,Failure, PRef , Pb) and halt. Else output (sid, i,Failure, Pa, Pb) and halt.

– If no message of the form (sid, i,Ref,Err, ?, ?, ?, ?, ?) is received from FBC, but corresponding to some Pj ∈ X the
message (sid, i, j,Err) is received from FBC, then output (sid, i,Failure, PRef , Pj) and halt.

Proof of Knowledge — If Pi ∈ X then do the following for every (untested) triplet (〈a〉X , 〈b〉X , 〈c〉X) in M: Sample three
random 〈·〉-shared values 〈r〉X , 〈s〉X , 〈u〉X by invokingFGENRAND〈·〉. Participate in instances ofΠREC〈·〉 with 〈r−a〉X , 〈s−b〉X
and 〈u− c〉X . If (sid,Failure, i, j) is the output in any of the instances of ΠREC〈·〉, then do the following:

– If Pi 6= PRef then call FBC with (sid, i, j,Err,P) to indicate that a cheating has been detected.
– Else if Pi = PRef then call FBC with (sid,Ref,Err, j,P) to indicate Pj is identified as a cheater; if there are several such
Pjs then select the one with the minimum index j.

Fault Localization —If a message (sid, i,Ref,Err, j,P) is received from FBC, then output (sid, i,Failure, PRef , Pj) and halt.
Else if a message (sid, i, j,Err) is received from FBC, then output (sid, i,Failure, Pi, Pj) and halt.

Verification Via sacrificing Trick — If Pi ∈ X then do the following for every pair of triplets (〈a〉X , 〈b〉X , 〈c〉X) and
(〈x〉X , 〈y〉X , 〈z〉X) inM: CallFGENRAND〈·〉 and sample a randoma r. Participate inΠBEA(〈a〉X , 〈b〉X , 〈rx〉X , 〈ry〉X , 〈r2z〉X)
for computing 〈c〉X followed by participation in ΠREC〈·〉 with 〈c − c〉X . If no cheating has been identified during
ΠBEA, ΠREC〈·〉 and if c − c = 0, then store (〈a〉X , 〈b〉X , 〈c〉X) for future use and drop (〈x〉X , 〈y〉X , 〈z〉X) from M. Else
proceed to the fault-localization step.

Fault Localization — If the parties in X have raised a complaint due to the failure of ΠBEA or ΠREC〈·〉, then localize the fault in
the same way as in the case of fault-localization for the Proof of Knowledge step. Else localize the fault in the same way as in
the Cut-and-Choose step by asking the parties in X to open their entire view of the disputed triplet.

Privacy Amplification — The parties in X are now left with 2(CM + CR) + 2B − 1 triplets {(〈ak〉X , 〈bk〉X ,
〈ck〉X)}k=1,...,2(CM+CR)+2B−1 inM. Let d = (CM + CR) +B − 1. If Pi ∈ X then do the following:

– Invoke FGENRAND〈·〉 2(d+ 1) times to generate 〈f (1)〉X , . . . , 〈f (d+1)〉X and 〈g(1)〉X , . . . , 〈g(d+1)〉X .
– LetF (·) andG(·) be the polynomials of degree at most d such thatF (αk) = f (k) andG(αk) = g(k) for k = 1, . . . , d+1.

Locally compute 〈F (αd+2)〉X , . . . , 〈F (α2d+1)〉X and 〈G(αd+2)〉X , . . . , 〈G(α2d+1)〉X . For k = 1, . . . , 2d+ 1, partic-
ipate in ΠBEA(〈F (αk)〉X , 〈G(αk)〉X , 〈a(k)〉X , 〈b(k)〉X , 〈c(k)〉X) for computing 〈h(k)〉X = 〈F (αk) ·G(αk)〉X .

– If any cheating is identified during ΠBEA, then proceed to the fault localization step. Else let H(·) be the poly-
nomial of degree at most 2d such that H(αi) = h(i) for i = 1, . . . , 2d + 1. Then output (sid, i, Success,
{(〈a(k)〉X , 〈b(k)〉X , 〈c(k)〉X)}k=1,...,CM+CR) and halt, where a(k) = F (−αk),b(k) = G(−αk) and c(k) = H(−αk).

Fault Localization — If any complaint is raised due to the failure of ΠBEA, then localize the fault as in the Proof of Knowledge
step. Else every Pi ∈ P \ X output (sid, i, Success) and halt.

a It is enough to sample a single r for all the pairs of available triplets.
Fig. 17. Generating CM + CR 〈·〉-shared Multiplication Triples with Statistical Security 2−B log2(1+λ).

27

E.2 Protocol ΠNR
C

In this section the protocol ΠNR
C is presented in Figure 18, where during the circuit-evaluation stage, we fol-

low the idea outlined earlier in section 3.2. Note that during the circuit evaluation, an instance of ΠBEA may
fail, in which case the parties in P localize the fault via the referee PRef in the same way as it was done in
the preparation stage.

Protocol ΠNR
C

The public input to the protocol is a set of parties X ⊂ P containing at least one honest party and an arithmetic circuit C over Fp
consisting of in input gates, out output gates, CM multiplication gates and CR random gates. In addition, 〈x1〉X , . . . , 〈xin〉X are
the 〈·〉-shared inputs for C. Let PRef ∈ X be the party with the smallest index Ref who is set as the referee to localize any fault
occurred during the protocol.

For the session id sid, party Pi ∈ P participates with (sid, i) and does the following:

Preparation Stage: execute the steps of Figure 17.
Computation Stage: If (sid, i, Success, {(〈a(k)〉X , 〈b(k)〉X , 〈c(k)〉X)}k=1,...,CM+CR) or (sid, i, Success) is obtained at the end

of preparation stage, then do the following:
– 〈·〉-shared Evaluation of the Circuit C — If Pi ∈ X then do the following for every gate in the circuit C:
• Input Gate: For l = 1, . . . , in, associate 〈xl〉X with the corresponding input gate of C.
• Random Gate: For the kth random gate in C where k ∈ {1, . . . ,CR}, associate 〈a(k)〉X as the output of the random

gate.
• Addition Gate: If 〈x〉X and 〈y〉X are the 〈·〉-shared inputs of the gate, then locally compute 〈x+y〉X = 〈x〉X+〈y〉X

and associate it as the output of the addition gate.
• Multiplication Gate: For the kth multiplication gate in C with the 〈·〉-shared inputs 〈x〉X and 〈y〉X

where k ∈ {1, . . . ,CM}, associate the triplet (〈a(CR+k)〉X , 〈b(CR+k)〉X , 〈c(CR+k)〉X). Participate in
ΠBEA(〈x〉X , 〈y〉X , 〈a(CR+k)〉X , 〈b(CR+k)〉X , 〈c(CR+k)〉X) to compute 〈x · y〉X . If (sid, i,Failure, j) with Pj ∈ X is
obtained during the instance of ΠBEA then do the following:
∗ If Pi 6= PRef then call FBC with (sid, i,Err,P) to indicate that a cheating has been detected while executing
ΠBEA.

∗ Else if Pi = PRef then call FBC with (sid,Ref,Err, j,P) to indicate that Pj is identified as a cheater while
executing ΠBEA; if there are several such Pjs then select the one with the minimum index j.

– Fault Localization —
• If there exists a multiplication gate in C corresponding to which a message (sid, i,Ref,Err, j) is received on the

behalf of PRef from FBC then output (sid, i,Failure, PRef , Pj) and halt.
• Else if there exists a multiplication gate in C corresponding to which a message (sid, i, j,Err) is received from
FBC on the behalf of Pj ∈ X , but no message of the form (sid, i,Ref,Err, ?, ?) is received from FBC on the behalf
of PRef , then output (sid, i,Failure, PRef , Pj) and halt.

• Else if Pi ∈ P \X then output (sid, i, Success) and halt; otherwise output (sid, i, Success, 〈y1〉X , . . . , 〈yout〉X) and
halt, where 〈y1〉X , . . . , 〈yout〉X are the 〈·〉-shared outputs associated with the output gates of C.

Fig. 18. Protocol for Secure 〈·〉-shared Evaluation of a Given Circuit C with Statistical Security 1− 2−B log2(1+λ).

The correctness of the protocol follows via the binding property of the commitment and the detailed
informal discussion above, while we appeal to [12] for the proof of privacy in UC secure framework. We
now prove Lemma 1 (the lemma statement is available in Section 3), by setting λ = 1/4 and B = 3.6s as
done in [12], so that the protocol provides a statistical security of 2−s.

Proof of Lemma 1: We prove the communication complexity of the preparation stage, with the obser-
vation that CM + CR = O(|C|). During the Triple-generation phase, O(CM + CR + B) instances of
ΠTRIPLE are executed by the parties in X , thus requiring communication complexity ofO(|X |2(|C|+B)κ)
and BC

(
|X |(|C|+B)κ, |X |

)
.

28

During the Cut-and-Choose phase, O(CM + CR + B) calls to FGENRAND〈·〉 are made for generating
O(CM + CR + B) random 〈·〉-shared commitments with statistical security 2−B log2(1+λ), incurring com-
munication complexity of BC

(
|X |(|C| + B)κ, |X |

)
. In addition, the parties in X need to broadcast among

themselves their entire view of ΠTRIPLE with respect to O(CM + CR +B) triplets. This incurs a communi-
cation complexity of BC

(
|X |2(|C| + B)κ, |X |

)
. During the fault-localization step, the parties in X need to

broadcast O(κ) bits to the parties in P , thus requiring communication complexity of BC
(
|X |κ, n

)
.

During the Proof of Knowledge phase, O(CM + CR + B) calls to FGENRAND〈·〉 are made and O(CM +
CR +B) instances of ΠREC〈·〉 are executed by the parties in X , thus requiring a communication complexity
of BC

(
|X |(|C|+B)κ, |X |

)
. In addition, during the fault-localization step, the parties in X need to broadcast

O(κ) bits to the parties in P , thus requiring communication complexity of BC
(
|X |κ, n

)
.

During the Correctness phase, O(CM + CR + B) instances of ΠBEA and ΠREC〈·〉 are executed by
the parties in X . In addition, the parties in X may need to publicly open among themselves the entire
view of ΠTRIPLE with respect to a disputed pair of triplet. Thus this phase has communication complexity
of BC

(
|X |(|C| + B)κ, |X |

)
, with an additional communication complexity of BC

(
|X |κ, n

)
for the fault-

localization step. It follows easily that the Privacy Amplification phase as well as the circuit evaluation
stage has communication complexity of BC

(
|X |(|C| + B)κ, |X |

)
for executing the steps within X and has

communication complexity of BC
(
|X |κ, n

)
for any possible fault-localization.

During the computation stage, CM instances of ΠBEA are executed and fault-localization is done at most
once. It thus follows that setting B = 3.6s, the protocol has communication complexity O(|X |2(|C| +
s)κ),BC

(
|X |2(|C|+ s)κ, |X |

)
and BC

(
|X |κ, n

)
. 2

F Proof of Theorem 1

Proof. Communication Complexity. We start with the communication complexity analysis of the protocol.
We analyze each phase of the protocol separately:

1. Input Commitment Stage: Here each party broadcastsO(κ) bits to the parties inP and so the broadcast
complexity of this step is BC

(
nκ, n

)
.

2. [·]-sharing of Committed Inputs: Here n calls to FGEN[·] are made. Realizing FGEN[·] with the protocol
Π[·] (see Lemma 2), this incurs communication complexity of O(n2κ) and BC

(
n2κ, n

)
.

3. Sub-circuit Evaluations: We first count the total communication cost of evaluating the sub-circuit
cktl with inl input gates and outl output gates.

– Converting the inl [·]-shared inputs to inl 〈·〉-shared inputs will require inl invocations to the protocol
Π[·]→〈·〉. The communication complexity of this step isO(n · c · inl · κ) and BC

(
n · c · inl · κ, n

)
; this

follows from Lemma 5 by substituting |X | = c.
– Since the size of cktl is at most |ckt|L , evaluating the same via protocolΠNR

cktl
will have communication

complexity O(c2(|ckt|L + s)κ), BC
(
c2(|ckt|L + s)κ, c

)
and BC

(
c · κ, n

)
; this follows from Lemma 1

by substituting |X | = c.
– Finally converting the outl 〈·〉-shared outputs to [·]-shared outputs require outl invocations to the

protocol Π〈·〉→[·]. This has communication complexity O(n · c · outl · κ), BC
(
outl · c2 · κ, n

)
and

BC
(
n · c · κ, n

)
; this follows from Lemma 3 by substituting |X | = c.

Thus evaluating cktl has communication complexity O((n2 + n · c · inl + n · c · outl + c2(|ckt|L + s))κ),
BC
(
(n2+n·c·inl+c2·outl)κ, n

)
andBC

(
c2(|ckt|L +s)κ, c

)
. Now assuming inl = O(w) and outl = O(w),

with w = |ckt|
d , this results in O((n2 + n · c · |ckt|d + c2(|ckt|L + s))κ), BC

(
(n2 + n · c · |ckt|d)κ, n

)
and

BC
(
(c2 · (|ckt|L + s))κ, c

)
.

29

Now the total number of sub-circuit evaluations is at most L + t, with L successful evaluations and at
most t failed evaluations. Now substituting L = t, we get the communication complexity O((|ckt| ·
(n·t·cd + c2) + n2t + c2s · t)κ), BC

(
(|ckt| · n·t·cd + n2t)κ, n

)
and BC

(
(|ckt| · c2 + c2 · s · t)κ, c

)
for the

overall evaluations of all the sub-circuits.
4. Output Rerandomization and Reconstruction: It is easy to see that the cost of this step isO(Poly(n, κ))

bits.

Concentrating on the circuit-dependent complexity of the whole protocol, the complexity comes out to be
O(|ckt| · (nt·cd + c2)κ) bits of communication over the point-to-point channels and broadcast-complexity of
BC
(
|ckt| · nt·cd · κ, n

)
and BC

(
|ckt| · c2 · κ, c

)
.

Since c has to be selected so that εc < 2−κ holds, asymptotically we can set c to be O(κ). (For any
practical purpose, κ = 80 is good enough.) It implies that the (circuit-dependent) communication complexity
of protocol Πf is O(|ckt|(ntd + κ)κ2), BC

(
|ckt| · ntκ2d , n

)
and BC

(
|ckt|κ3, κ

)
.

Security. We next prove the security by designing a simulator for the protocol Πf . Let T ⊂ P be the
set of parties under the control of A during the protocol Πf ; we present a simulator Sf (interacting with
the functionality Ff) for A in Figure 19. The high level idea for the simulator is the following: the simu-
lator takes the input {x(i)}Pi∈T and interacts with Ff to obtain the function output y. The simulator then
invokes A with the inputs {x(i)}Pi∈T and simulates each message that A would have received in the pro-
tocol Πf from the honest parties and from the functionalities called therein, step by step. Notice that the
simulator Sf also needs to simulate the protocol steps of the honest parties for the sub-protocols Π[·]→〈·〉,
Π〈·〉→[·], ΠNR

cktl
and ΠRANDZERO[·]. Specifying the simulator steps for these subprotocols would make the de-

scription of Sf complicated. So for the ease of presentation, we define three sub-simulators S[·]→〈·〉 (Fig. 20),
S〈·〉→[·] (Fig. 21), and SRANDZERO[·] (Fig. 22) which are invoked by Sf for simulating the steps of the honest
parties for the instances of Π[·]→〈·〉, Π〈·〉→[·] and ΠRANDZERO[·] respectively; technically, the steps specified
for S[·]→〈·〉,S〈·〉→[·] and SRANDZERO[·] are actually done by the main simulator Sf . While invoking these “sub-
simulators”, Sf will provide its entire internal state to them and the sub-simulators then return back their
internal state (after the required simulation) to the main simulator. Similarly, we also assume the presence
of a simulator SNR

cktl
, which can be invoked by Sf to simulate the steps of the honest parties for the protocol

SNR
cktl

. We do not explicitly give the steps of SNR
cktl

, but rather appeal to the simulator of the MPC protocol
of [12] because the protocol steps of ΠNR

cktl
are almost the same as the MPC protocol of [12], bar the fault-

localization steps. However, simulating the steps of fault-localization is straight forward, since the simulator
will know the entire states of all the honest parties inΠNR

cktl
and so any wrong-doings by the corrupted parties

can be easily identified by the simulator exactly as it was identified by an honest party in ΠNR
cktl

.

It is easy to show that IDEALFf ,Sf ,Z
c
≈ REALΠf ,A,Z in the (FCRS,FBC,FCOMMITTEE,FGEN[·],FGENRAND〈·〉,

FZK.BC)-hybrid settings due to the privacy of the the secret sharing schemes and the statistical hiding prop-
erty of the underlying commitment scheme. For the correctness of the protocol, we rely on the trapdoor
security and binding properties of the underlying double trapdoor commitment scheme.

30

Simulator Sf

The simulator plays the role of the honest parties and simulates each step of the protocol Πf as follows. The communication of the
Z with the adversary A is handled as follows: Every input value received by the simulator from Z is written on A’s input tape.
Likewise, every output value written byA on its output tape is copied to the simulator’s output tape (to be read by the environment
Z). The simulator then does the following for the session ID sid:

Initialization. Sf sets its internal variables L = P , n = n, t = t and NewCom = 1.
CRS Generation. On receiving (sid, i) from every Pi ∈ T , simulator Sf , on behalf of FCRS, computes Gen(1κ) → (ck, τ0, τ1)

and G(1κ)→ (pk, sk), sets CRS = (ck, pk) and sends (sid, i, CRS) to every Pi ∈ T .
Input commitment. On behalf of every honest party Pi ∈ P \ T , Sf picks three random polynomials over Fp,

f (i)(·), g(i)(·), h(i)(·) of degree t such that f (i)(0) = 0 and imitates the behavior of the honest parties. That is, Sf com-
putes the commitment Cf(i)(0),g(i)(0),h(i)(0) = Commck(f

(i)(0); g(i)(0), h(i)(0)) and sends (sid, i,Cf(i)(0),g(i)(0),h(i)(0))
to every corrupted Pj ∈ T on behalf of FBC. When a corrupted Pi ∈ T invokes FBC with (sid, i,Cf(i)(0),g(i)(0),h(i)(0),P),
simulator Sf acts on behalf of FBC and sends Cf(i)(0),g(i)(0),h(i)(0) to every Pj ∈ T .

[·]-sharing of Inputs. For every honest Pi ∈ P \ T , simulator Sf acts on behalf of functionality FGEN[·] with
(sid, i, f (i)(·), g(i)(·), h(i)(·)) and hands (sid, j, i, [f (i)(0)]j) to every Pj ∈ T . Then for every corrupted Pi ∈ T , on receiving
(sid, i, f (i)(·), g(i)(·), h(i)(·)) from Pi (as the dealer), Sf , on behalf of FGEN[·], sends (sid, j, i, [f (i)(0)]i) to every Pj ∈ T ,
after verifying the polynomials f (i)(·), g(i)(·), h(i)(·) with respect to the corresponding commitment Cf(i)(0),g(i)(0),h(i)(0)

(as done by the functionality FGEN[·]). Locally, simulator maintains the following information:
– Sf stores the input of corrupted Pi ∈ T as x(i) = f (i)(0), where f (i)(·) is received from corrupted Pi. Further it sets the

input of honest Pi ∈ P \ T as x(i) = 0.
– For every Pi ∈ P , it stores the entire [x(i)].
Sf hands {x(i)}Pi∈T to the MPC functionality Ff on behalf of the corrupted parties and gets back the outputs y from the
functionality. Next Sf computes the remaining circuit using 0s as the inputs of the honest parties and {x(i)}Pi∈T as the inputs
of the corrupted parties. For these inputs, it knows the value to be associated with each wire of the circuit. Thus it knows the
circuit output ȳ resulted from the above set of inputs, namely 0s as the inputs of the honest parties and {x(i)}Pi∈T as the inputs
of the corrupted parties.

Start of while loop over the sub-circuits. Set l = 1 and while l < L, Sf continues as follows:
– Committee Selection. If NewCom = 1, on receiving (sid, i,L) from every party Pi ∈ T , Sf on behalf of FCOMMITTEE picks

c parties from its local set L at random and assigns them to C. It then sends (sid, Pi, C) to every Pi ∈ T .
– [·] to 〈·〉C Conversion of Inputs of cktl. Let [x1], . . . , [xinl] denote [·]-sharing of the inputs to the sub-circuit cktl. For k ∈
{1, . . . , inl}, Sf invokes the sub-simulator S[·]→〈·〉 (Fig. 20) that simulates the steps of the honest parties inΠ[·]→〈·〉, with
(sid, {[xk]i}Pi∈P\T , C) (namely with the shares corresponding to the honest parties). The sub-simulator returns Sf with
(sid, {〈xk〉i}Pi∈C∧(P\T)).

– Evaluation of the Sub-circuit cktl. The simulator Sf invokes the simulator SNR
cktl

(namely the simulator of the MPC proto-
col of [12] with the appropriate modifications in our context to do fault localization) for simulating the steps of the honest
parties in the protocol ΠNR

cktl
.

– 〈·〉C to [·] conversion of Outputs of cktl. Sf invokes S〈·〉→[·] with (sid, {〈yk〉i}Pi∈C∧(P\T), C) for every k ∈
{1, . . . , outl} and gets back either (sid, {[yk]i}Pi∈P\T) or (sid, i,Failure, Pa, Pb) or (sid, i,Failure, Pa) and does the
following:

– If (sid, {[yk]i}Pi∈P\T) is received for every k, increment l = l+ 1, set NewCom = 0, store the sharings and return
to the while loop.

– If (sid, i,Failure, Pa, Pb) is received for some k ∈ outl, update L as L = L\{Pa, Pb}, t as t = t−1, n as n = n−2.
– If (sid, i,Failure, Pa) is received for some k ∈ outl, update L as L = L \ {Pa}, t as t = t− 1, n as n = n− 1.
– Set NewCom = 1 and go to Committee Selection Step.

Output Rerandomization Let [ȳ] denote the [·]-sharing of the output of ckt. Sf invokes SRANDZERO[·] with input (sid, y − ȳ).
SRANDZERO[·] simulates the honest parties in protocol ΠRANDZERO[·] and returns to Sf (sid, {[y − ȳ]i}Pi∈(P\T)). Sf locally
computes [y]i = [ȳ]i + [y − ȳ]i for every Pi ∈ P \ T .

Output Computation. On behalf of every honest Pi, Sf sends (sid, i, j, fi, gi, hi) to every Pj ∈ T where [y]i =
(fi, gi, hi, {Cfj ,gj ,hj}Pj∈P). Clearly every Pi ∈ T will recover y at the end due to the output rerandomization step.

The simulator then outputs A’s output and terminate.
Fig. 19. Simulator for the adversary A corrupting at most t parties in the set T ⊂ P in the protocol Πf .

31

Simulator S[·]→〈·〉

For session id sid, on receiving (sid, {[s]i}Pi∈P\T ,X) from Sf , S[·]→〈·〉 interacts with the corrupted parties in T on behalf of
the honest parties in an instance of Protocol Π[·]→〈·〉. The simulator S[·]→〈·〉 is aware of the internal state of the honest parties
corresponding to the [s]. The simulator proceeds as follows:

Verifiably 〈·〉-sharing the Share and Opening Information in [s]i. First, S[·]→〈·〉 acts on behalf of every honest Pi as the dealer
in an instance of Π〈·〉 with (sid, [s]i,X) such that [s]i = (fi, gi, hi, {Cfj ,gj ,hj}Pj∈P). It also simulates every honest party
Pi in an instance of Π〈·〉 where a corrupted Pk ∈ T acts as a dealer.

Identifying the Correctly 〈·〉-shared Shares of s and Generating 〈s〉X . If a corrupted Pi ∈ T is caught cheating during conflict
resolution step, then exclude it from a setH that is initialized to P . Otherwise, for every corrupted Pi ∈ T , let it receive 〈fi〉k
on behalf of every honest Pk ∈ (P \ T) ∧X . Without loss of generality, leta H = {P1, . . . , P|H|} and let c1, . . . , c|H| be the
publicly known Lagrange interpolation coefficients, such that c1f1 + . . .+ c|H|f|H| = s. Then the simulator locally computes
〈s〉i = c1〈f1〉i + . . .+ c|H|〈f|H|〉i on behalf of every honest Pi ∈ X and returns (sid, {〈s〉i}Pi∈X∧(P\T)) to Sf .

a The setH will be of size more than t+ 1.
Fig. 20. Simulator S[·]→〈·〉 to be Invoked by the MPC Simulator Sf for Simulating the Steps of Sub-protocol Π[·]→〈·〉 in Πf

Simulator S〈·〉→[·]

For session id sid, on receiving (sid, {〈s〉i}Pi∈X∧(P\T),X) from Sf , S〈·〉→[·] interacts with the corrupted parties in T on behalf
of the honest parties in an instance of Protocol Π〈·〉→[·]. Note that the simulator is aware of the internal state of the honest parties
corresponding to the 〈s〉. The simulator proceeds as follows:

– S〈·〉→[·], on behalf of every honest Pi ∈ X , interprets 〈s〉i as (si, ui, vi, {CPi
sj ,uj ,vj}Pj∈X) and sends

(sid, k, i, {CPi
sj ,uj ,vj}Pj∈X) to every Pk ∈ T (acting on behalf of functionality FBC that would have been called by Pi in

the hybrid protocol). On receiving (sid, i, {CPi
sj ,uj ,vj}Pj∈X ,P) from every Pi ∈ T , S〈·〉→[·] acts on behalf of FBC and sends

(sid, k, i, {CPi
sj ,uj ,vj}Pj∈X) to every Pk ∈ T .

– If there exists a pair of parties Pa, Pb ∈ X , such that Pa is honest and Pb ∈ T and {CPa
sj ,uj ,vj}Pj∈X 6= {C

Pb
sj ,uj ,vj}Pj∈X ,

then return (sid,Failure, Pa, Pb) to Sf and halt.
– On behalf of every honest Pi ∈ X , S〈·〉→[·] acts as a D and selects f (i)(·), g(i)(·) and h(i)(·) such that they are random

polynomials of degree at most t, subject to the condition that f (i)(0) = si, g
(i)(0) = ui and h(i)(0) = vi. Then on

behalf of FGEN[·], S〈·〉→[·] creates the [si] exactly in the way FGEN[·] would compute on input (sid, i, f (i)(·), g(i)(·), h(i)(·))
from Pi as the dealer. Then it hands (sid, k, i, [si]k) to every Pk ∈ T . On receiving (sid, i, f (i)(·), g(i)(·), h(i)(·)) from
a corrupted Pi ∈ T acting as D, S〈·〉→[·] acts exactly as FGEN[·] and returns either (sid, i, k,Failure) or (sid, i, k, [sk]i)
to every Pi ∈ T . S〈·〉→[·] returns (sid,Failure, Pk) to Sf when (sid, i, k,Failure) was generated for any Pk ∈ T . Oth-
erwise, it locally computes [s]i =

∑
Pk∈X

[sk]i for every honest Pi ∈ P\T , returns (sid, {[s]i}Pi∈Parties\T) to Sf and halts.

Fig. 21. Simulator S〈·〉→[·] to be Invoked by the MPC Simulator Sf for Simulating the Steps of Sub-protocol Π〈·〉→[·] in Πf

32

Simulator SRANDZERO[·]

For the session id sid, on receiving (sid, y − ȳ) from Sf , SRANDZERO[·] interacts with the corrupted parties in T on behalf of the
honest parties in an instance of Protocol ΠRANDZERO[·]. The simulator proceeds as follows:

Publicly Committing 0:
– On behalf of honest party Ph (it just chooses any honest party from the set P) randomly selects uh, vh ∈ Fp, sets
rh = y − ȳ and computes Crh,ui,vi = Commck(y − ȳ;ui, vi). On behalf of every other honest party Pi, it randomly
selects ui, vi ∈ Fp, sets ri = 0 and computes Cri,ui,vi = Commck(ri;ui, vi). On behalf of FZK.BC corresponding
to every honest Pi, it then sends (sid, i,Cri,ui,vi) to every Pj ∈ T . On receiving (sid, i,Cri,ui,vi , ui, vi) from every
corrupted Pi ∈ T , it acts as FZK.BC and verifies if Cri,ui,vi = Commck(0;ui, vi). It the tests passes, then the simulator
on behalf of FZK.BC sends (sid, i,Cri,ui,vi) to every Pj ∈ T . Otherwise, it sends (sid, i,⊥) to every Pj ∈ T .

– It then constructs a set T , initialized to ∅ and include in T all the honest parties in P and Pi ∈ T if Cri,ui,vi =
Commck(0;ui, vi) was true for Pi.

[·]-sharing 0:
– On behalf of honest party Pi, it selects three random polynomials f (i)(·), g(i)(·) and h(i)(·) each of degree at most t,

subject to the condition that f (i)(0) = ri, g
(i)(0) = ui and h(i)(0) = vi. On behalf of FGEN[·] for an honest Pi, it sends

(sid, j, i, f
(i)
j , g

(i)
j , h

(i)
j) to every Pj ∈ T . Then for every corrupted Pi ∈ T , on receiving (sid, i, f (i)(·), g(i)(·), h(i)(·))

from Pi (as the dealer), SRANDZERO[·], on behalf of FGEN[·], sends (sid, j, i, [f (i)(0)]i) to every Pj ∈ T , after verifying the
polynomials f (i)(·), g(i)(·), h(i)(·) with respect to the corresponding commitment Cri,ui,vi (as done by the functionality
FGEN[·]). If the polynomials fails the test, remove Pi from T .

– It locally computes [y − ȳ]i =
∑
Pj∈T [rj]i and returns (sid, {[y − ȳ]i}Pi∈P\T) to Sf and halt.

Fig. 22. Simulator for ΠRANDZERO[·]

33

