
Reducing the Overhead of MPC over a Large Population

A. Choudhury1, A. Patra2, and N. P. Smart3

1 IIIT Bangalore, India.
2 Dept. of Computer Science & Automation, IISc Bangalore, India.

3 Dept. of Computer Science, Uni. Bristol, United Kingdom.
partho31@gmail.com,arpita@csa.iisc.ernet.in,nigel@cs.bris.ac.uk.

Abstract. We present a secure honest majority MPC protocol, against a static
adversary, which aims to reduce the communication cost in the situation where
there are a large number of parties and the number of adversarially controlled
parties is relatively small. Our goal is to reduce the usage of point-to-point chan-
nels among the parties, thus enabling them to run multiple different protocol ex-
ecutions. Our protocol has highly efficient theoretical communication cost when
compared with other protocols in the literature; specifically the circuit-dependent
communication cost, for circuits of suitably large depth, is O(|ckt|κ7), for se-
curity parameter κ and circuit size |ckt|. Our protocol finds application in cloud
computing scenario, where the fraction of corrupted parties is relatively small. By
minimizing the usage of point-to-point channels, our protocol can enable a cloud
service provider to run multiple MPC protocols.

1 Introduction

Threshold secure multi-party computation (MPC) is a fundamental problem in secure
distributed computing. It allows a set of n mutually distrusting parties with private
inputs to “securely” compute any publicly known function of their private inputs, even
in the presence of a centralized adversary who can control any t out of the n parties and
force them to behave in any arbitrary manner. Now consider a situation, where n is very
large, say n ≥ 1000 and the proportion of corrupted parties (namely the ratio t/n) is
relatively small, say 5 percent. In such a scenario, involving all the n parties to perform
an MPC calculation is wasteful, as typical (secret-sharing based) MPC protocols require
all parties to simultaneously transmit data to all other parties. However, restricting to
a small subset of parties may lead to security problems. In this paper we consider the
above scenario and show how one can obtain a communication efficient, robust MPC
protocol which is actively secure against a computationally bounded static adversary.
In particular we present a protocol in which the main computation is performed by a
“smallish” subset of the parties, with the whole set of parties used occasionally so as
to “checkpoint” the computation. By not utilizing the entire set of parties all the time
enables them to run many MPC calculations at once. The main result we obtain in the
paper is as follows:

Main Result (Informal): Let ε = t
n with 0 ≤ ε < 1/2 and let the t corrupted

parties be under the control of a computationally bounded static adversary.
Then for a security parameter κ (for example κ = 80 or κ = 128), there

exists an MPC protocol with the following circuit-dependent communication
complexity4 to evaluate an arithmetic circuit ckt: (a).O(|ckt| ·κ7) for ckt with
depth ω(t). (b). O(|ckt| · κ4) for ckt with d = ω(t) and w = ω(κ3) (i.e.
|ckt| = ω(κ3t)).

Protocol Overview: We make use of two secret-sharing schemes. A secret-sharing
scheme [·] which is an actively-secure variant of the Shamir secret-sharing scheme [22]
with threshold t. This first secret-sharing scheme is used to share values amongst all of
the n parties. The second secret-sharing scheme 〈·〉 is an actively-secure variant of an
additive secret-sharing scheme, amongst a well-defined subset C of the parties.

Assuming the inputs to the protocol are [·] shared amongst the parties at the start
of the protocol, we proceed as follows. We first divide ckt into L levels, where each
level consists of a sub-circuit. The computation now proceeds in L phases; we describe
phase i. At the start of phase i we have that all n parties hold [·] sharings of the inputs
to level i. The n parties then select (at random) a committee C of size c. If c is such that
εc < 2−κ then statistically the committee C will contain at least one honest party, as
the inequality implies that the probability that the committee contains no honest party
is negligibly small. The n parties then engage in a “conversion” protocol so that the
input values to level i are now 〈·〉 shared amongst the committee. The committee C
then engages in an actively-secure dishonest majority5 MPC protocol to evaluate the
sub-circuit at level i. If no abort occurs during the evaluation of the ith sub-circuit then
the parties engage in another “conversion” protocol so that the output values of the sub-
circuit are converted from a 〈·〉 sharing amongst members in C to a [·] sharing amongst
all n parties. This step amounts to check-pointing data. This ensures that the inputs to
all the subsequent sub-circuits are saved in the form of [·] sharing which guarantees
recoverability as long as 0 ≤ ε < 1

2 . So the check-pointing prevents from re-evaluating
the entire circuit from scratch after every abort of the dishonest-majority MPC protocol.

If however an abort occurs while evaluating the ith sub-circuit then we determine a
pair of parties from the committee C, one of whom is guaranteed to be corrupted and
eliminate the pair from the set of active parties, and re-evaluate the sub-circuit again. In
fact, cheating can also occur in the 〈·〉 ↔ [·] conversions and we need to deal with these
as well. Thus if errors are detected we need to repeat the evaluation of the sub-circuit
at level i. Since there are at most t bad parties, the total amount of backtracking (i.e.
evaluating a sub-circuit already computed) that needs to be done is bounded by t. For
large n and small t this provides an asymptotically efficient protocol.

The main technical difficulty is in providing actively-secure conversions between
the two secret-sharing schemes, and providing a suitable party-elimination strategy for
the dishonest majority MPC protocol. The party-elimination strategy we employ fol-
lows from standard techniques, as long as we can identify the pair of parties. This

4 The communication complexity of an MPC protocol has two parts: a circuit-dependent part,
dependent on the circuit size and a circuit-independent part. The focus is on the circuit-
dependent communication, based on the assumption that the circuit is large enough so that
the terms independent of the circuit-size can be ignored; see for example [10, 4, 11, 5].

5 In the dishonest-majority setting, the adversary may corrupt all but one parties. An MPC pro-
tocol in this setting aborts if a corrupted party misbehaves.

requirement, of a dishonest-majority MPC protocol which enables identification of
cheaters, without sacrificing privacy, leads us to the utilization of the protocol in [11].
This results in us needing to use double-trapdoor homomorphic commitments as a ba-
sic building block. To ensure greater asymptotic efficiency we apply two techniques:
(a). the check-pointing is done among a set of parties that assures honest majority with
overwhelming probability (b). the packing technique from [16] to our Shamir based
secret sharing.

To obtain an efficient protocol one needs to select L; if L is too small then the sub-
circuits are large and so the cost of returning to a prior checkpoint will also be large.
If however L is too large then we will need to checkpoint a lot, and hence involve all
n parties in the computation at a lot of stages (and thus requiring all n parties to be
communicating/computing). The optimal value of L for our protocol turns out to be t.

Related Work: The circuit-dependent communication complexity of the traditional
MPC protocols in the honest-majority setting is O(|ckt| · Poly(n, κ)); this informally
stems from the fact in these protocols we require all the n parties to communicate
with each other for evaluating each gate of the circuit. Assuming 0 ≤ ε < 1/2,
[10] presents a computationally secure MPC protocol with communication complex-
ity O(|ckt| · Poly(κ, log n, log |ckt|)). The efficiency comes from the ability to pack
and share several values simultaneously which in turn allow parallel evaluation of “sev-
eral” gates simultaneously in a single round of communication. However, the protocol
still requires communications between all the parties during each round of communica-
tion. Our protocol reduces the need for the parties to be communicating with all others
at all stages in the protocol; moreover, asymptotically for large n it provides a better
communication complexity over [10] (as there is no dependence on n), for circuits of
suitably large depth as stated earlier. However, the protocol of [10] is secure against a
more powerful adaptive adversary.

In the literature, another line of investigation has been carried out in [6, 9, 12, 13]
to beat the O(|ckt| · Poly(n, κ)) communication complexity bound of traditional MPC
protocols, against a static adversary. The main idea behind all these works is similar to
ours, which is to involve “small committees” of parties for evaluating each gate of the
circuit, rather than involving all the n parties. The communication complexity of these
protocols6 is of the orderO(|ckt| ·Poly(log n, κ)). Technically our protocol is different
from these protocols in the following ways: (a). The committees in [6, 9, 12, 13] are
of size Poly(log n), which ensures that with high probability the selected committees
have honest majority. As a result, these protocols run any existing honest-majority MPC
protocol among these small committees of Poly(log n) size, which prevents the need to
check-point the computation (as there will be no aborts). On the other hand, we only
require committees with at least one honest party and our committee size is independent
of n, thus providing better communication complexity. Indeed, asymptotically for large
n, our protocol provides a better communication complexity over [6, 9, 12, 13] (as there
is no dependence on n), for circuits of suitably large depth. (b). Our protocol provides

6 Note, the protocol of [6] involves FHE to further achieve a communication complexity of
O(Poly(logn)).

a better fault-tolerance. Specifically, [12, 9, 6] requires ε < 1/3 and [13] requires ε <
1/8; on the other hand we require ε < 1/2.

We stress that the committee selection protocol in [6, 9, 12, 13] is unconditionally
secure and in the full-information model, where the corrupted parties can see all the
messages communicated between the honest parties. On the other hand our implemen-
tation of the committee selection protocol is computationally secure. The committee
election protocol in [6, 9, 12, 13] is inherited from [14]. The committee selection proto-
col in these protocols are rather involved and not based on simply randomly selecting
a subset of parties, possibly due to the challenges posed in the full information model
with unconditional security; this causes their committee size to be logarithmic in n.
However, if one is willing to relax at least one of the above two features (i.e. full infor-
mation model and unconditional security), then it may be possible to select committees
with honest majority in a simple way by randomly selecting committees, where the
committee size may be independent of n. However investigating the same is out of the
scope of this paper.

Finally we note that the idea of using small committees has been used earlier in the
literature for various distributed computing tasks, such as the leader election [17, 20],
Byzantine agreement [18, 19] and distributed key-generation [8].

On the Choice of ε: We select committees of size c satisfying εc < 2−κ. This im-
plies that the selected committee has at least one honest participant with overwhelming
probability. We note that it is possible to randomly select committees of “larger” size so
that with overwhelming probability the selected committee will have honest majority.
We label the protocol which samples a committee with honest majority and then runs
an computationally secure honest majority MPC protocol (where we need not have to
worry about aborts) as the “naive protocol”. The naive protocol will have communica-
tion complexity O(|ckt| · Poly(κ)).

For “very small” values of ε, the committee size for the naive protocol is compara-
ble to the committee size in our protocol. We demonstrate this with an example, with
n = 1000 and security level κ = 80: The committee size we require to ensure both a
single honest party in the committee and a committee with honest majority, with over-
whelming probability of (1 − 2−80) for various choices of ε, is given in the following
table:

ε c to obtain at least one honest party c to obtain honest majority
1/3 48 448
1/4 39 250
1/10 23 84
1/100 11 20

From the table it is clear that when ε is closer to 1/2, the difference in the committee
size to obtain at least one honest party and to obtain honest majority is large. As a result,
selecting committees with honest majority can be prohibitively expensive, thus our se-
lection of small committees with dishonest majority provides significant improvements.

To see intuitively why our protocol selects smaller committees, consider the case
when the security parameter κ tends to infinity: Our protocol will require a committee
of size roughly ε · n + 1, whereas the naive protocol will require a committee of size

roughly 2 · ε · n+ 1. Thus the naive method will use a committee size of roughly twice
that of our method. Hence, if small committees are what is required then our method
improves on the naive method.

For fixed ε and increasing n, we can apply the binomial approximation to the hy-
pergeometric distribution, and see that our protocol will require a committee of size
c ≈ κ/ log2(

1
ε). To estimate the committee size for the naive protocol we use the cu-

mulative distribution function for the binomial distribution, F (b; c, ε), which gives the
probability that we select at least b corrupt parties in a committee of size c given the
probability of a corrupt party being fixed at ε. To obtain an honest majority with prob-
ability less than 2−κ we require F (c/2; c, ε) ≈ 2−κ. By estimating F (c/2; c, ε) via
Hoeffding’s inequality we obtain

exp
(
−2 · (c · ε− c/2)2

c

)
≈ 2−κ,

which implies

κ ≈
(
c · (2 · ε− 1)2

2

)
/ loge 2.

Solving for c gives us

c ≈ 2 · κ · loge 2
(2 · ε− 1)2

.

Thus for fixed ε and large n the number of parties in a committee is O(κ) for both our
protocol, and the naive protocol. Thus the communication complexity of our protocol
and the naive protocol is asymptotically the same. But, since the committees in our
protocol are always smaller than those in the naive protocol, we will obtain an advantage
when the ratio of the different committee size is large, i.e. when ε is larger.

The the ratio between the committee size in the naive protocol and that of our pro-
tocol (assuming we are in a range when Hoeffding’s inequality provides a good approx-
imation) is roughly

−2 · loge 2 · log2 ε

(2 · ε− 1)2

So for large n the ratio between the committee sizes of the two protocols depends on
ε alone (and is independent of κ). By way of example this ratio is approximately equal
to 159 when ε = 0.45, 19 when ε = 1/3, 7 when ε = 1/10 and 9.6 when ε = 1/100;
although the approximation via Hoeffding’s inequality only really applies for ε close to
1/2.

This implies that for values of ε close to 1/2 our protocol will be an improvement
on the naive protocol. However, the naive method does not have the extra cost of check-
pointing which our method does; thus at some point the naive protocol will be more
efficient. Thus our protocol is perhaps more interesting, when ε is not too small, say in
the range of [1/100, 1/2].

Possible Application of Our Protocol for Cloud-Computing. Consider the situa-
tion of an organization performing a multi-party computation on a cloud infrastructure,
which involves a large number of machines, with the number of corrupted parties pos-
sibly high, but not exceeding one half of the parties, (which is exactly the situation

considered in our MPC protocol). Using our MPC protocol, the whole computation can
be then carried out by a small subset of machines, with the whole cloud infrastructure
being used only for check-pointing the computation. By not utilizing the whole cloud
infrastructure all the time, we enable the cloud provider to serve multiple MPC requests.

Our protocol is not adaptively secure. In fact, vulnerability to adaptive adversary
is inherent to most of the committee-based protocols for several distributed comput-
ing tasks such as Leader Election [17, 20], Byzantine Agreement [19, 18], Distributed
Key-generation [8] and MPC in [12, 9]. Furthermore, We feel that adaptive security is
not required in the cloud scenario. Any external attacker to the cloud data centre will
have a problem determining which computers are being used in the committee, and an
even greater problem in compromising them adaptively. The main threat model in such
a situation is via co-tenants (other users processes) to be resident on the same physical
machine. Since the precise machine upon which a cloud tenant sits is (essentially) ran-
domly assigned, it is hard for a co-tenant adversary to mount a cross-Virtual Machine
attack on a specific machine unless they are randomly assigned this machine by the
cloud. Note, that co-tenants have more adversarial power than a completely external
attacker. A more correct security model would be to have a form of adaptive security
in which attackers pro-actively move from one machine to another, but in a random
fashion. We leave analysing this complex situation to a future work.

2 Model, Notation and Preliminaries

We denote by P = {P1, . . . , Pn} the set of n parties who are connected by pair-wise
private and authentic channels. We assume that there exists a PPT static adversary A,
who can maliciously corrupt any t parties from P at the beginning of the execution of
a protocol, where t = n · ε and 0 ≤ ε < 1

2 . There exists a publicly known randomized
function f : Fnp → Fp, expressed as a publicly known arithmetic circuit ckt over the
field Fp of prime order p (including random gates to enable the evaluation of random-
ized functions), with party Pi having a private input x(i) ∈ Fp for the computation.
We let d and w to denote the depth and (average) width of ckt respectively. The finite
field Fp is assumed to be such that p is a prime, with p > max{n, 2κ}, where κ is the
computational security parameter. Apart from κ, we also have an additional statistical
security parameter s and the security offered by s (which is generally much smaller
than κ) does not depend on the computational power of the adversary.

The security of our protocol(s) will be proved in the universal composability (UC)
model. The UC framework allows for defining the security properties of cryptographic
tasks so that security is maintained under general composition with an unbounded num-
ber of instances of arbitrary protocols running concurrently. In the framework, the se-
curity requirements of a given task are captured by specifying an ideal functionality run
by a “trusted party” that obtains the inputs of the parties and provides them with the
desired outputs. Informally, a protocol securely carries out a given task if running the
protocol in the presence of a real-world adversary amounts to “emulating” the desired
functionality. For more details, see the full version of this paper.

We do not assume a physical broadcast channel. Although our protocol uses an ideal
broadcast functionality FBC (Fig. 3), that allows a sender Sen ∈ P to reliably broadcast

a message to a group of parties X ⊆ P , the functionality can be instantiated using
point-to-point channels; see the full version of this paper for details.

The communication complexity of our protocols has two parts: the communication
done over the point-to-point channels and the broadcast communication. The later is
captured by BC

(
`, |X |

)
to denote that in total,O(`) bits is broadcasted in the associated

protocol to a set of parties of size |X |.
Two different types of secret-sharing are employed in our protocols. The secret-

sharings are inherently defined to include “verification information” of the individual
shares in the form of publicly known commitments. We use a variant of the Pedersen
homomorphic commitment scheme [21]. In our protocol, we require UC-secure com-
mitments to ensure that a committer must know its committed value and just cannot
manipulate a commitment produced by other committers to violate what we call “in-
put independence”. It has been shown in [7] that a UC secure commitment scheme is
impossible to achieve without setup assumptions. The standard method to implement
UC-secure commitments is in the Common Reference String (CRS) model where it is
assumed that the parties are provided with a CRS that is set up by a “trusted third party”
(TTP). We follow [11], where the authors show how to build a multiparty UC-secure
homomorphic commitment scheme (where multiple parties can act as committer) based
on any double-trapdoor homomorphic commitment scheme.

Definition 1 (Double-trapdoor Homomorphic Commitment for Fp [11]). It is a col-
lection of five PPT algorithms (Gen,Comm,Open,Equivocate,TDExtract,�):

– Gen(1κ) → (ck, τ0, τ1): the generation algorithm outputs a commitment key ck,
along with trapdoors τ0 and τ1.

– Commck(x; r0, r1)→ Cx,r0,r1 : the commitment algorithm takes a message x ∈ Fp
and randomness r0, r1 from the commitment randomness space R 7 and outputs a
commitment Cx;r0,r1 of x under the randomness r0, r1.

– Openck(C, (x; r0, r1)) → {0, 1}: the opening algorithm takes a commitment C,
along with a message/randomness triplet (x, r0, r1) and outputs 1 if C = Commck(
x; r0, r1), else 0.

– Equivocate(Cx,r0,r1 , x, r0, r1, x, τi) → (r0, r1) ∈ R: using one of the trapdoors
τi with i ∈ {0, 1}, the equivocation algorithm can open a commitment Cx,r0,r1

with any message x 6= x with randomness r0 and r1 where r1−i = r1−i.
– TDExtract(C, x, r0, r1, x, r0, r1, τi) → τ1−i: using one of the trapdoors τi with
i ∈ {0, 1} and two different sets of message/randomness triplet for the same com-
mitment, namely x, r0, r1 and x, r0, r1, the trapdoor extraction algorithm can find
the other trapdoor τ1−i if r1−i 6= r1−i.
The commitments are homomorphic meaning that Comm(x; r0, r1) � Comm(y;
s0, s1) = Comm(x+y; r0+s0, r1+s1) and Comm(x; r0, r1)c = Comm(c·x; c·r0,
c · r1) for any publicly known constant c.

We require the following properties to be satisfied:

– Trapdoor Security: There exists no PPT algorithm A such that A(1κ, ck, τi) →
τ1−i, for i ∈ {0, 1}.

7 For the ease of presentation, we assumeR to be an additive group.

– Computational Binding: There exists no PPT algorithm A with A(1κ, ck) → (x,
r0, r1, x, r0, r1) and (x, r0, r1) 6= (x, r0, r1), but Commck(x; r0, r1) = Commck(
x; r0, r1).

– Statistical Hiding: ∀x, x ∈ Fp and r0, r1 ∈ R, let (r0, r1) = Equivocate(Cx,r0,r1 ,
x, r0, r1, x, τi), with i ∈ {0, 1}. Then Commck(x; r0, r1) = Commck(x; r0, r1) =
Cx,r0,r1 ; moreover the distribution of (r0, r1) and (r0, r1) are statistically close.

We will use the following instantiation of a double-trapdoor homomorphic commitment
scheme which is a variant of the standard Pedersen commitment scheme over a group G
in which discrete logarithms are hard [11]. The message space is Fp and the randomness
space isR = F2

p.

– Gen(1κ)→ ((G, p, g, h0, h1), τ0, τ1), where ck = (G, p, g, h0, h1) such that g, h0,
h1 are generators of the group G of prime order p and gτi = hi for i ∈ {0, 1}.

– Commck(x; r0, r1)→ gxhr00 h
r1
1 = Cx,r0,r1 , with x, r0, r1 ∈ Fp.

– Openck(C, (x, r0, r1))→ 1, if C = gxhr00 h
r1
1 , else Openck(C, (x, r0, r1))→ 0.

– Equivocate(Cx,r0,r1 , x, r0, r1, x, τi) → (r0, r1) where r1−i = r1−i and ri =
τ−1
i (x− x) + ri.

– TDExtract(C, x, r0, r1, x, r0, r1, τi)→ τ1−i, where if r1−i 6= r1−i, then

τ1−i =
x− x+ τi(ri − ri)

r1−i − r1−i
.

– The homomorphic operation � is just the group operation i.e.

Comm(x; r0, r1)� Comm(x; r0, r1) = gxhr00 h
r1
1 · gxh

r0
0 h

r1
1

= gx+x · hr0+r00 · hr1+r11

= Comm(x+ x; r0 + r0, r1 + r1).

We can now define the various types of secret-shared data used in our protocols.
Let α1, . . . , αn ∈ Fp be n publicly known non-zero, distinct values, where αi is asso-
ciated with Pi as the evaluation point. The [·] sharing is the standard Shamir-sharing
[22], where the secret value will be shared among the set of parties P with threshold
t. Additionally, a commitment of each individual share will be available publicly, with
the corresponding share-holder possessing the randomness of the commitment.

Definition 2 (The [·] Sharing). Let s ∈ Fp; then s is said to be [·]-shared among P if
there exist polynomials, say f(·), g(·) and h(·), of degree at most t, with f(0) = s and
every (honest) party Pi ∈ P holds a share fi = f(αi) of s, along with opening informa-
tion gi = g(αi) and hi = h(αi) for the commitment Cfi,gi,hi

= Commck(fi; gi, hi).
The information available to party Pi ∈ P as part of the [·]-sharing of s is denoted by
[s]i = (fi, gi, hi, {Cfj ,gj ,hj}Pj∈P). All parties will also have the access to ck. More-
over, the collection of [s]i’s, corresponding to Pi ∈ P is denoted by [s].

The second type of secret-sharing (which is a variation of additive sharing), is used to
perform computation via a dishonest majority MPC protocol amongst our committees.

Definition 3 (The 〈·〉 Sharing). A value s ∈ Fp is said to be 〈·〉-shared among a set
of parties X ⊆ P , if every (honest) party Pi ∈ X holds a share si of s along with the
opening information ui, vi for the commitment Csi,ui,ui = Commck(si;ui, vi), such
that

∑
Pi∈X si = s. The information available to party Pi ∈ X as part of the 〈·〉-

sharing of s is denoted by 〈s〉i = (si, ui, vi, {Csj ,uj ,vj
}Pj∈X). All parties will also

have access to ck. The collection of 〈s〉i’s corresponding to Pi ∈ X is denoted by 〈s〉X .

It is easy to see that both types of secret-sharing are linear. For example, for the 〈·〉
sharing, given 〈s(1)〉X , . . . , 〈s(`)〉X and publicly known constants c1, . . . , c`, the parties
in X can locally compute their information corresponding to 〈c1 ·s(1)+ . . .+c` ·s(`)〉X .
This follows from the homomorphic property of the underlying commitment scheme
and the linearity of the secret-sharing scheme. This means that the parties in X can
locally compute 〈c1 · s(1) + . . .+ c` · s(`)〉X from 〈s(1)〉X , . . . , 〈s`〉X , since each party
Pi in X can locally compute 〈c1 · s(1) + . . .+ c` · s(`)〉i from 〈s(1)〉i, . . . , 〈s`〉i.

3 Main Protocol

We now present an MPC protocol implementing the standard honest-majority (meaning
ε < 1/2) MPC functionality Ff presented in Figure 1 which computes the function f .

Functionality Ff

Ff interacts with the parties in P and the adversary S and is parametrized by an n-input
function f : Fnp → Fp.

– Upon receiving (sid, i, x(i)) from every Pi ∈ P where x(i) ∈ Fp, the functionality
computes y = f(x(1), . . . , x(n)), sends (sid, y) to all the parties and the adversary S
and halts.

Fig. 1. The Ideal Functionality for Computing a Given Function f

We now present the underlying idea of our protocol (outlined earlier in the intro-
duction). The protocol is set in a variant of the player-elimination framework from [4].
During the computation either pairs of parties, each containing at least one actively cor-
rupted party, or singletons of corrupted parties, are identified due to some adversarial
behavior of the corrupted parties. These pairs, or singletons, are then eliminated from
the set of eligible parties. To understand how we deal with the active corruptions, we
need to define a dynamic set L ⊆ P of size n, which will define the current set of
eligible parties in our protocol, and a threshold t which defines the maximum number
of corrupted parties in L. Initially L is set to be equal to P (hence n = n) and t is set
to t. We then divide the circuit ckt (representing f) to be evaluated into L levels, where
each level consists of a sub-circuit of depth d/L; without loss of generality, we assume
d to be a multiple of L. We denote the ith sub-circuit as ckti. At the beginning of the
protocol, all the parties in P verifiably [·]-share their inputs for the circuit ckt.

For evaluating a sub-circuit cktl, instead of involving all the parties in L, we rather
involve a small and random committee C ⊂ L of parties of size c, where c is the min-
imum value satisfying the constraint that εc ≤ 2−κ; recall ε = t/n. During the course

of evaluating the sub-circuit, if any inconsistency is reported, then the (honest) parties
in P will identify either a single corrupted party or a pair of parties from L where the
pair contains at least one corrupted party. The identified party(ies) is(are) eliminated
from L and the value of t is decremented by one, followed by re-evaluation of cktl by
choosing a new committee from the updated set L. This is reminiscent of the player-
elimination framework from [4], however the way we apply the player-elimination
framework is different from the standard one. Specifically, in the player-elimination
framework, the entire set of eligible parties L is involved in the computation and the
player elimination is then performed over the entire L, thus requiring huge commu-
nication. On the contrary, in our context, only a small set of parties C is involved in
the computation, thus significantly reducing the communication complexity. It is easy
to see that after a sequence of t failed sub-circuit evaluations, L will be left with only
honest parties and so each sub-circuit will be evaluated successfully from then onwards.

Note that the way we eliminate the parties, the fraction of corrupted parties inL after
any un-successful attempt for sub-circuit evaluation, is upper bounded by the fraction
of corrupted parties in L prior to the evaluation of the sub-circuit. Specifically, let εold =
t/n be the fraction of corrupted parties in L prior to the evaluation of a sub-circuit cktl
and let the evaluation fail, with either a single party or a pair of parties being eliminated
fromL. Moreover, let εnew be the fraction of corrupted parties inL after the elimination.
Then for single elimination, we have εnew = t−1

n−1 and so εnew ≤ εold if and only if n ≥ t,
which will always hold. On the other hand, for double elimination, we have εnew = t−1

n−2
and so εnew ≤ εold if and only if n ≥ 2t, which will always hold.

Since a committee C (for evaluating a sub-circuit) is selected randomly, except with
probability at most εc < 2−κ, the selected committee contains at least one honest party
and so the sub-circuit evaluation among C needs to be performed via a dishonest ma-
jority MPC protocol. We choose the MPC protocol of [11], since it can be modified
to identify pairs of parties consisting of at least one corrupted party in the case of the
failed evaluation, without violating the privacy of the honest parties. To use the protocol
of [11] for sub-circuit evaluation, we need the corresponding sub-circuit inputs (avail-
able to the parties in P in [·]-shared form) to be converted and available in 〈·〉-shared
form to the parties in C and so the parties in P do the same. After every successful
evaluation of a sub-circuit, via the dishonest majority MPC protocol, the outputs of that
sub-circuit (available in 〈·〉-shared form to the parties in a committee) are converted and
saved in the form of [·]-sharing among all the parties in P . As the set P has a honest
majority, [·]-sharing ensures robust reconstruction implying that the shared values are
recoverable. Since the inputs to a sub-circuit come either from the outputs of previous
sub-circuit evaluations or the original inputs, both of which are [·]-shared, a failed at-
tempt for a sub-circuit evaluation does not require a re-evaluation of the entire circuit
from scratch but requires a re-evaluation of that sub-circuit only.

3.1 Supporting Functionalities

We now present a number of ideal functionalities defining sub-components of our main
protocol; see the full version for the UC-secure instantiations of these functionalities.

Basic Functionalities: The functionality FCRS for generating the common reference
string (CRS) for our main MPC protocol is given in Figure 2. The functionality outputs
the commitment key of a double-trapdoor homomorphic commitment scheme, along
with the encryption key of an IND-CCA secure encryption scheme (to be used later for
UC-secure generation of completely random 〈·〉-shared values as in [11]). The func-
tionality FBC for group broadcast is given in Figure 3. This functionality broadcasts the
message sent by a sender Sen ∈ P to all the parties in a sender specified set of parties
X ⊆ P; in our context, the set X will always contain at least one honest party. The
functionality FCOMMITTEE for a random committee selection is given in Figure 4. This
functionality is parameterized by a value c, it selects a set X of c parties at random from
a specified set Y and outputs the selected set X to the parties in P .

Functionality FCRS

FCRS interacts with the parties in P and the adversary S and is parameterized by κ.

– Upon receiving (sid, i) from every party Pi ∈ P , the functionality computes
Gen(1κ) → (ck, τ0, τ1) and G(1κ) → (pk, sk), where G is the key-generation
algorithm of an IND-CCA secure encryption schemea and Gen is the key-generation
algorithm of a double-trapdoor homomorphic commitment scheme. The functionality
then sets CRS = (ck, pk) and sends (sid, i,CRS) to every party Pi ∈ P and the
adversary S and halts.

a For use in the protocol of [11]

Fig. 2. The Ideal Functionality for Generating CRS

Functionality FBC

FBC interacts with the parties in P and the adversary S.

– Upon receiving (sid, Sen, x,X) from the sender Sen ∈ P such that X ⊆ P , the
functionality sends (sid, j,Sen, x) to every Pj ∈ X and to the adversary S and halts.

Fig. 3. The Ideal Functionality for Broadcast

Functionality FCOMMITTEE

FCOMMITTEE, parametrized by a constant c, interacts with the parties in P and the adversary S.

– Upon receiving (sid, i,Y) from every Pi ∈ P , the functionality selects c parties at
random from the setY that is received from the majority of the parties and denotes the se-
lected set asX . The functionality then sends (sid, i,X) to every Pi ∈ P and S and halts.

Fig. 4. The Ideal Functionality for Selecting a Random Committee of Given Size c

Functionality Related to [·]-sharings: In Figure 5 we present the functionality FGEN[·]
which allows a dealer D ∈ P to verifiably [·]-share an already committed secret among
the parties in P . The functionality is invoked when it receives three polynomials, say
f(·), g(·) and h(·) from the dealer D and a commitment, say C, supposedly the commit-
ment of f(0) with randomness g(0), h(0) (namely Cf(0),g(0),h(0)), from the (majority
of the) parties in P . The functionality then hands fi = f(αi), gi = g(αi), hi = h(αi)
and commitments {Cfj ,gj ,hj

}Pj∈P to Pi ∈ P after ‘verifying’ that (a): All the three
polynomials are of degree at most t and (b): C = Commck(f(0); g(0), h(0)) i.e. the
value (and the corresponding randomness) committed in C are embedded in the con-
stant term of f(·), g(·) and h(·) respectively. If either of the above two checks fail, then
the functionality returns Failure to the parties indicating that D is corrupted.

In our MPC protocol where FGEN[·] is called, the dealer will compute the commit-
ment C as Commck(f(0); g(0), h(0)) and will broadcast it prior to making a call to
FGEN[·]. It is easy to note that FGEN[·] generates [f(0)] if D is honest or well-behaved. If
FGEN[·] returns Failure, then D is indeed corrupted.

Functionality FGEN[·]

FGEN[·] interacts with the parties in P , a dealer D ∈ P , and the adversary S and is
parametrized by a commitment key ck of a double-trapdoor homomorphic commitment
scheme, along with t.

– On receiving (sid,D, f(·), g(·), h(·)) from D and (sid, i,D,C) from every Pi ∈ P ,

the functionality verifies whether f(·), g(·) and h(·) are of degree at most t and C
?
=

Commck(f(0); g(0), h(0)), where C is received from the majority of the parties.
– If any of the above verifications fail then the functionality sends (sid, i,D,Failure) to

every Pi ∈ P and S and halts.
– Else for every Pi ∈ P , the functionality computes the share fi = f(αi),

the opening information gi = g(αi), hi = h(αi), and the commitment
Cfi,gi,hi = Commck(fi; gi, hi). It sends (sid, i,D, [s]i) to every Pi ∈ P where
[s]i = (fi, gi, hi, {Cfj ,gj ,hj}Pj∈P) and halts.

Fig. 5. The Ideal Functionality for Verifiably Generating [·]-sharing

We note that FGEN[·] is slightly different from the standard ideal functionality (see
e.g. [2]) of verifiable secret sharing (VSS) where the parties output only their shares
(and not the commitment of all the shares). In most of the standard instantiations of a
VSS functionality (in the computational setting), for example the Pedersen VSS [21], a
public commitment of all the shares and the secret are available to the parties without
violating any privacy. In order to make these commitments available to the external
protocol that invokes FGEN[·], we allow the functionality to compute and deliver the
shares along with the commitments to the parties. We note, [1] introduced a similar
functionality for “committed VSS” that outputs to the parties the commitment of the
secret provided by the dealer due to the same motivation mentioned above.

3.2 Supporting Sub-protocols

Our MPC protocol also makes use of the following sub-protocols. Due to space con-
straints, here we only present a high level description of these protocols and state
their communication complexity. The formal details of the protocols are available in
the full version. Since we later show that our main MPC protocol that invokes these
sub-protocols is UC-secure, it is not required to prove any form of security for these
sub-protocols separately.

(A) Protocol Π〈·〉→[·] : it takes input 〈s〉X for a set X containing at least one honest
party and either produces a sharing [s] (if all the parties in X behave honestly) or out-
puts one of the following: the identity of a single corrupted party or a pair of parties
(with at least one of them being corrupted) from X . The protocol makes use of the
functionalities FGEN[·] and FBC.

More specifically, let 〈s〉i denote the information (namely the share, opening infor-
mation and the set of commitments) of party Pi ∈ X corresponding to the sharing 〈s〉X .
To achieve the goal of our protocol, there are two clear steps to perform: first, the cor-
rect commitment for each share of s corresponding to its 〈·〉X -sharing, now available to
the parties in X , is to be made available to all the parties in P; second, each Pi ∈ X is
required to act as a dealer and verifiably [·]-share its already committed share si among
P . Note that the commitment to si is included in the set of commitments that will be
already available among P due to the first step. Clearly, once [si] are generated for each
Pi ∈ X , then [s] is computed as [s] =

∑
Pi∈X [si]; this is because s =

∑
Pi∈X si.

Now there are two steps that may lead to the failure of the protocol. First, Pi ∈
X may be identified as a corrupted dealer while calling FGEN[·]. In this case a single
corrupted party is outputted by every party in P . Second, the protocol may fail when
the parties in P try to reach an agreement over the correct set of commitments of the
shares of s. Recall that each Pi ∈ X holds a set of commitments as a part of 〈s〉X . We
ask each Pi ∈ X to call FBC to broadcast among P the set of commitments held by
him. It is necessary to ask each Pi ∈ X to do this as we can not trust any single party
from X , since all we know (with overwhelming probability) is that X contains at least
one honest party. Now if the parties in P receive the same set of commitments from
all the parties in X , then clearly the received set is the correct set of commitments and
agreement on the set is reached among P . If this does not happen the parties in P can
detect a pair of parties with conflicting sets and output the said pair. It is not hard to
see that indeed one party in the pair must be corrupted. To ensure an agreement on the
selected pair when there are multiple such conflicting pairs, we assume the existence
of a predefined publicly known algorithm to select a pair from the lot (for instance
consider the pair (Pa, Pb) with minimum value of a+ n · b). Intuitively the protocol is
secure as the shares of honest parties in X remain secure.

The communication complexity of protocol Π〈·〉→[·] is stated in Lemma 1, which
easily follows from the fact that each party in X needs to broadcast O(|X |κ) bits to P .

Lemma 1. The communication complexity of protocol Π〈·〉→[·] is BC
(
|X |2κ, n

)
plus

the complexity of O(|X |) invocations to the realization of the functionality FGEN[·].

(B) ProtocolΠ〈·〉 : the protocol enables a designated party (dealer) D ∈ P to verifiably
〈·〉-share an already committed secret f among a set of parties X containing at least one
honest party. More specifically, every Pi ∈ P holds a (publicly known) commitment
Cf,g,h. The dealer D holds the secret f ∈ Fp and randomness pair (g, h), such that
Cf,g,h = Commck(f ; g, h); and the goal is to generate 〈f〉X . In the protocol, D first
additively shares f as well as the opening information (g, h) among X . In addition,
D is also asked to publicly commit each additive-share of f , using the corresponding
additive-share of (g, f). The parties can then publicly verify whether indeed D has
〈·〉-shared the same f as committed in Cf,g,h, via the homomorphic property of the
commitments. Intuitively f remains private in the protocol for an honest D as there
exists at least one honest party in X . Moreover the binding property of the commitment
ensures that a potentially corrupted D fails to 〈·〉-share an incorrect value f ′ 6= f .

If we notice carefully the protocol achieves a little more than 〈·〉-sharing of a secret
among a set of parties X . All the parties in P hold the commitments to the shares of f ,
while as per the definition of 〈·〉-sharing the commitments to shares should be available
to the parties in X alone. A closer look reveals that the public commitments to the
shares of f among the parties in P enable them to publicly verify whether D has indeed
〈·〉-shared the same f among X as committed in Cf,g,h via the homomorphic property
of the commitments. The communication complexity of Π〈·〉 is stated in Lemma 2.

Lemma 2. The communication complexity of protocolΠ〈·〉 isO(|X |κ) andBC
(
|X |κ, n

)
.

(C) Protocol Π[·]→〈·〉 : the protocol takes as input [s] for any secret s and outputs 〈s〉X
for a designated set of parties X ⊂ P containing at least one honest party.

Let f1, . . . , fn be the Shamir-shares of s. Then the protocol is designed using the
following two-stage approach: (1): First each party Pk ∈ P acts as a dealer and ver-
ifiably 〈·〉-share’s its share fk via protocol Π〈·〉; (2) Let H be the set of |H| > t + 1
parties Pk who have correctly 〈·〉-shared its Shamir-share fk; without loss of general-
ity, let H be the set of first |H| parties in P . Since the original sharing polynomial (for
[·]-sharing s) has degree at most t with s as its constant term, then there exists publicly
known constants (namely the Lagrange’s interpolation coefficients) c1, . . . , c|H|, such
that s = c1f1 + . . . + c|H|f|H|. Since corresponding to each Pk ∈ H the share fk is
〈·〉-shared, it follows easily that each party Pi ∈ X can compute 〈s〉i = c1〈f1〉i+ . . .+
c|H|〈f|H|〉i. The correctness of the protocol follows from the fact that the corrupted
parties in P will fail to 〈·〉-share an incorrect Shamir-share of s, thanks to the protocol
Π〈·〉. The privacy of s follows from the fact that the Shamir shares of the honest parties
in P remain private, which follows from the privacy of the protocol Π〈·〉.

The communication complexity of the protocolΠ[·]→〈·〉 is stated in Lemma 3 which
follows from the fact that n invocations to Π〈·〉 are done in the protocol.

Lemma 3. The communication complexity ofΠ[·]→〈·〉 isO(n|X |κ) andBC
(
n|X |κ, n

)
.

(D) Protocol ΠRANDZERO[·] : the protocol is used for generating a random [·]-sharing of
0. To design the protocol, we also require a standard Zero-knowledge (ZK) functionality
FZK.BC to publicly prove a commitment to zero. The functionality is a “prove-and-
broadcast ” functionality that upon receiving a commitment and witness pair (C, (u, v))
from a designated prover Pj , verifies if C = Commck(0;u, v) or not. If so it sends C to

all the parties. A protocol ΠZK.BC realizing FZK.BC can be designed in the CRS model
using standard techniques, with communication complexity O(Poly(n)κ).

ProtocolΠRANDZERO[·] invokes the ideal functionalitiesFZK.BC andFGEN[·]. The idea
is as follows: Each party Pi ∈ P first broadcasts a random commitment of 0 and proves
in a zero-knowledge (ZK) fashion that it indeed committed 0. Next Pi calls FGEN[·] as
a dealer D to generate [·]-sharing of 0 that is consistent with the commitment of 0. The
parties then locally add the sharings of the dealers who are successful as dealers in their
corresponding calls to FGEN[·]. Since there exists at least one honest party in this set of
dealers, the resultant sharing will be indeed a random sharing of 0, see the full version
for details. Looking ahead, we invokeΠRANDZERO[·] only once in our main MPC protocol
Πf (more on this later); so we avoid giving details of the communication complexity
of the protocol. However assuming standard realization of FZK.BC, the protocol has
complexity O(Poly(n)κ).

(E) Dis-honest Majority MPC Protocol : Apart from the above sub-protocols, we
use a non-robust, dishonest-majority MPC protocol ΠNR

C with the capability of fault-
detection. The protocol, allows a designated set of parties X ⊂ P , containing at least
one honest party, to perform 〈·〉-shared evaluation of a given circuit C. In case some
corrupted party inX behaves maliciously, the parties in P identify a pair of parties from
X , with at least one of them being corrupted. The starting point ofΠNR

C is the dishonest
majority MPC protocol of [11], which takes 〈·〉-shared inputs of a given circuit, from
a set of parties, say X , having a dishonest majority. The protocol then achieves the
following:

– If all the parties in X behave honestly, then the protocol outputs 〈·〉-shared circuit
outputs among X .

– Else the honest parties in X detect misbehaviour by the corrupted parties and abort
the protocol.

We observe that for an aborted execution of the protocol of [11], there exists an honest
party in X that can locally identify a corrupted party from X , who deviated from the
protocol. We exploit this property in ΠNR

C to enable the parties in P identify a pair of
parties from X with at least one of them being corrupted.

Protocol ΠNR
C proceeds in two stages, the preparation stage and the evaluation

stage, each involving various other sub-protocols (details available in the full version).
In the preparation stage, if all the parties inX behave honestly, then they jointly generate
CM + CR shared multiplication triples {(〈a(i)〉X , 〈b(i)〉X , 〈c(i)〉X)}i=1,...,CM+CR

, such
that c(i) = a(i) ·b(i) and each (a(i),b(i), c(i)) is random and unknown to the adversary;
here CM and CR are the number of multiplication and random gates in C respectively.
Otherwise, the parties in P identify a pair of parties in X , with at least one of them
being corrupted.

Assuming that the desired 〈·〉-shared multiplication triples are generated in the
preparation stage, the parties in X start evaluating C in a shared fashion by maintain-
ing the following standard invariant for each gate of C: Given 〈·〉-shared inputs of the
gate, the parties securely compute the 〈·〉-shared output of the gate. Maintaining the in-
variant for the linear gates in C does not require any interaction, thanks to the linearity
of 〈·〉-sharing. For a multiplication gate, the parties deploy a preprocessed 〈·〉-shared

multiplication triple from the preparation stage (for each multiplication gate a differ-
ent triple is deployed) and use the standard Beaver’s trick [3]. While applying Beaver’s
trick, the parties in X need to publicly open two 〈·〉-shared values using a reconstruc-
tion protocol ΠREC〈·〉 (presented in the full version). It may be possible that the opening
is non-robust8, in which case the circuit evaluation fails and the parties in P identify a
pair of parties from X with at least one of them being corrupted. For a random gate,
the parties consider an 〈·〉-shared multiplication triple from the preparation stage (for
each random gate a different triple is deployed) and the first component of the triple is
considered as the output of the random gate. The protocol ends once the parties in X
obtain 〈·〉-shared circuit outputs 〈y1〉X , . . . , 〈yout〉X ; so no reconstruction is required at
the end.

The complete details of ΠNR
C is provided in the full version. The protocol invokes

two ideal functionalities FGENRAND〈·〉 and FBC where the functionality FGENRAND〈·〉 is
used to generate 〈·〉-sharing of random values (again see the full version). For our pur-
pose we note that the protocol provides a statistical security of 2−s and has communi-
cation complexity as stated in Lemma 4 and proved in the full version. Note that there
are two types of broadcast involved: among the parties in X and among the parties in
P .

Lemma 4. For a statistical security parameter s, protocol ΠNR
C has communication

complexity of O(|X |2(|C|+ s)κ),BC
(
|X |2(|C|+ s)κ, |X |

)
and BC

(
|X |κ, n

)
.

3.3 The MPC Protocol

Finally, we describe our MPC protocol. Recall that we divide the circuit ckt into sub-
circuits ckt1, . . . , cktL and we let inl and outl denote the number of input and out-
put wires respectively for the sub-circuit cktl. At the beginning of the protocol, each
party [·]-share their private inputs by calling FGEN[·]. The parties then select a random
committee of parties by calling FCOMMITTEE for evaluating the lth sub-circuit via the
dishonest majority MPC protocol of [11]. We use a Boolean flag NewCom in the pro-
tocol to indicate if a new committee has to be decided, prior to the evaluation of lth
sub-circuit or the committee used for the evaluation of the (l − 1)th sub-circuit is to
be continued. Specifically a successful evaluation of a sub-circuit is followed by set-
ting NewCom equals to 0, implying that the current committee is to be continued for
the evaluation of the subsequent sub-circuit. On the other hand, a failed evaluation of
a sub-circuit is followed by setting NewCom equals to 1, implying that a fresh com-
mittee has to be decided for the re-evaluation of the same sub-circuit from the updated
set of eligible parties L, which is modified after the failed evaluation. After each suc-
cessful sub-circuit evaluation, the corresponding 〈·〉-shared outputs are converted into
[·]-shared outputs via protocol Π〈·〉→[·], while prior to each sub-circuit evaluation, the
corresponding [·]-shared inputs are converted to the required 〈·〉-shared inputs via pro-
tocol Π[·]→〈·〉. The process is repeated till the function output is [·]-shared, after which
it is robustly reconstructed (as we have honest majority in P).

8 As we may not have honest majority in X , we could not always ensure robust reconstruction
during ΠREC〈·〉.

Without affecting the correctness of the above steps, but to ensure simulation secu-
rity (in the UC model), we add an additional output re-randomization step before the
output reconstruction: the parties callΠRANDZERO[·] to generate a random [0], which they
add to the [·]-shared output (thus keeping the same function output). Looking ahead,
during the simulation in the security proof, this step allows the simulator to cheat and
set the final output to be the one obtained from the functionality, even though it simu-
lates the honest parties with 0 as the input (see the full version for the details).

Let E be the event that at least one party in each of the selected committees during
sub-circuit evaluations is honest; the event E occurs except with probability at most
(t + 1) · εc ≈ 2−κ. This is because at most (t + 1) (random) committees need to be
selected (a new committee is selected after each of the t failed sub-circuit evaluation
plus an initial selection is made). It is easy to see that conditioned on E, the protocol
is private: the inputs of the honest parties remain private during the input stage (due to
FGEN[·]), while each of the involved sub-protocols for sub-circuit evaluations does not
leak any information about honest party’s inputs. It also follows that conditioned on
E, the protocol is correct, thanks to the binding property of the commitment and the
properties of the involved sub-protocols.

The properties of the protocol Πf are stated in Theorem 1 and the security proof is
available in the full version; we only provide the proof of communication complexity
here. The (circuit-dependent) communication complexity in the theorem is derived after
substituting the calls to the various ideal functionalities by the corresponding protocols
implementing them. The broadcast complexity has two parts: the broadcasts among the
parties in P and the broadcasts among small committees.

Theorem 1. Let f : Fnp → Fp be a publicly known n-input function with circuit rep-

resentation ckt over Fp, with average width w and depth d (thus w = |ckt|
d). More-

over, let ckt be divided into sub-circuits ckt1, . . . , cktL, with L = t and each sub-
circuit cktl having fan-in inl and fan-out outl. Furthermore, let inl = outl = O(w).
Then conditioned on the event E, protocol Πf (κ, s)-securely realizes the functional-
ity Ff against A in the (FCRS,FBC,FCOMMITTEE,FGEN[·],FGENRAND〈·〉,FZK.BC)-hybrid
modelin the UC security framework. The circuit-dependent communication complexity
of the protocol is O(|ckt| · (n·td + κ) · κ2), BC

(
|ckt| · n·t·κ

2

d , n
)

and BC
(
|ckt| · κ3, κ

)
.

PROOF (COMMUNICATION COMPLEXITY): We analyze each phase of the protocol:

1. Input Commitment Stage: Here each party broadcasts O(κ) bits to the parties in
P and so the broadcast complexity of this step is BC

(
nκ, n

)
.

2. [·]-sharing of Committed Inputs: Here n calls to FGEN[·] are made. Realizing
FGEN[·] with the protocol Π[·], see the full version, this incurs a communication
complexity of O(n2κ) and BC

(
n2κ, n

)
.

3. Sub-circuit Evaluations: We first count the total communication cost of evaluating
the sub-circuit cktl with inl input gates and outl output gates.

– Converting the inl [·]-shared inputs to inl 〈·〉-shared inputs will require inl in-
vocations to the protocol Π[·]→〈·〉. The communication complexity of this step
is O(n · c · inl · κ) and BC

(
n · c · inl · κ, n

)
; this follows from Lemma 3 by

substituting |X | = c.

Protocol Πf (P, ckt)

For session ID sid, every party Pi ∈ P does the following:

Initialization. Set L = P , n = |L|, t = t and NewCom = 1. Divide ckt into L sub-circuits
ckt1, . . . , cktL, each of depth d/L.

CRS Generation. Invoke FCRS with (sid, i) and get back (sid, i,CRS), where CRS =
(pk, ck).

Input Commitment. On input x(i), choose random polynomials f (i)(·), g(i)(·), h(i)(·) of
degree ≤ t, such that f (i)(0) = x(i) and compute the commitment C

x(i),g
(i)
0 ,h

(i)
0

=

Commck(x
(i); g

(i)
0 , h

(i)
0) where g(i)

0 = g(i)(0), h
(i)
0 = h(i)(0).

– Call FBC with message (sid, i,C
x(i),g

(i)
0 ,h

(i)
0
,P).

– Corresponding to each Pj ∈ P , receive (sid, i, j,C
x(j),g

(j)
0 ,h

(j)
0

) from FBC.

[·]-sharing of Committed Inputs.
– Act as a dealer D and call FGEN[·] with (sid, i, f (i)(·), g(i)(·), h(i)(·)).
– For every Pj ∈ P , call FGEN[·] with (sid, i, j,C

x(j),g
(j)
0 ,h

(j)
0

).

– For every Pj ∈ P , if (sid, i, j,Failure) is received from FGEN[·], substitute a default
predefined public sharing [0] of 0 as [x(j)], set [x(j)]i = [0]i and update L =
L \ {Pj}, decrement t and n by one. Else receive (sid, i, j, [x(j)]i) from FGEN[·].

Start of While Loop Over the Sub-circuits. Initialize l = 1. While l ≤ L do:
– Committee Selection. If NewCom = 1, then call FCOMMITTEE with (sid, i,L) and re-

ceive (sid, i, C) from FCOMMITTEE.
– [·] to 〈·〉C Conversion of Inputs of Sub-circuit cktl. Let [x1], . . . , [xinl] denote the

[·]-sharing of the inputs to cktl:
– For k = 1, . . . , inl, participate in Π[·]→〈·〉 with (sid, i, [xk]i, C). Output

(sid, i, 〈xk〉i) in Π[·]→〈·〉, if Pi belongs to C. Else output (sid, i).
– Evaluation of the Sub-circuit cktl. If Pi ∈ C then participate in ΠNR

cktl
with

(sid, i, 〈x1〉i, . . . , 〈xinl〉i, C), else participate in ΠNR
cktl

with (sid, i, C).
– If (sid, i,Failure, Pa, Pb) is the output duringΠNR

cktl
, then setL = L\{Pa, Pb},

t = t− 1, n = n− 2, NewCom = 1 and go to Committee Selection step.
– 〈·〉C to [·] conversion of Outputs of cktl. If (sid, i, Success, 〈y1〉i, . . . , 〈youtl〉i) or

(sid, i, Success) is obtained during ΠNR
cktl

, then participate in Π〈·〉→[·] with
(sid, i, 〈yk〉i) or (sid, i) (respectively) for k = 1, . . . , outl.

– If (sid, i, Success, [yk]i) is the output in Π〈·〉→[·] for every k = 1, . . . , outl,
then increment l and set NewCom = 0.

– If (sid, i,Failure, Pa, Pb) is the output inΠ〈·〉→[·] for some k ∈ {1, . . . , outl},
then set L = L \ {Pa, Pb}, t = t− 1, n = n− 2, NewCom = 1 and go to the
Committee Selection step.

– If (sid, i,Failure, Pa) is the output in Π〈·〉→[·] for some k ∈ {1, . . . , outl},
then set L = L \ {Pa}, t = t − 1, n = n − 1, NewCom = 1 and go to the
Committee Selection step.

Output Rerandomization. Let [y] denote the [·]-sharing of the output of ckt. Participate in
ΠRANDZERO[·] with (sid, i), obtain (sid, i, [0]i) and locally compute [z]i = [y]i + [0]i.

Output Reconstruction. Interpret [z]i as (fi, gi, hi, {Cfj ,gj ,hj}Pj∈P). Initialize a set Ti
to ∅.

– Send (sid, i, j, fi, gi, hi) to every Pj ∈ P . On receiving (sid, j, i, fj , gj , hj) from
every party Pj include party Pj in Ti if Cfj ,gj ,hj 6= Commck(fj ; (gj , hj)).

– Interpolate f(·) such that f(αj) = fj holds for every Pj ∈ P \ Ti. If f(·) has
degree at most t, output (sid, i, z = f(0)) and halt; else output (sid, i,Failure) and
halt.

Fig. 6. Protocol for UC-secure realizing Ff

– Since the size of cktl is at most |ckt|L , evaluating the same via protocol ΠNR
cktl

will have communication complexity O(c2(|ckt|L + s)κ), BC
(
c2(|ckt|L + s)κ, c

)
and BC

(
c · κ, n

)
; this follows from Lemma 4 by substituting |X | = c.

– Finally converting the outl 〈·〉-shared outputs to [·]-shared outputs require outl
invocations to the protocolΠ〈·〉→[·]. This has communication complexityO(n ·
c · outl · κ), BC

(
outl · c2 · κ, n

)
and BC

(
n · c · κ, n

)
; this follows from Lemma

1 by substituting |X | = c.
Thus evaluating cktl has communication complexity O((n2 + n · c · inl + n · c ·
outl + c2(|ckt|L + s))κ), BC

(
(n2 + n · c · inl + c2 · outl)κ, n

)
and BC

(
c2(|ckt|L +

s)κ, c
)
. Assuming inl = O(w) and outl = O(w), with w = |ckt|

d , this results in
O((n2 + n · c · |ckt|d + c2(|ckt|L + s))κ), BC

(
(n2 + n · c · |ckt|d)κ, n

)
and BC

(
(c2 ·

(|ckt|L + s))κ, c
)
. The total number of sub-circuit evaluations is at most L+ t, with

L successful evaluations and at most t failed evaluations. Substituting L = t, we
get the overall communication complexityO((|ckt| · (n·t·cd + c2)+n2t+ c2s · t)κ),
BC
(
(|ckt| · n·t·cd + n2t)κ, n

)
and BC

(
(|ckt| · c2 + c2 · s · t)κ, c

)
.

4. Output Rerandomization and Reconstruction: The costs O(Poly(n, κ)) bits.

The circuit-dependent complexity of the whole protocol comes out to beO(|ckt|·(nt·cd +
c2)κ) bits of communication over the point-to-point channels and broadcast-complexity
ofBC

(
|ckt|·nt·cd ·κ, n

)
andBC

(
|ckt|·c2·κ, c

)
. Since c has to be selected so that εc < 2−κ

holds, asymptotically we can set c to be O(κ). (For any practical purpose, κ = 80
is good enough.) It implies that the (circuit-dependent) communication complexity is
O(|ckt|(ntd + κ)κ2), BC

(
|ckt| · ntκ

2

d , n
)

and BC
(
|ckt|κ3, κ

)
. 2

We propose two optimizations for our MPC protocol that improves its communica-
tion complexity.

[·]-sharing among a smaller subset of P . While for simplicity, we involve the entire
set of parties inP to hold [·]-shared values in the protocol, it is enough to fix and involve
a set of just z parties that guarantees a honest majority with overwhelming probability.
From our analysis in Section 1, we find that z = O(κ). Indeed it is easy to note that
all we require from the set involved in holding a [·]-sharing is honest majority that
can be attained by any set containing O(κ) parties. This optimization replaces n by
κ in the complexity expressions mentioned in Theorem 1. It implies that the (circuit-
dependent) communication complexity is O(|ckt|(κtd + κ)κ2), BC

(
|ckt| · tκ

3

d , κ
)

and
BC
(
|ckt|κ3, κ

)
. Now instantiating the broadcast functionality in the above modified

protocol with the Dolev-Strong (DS) broadcast protocol (see the full version), we obtain
the following:

Corollary 1. If d = ω(t) and if the calls to FBC are realized via the DS broadcast
protocol, then the circuit-dependent communication complexity of Πf is O(|ckt| · κ7).

When we restrict to widths w of the form w = ω(κ3), we can instantiate all the in-
vocations to FBC in the protocols Π〈·〉→[·] and Π[·]→〈·〉 (invoked before and after the
sub-circuit evaluations) by the Fitzi-Hirt (FH) multi-valued broadcast protocol [15], see
the full version. This is because, setting w = ω(κ3) ensures that the combined message
over all the instances of Π〈·〉→[·] (respectively Π[·]→〈·〉) to be broadcast by any party

satisfies the bound on the message size of the FH protocol. Incorporating the above, we
obtain the following corollary with better result.

Corollary 2. If d = ω(t) and w = ω(κ3) (i.e. |ckt| = ω(κ3t)), then the circuit-
dependent communication complexity of Πf is O(|ckt| · κ4).

Packed Secret-Sharing. We can employ packed secret-sharing technique of [16] to
checkpoint multiple outputs of the sub-circuits together in a single [·]-sharing. Specifi-
cally, if we involve all the parties in P to hold a [·]-sharing, we can pack n− 2t values
together in a single [·]-sharing by setting the degree of the underlying polynomials to
n− t− 1. It is easy to note that robust reconstruction of such a [·]-sharing is still possi-
ble, as there are n − t honest parties in the set P and exactly n − t shares are required
to reconstruct an (n − t − 1) degree polynomial. For every sub-circuit cktl, the woutl

output values are grouped so that each group contains n− 2t secrets and each group is
then converted to a single [·]-sharing.

If we restrict to circuits for which any circuit wire has length at most d/L = d/t
(i.e. reaches upto at most d/L levels), then we ensure that the outputs of circuit cktl
can only be the input to circuit cktl+1. With this restriction, the use of packed secret-
sharing becomes applicable at all stages, and the communication complexity becomes
O(|ckt| · (td +κ) ·κ2), BC

(
|ckt| · t·κ

2

d , n
)

and BC
(
|ckt| ·κ3, κ

)
; i.e. a factor of n less in

the first two terms compared to what is stated in Theorem 1. Realizing the broadcasts
using DS and FH protocol respectively, we obtain the following corollaries:

Corollary 3. If d = ω(n
3·t
κ4) and if the calls to FBC are realized via the DS broadcast

protocol, then the circuit-dependent communication complexity of Πf is O(|ckt| · κ7).

Corollary 4. If d = ω(n·tκ5) and w = ω(n2 ·(n+κ)) (i.e. |ckt| = ω(n
3·t
κ5 (n+κ))), then

the circuit-dependent communication complexity of the protocol Πf is O(|ckt| · κ7).

Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2010-AdG-267188-
CRIPTO, by EPSRC via grant EP/I03126X, and by Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory (AFRL) under agreement
number FA8750-11-2-00799 and the third author was supported in part by a Royal So-
ciety Wolfson Merit Award.

References

1. M. Abe and S. Fehr. Adaptively Secure Feldman VSS and Applications to Universally-
Composable Threshold Cryptography. In Advances in Cryptology - CRYPTO 2004, volume
3152 of LNCS, pages 317–334, 2004.

9 The US Government is authorized to reproduce and distribute reprints for Government pur-
poses notwithstanding any copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of Defense Advanced Research
Projects Agency (DARPA) or the U.S. Government.

2. G. Asharov and Y. Lindell. A Full Proof of the BGW Protocol for Perfectly-Secure Multi-
party Computation. IACR Cryptology ePrint Archive, 2011:136, 2011.

3. D. Beaver. Efficient Multiparty Protocols Using Circuit Randomization. In Advances in
Cryptology - CRYPTO ’91, volume 576 of LNCS, pages 420–432, 1991.

4. Z. BeerliováTrubı́niová and M. Hirt. Perfectly-Secure MPC with Linear Communication
Complexity. In Theory of Cryptography – TCC 2008, volume 4948 of LNCS, pages 213–
230, 2008.

5. E. Ben-Sasson, S. Fehr, and R. Ostrovsky. Near-Linear Unconditionally-Secure Multiparty
Computation with a Dishonest Minority. In Advances in Cryptology - CRYPTO 2012, volume
7417 of LNCS, pages 663–680, 2012.

6. E. Boyle, S. Goldwasser, and S. Tessaro. Communication locality in secure multi-party com-
putation how to run sublinear algorithms in a distributed setting. In Theory of Cryptography
– TCC 2014, volume 8349 of LNCS, pages 356–376, 2014.

7. R. Canetti and M. Fischlin. Universally Composable Commitments. In Advances in Cryp-
tology – CRYPTO 2001, pages 19–40, 2001.

8. J. F. Canny and S. Sorkin. Practical large-scale distributed key generation. In Advances in
Cryptology - EUROCRYPT 2004, volume 3027 of LNCS, pages 138–152, 2004.

9. A. Choudhury. Breaking the O(n|c|) barrier for unconditionally secure asynchronous mul-
tiparty computation - (extended abstract). In Progress in Cryptology - INDOCRYPT 2013,
volume 8250 of LNCS, pages 19–37, 2013.

10. I. Damgård, Y. Ishai, M. Krøigaard, J.B. Nielsen, and A. Smith. Scalable Multiparty Com-
putation with Nearly Optimal Work and Resilience. In Advances in Cryptology – CRYPTO
2008, volume 5157 of LNCS, pages 241–261, 2008.

11. I. Damgård and C. Orlandi. Multiparty Computation for Dishonest Majority: From Passive
to Active Security at Low Cost. In Advances in Cryptology - CRYPTO 2010, volume 6223
of LNCS, pages 558–576, 2010.

12. V. Dani, V. King, M. Movahedi, and J. Saia. Brief Announcement: Breaking the O(nm) Bit
Barrier, Secure Multiparty Computation with a Static Adversary. In Principles of Distributed
Computing – PODC 2012, pages 227–228, 2012.

13. V. Dani, V. King, M. Movahedi, and J. Saia. Quorums quicken queries: Efficient asyn-
chronous secure multiparty computation. In ICDN 2014, volume 8314 of LNCS, pages 242–
256, 2014.

14. Uriel Feige. Noncryptographic selection protocols. In FOCS, pages 142–153, 1999.
15. Matthias Fitzi and Martin Hirt. Optimally Efficient Multi-valued Byzantine Agreement. In

Principles of Distributed Computing – PODC 2006, pages 163–168. ACM, 2006.
16. M. K. Franklin and M. Yung. Communication Complexity of Secure Computation (Extended

Abstract). In Symposium on Theory of Computing – STOC 1992, pages 699–710. ACM,
1992.

17. B. M. Kapron, D. Kempe, V. King, J. Saia, and V. Sanwalani. Fast Asynchronous Byzantine
Agreement and Leader Election with Full Information. ACM Transactions on Algorithms,
6(4), 2010.

18. V. King, S. Lonargan, J. Saia, and A. Trehan. Load Balanced Scalable Byzantine Agreement
through Quorum Building, with Information. In ICDCN, volume 6522 of LNCS, pages 203–
214, 2011.

19. V. King and J. Saia. Breaking the O(n2) Bit Barrier: Scalable Byzantine Agreement with an
Adaptive Adversary. J. ACM, 58(4):18, 2011.

20. V. King, J. Saia, V. Sanwalani, and E. Vee. Scalable Leader Election. In SODA, pages
990–999, 2006.

21. T. P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing.
In Advances in Cryptology - CRYPTO ’91, volume 576 of LNCS, pages 129–140, 1992.

22. A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, 1979.

