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Abstract. While standard message authentication codes (MACs) guarantee authenticity of messages,
they do not, in general, guarantee the anonymity of the sender and recipient. For example it may be
easy for an observer to determine whether or not two authenticated messages were sent by the same
party even without any information about the secret key used. However preserving any uncertainty an
attacker may have about the identities of honest parties engaged in authenticated communication is
an important goal of many cryptographic applications. For example this is stated as an explicit goal of
modern cellphone authentication protocols [fGPP12] and RFID based authentication systems [Vaul0].

In this work we introduce and construct a new fundamental cryptographic primitive called key indistin-
guishable (KI) MACs. These can be used to realize many of the most important higher-level applications
requiring some form of anonymity and authenticity [AHM*14a]. We show that much (though not all)
of the modular MAC construction framework of [DKPW12] gives rise to several variants of KI MACs.
On the one hand, we show that KI MACs can be built from hash proof systems and certain weak PRF's
allowing us to base security on such assumption as DDH, CDH and LWE. Next we show that the two
direct constructions from the LPN assumption of [DKPW12] are KI, resulting in particularly efficient
constructions based on structured assumptions. On the other hand, we also give a very simple and
efficient construction based on a PRF which allows us to base KI MACs on some ideal primitives such
as an ideal compression function (using HMAC) or block-cipher (using say CBC-MAC). In particular,
by using our PRF construction, many real-world implementations of MACs can be easily and cheaply
modified to obtain a KI MAC. Finally we show that the transformations of [DKPW12] for increasing
the domain size of a MAC as well as for strengthening the type of unforgeability it provides also pre-
serve (or even strengthen) the type of KI enjoyed by the MAC. All together these results provide a
wide range of assumptions and construction paths for building various flavors of this new primitive.



1 Introduction

1.1 Anonymous Authenticity

In many applications preserving anonymity can conflict with other desirable security properties
such as secrecy and authenticity. In [BBDP01,KMO™13] the authors described and analyzed cryp-
tographic primitives providing both anonymity and secrecy. In particular [BBDPO01]| define and
realize the notion of Key-Private public key encryption (PKE) which, in addition to the usual
secrecy provided by PKE, also guarantee that an adversary learns nothing about the target public
key under which a given ciphertext was encrypted. Intuitively this can be used to provide reciever-
anonymous private communication, a concept which was formalized in [KMO'13].

In this work we address the dual problem of providing anonymity in tandem with authenticity.
That is we focus on the private key setting and define the notion of a Key-Indistinguishable Message
Authentication Code (KI-MAC). These are MACs which have the added benefit that they reveal
nothing about the keys used to generate the authentication tags. In [AHM*14b] it is shown how
such schemes can be used to realize higher level applications such as anonymous authenticated or
even secure message transmission and anonymous entity authentication each in strongly composable
way.

1.2 Owur Contributions

On the highest level we achieve our goal of constructing KI-MACs in three steps detailing a mod-
ular and flexible approach. First we formally define KI-MACs via a pair of games and describe
some relevant variants thereof. Next we show the security of several constructions either based on
Learning Parity with Noise assumption (LPN) or black-box primitives such as hash proof systems
(HPS), certain weak pseudorandom functions (wPRF), and variable input-length PRFs. From a
theoretical perspective the former constructions allow us to realize KI-MACs from a wide array
of number-theoretic assumptions (beyond LPN) such as the Paillier assumption, DDH, CDH and
LWE. From a practical perspective the PRF construction demonstrates how to base a KI-MAC
on an ideal compression function (using HMAC), an ideal block-cipher (using CBC-MAC [BPRO05]
and several of its variable input-length extensions such as OMAC [IK03], ECBC [BPR05]) or a
fixed-input length PRF (using SS-NMAC [DS09]). In the third step we show that various transfor-
mations on MACs for strengthening their security properties also preserve or strengthen the flavour
of key-indistinguishability provided by the MAC.

We remark that all MAC schemes in this work are (neccecarily) probabilistic which may be a
problem for extremely light-weight computing devices. However they can easily and generically be
translated into stateful but deterministic parties by using a PRG.3

Ezact Security. All security statements we give come with an exact security analysis (as opposed to
asymptotic ones). We see at least two advantages in taking this approach. First, such results greatly
facilitate comparing the quality/efficiency trade-off obtained via different constructions especially
when based on the same underlying cryptographic assumptions. A somewhat less common but
equally relevant advantage is that such statements make explicit the benefits obtained by enforcing

3In particular the security proofs for the probabilistic setting then automatically carry over (at least in a com-
putational sense) by preceding the proof with a hybrid argument replacing the output of each call to the PRG with
fresh random numbers.



constraints on the adversary through implementation choices. Take for example a protocol whose
security degrades say in ¢/ |M|: the number of times an adversary can interact with a client divided
by the size of the message space supported by a MAC. Normally such a protocol would require a
MAC with at least 160-bit messages to be considered secure. However, if implemented on hardware
which guarantees failure after a limited number of interactions, say ¢ < 2'° (a common assumption
in the RFID setting) the MAC now need only support 100-bit messages potentially reducing the
hardware costs of the resulting implementation significantly.

1.3 Related Work

MACs are one of the most fundamental, common and widely studied primitives in modern cryp-
tography, especially in practice and a wide variety of constructions have been developed in the
past. Most relevant to this work is [DKPW12] from which most of the MAC constructions and
transformations analyzed in this work are taken (the notable exception being the PRF based con-
struction of 3.1). That work focuses mainly on theoretical constructions of MACs with the aim of
expanding the class of assumptions upon which we can base our security. However given practical
efficiency constraints and the difficulty in designing secure symmetric key cryptographic primitives
much attention has been focused on constructing secure (variable-input length) MACs from other
existing (but idealized) symnetric key primitives such as block-ciphers [BPR05,IK03], compression
functions [Bel06, BCK96a], and even fixed-input length PRFs [DS09]. Indeed, some of these have
found wide acceptance in practice [Nat], however we stress that none of these constructions result in
KI-MACs as they all result in deterministic MACs which trivially can not be key-indistinguishable.

On the other hand cryptographic applications ensuring anonymity have almost exclusively been
studied in the context of interactive protocols and are therefore tailored to specific applications
rather than providing a general tool with which anonymous applications can be constructed. The
most relevant example to this work being [AHM*14b] which investigates how KI-MACs can be used
in higher level protocols to construct various idealized multi-user anonymous functionalities. Some
other notable examples are [Vaul0, HPVP11, DLYZ11, BLAMT09, BM11] which primarily focus on
entity authentication (often based on lite-weight RFID cards) and [AMRR11, TM12, AMR"12,
LSWW13] which focus specifically on the requirements of mobile phone network communication
protocols.

The most important exception to this trend is the work of [BBDP01] which investigates PKE
schemes that additionaly hide all information about which public key was used to encrypt a given
ciphertext. This is motivated by the higher level application of receiver-anonymous private message
transmission as formalized in [KMO™13].

1.4 Outline

In Section 2 we briefly review various existing and some new security notions for MAC schemes.
Next, in Section 3 we investigate a variety of constructions of varying strengths (and their con-
sequences) based on both black-box and number-theoretic assumptions. Finally in Section 4 we
describe how to strengthen the security properties of KI-MACs via some black-box transforma-
tions.



2 Definitions

We review some variants of secure message authentication codes and define the new property of
key indistinguishability.

Syntaz. A message authentication code MAC = {KG, TAG, VRFY} is a triple of algorithms with associ-
ated key space K, message space M, and tag space T .

— Key Generation. The probabilistic key generation algorithm k < k(1) takes as input a
security parameter A € N (in unary) and outputs a secret key k € K.

— Tagging. The probabilistic authentication algorithm 7 <— TAG,(m) takes as input a secret key
k € K and a message m € M and outputs an authentication tag 7 € T.

— Verification. The deterministic verification algorithm VRFYy(m,7) takes as input a secret key
k € K, a message m € M and a tag 7 € T and outputs an element of the set {Accept,Reject}.

Next we define some useful properties such a triple of algorithms can have such as completeness
and unforgeability. We also discuss two further less common security notions for MACs, called
message hiding and key indistinguishability which can only be achieved by randomized MACs.
While the former notion was already introduced in [DKPW12] and recalled in Appendix A, the
latter is defined for the first time in this work.

COMPLETENESS. We say that MAC has completeness error 7 if for all m € M and A € N,
Pr[VRFY,(m, T) = Reject : k « KG(1*), 7 + TaGi(m)] < 7.

UNFORGEABILITY. We recall the standard notion security for (randomized) MACs; namely unforge-
ability under a chosen message (and verification) attack (uf-cmva). We denote by Adv"f'cm"a (AN,
the advantage of the adversary A in forging the message for a random key k + KG(1>‘). Formally it
is the probability that the following experiment outputs 1.

Ezxperiment. Expii d™a(A \)

~ k + ke(1?)

— Invoke ATAGK()VREYk ()

— Output 1 if A queried (m*,7*) to VRFYg(-,+) s.t. VRFY(m*, 7*) = Accept and A did not receive
T* by querying m* to TAGk(+).

The above experiment can be weakened in several ways to obtain useful variants. In the selective
unforgeability (suf-cmva) notion defined in [DKPW12], A has to specify the target message m*
before making any queries to the oracles in Expif:¢™a(A )). A yet weaker notion called univer-
sal unforgeability (uuf-cmva) requires the adversary to produce a fresh tag for a uniform random
message m* < M given as input to the adversary. We call the modified experiments ExpS“f'cm"a
and Exp“uf ‘mva’respectively. Another way in which the {uuf, suf, uf}-cmva security notions can
be weakened is to restrict the adversary A to making only a single query to the verification or-

acle.* To denote the resulting security notions we write {uuf,suf, uf}-cma respectively.® Finally,

4Note that this is only a meaningful restriction for MACs with a randomized tagging algorithm since a determin-
istic tagging algorithm can trivially be used as a verification oracle.

SEquivalently we sometimes speak of the adversary simply having no access to the verification oracle and instead
outputting an attempted forgery at the end of her execution in the cma type experiments.



if the winning condition of the experiment is to ask only those m* that have not been previously
queried to TAG(-) then we refer to the resulting notion as weakly unforgeable while referring to
the more stringent security notions as strong. In particular the {suf,uf}-{cma, cmva} definitions
in [DKPW12] are all weak variants. In general in this work unless stated otherwise we always mean
the strong variants.

We refer to an efficient (i.e. PPT) adversary A playing a cmva type experiments as a (t, q;, gy )-
adversary if it runs in time at most ¢, and for any pair of oracles with a fixed key A makes at most
q: tag and ¢, verification queries.

Definition 1 (Unforgeability). A MAC scheme is (strongly) (t, q;, gy, €)-uf-cmva secure if for any
(t, qt, qv)-adversary A we have:

Advifamap ) = Pr[Expiid™a(A \) — 1] < e
It is (t,q, €)-uf-cma secure if it is (t,q, 1, €)-uf-cmva secure.

We omit the analogous definitions for the suf, and uuf variants with and without verification
queries detailed above. From these definitions it is immediate that for any ¢,q;, ¢, € N and ¢ > 0
the following relation holds for both strong and weak variants:

(t, qt, qu, €)-uf-cmva = (t, ¢, qy, €)-suf-cmva = (t, ¢, qv, €)-uuf-cmva.

Further, as observed in [DKPW12], every weakly (¢, g, €)-suf-cma MAC is also weakly (¢, g, €2#)-
uf-cma secure where |[M| = 2#, since the adversary can guess in advance for which message it can
mount the forgery attack. The same observation holds for strong unforgeability.

KEY INDISTINGUISHABILITY. Intuitively, the notion of key indistinguishability (KI) ensures that
tags leak no information about the secret key (or more generally the internal state of the tag
algorithm). Indeed this permits the use of KI-MACs in implementing higher level anonymous au-
thentication applications as detailed in [AHM™*14b]. We note that such a property is not implied
by even the strongest of unforgeability notions defined above.%

To capture the desired intuition we define a game where an adversary is given access to two
sets of oracles. Its goal is to determine if the two sets use the same key or two independent random
keys. To formalize this we introduce some notation. For keys ko, k1 € K we write [k, k1] to denote
the 4-tuple of oracles (TAGk,, VRFYy,, TAGE, , TAGk, ). Moreover we write [ko, ko] to denote a similar
4-tuple but where the TAG oracles share their entire internal state including secret key (and similarly
for the VRFY oracles). In other words, calls to the first and third oracle of [ko, ko] are answered by
essentially the same oracle (and similarly for the second and fourth oracle).”

5Indeed this is not difficult to see. For example we can modify any (say strongly ufcmva) unforgeable scheme as
follows such that it is clearly not KI yet maintains its original unforgeability property. We double the key size, use
the first half of the key in conjunction with the original Tac algorithm to tag the message and then append the second
half of the key to the resulting tag. Clearly the scheme remains unforgeable however yet it is trivial to tell apart tags
issued under different keys.

"For stateful MACs it is important that the full state (and not just the secret key) be shared between matching
oracles in [ko, ko]. Suppose we have a secure MAC which hides all information about the secret keys. We can modify
the TaG algorithm to keep a counter which is appended to each tag 7. Clearly the scheme still hides all information
about the secret key. However it is unclear how such a scheme might be used to achieve anonymity. Indeed it is trivial
to tell say the 10*" tag issued for key ko from the 3™ tag issued for different key k.



Ezxperiment. Expfic™a(A \)

~ ko, k1 + k6(1%), ¢+ {0,1}

— Sample output ¢’ « Alkoke],

— If a tag obtained from the left oracle (namely TAGk,) was verified using the right verification
oracle (namely VRFYy, ) or vice versa, then output a uniform random bit.

— Otherwise if c = ¢ output 1 and 0 otherwise.

As usual, in the above experiment we have made a non-triviality constraint; namely that A is
not allowed to make a verification query (m,7) to the right oracle VRFYy, if 7 was obtained from
the left oracle TAGy, for message m (and vice versa).

As before in the following definition we say that an adversary A is a (t,q, ¢,)-adversary if it
runs in time at most ¢ and for each pair of oracles with a given key makes at most ¢; tag and g,
verification queries. So in total such an adversary can make up to 2¢; tag queries namely by making
gt queries to TAGy, and TAG,.

Definition 2 (Key Indistinguishability). A MAC scheme is (t,q, qu, €)-ki-cmva secure (infor-
mally: key hiding) if for any (t, g, qv)-adversary A we have:

| | 1
AdVERR(A, ) = 2[PrExpHEI(A, ) < 1] - o] < e

Moreover if MAC is (t, g, 0,€)-ki-cmva then we call it (t,q,€)-ki-cma secure. In particular in the
ki-cma experiment we simply omit all verification oracles.

Multi-key KI Implies Plain KI. A possible extension of the KI notions involves giving the adversary
access to n-tuples of pairs of oracles where either each of the pairs have their own states (and keys)
or else all pairs share the same state. Indeed such a notion arises quite naturally in the context of
a multi-user anonymous protocols as in the real world the adversary observes tags computed under
many different states (one for each of the n users). Yet in the ideal, perfectly anonymous world the
simulator uses the same state to answer all queries.

It turns out that (just as in the case for multi-message CPA encryption) the “one-key” KI
notions defined above already implies such a multi-key variant with only a minimal loss of security.
(Indeed this is implicitly proved in [AHM*14b].) As has been argued for CPA security, we view
this as a further justification for the format of the KI notion defined above.

Message Hiding. Finally we require the somewhat non-standard security notion for MACs called
message hiding (under chosen message attacks) [DKPW12] which we denote by ind-cma. In that
work is is shown how message hiding MACs with (weak) unforgeability properties can be strength-
ened via a generic transformation. In this work we show that the same transformation preserves
any KI properties the MAC may have. The formal definition of message hiding can be found in
Appendix A.

3 Constructing Key Indistinguishable M ACs

In this section we prove that various known constructions and transformations for MACs achieve
KI. These results may be viewed as analogous to [BBDP01] with the difference that we consider the
symmetric key MACs instead of public-key encryption. We now provide a more detailed overview of



our results and their relations in Figure 1. The letters “s” and “w” in the figure are used to denote
the strong and weak unforgeability variants respectively. The figure consists of three columns.
In the first column (AES, DDH, LWE, LPN) we put the underlying cryptographic assumptions
upon which security is based. In the second column (HPS, PRF, weak PRF) we put common
cryptographic primitives which the MAC constructions use in a black-box manner. In particular
they may be implemented using the assumptions which are presented in the first column or any
other computational problems. In the third column each box represents a generic MAC scheme
characterized by the type of security it provides. Arrows from assumptions and primitives to such
a box denote a particular construction. Additionally arrows between the generic MAC schemes
represent transformations used to strengthen the security properties of MACs.

In the remainder of this section we detail two constructions (one from a PRF and one from the
LPN assumption) and briefly describe three further constructions.

AES s ufcmva, kicmva

Section 4.1

DDH

s ufcmva, kicma

Domain
Extension
(Section 4.1)

@ Wy,

LWE [DKPW12] Vg(;?]}: —(Constr. 6 with Water’s idea)—>| w ufcma, indcma, kicma
A
Observed
@ in [DKPW12]
tr. 2 2astr
Constl. .6
LPN (Constr. 3) >I w sufcma, indcma, kicma |

Fig. 1. Obtaining MACs and AA protocols from different assumptions

3.1 From PRFs

PRFs trivially give rise to deterministic MACs (simply by recasting them as the TAG algorithm).
However deterministic MACs can not be key indistinguishable (even if they are only weakly uni-
versally unforgeable). Thus we now show an alternative construction called MACprf that is {uf, ki}-
cmva. It is very efficient in practical terms (requiring a single call to the underlying PRF) while
obtaining the strongest forms of unforgeability and key indistinguishability. Thus it represents
potentially the most practically relevant of the construction methods of KI MACs detailed in
this paper. In particular the PRF can be instantiated based on an block cipher using say CBC-
MAC [BCK96b], OMAC [IK03] or ECBC [BPRO05] modes of operation or using a compresion
function via the HMAC [Bel06, BCK96a] construction. Alternatively, from a theoretical standpoint
the PRF can also be based on a variety of well studied number theoretic assumptions such as the
DDH family of assumptions [NR97,DY05] or LWE (using PRF from [BPR12]).



Pseudorandom Function Family (PRF) A PRF is a family of functions with the property that
the input-output behavior of a random instance of the family is computationally indistinguishable
from that of a random function.

Definition 3 (Pseudorandom Functions). For arbitrary domain X and range ) let R denote
the set of functions from X to ). Moreover let PRF := {fr : X — V}rex be a set of efficiently
computable functions indexed by key space K. Then we call PRF a (t,q,¢€)-secure PRF if for any
(t,q)-adversary A (running in time at most t making at most q queries) we have:

AdvPT (A N) =

Pric i [Afk(‘) N 1} — Prrcx [AR(‘) N 1” <e

For security parameter A € N, let M = M(X) be a message space and X = X (\) be an
arbitrary space such that |X'| > 2*. The construction makes use of pseudorandom function PRF =
{fr : M x X = V}rek, that is, the domain of PRF is the set M x X.

Construction 1 (MAC from PRF: MACpRF)

System Parameters: The key space is K, message space is M and tag space is T =Y x X.

Key Generation: The key generation algorithm kG(1)) samples k < K and outputs k as the
secret key.

Tagging: The tagging algorithm TAGk(m) samples r <—pr X, runs z = fr(m,r) and returns tag
(r,2).

Verification: The verification algorithm VRFYy(m, (r, z)) outputs Accept if frp(m,r) = z. Other-
wise 1t outpuls Reject.

We now show that the MAC is {uf, ki}-cmva secure.

Theorem 1. For any t,q;,q, € N, € > 0, if PRF is a (t,q + qu,€)-secure, (t,2(q + qv), €)-secure
and (t,2qy, €)-secure then for t ~t' we have that:

— MACpRf has completeness error n = 0.
— MACpRE is strongly (t', qi, qu, € + %)—uf—cmva secure.

. 4q? .
— MACpRE s (', qt, qu, 46 + % %")—kl—cmva secure.

. 42 - .
— MACpRE s (', qi,4e + %)-kl-cma secure respectively.

Proof. The completeness follows by inspection of the scheme and the fact that all functions in PRF
are deterministic.

Strong uf-cmva Security. To prove this we build a reduction to the security of underlying PRF. Let
A be a (t, qt, q»)-adversary interacting with Exp‘,\',f,;%m"a. We give a reduction R(A) whoes advantage
in the prf experiment implies an upper bound on the advantage of A. The reduction R expects
oracle @ and emulates the experiment Exp‘,\',T'Ach"a(A, A) with the caveat that it uses O in place of
PRF to implement the tag and verification oracles. Finally R outputs 1 if A ever makes a forgery
query to the verification oracle; that is a query (m*, (r*, z*)) such that z* = O(m*,r*) and (r*, z*)
was not obtained in response to a tag oracle query for message m*. Otherwise R outputs 1. We
note that R makes at most ¢; + ¢, queries to O(-) in order to simulate Exp‘,f/flgccm"a to A. We bound

the probability Pr[R — 1] for the two possible types of oracle O.



Case O = f: When O is a PRF (with random key) R perfectly simulates ExpUf TVA(A, ). There-
fore: Pr[R/ — 1] = Adv¥fama(a \).

Case O = R: Suppose O is a random function R and A makes ¢ forgery attempts for message
m* of the form (m*,r*, z1),...(m*, 1%, z;). Then the probability that for some 4 it holds that
zi = R(m*,r*) is |—§J|. Moreover, if the forgery attempts involve more than one value of (m*,r*)
then the probability of succesful forgery is even smaller. Thus after ¢, verification attempts a
forgery has occured with probability at most ﬂ}' That is: Pr[R — 1] < 63‘

Summing up, we have ¢ > Adv';,réF(R, A) = ’Pr[Rf — 1] — Pr[R — 1]’ > Adviiamvaia ) — |q7“| or

Adv ufcmva(A )\) <€_|_‘ L.

ki-cmva and ki-cma Security. Recall that the ki-cmva game involves two pairs of TAG and VRFY
oracles associated with key ko and k; respectively. We define two experiments closely related to
Expk' O incrementally replacing the responses to tag and verification queries with responses that
would be outputted when PRFs are replaced with random functions (i.e. independent of key for
that oracle). As a result we obtain a ki-cmva-like experiment where both the pairs of TAG and VRFY
oracles are implemented with a pair of random functions instead of a pair of PRFs. Subsequently
we introduce another hybrid experiment where the responses to any non-trivial query to any of the
verification oracle is immediately replied with Reject. This results the final experiment to be same
as ki-cma experiment where both the TAG oracles are implemented with random functions. We prove
the differences of the advantages of the hybrids are negligible and also prove that (unconditionally)

the advantage in the ki-cma using truly random functions is ‘QXQ‘

More precisely, for parameters A € N and any (¢, q¢, ¢, )-adversary A we define the experiment
Exp, = Expﬂf&""a(A, A). Let experiment Exp; be identical to Exp, except for that any tag
and verification query for the oracles associated key kg are responded after replacing the PRF
with key kg with an random function Ry. Let Exp, be identical to Exp; except that also tag
and verification queries for k; are responded after replacing the PRF with key k; with an random
function R;. Finally let Expj is identical to Exp, except that all the non-trivial verification queries
are immediately responded with Reject without performing any verification.

For i € [0, 3] we write €; := Advﬁi‘é"(A, A) to denote the respective advantages of A at winning
these experiments. Bellow we prove that leo — €1] < 2e. An almost identical argument will apply

2
for €1 — e2|. We show that |ex — €3] < Iyl holds unconditionally. Flnally, the proof that ez < ﬁ%t'

holds implies the result, as |eg — €3] < 2¢ + |J;i implies g = 4e + | Xl + |2§;|’

Claim 1. |eg — €1] < 2e.

Proof. Given A we define reduction R interacting with the prf experiment with access to oracles O
as follows. Internally it runs Expki<™a(A \) by sampling a random PRF f and then simulating
TAGo, VRFYo using O(-) and TAGy,VRFY; using f. Finally if A wins then R outputs 0, otherwise
it outputs 1. We note that O(:) might be queried 2(¢; + ¢,) times in total when the bit ¢ in
ki-cmva experiment is chosen to be 0. This is the reason why we require the underlying PRF to be
(t,2(qt + qv), €)-secure.

Suppose now that O = fi for a random k € K. Then the view of A is exactly that generated
in Expy. Therefore it must be that Pr[R/* — 0] = < + . On the other hand, if O = R is a

random function then the view of A is identical to Exp;. This implies that Pr[Rf — 0] = & + %



Together, it implies [Pr[R/x — 0] — Pr[RE — 0]| = ‘60;261' Due to the security of PRF, it now follows

that @ <eor e — €] < 2e.
O

Claim 2. | — e3 < H.

Proof. The only way A will behave differently in Exp, and Exp; is if she is able to produce a
non-trivial query to any of the verification oracles that is accepted. L.e it makes a query (m, (r, z))
to a verification oracle using function f such that f(m,r) = z. Since both the pairs of oracles in
the experiments are implemented with a pair of random functions and A has not seen the output

of the random functions at point (m,r) the probability that she can produce the correct z is ﬁ
Thus via a hybrid argument over all verification queries we have that |e; — €3] < ‘231)”‘ O

2
Claim 3. €3 < %

Proof. Our goal is to bound the advantage e3 of any adversary A for experiment Exp;; that is
the experiment where two random functions Ry and R; are used in place of PRFs for replying TAG
queries and all the non-trivial verification queries are responded with immediate Reject. We define
an event for which we can show that on the one hand if the event does not occur then the adversary
has little chance of winning and moreover the event occurs with only a very small probability.

First we observe that in the experiment if the bit ¢ is chosen to be 0 then Ry is queried up to
2¢; times via tag oracles (and R; not at all) or, when ¢ = 1, then both Ry and R; are queried at
most ¢; via the respective tag oracles. Now consider calls to Ry and R; (in Exp;) made through
the tag oracles. Each such call has the form (m,r), where A chooses m but r is sampled uniformly
at random from X. Two such calls (m,r) and (m/,r’) are said to collide if (m,r) = (m/,r"). We
define the event C' to occur when A produces output in Exp; and at least one pair of colliding calls
was made. Then we see that conditioned on C not occurring the view of A in Exp; is independent
of bit ¢ which it must guess. Consequently we have Pr[Expy = 1|~C] = 1.

It remains to bound Pr[C]. During each of 2¢; queries r is chosen independently and uniformly
at random. So Pr[C] is same as the probability that an r € X" is picked at least twice in these 2¢;

2q¢ 2
queries, where there are |X'| possibilities for . We note that Pr[C] < (| )2(‘) < ‘2%. Now, we estimate

the probability of A in winning Exps.

€3 = 2 |Pr[Exps = 1] — % = 2|Pr[Exps = 1| C] - Pr[C] 4+ Pr[Exps = 1 | =C] - Pr[=C] —%‘ < Pr[C]

<Pr(C] =3(1-Pr[C))

O

The proof for ki-cma follows from the above proof for ki-cmva where there is no verification oracles
throughout and therefore experiments Exp, and Exp; become identical leading to the removal of
the term % from the security parameter of ki-cma. O

3.2 From LPN

We now analyze the KI properties of the MAC_pn construction based directly on the LPN assumption
taken from [DKPW12] where it was shown to be ind-cma and wealky uf-cma secure. We show that
aditionally it is also ki-cma. The resulting scheme is the most efficient of the constructions based
on number-theoretic assumptions analyzed in this work.



LPN and SLPN* Assumptions Following [Piel2], we briefly recall the LPN assumption defining
it as a special case of the SLPN* assumption. Let U, be the uniform distribution over Z%, B, be
the Bernoulli distribution with parameter 7 and B? be the n-dimensional Bernoulli distribution.®
For a vector x € Z% we denote by x the transpose of x. Moreover for a vector a € Z? we denote
by hw(a) the hamming weight of a. We write a A b for the component wise AND and a, for the
vector obtained from a by removing all components a; of a where b; = 0.

For ¢ € N, 7 € (0, %) and s € Z5 define SLPN* oracle I’ ¢ 4(s, -) to take input vectors v € Z5
and return L if hw(v) < d. Otherwise the oracle samples fresh vector r according to U, and bit e
according to B, and outputs (r',r7(s A v) + €)°. On the other hand the oracle Uy 4(+), on input
v € Z5 outputs L if hw(v) < d. Otherwise it outputs a fresh sample from Uy, ;.

For t,q € N we call a PPT oracle machine A a (t, q)-adversary if it runs in time at most ¢ making
at most ¢ queries and produces binary output.

The SLPN* , 4 assumption is said to be (t,q, €)-hard if for secret s sampled according to Uy
the distinguishing advantage between oracles I ¢ q and Upyq g of any (¢, ¢)-adversaries is at most e.
Similarly, the LPN; , assumption is (¢, ¢, €)-hard if no (¢, ¢)-adversary can distinguish oracles I'- ¢
and Up41,¢ with greater then probability e.

Roughly speaking, it was shown by Pietrzak in [Piel2] that the LPN implies the SLPN*,10

Lemma 1 ( [Piel2]). If the LPN,4 is (t,q,€)-hard then for any 6 € N the SLPN*_, 445 is

(t', q,€")-hard where:
q
t' =t — poly(q,?) e':e—i—?.
We now turn to the second construction from [DKPW12] which was (implicitly) shown to be
ind-cma and weakly uf-cma secure in [KPC*11]. Bellow we prove it to be ki-cma secure.

Construction 2 (MAC from LPN: MAC pN)
System Parameters: Parameter 7 € (0, %) and ¢ € N which control the security quality, and
parameters 7' = 1/4 + 7/2 and n € N which controls the correctness error. Finally parameter

(+1)xa
2

a € N controls the message length. The resulting key space is K = Z , the message space

is M =17Z% and the tag space is T = Zgﬂ)n.

Key Generation: Algorithm KG(-) samples X ngo‘ and X < Zg both uniformly and outputs
secret key (X, X).

Tagging: For message m and secret key s = (X,X) the algorithm TAGs(m) first samples R
Z5™ uniformly and e according to BY. Then it outputs tag o = (R,RT - (X -m +X) +e).

Verification: To verify tag o = (R, z) € Z§™ x 73 with secret key s = (X,X) the algorithm
VRFYg(m, o) outputs Accept if and only if hw(RT - (X -m +X) —z) < 7/n.

Theorem 2. If LPN,; is (t,q,€)-hard then MACLpN is (t, 4, 2¢)-ki-cma secure.

Proof. At its core the proof relies on a pair of reductions to the LPN,, problem. In a few words
the LPN assumption tells us that for a given tagging key (component) X we can replace all terms
of the form R” - X + e in all tag queries with fresh uniform random elements from Z%. By doing

8That is the distribution over Z5 where each bit is chosen independently according to B,.

9The second component is same as rIvs vt e

10 Actually a stronger result was shown, namely that the subspace-LPN assumption (which implies the SLPN*) is
implied by the LPN.
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this for both keys in the ki-cma game we obtain an experiment in which the bit ¢ being guessed by
adversary remains information theoretically hidden from her view.

More precisely, just as in the proof of Theorem 4, we define three experiments and show that
on the one hand for any fixed adversary their outcomes are computationally indistinguishable and
on the other hand all adversaries have no advantage at winning the third game. In fact we define
experiments Exp,, Exp; and Exp, exactly as in that proof except that the construction MAC_py is
used. For example to answer tag queries for key ko in Exp; simply returns a fresh uniform sample
from Zgﬂ)n while tag queries for key ki are answered using the TAG algorithm of MAC_py.

Using the same notations of the previous proof, we observe that e = 0 which holds uncondi-
tionally since in Exp, the view of any adversary is information theoretically independent of the bit
¢ which it is trying to guess. Thus it remains only to show that |eg — €| and |e; — €2| (defined just
as before) can be at most € if the LPN,; is (¢, ¢, €)-hard.

Claim |ey — €1| < e: We reduce the the LPN; , assumption with the following reduction R which
has access to an oracle O that is either and LPN oracle or a uniform oracle. The reduction
emulates an experiment internally to A and outputs 1 if and only if A wins. The experiment is
identical to Exp, except for the following:

1. Instead of generating kg according to kG(1) it only samples and stores X < nga.

2. When a tag query m € Z§ for key ko is made R first obtains n fresh samples {(r;,b;) €
Zg*l}ie[n} from O. Let R € Z5*™ be the matrix whose i column is r; and b € Z} be the
vector whose i bit is b;. Then R returns the tag (R, R” - X - m + b).

We claim that if O is an LPN;, oracle with secret x then R has perfectly emulated experiment
Exp, with key ko = (X, x). This follows from the calculation:

R X m+b=R" X m+R” x+e=R7 - (X-m+x)+e

which implies that Pr[R — 1] = ¢ for such an oracle.
On the other hand if O is a uniform oracle then in particular b is uniformly and independently
distributed for each tag query. Thus all values R”-X-m+b are also uniformly and independently
distributed exactly as in experiment Exp,. It follows that Pr[R — 1] = €; when O is uniform.
Taken together we can conclude that |ey — €1] < e. Moreover the reduction makes at most 2¢
queries to 0.1

Claim |e; — e2] < e: Once again an almost identical argument applied to k; to the previous case
also proves this claim.

3.3 Further Constructions

We briefly detail three further constructions which we prove KI in the appendix.

From the SLPN* Assumption (Appendiz C.1). We also analyze the construction MACg pn* based
on the SLPN* assumption of [DKPW12] which was (implicitly) shown to be ind-cma and weakly
suf-cma secure in [KPC™11]. In particular in Appendix C.1 we prove that it is also ki-cma secure
based on the related Subset LPN (SLPN*) assumption which can be efficiently reduced to the more

"This occurs in the case when A makes ¢ queries to both left and right oracle and ¢ = 0 in the emulated Exp,
experiment
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standard LPN assumption as shown by Pietrzak in [Piel2]. The two LPN based schemes MAC  py and
MACgLpn* are somewhat incomparable. On the one hand MAC pn provides a stronger unforgeability
property and comes with a tighter reduction to the LPN assumption. On the other hand MACg pn*
enjoys a smaller key size (though less efficient tagging operation) and can be instantiated with a
comparatively smaller value of the security parameter to achieve the same level of security.

From Hash Proof Systems (Appendixz C.2). In Appendix C.2 we show that the MAC construction
MACHps given in [DKPW12] based on any labeled hash proof systems HPS is also ki-cma secure. The
scheme has been shown to be weakly uf-cmva secure. Using a slightly stronger notion of a HPS,
the proof for weak uf-cmva goes through unchanged resulting in the same parameters for strong
uf-cmva security. This scheme provides the most efficient KI MAC in this work based on DDH
assumption.

From Key-Homomorphic Weak PRFs (Appendiz C.3). Next, in Appendix C.3 we show that the
MAC construction MACkhwpre Of [DKPW12] based on any key-homomorphic weak PRF is ki-cma
secure. The scheme has been proven to be weakly suf-cma secure. In [DKPW12] an extension of
the wPRF construction is provided which makes use of Waters’ argument [Wat05] to achieve weak
uf-cma (and ind-cma) security at the cost of a somewhat less efficient scheme. We also observe
that the modified scheme is ki-cma secure following essentially same argument that we use for the
former wPRF based construction. As observed in [DKPW12] both DDH assumption and the LWE
assumptions can (for example) be used to directly instantiate efficient key-homomorphic wPRF
families.

4 Transformations for Strengthening MACs

We describe several transformations for strengthening the security properties of a MAC. All but
one of the transformations were originally described in [DKPW12]. In this work we show that not
only do they achieve their intended goal of producing MACs with better unforgeability properties
but they also preserve the underlying KI property. Moreover we show that the most important
such transformation even achieves a stronger unforgeability notion (namely strong uf-cmva) then
originally claimed.

4.1 Adding Support for Verification Queries

We show how to add security in the face of verification queries while preserving KI by giving a full
path from any weakly {uf,ind, ki}-cma secure MAC to a strongly {uf, ki}-cmva secure one.

Verification Queries for Unforgeability. In [DKPW12| the authors present a very efficient
transformation (detailed in Construction 7) which they show maps any weakly {uf,ind}-cma secure
scheme MAC to a weakly uf-cmva secure scheme MAC. We show that the transformation achieves more
namely the resulting MAC is even strongly uf-cmva secure. Indeed the original proof goes through
unchanged also for the the stronger statement. We further show that the same transformation also
preserves the ki-cma security of the underlying MAC.

Very briefly, the proof relies on a pair of reductions to ki-cma and ind-cma security of MAC.
The keys for MAC consist of a key k for MAC and h for a pairwise independent hash function. Recall

that the experiment Exp = Expk/il':é"a involves distinguishing a setting where both oracles are
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keyed with (ko, ho) from one where the oracles are keyed with (ko, ho) and (k1, h1). In the proof we
define an experiment Exp, where the oracles in the second setting are instead keyed with (k, ho)
and (k,h1) and an experiment Exp; where those oracles are keyed with (ko, k) and (k1,h). Then
a standard hybrid argument indicates that an adversary A which can win in Exp is at least half
as good at winning either Exp; or Exp,. In the first case we show how to use A to break the
ind-cma property of MAC while in the second case we instead break its ki-cma security. A detailed
description can be found in Appendix D.1.

Verification Queries for KI. The above result shows that for certain MACs we can strengthen
the type of unforgeability supported while preserving the KI property. Next we show that any
(strong) uf-cmva and ki-cma secure MAC is also ki-cmva secure. Together these results provide a
full path from any weakly {uf,ind, ki}-cma secure MAC to a strongly {uf, ki}-cmva secure one.

Theorem 3 (uf-cmva + ki-cma = ki-cmva). For any t,q;,q, € N and €1,€e2,m > 0, if MAC is:
o (t,qt,qu,€1)-uf-cmva (strongly existentially unforgeable with verification queries)

o (t,q,€2)-ki-ema (key indistinguishable)

e and has completeness error n

then MAC is (', q¢, G, 4€1 + €2 + 4 min(qy, g, )n)-ki-cmva secure where t' ~ t.

Proof. The proof formalizes the insight that an adversary playing the ki-cmva game for MAC can
essentially simulate all verification queries by rejecting all but the trivial queries since otherwise it
has created a forgery. Thus any ki-cmva adversary can be used either as a (strong) forger or as a
ki-cma adversary.

More formally let A be an ki-cmva adversary and let B behave just as A except that each of its
trivial verification queries'? are automatically get response Accept rather then forwarding to the
appropriate oracles. Then the views of A and B only differ if A makes a trivial query of the form
(m,T) which is rejected. For each new trivial query this happens with probability at most n (i.e.
the completeness error of MAC). Thus using a hybrid argument over all such distinct queries made
by A (of which there can be at most 2min(q,q,)) a similar calculation to the one below implies
that for security parameter A € N we have that:

Advmj&"va(A, A) < Advﬂ'Acg“’a(B, A) + 4min(gqy, ).

Let experiment Exp, = Exp',i,il'ACg"a(B, A) and let Exp, be identical to Exp, except that all the

non-trivial verification queries are answered with Reject. We define 4; := Adv,]a);%(B, A) to be the
advantages of B in the two experiments. Observe that the view of B in Exp; is essentially that of
Exp, = Expl€Ma(B, \) since it can trivially simulate all verification queries (the trivial queries by
Accept and Reject otherwise). Moreover winning Exp; is no different then winning Exp,. Thus
by assumption §; < €2. So it remains only to show that |6y — 91| < 4e;.

Let E be the event that B makes a (non-trivial) verification query to one of the VRFY oracles in
Exp,. Then Pr[E] < 2¢; since otherwise B can be used to break the uf-cmva security of MAc. The
reduction needs to use its TAG; and VRFY} oracles from the uf-cmva game in place of either the key
ko or ki oracles (with equal probability) in Expy(B,A). If E does occur then with probability 3 it

will happen for the verification oracle VRFY, implying the reduction has produced a forgery.

12Recall that a query (m, T) to verification oracle with key k is called non-trivial if and only if 7 was not obtained
as a response to tag query m for key k.
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Now conditioned on E not occurring the view of B in both experiments is identical. More
precisely Pr[Exp, = 1|-E] = Pr[Exp; = 1]. Thus we can write:

1
|00 — 61| = ‘2 Pr[Exp, = 1] — 3

-2 ‘Pr[Expl =1]— ;H = |2 (Pr[Exp, = 1] — Pr[Exp; = 1])|

= |2 (Pr[Exp, = 1|E] Pr[E] + Pr[Exp, = 1|-E](1 — Pr[E]) — Pr[Exp; = 1])|
= 2Pr[E] |Pr[Exp, = 1|E] — Pr[Exp, = 1|-E]|
= 2P1[E] < 46,

KI Preserving Domain Extension Recall that (for both weak and strong variants) an suf-cma
secure MAC is also uf-cma secure albiet at a cost of degrading security by a multiplicative factor
of 2# = |M|; the size of the message space. In order to keep this 2 factor small, we start with
(t, q¢, €)-suf-cma MAC with very small message space and then after recasting it as uf-cma secure
scheme we can apply the domain extension transformation of [ DKPW12] to grow the message space.
In Appendix D.2 we show that the transformation also preserves the KI of the original scheme as
long as the original MAC is also ind-cma secure (though not necessarily unforgeable in any sense).
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A More Security Notions for MAC

MESSAGE HIDING. A message hiding MAC (defined in [DKPW12]) has the property that the tags
leak no information about the message, making the tags for a message indistinguishable from the
tags for a fixed message, say 0. Such a notion can only be achieved by randomized MACs as reasoned

below [DKPW12].

Definition 4 (Message Hiding). A message authentication scheme MAC is called (t, g, €)-ind-cma
secure (informally: message hiding) if no (t, q;)-adversary A (i.e. running in time at most t making
at most q; queries) can distinguish tags for chosen messages from tags for a fized message, say 0
1.e.

Advﬂi‘éma(A, A) = PrkeKG(l*)[ATAGk(.)(l)\) — 1] - Prk(—KG(lA)[ATAGk(O)(l)\) —1]| <e
The probability is taken over the coins of algorithms KG and TAG as well as the adversary A.

Here TAG(0) is an oracle that ignores its input and outputs a tag for some fixed message 0 using key
k. A deterministic MAC can not be ind-cma secure since the adversary A can trivially distinguish
the oracles TAGk(-) and TAGE(0) by making queries on two different message m # m’ and checking
if the returned tags are identical, which will be the case if the oracle implements TAG(0).
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B Universal and Pairwise Independent Hash Functions

The transformations for MACs employ universal and pairwise independent hash functions. We
define them below.

Definition 5 (Almost Universal Hash Function). A keyed hash function h : {0,1}*x{0,1}"™ —
{0,1}™ is d-almost universal if any two distinct inputs collide with probability at most § over the
choices of the random key, i.e., for all x # x’ € {0,1}™

Pry pioaye [l (x) = hi(2')) < 6.

Definition 6 (Pairwise Independent Hash Function). A keyed hash function h : {0,1}* x
{0,1}™ — {0,1}" is pairwise independent if it behaves like a uniformly random function on any
two inputs, i.e., for all x # 2’ € {0,1}™ and y,y" € {0,1}"

Pry. poayelhe(z) =y Abg(a') = y] = 272"
A pairwise independent hash function as above is 27"-universal.
n+1

Proposition 1. There exists a 27" -universal hash function as above with key length £ = 4(n +
logm). There exists a pairwise independent hash function with key length ¢ = 2max {m,n}.

C Constructing key indistinguishable M ACs

We discuss further KI MAC constructions in detail.

C.1 Weakly suf-cma/uf-cma and ki-cma MACs from SLPN*

In this section we show that the MAC constructions based on the Subspace Learning Parity with
Noise (SLPN*) assumption of [DKPW12] are also ki-cma.

We briefly recall the first construction of [DKPW12] which was (implicitly) shown to be ind-cma
and weakly suf-cma secure in [KPCT11].

Construction 3 (MAC from SLPN*: MACg pn*)

System Parameters: Parameter T € (0, %) and £ € N control the security quality, and parame-
ters 7' = 1/4+7/2 and n € N controls the correctness error. The resulting key space is K = Z2',
the message space is M = {m € Z2 : hw(m) = ¢} and the tag space is T = Zggﬂ)n.

Key Generation: Algorithm KG(-) samples secret key s € Zg( according to Ugy.

Tagging: For message m the algorithm TAGs(m) first samples R <+ ng uniformly and e ac-
cording to BY. Then it outputs tag o = (R,RT - s, + €).

Verification: To verify tag o = (R, 2) € Z5" x 73 the algorithm VRFYs(m, o) outputs Accept

if and only if hw(RT - sy, — 2) < 7/n.

Theorem 4. If SLPN*, 5, is (t,q,€)-hard then MACsLpn~ is (t, 4, 2¢)-ki-cma secure.
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Proof. On the highest level the proof has the following structure. We define a pair of experiments
which are slight alterations of the ki-cma experiment for the above construction. Then we give a pair
of reductions showing how an adversary behaving significantly different in any of these experiments
can be used to break the SLPN* assumption.

Fix any (t,¢)-adversary A and security parameter A € N. For the sake of legibility we define

the experiment Exp := Exp'&_Acaa(A, A). Moreover we define experiment Exp; to be identical to

Exp, except any query to the TAG, oracle is answered with a fresh uniform sample from Zgﬂ)xn.l?’

Finally experiment Exp, is defined just as Exp; except that any query to TAGg, is also answered

with a fresh uniform sample from Zgﬂ)xn.

For i € [0,2] we write ¢; := Advf/l);%(A, A) to denote the respective advantages of A at winning
these experiments. We observe that the value of bit ¢ is information theoretically hidden from A in
Exp, and so unconditionally e2 = 0. It remains only to show that |ep — €1] and |e; — €3] can be at
most e if the SLPN*, ;4 is (¢, ¢, €)-hard.

Claim |ep — €1] < e: We construct a reduction R which acts as a (¢, ¢)-adversary breaking the
SLPN*., ; with probability € as follows. Recall that R is given access to an oracle O for which
it must decide if it is a uniform oracle or an SLPN* oracle. To do this the reduction emulates
an execution of Exp, to A except that whenever A makes a query m € Z%e to TAGk, then R
responds with a fresh sample obtained from O(m). Finally if A guesses the value of bit ¢ in the
emulated Exp correctly then R outputs 1. Otherwise it outputs 0.

We observe that if O = I,y 4(x, -) for some secret x € 7% then R emulates Exp, perfectly (with
ko := x) implying that Pr[R — 1] = ¢y. On the other hand, if O = Upy; 4(-) then R emulates
Exp, perfectly which implies Pr[R — 1] = €;.

Thus the distinguishing advantage of R is |eg — €1| which is at most e. Moreover, as R runs A a
single time and has essentially no overhead. R runs in time at most ¢ making at most 2q queries
to O (in the case when A makes g queries to both left and right oracle and ¢ = 0 and both of
those oracles are keyed with k).

Claim |e; — e2| < e: An essentially identical argument as in the previous case (but for key k; and
experiments Exp; and Exp,) implies the result.

C.2 uf-cmva and ki-cma MACs from Hash Proof Systems

As stated we show that the construction given in [DKPW12| based on labeled hash proof systems
(HPS) is key indistinguishable. In what follows, we recall the necessary details for labeled HPS and
the construction for MAC from [DKPW12].

Labeled HPS We present the framework of HPS, introduced by Cramer and Shoup [CS02]. For
simplicity we frame the description by viewing HPS as key-encapsulation mechanisms (KEM). A
KEM is a public-key encryption scheme that is used for encrypting random messages that are used as
encryption keys for a symmetric-key encryption scheme, which in turn encrypts the actual plaintext.
A HPS can be viewed as a labeled KEM in which ciphertexts can be generated in two modes. The
ciphertexts that are generated using the first mode are referred to as walid ciphertexts. For such
ciphertexts the encapsulated key is well defined, and can be decapsulated using the secret key and
also using the public key along with the “witness” of the ciphertext validity. The ciphertexts that

13 As apposed to using the tagging algorithm of mac; as in Exp,.
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are generated using the second mode are referred to as invalid ciphertexts and essentially contain
no information on the encapsulated key. That is, given a public key and an invalid ciphertext, the
distribution of the encapsulated key (as it will be produced by the decapsulation process using the
secret key) is almost uniform. This is achieved by introducing redundancy into the secret key: each
public key has many corresponding secret keys. It might not be even possible to decapsulate the key
using the public key. The only computational requirement is that the two modes are computational
indistinguishable: any efficient adversary cannot distinguish with a noticeable advantage between
valid ciphertexts and invalid ciphertexts.

Let C be the set of all ciphertexts, ¥V C C be the set of all valid ciphertexts, K be the set of
all symmetric keys, £ be the set of labels, PX be the set of all public keys and SK be the set of
all secret keys. We assume that there are efficient algorithms for sampling sk € SKC, £ € L c €V
together with a witness w, and ¢ € C\ V. Let A% : C x £ — K be a labeled hash function
indexed with sk € SK and ¢ € £ that maps ciphertexts in C to symmetric keys in . A hash
function Af;k is projective if there exists a projection u : SK — PK such that u(sk) € PK defines
the action of Aﬁk over the subset V. That is, for every ¢ € V, the value k = Aﬁk(c) is uniquely
determined by pk = p(sk) and c. In other words, even though there are many different secret keys
sk corresponding to the same public key pk, the action of Agk over the subset of valid ciphertexts
in completely determined by the public key pk. In contrast, the action of Aﬁk over the subset of
invalid ciphertexts should be completely undetermined and it might not be possible to compute
Aﬁk from pk and ¢ € C\ V. A projective hash function is 2-universal if for all ¢,c* € C\V, £,0* € L
with (¢, £) # (c*, 0%)

SD ((pk, A(c"), A%(©)), (ph, b, ALy () = 0

where sk <—g SK and k < K and pk = p(sk).'* A projective hash function is extracting if any
ciphertext can be mapped to a symmetric key under any secret key, i.e., for all ¢ € C, £ € L,
sk € SK and some k € K

Al (c) = k.

A labeled hash proof system HPS = (Params, Pub, Priv) consists of three algorithms. The randomized

algorithm Params(1*) generates parameterized instances of the form (group, K,C,V, L, PK,SK, AE:%, u) ,

where group may contain some additional structural parameters and A(:), u are efficiently com-
putable functions. The deterministic public evaluation algorithm Pub is used to decapsulate valid
ciphertexts ¢ € V given a witness w of the fact that ¢ is indeed valid (one can think of w as the
random coins used to sample ¢ from V). That is, Pub receives a public key pk = pu(sk), ciphertext
c € V, the witness w and a label £ € £ as input and returns the value A, (c). The deterministic
private evaluation algorithm Priv is used to decapsulate valid ciphertexts without knowing a witness
w, but by using the secret key sk. That is, Priv receives a secret key sk, ciphertext ¢ € C and a
label ¢ € £ as input and returns the value A% (). The labeled hash proof system is said to be
2-universal and extracting if the underlying function A is so over the outcomes of Params. We require
that the subset membership problem is hard in HPS, which means that for random valid ciphertext
¢p € V and random invalid ciphertext ¢; € C\ V, the two ciphertexts ¢y and ¢; are computationally
indistinguishable. For formally, the subset membership problem is said to be (e, ¢)-hard in HPS if

!YWe note that this definition is slightly stronger then that of [DKPW12] since we require the equality to hold
also for the case when £ = £* but ¢ # ¢*. Fortunately the DDH based labeled HPS in that paper also satisfies this
stronger definition.
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for all adversaries A that runs in time t,
AdviBs(A, ) = [Prey pv[A(C, V, co) = 1] — Pre, L ew[A(C, V1) — 1] <e.

Construction 4 (MAC from HPS: MACHps)

System Parameters: The key space is K = SK, message space is M = L and tag space is
T=VxK.

Key Generation: The key generation algorithm kc(1*) samples sk < SK and outputs secret
key sk.

Tagging: On input message m € L the tagging algorithm TAGs samples a uniform ¢ <V and
outputs tag (c, A7 (c)).

Verification: On input message m € L and tag (c,d) the verification algorithm VRFY g outputs
Accept if and only if AT} (c) = d.

Note that the construction does not use algorithm pub of HPS. The scheme has been shown to
be weakly (t, q¢, qv, qr€ + 2qtq%ﬂﬁqv))-uf—cmva secure given that HPS is extracting, 2-universal and
that the subset membership is (¢, €)-hard [DKPW12]. In fact, using the slightly strong notion of
2-universality in this paper, the proof goes through unchanged resulting in the same parameters
for strong uf-cmva security.

Next we show that the scheme is also ki-cma secure.

Theorem 5. If HPS is extracting and 2-universal and the subset membership problem for HPS 1is
(t,€)-hard, then MACHps has completeness error n =0 and is (t', qt, 2qi€)-ki-cma secure where t ~ t'.

Proof. The completeness follows directly by inspection since A is a deterministic function. Now to
prove the theorem, we recall that the experiment for the ki-cma involves a pair of TAG oracles and
two secret keys sko and sk; (where sk; may or may not be used depending on if the bit ¢ chosen
in the ki-cma experiment). We define a number of hybrid experiments starting with Expk,il'/fg’a,
incrementally replacing responses to tag queries with uniform samples for the tag space. The result
is an experiment Exp, where the view of the adversary is completely independent of the underlying
keys. Thus in Exp, the advantage of the adversary is 0 and so by showing that the difference in
an adversary’s advantage between the experiments is small we conclude the proof.

In more detail, for any (¢, ¢ )-adversary A and A € N, we define the experiments as follows:
Exp, = Exp',t,il',f?a(A, A). Next the experiment Exp, is same as Exp, except that all the queries to
the first TAG oracle are answered with fresh random tags from the space C\V x K and finally Exp, is
same as Exp,; except that all the queries to the second TAG oracle are answered with fresh random
tags from the space C\ V x K. For i € [0, 2] we define ¢; := Advf/l);%(A, A) to denote the respective
advantages of A in winning the experiments. Clearly €3 = 0 since all the responses from both the
tag oracles (and so the entire view of A) is independent of the secret keys under-use. Bellow we
prove that |eg — €1| < g€ and |e; — €2| < gie. Combining these results, we get that |eg — e2| < 2¢q€
and thus €y < 2¢;e as desired.

Claim 4. |y — 1] < gee.

Proof. We define a series of ¢; + 1 hybrid experiments starting from Exp, and ending with Exp;.
More precisely for i € {0,...,q} in experiment Exp,; the first i queries to (either) tag oracles with
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key skq receive a fresh random tag in response sampled uniformly from the set (¢, k) <z C\V x K.
o} ;
In particular Exp, = Exp,, and Exp, = Exp, . We write §; := AdVMféO’l(A, A) to denote the

respective advantages of A at winning these experiments.

Fix any i € {0, ..., q}. We show that if HPS is 2-universal and the subset membership problem
is (t, €)-hard then |0;—1 — 0;| < €. In particular this implies |eg — 1| = |dg — ¢, | < gre.

Let Expf)’i be identical to Expy ; except that response to the i +1* query m to a tag oracle is
computed by first selecting random ¢ <= C\V (but £ is still computed as k = A7}, (c)). Let v; denote
the advantage of A in Exp{m Then |§; — ;| < € via a simple reduction to the subset membership
problem. The reduction simply runs Exp,; and plants the subset membership challenge ¢ € C as
the ciphertext for the ¢+ 1° query to a tag oracle with key skq. If and only if the adversary wins the
experiment, the reduction outputs 1. Thus the value |§; — 7;| is nothing other then the reduction’s
distinguishing advantage € in the subset membership game. Finally |y; — ;41| = 0 follows from the
2-universality of HPS. In particular the view of A is identically distributed in the two experiments.
Summing over all i € {0,..., ¢}, we prove the claim. O

The fact that |e; — e2]| < gee follows from a similar argument and so we obtain the theorem. 0O

HPS based MAC from DDH Assumption [DKPW12]. Let G be a group of prime order p and let g
be a random generator of G. Let H : G* x M — Z, be a collision resistant hash function.

. DDH
Construction 5 (MACypg

System Parameters: The key space is K = Z;’,, message space is M and tag space is T = G3.

Key Generation: The key generation algorithm KG(11) outputs a secret key k = (w,z, ') g
7.

Tagging: On input message m € M the tagging algorithm TAGE samples a uniform ¢ < G and
outputs tag (c, c®, c”“"”:”/) € G, where £ = H(c,c",m).

Verification: On input message m € M and tag t = (c,d, e) the verification algorithm VRFY}
outputs Accept if and only if ¢* = d and e = ¢****" such that { = H(c,d,m).

C.3 Weakly suf-cma/uf-cma and ki-cma MACs from Weak PRFs

In this section we show that the construction for MACs from key-homomorphic weak pseudorandom
functions (kh-wPRF) described in [DKPW12] is also ki-cma. We prove this using a similar trick as
was used in that paper to show that the construction is ind-cma and weakly suf-cma secure. We
recall the definition of key homomorphic weak PRF and subsequently the construction.

Key-homomorphic weak PRF First, weak PRFs (wPRF) are the PRFs that are indistin-
guishable from random functions only for uniform random inputs. More precisely for a function
f & = Ylet oracle Oy be such that upon each invocation it samples independent uniform x <—p X
and return samples (x, f(x)). Then we define a wPRF as follows.

Definition 7 (Weak PRFs). Let m,n and R be as above. Moreover let wPRF := {fi, : X — V}rex
be a set of efficiently computable functions indexed by keys pace K. Then we call wPRF a (t, q, €)-
secure wPRF if for any (t, q)-adversary A (running in time at most t making at most q oracle calls)
we have:

AdVIBE(AN) 1= [Prycic [A%% — 1) = Prpeg [A%% — 1]| < ¢
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Definition 8 (Key-Homomorphic wPRF). A PRF kwpPRF = {fr : X — V}rex is called key-
homomorphic wPRF if it is wPRF and K and Y are (additive) groups of prime order p equipped
with an efficient (additive) group operation such that for any fized x € X function fy(x) is a group
isomorphism from K — Y. In particular for all keys ki, ko € KC, integers a,b € Z, and x € Z5" we
have:

a- fk1 ('T) +b- fk2(x) = fa-k1+b-k2 (x)

For security parameter A € N let X = X(\), Y = Y(\) and K = K(\) be sets such that
khwPRF = {fr : X — YV}rex is a kh-wPRF where K and ) are additive groups of prime order
p = p(A). The construction of [DKPW12] goes as follows.

Construction 6 (MAC from khwPRF: MACkhwPRF)

System Parameters: The key space is K = K x K, message space is M = Zy, and tag space is
T=Xx).

Key Generation: The key generation algorithm kG(1) samples k1, ks < K and outputs secret
key (kﬁl, k‘Q)

Tagging: On input message m € Zj the tagging algorithm TAG, r,) samples a uniform x < X
and outputs tag (x, fiy m+k, (T)).

Verification: On input message m € Z, and tag (v,y) the verification algorithm VRFY i, 1)
outputs Accept if and only if fry.m+k, () =Y.

We prove that this construction is indeed KI.

Theorem 6. IfkhwPRF is (t, q, €)-secure kh-wPRF then MACkhwpRE 1S a (¢, q, 2¢)-ki-cma secure MAC.
MACkhwPRF has completeness error of 0.

Proof. The completeness follows by inspection of the scheme. Now recall that the KI game involves
two instances of MAC. We define two experiments closely related to Exp',f,iﬁfg‘a incrementally replacing
the responses to tag queries with uniform random elements in the tag space (i.e. independent of
key for that oracle). Thus we obtain a KI-like experiment where the bit to be guessed is perfectly
hidden from the adversary. To argue that we can make these switches we use the trick employed
in [DKPW12] to prove the message-hiding and unforgeability properties which crucially relies on
the key-homomorphicity of khwPRF.

More precisely, for parameters A, t,q € N and any (¢, q)-adversary A we define the experiment
Exp, = Exp',f,il'Acg‘a (A, )\). Moreover let experiment Exp; be identical to Exp, except for that any
tag query for key ko receives a fresh uniform sample from 7. Finally let Exp, be identical to Exp,
except that also tag queries for k1 result in uniform samples from 7.

For i € [0,2] we write €; := Advf/l);%i(A, A) to denote the respective advantages of A at winning
these experiments. Then clearly €5 = 0 since all responses from the tag oracles (and so the entire
view of A) are independent of bit ¢. Bellow we prove that |eg — €1] < e. An almost identical argument

for |e; — €2] implies the result.
Claim 5. |eg —e1] <€

Proof. We build a reduction R to the wprf game which runs in time ¢t making at most ¢ queries
and wins with probability at least €. Given access to an oracle O it first obtains ¢ samples of the
form (x;,y;) from O. Then it simulates Exp, except for the following changes outputting 1 if and
only if A wins.
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1. Instead of using KG(1}) to generate key ko € K it only samples a uniform ks < K.
2. For each new query m € Z, made to TAGk, the reduction uses a fresh sample (z;,y;) and
responds with tag o; = (zi,m - yi + fi, (2:)).

We claim that if O = R is a random function then the view of A is identical to Exp,. Indeed
in this case (z;,y;) if uniformly distributed over 7 = X x Y by the definition of R. Thus so is o;
(regardless of the value of m and fg,(z;)). But this implies that if O = R then Pr[R — 1] = ;.

Suppose now that O = fi for a random k € K. Then we claim that the view of A is exactly
that generated in Expy when ko := (k, k2). This follows from the following calculation:

0 = (@i, m - yi + fry (i) = (@i m - fro(2i) + [y (@3)) = (@i, Frnketko (T2)) = TAGK, ().

Therefore if O = fj it must be that Pr[R — 1] = ¢;.
So by assumption on the security of khwPRF we obtain the claim, and thus the result. a
O

As observed in [DKPW12] both DDH assumption and the LWE assumptions can (for example)
be used to directly instantiate efficient key-homomorphic wPRF families.

Let G be a group of prime order p. The functions family {fi(z) = mk}kezp is wPRF assuming
DDH holds for G. Furthermore, it is key homomorphic with fup, +px,(%) = (fr, (2))%(fry(2))P.
Therefore this construction for weak PRFs gives us a MAC that is suf-cma, ki-cma and ind-cma
with key space ZZQ,, message space M = Z,, tag space T = G? and tagging function TAGE, ky =
(9,h) = (g, g™ *k2).

To use LWE we first make the following definition. For integers p < ¢ and x € Z,. Let [:Ujp =
[(p/q) - x| mod q and for x € Zg we let [x], be defined as the natural component-wise extension.
Then for K = Z7"*", X = Zy and Y = Zg" the set {fx(x) = [K-x],} is a wPRF [BPR12] based
on the hardness of LWE (for appropriate choice of ¢, p and the error parameter of the underlying
LWE problem). Moreover for almost all inputs z € X the functions are key-homomorphic which
suffices for the construction as it only evaluates the wPRF on uniform random points. In particular
with overwhelming probability the reduction needs only to simulate the wPRF at points for which
the key-homomorphicity holds.

In [DKPW12] an extension of the wPRF construction is provided which makes use of Waters’
argument [Wat05] to achieve weak uf-cma (and ind-cma) security at the cost of a somewhat less
efficient scheme. We also observe that the modified scheme is ki-cma secure following essentially
same argument that we use in the proof of Theorem 6.

D Transformations

D.1 Adding Support for Verification Queries

We briefly recall the transformation of [DKPW12] transformation mapping any weakly {uf,ind}-cma
secure MAC to a weakly uf-cmva secure MAC. In fact the transformation achieves more namely the
resulting MAC is even strongly uf-cmva secure. Indeed the original proof goes through unchanged
also for the the stronger statement. In this section, we show that the same transformation also pre-
serves the ki-cma security of the underlying MAC. We start with the transformation of [DKPW12].

Let u = p(A\) denote a statistical security parameter and let H be the family of pairwise
independent hash function h : T — {0, 1}*. Given an MAC MAC = {KG, TAG, VRFY} with key space
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KC, message space M x {0, 1}*, and tag space T, a new MAC MAC = {KG, TAG, VRFY } with key space
K x H, message space M and tag space T x {0, 1}/ is constructed as follows.

Construction 7 (MAC from MAC)
Key Generation: The key generation algorithm KG(1*) runs k < k6(1%), samples a pairwise
independent hash function h < H and outputs (k,h) as the secret key.
Tagging: The tagging algorithm TAG(; py(m) samples b g {0,1}#, runs z = TAGL(m||b) and
returns (z,h(z) @ b) as the tag.
Verification: The verification algorithm VRFY . ) (m, (2,y)) computes b =y @ h(z) and outputs
VRFYf(m][b, 2).

The following theorem was proved in [DKPW12].

Theorem 7 (Weak {uf,ind}-cma — Strong uf-cmva). For any t,q;,q, € N and € > 0, if
MAC 1s:

o weakly (t, qi, €1)-uf-cma (existentially unforgeable)

e (t,qi,€2)-ind-cma (message hiding)

then MAC is (t', qt, qu, 2q, max{ey, €2} + 2q,q:/2")-uf -cmva secure where t' ~ t.

We now prove the following theorem which shows that the above transformation essentially pre-
serves the ki-cma property of the underlying MAC.

Theorem 8 (Preserving ki-cma Security). For any t,q. € N and €1,e9 > 0, if MAC is:
o (t,q,€1)-ki-ema (key indistinguishable)

e (t,q,€2)-ind-cma (message hiding)

then MAC is (t', g, €1 + 2¢2)-ki-cma secure where t' ~ t.

Proof. We prove the theorem by building two reductions, namely to ki-cma and ind-cma security
of MAC.

For security parameter A € N, and § = §(\) let B be a (¢, ¢;)-adversary such that Advk/il":gqa(B, A) =
0. We upper bound § < €1 + 2¢2 using a hybrid argument. That is we define two experiments such
that the advantage in the ki-cma game for MAC is at most the sum of the advantages at winning
the two experiments.

Experiment Exp is identical to EXijI'ACE"a except that the same key ko (and state) is used for
MAC in both instances of MAC i.e. the keys for MAC are (ko, ho) and (ko, h1). Similarly experiment

Exp; is defined to use the same hash function for both the keys of MAC namely (kg, h1) and (k1, hq).

For i € [0,1] we define v; := Advfﬂ’;‘%(B, A) to denote the respective advantages of B in winning
the experiments.

We now show that 79 < 2¢5 and 71 < €;. The triangle inequality, then bounds § < g + v <
2¢eo + €1, as required.

Claim vy < 2e5: We construct a reduction R that interacts in ind-cma game and is provided with
the oracle O. It must tell if the oracle returns tag of the message that it supplies or returns the
tag of zero message after making ¢; queries to the oracle in time t. In order to use B to make
its decision, R runs Exp,(B, \) except that all evaluations of the TAG algorithm are instead
computed via a call to O. Finally R outputs 1 iff B wins.

Case O = TAGk(+): R perfectly simulates Exp, to B and so 2 ‘Pr[RTAG’“(') — 1] — %] =.
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Case O = TAG,(0): In this case for i € {0, c} any tag 7 = (2, hi(2) ® b) for a message m is such
that z = TAGE(0). Thus b is independent of z (since TAG,(0) ignores the message). This means
that h; is independent of 7 and so h; and in particular ¢ remains information theoretically
hidden from B. Since ¢ € {0, 1} is a uniform random and R outputs 1 iff B guesses ¢ we get
that Pr[RTACHO) — 1] = 1.

Summing up, we can use the ind-cma security of MAC to write

1
Yo = 2 |Pr[RT™C() 5 1) — 2’ = 2|Pr[R™C() 5 1] — Pr[R™C(0)  1]| < 2¢,.

Claim v; < ¢;: We construct a reduction R that interacts in Expﬂf&“a experiment and is provided

with two tag oracles Op, O.. The reduction now simulates Exp;(B,\) forwarding all TAG,
queries to Oy and all TAGg, queries to O,. Finally, R produces the same output as B.

Observe that R perfectly simulates Exp; to B and moreover R wins the ki-cma game if and
only if B wins Exp;. Thus the ki-cma security of MAC implies

1 - 1
1 =2 |PrBxpy(B.Y) = 1] | =2 [PrExpR RN 1] | <

D.2 KI Preserving Domain Extension

In [DKPW12], the authors have shown that any ind-cma and weakly uf-cma secure MAC supports
domain extension using universal hash function following the ‘hash and then MAC’ paradigm.
A v-bit message is hashed down to a p-bit input and then the shorter p-bit input is fed to the
MAC. The domain extension for the MAC in this way is otherwise not secure since typical MACs
are not message hiding and so might reveal the hash function which would allow an adversary to
find colliding messages making forgery trivial. More formally, the following proposition is shown
in [DKPW12].

Proposition 2 (Domain Extension). Consider MAC = {KG, TAG, VRFY} with small message space
M ={0,1}* and let MAC = {KG, TAG, VRFY} for large message space {0,1}" be derived from MAC by
first hashing the message using a B-universal hash function g : {0,1}¢ x {0,1}* — {0, 1}*.

If MAC is (t, g, €1)-ind-cma secure and weakly (¢, q:, €2)-uf-cma secure then MAC is (', g¢, 2€1)-
ind-cma secure and weakly (t', g, €1 + €2 + ¢ 3)-uf-cma secure, where t' ~ t.

We now prove the following theorem which shows that KI is preserved by the domain extension
transformation, using similar ideas to the proof of Proposition 2 in [DKPW12].

Theorem 9 (Domain Extension Preserves KI). Let MAC and MAC be as in Proposition 2. If
MAC is (t,qt, €1)-ki-ema secure and (t,q:, €2)-ind-cma secure, then MAC is (', q:, €1 + 2€2)-ki-cma
secure fort ~t'.

Proof. We prove this theorem using almost the same line of reasoning as in the proof of Theorem 8.

For completeness we provide a full proof below.
ki-cma
MAC

(B, A\) by first designing a pair of reductions for the ind-cma and ki-cma

Let B be a (t,q;) adversary interacting in Exp . For any security parameter A € N we

ki-cma

upperbound € = AdVM AC
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security (respectively) of MAC and then showing that € is at most the sum of the advantages of the
reductions.

Recall that the keys for MAC have the form (k, h) where k is a key for MAC and h is a key for a
hash function. We define experiment Exp, to be identical to Expk/il'/féna except that the same key
is used for MAC in both instances of MAC. In other words MAC is instantiated with keys (ko, ho) and
(ko, h1). Experiment Exp, on the other hand is identical to Exp but instead uses the same hash
function for both instances of MAC.

For i € [0, 1] we define ; := Advsl)/:ii (B, \) to denote the respective advantages of B in winning
the experiments. A standard hybrid argument shows that an adversary which can tell MAC instances
keyed with (kg, hg) and (ki, h1) apart is at least half as likely to tell either the MAC instances from
Exp, or Exp, apart. In other words € < vy 4 1. Thus the result follows by showing that vo < 2e
and 1 < €.

Claim vy < 2e5: We provide a reduction R to the ind-cma security of MAC using B. Given oracle O
in ind-cma experiment, R simulates Exp((B, \) as faithfully except that it computes all TAG,
queries using O instead. Finally R outputs 1 iff B wins.

Case O = TAGk(+): In this case R perfectly simulates Exp, to B and thus

1
Pr[RTACK) 1] — 2’ = .

2

Case O = T7AG,(0): In this case, in Exp, all tags z from either TAG oracle are computed as
z = TAGE(0) and so are independent of the particular hash function used by R. Thus the
view of B is independent of the value ¢ which it must guess. In particular we have

2 ’Pr[RTAGk(') — 1] — 1| =0
5 .

Summing up, we have ‘Pr[RTAG’C(') — 1] — Pr[RTAGk(0) 1]‘ = . By the ind-cma security of

MAC, it now follows that % < es.

Claim v; < €1: We construct a reduction R to the ki-cma security of MAC using B. Given oracles
0o, O, R simulates Exp, to B faithfully except that it computes all TAG,, queries with calls to
Op and all TAGy, queries with calls to O,. Finally R produces the same output as B.
Reduction R perfectly simulates Exp,y to B and moreover R wins the ki-cma game if and only
if B wins in Exp,. Thus we can write:

; 1
y1 = 2 |Pr[Explema(R, \) = 1] — B < €.
O

Applying the domain extension trick with the observation that any suf-cma scheme is also
uf-cma up to a security loss, we can turn any (¢, g, €1)-ind-cma secure, weakly (¢, ¢, €2)-suf-cma
secure and (¢, g, €3)-ki-cma secure MAC with M = {0, 1}* into a MAC which is:

— (¥, q1, 2¢1)-ind-cma secure
— weakly (¢, q:, €1 + €22 + ¢ 8)-uf-cma secure
— (¢, qt, 2€1 + €3)-ki-cma secure

where t' ~ t.
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