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Abstract. This paper presents the design of a lightweight, yet software
friendly, block cipher. Most of the lightweight block ciphers are nibble-
oriented as the implementation of a 4-bit S-box is much more compact
than an 8-bit S-box. This paper uses a novel implementation of multi-
plicative inverse for 8-bit S-boxes using LFSR requiring only 138 gate-
equivalent. With this powerful scheme, we design a lightweight block
cipher competitive with existing standards in terms of hardware gate
equivalent first time using an 8-bit S-box.
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1 Introduction

The goal of lightweight cryptography is to have cryptographic primitives for
extremely constrained devices. While the AES is suitable for most of the appli-
cations, the hardware requirement for the AES is considered to be high for these
tiny devices. One of the main constituent of the AES is its multiplicative inverse
based 8-bit S-box. However, the 8-bit S-boxes rather take a very large area hence
they are not very suitable for lightweight cryptography. In [16], a multiplicative
inverse based 8-bit S-box is proposed using LFSR that requires only 138 gate
equivalent (GE).

We propose a new lightweight block cipher, Halka, using these 8-bit multi-
plicative inverse S-boxes with primitive polynomials. This block cipher has 80-bit
Key size and 64-bit block size in accordance with current lightweight block ci-
pher design practices. It uses 8-bit S-boxes as non-linear element. The linear
permutation is done simply with wiring. For key-schedule we use a schema sim-
ilar to PRESENT block cipher mutatis mutandis with 8-bit S-box. The number
of rounds is 24 which is sufficient to thwart linear and differential cryptanalysis.

There has been quite a few lightweight block cipher proposals in recent years
[9], [14], [19], [21], [24], [39], [38], [42]. Yet, Halka is unique in many respects. First
and the foremost is the usage of an 8-bit S-box for the first time in lightweight
cryptography. This enhances the confidence on the security as the cryptographic
properties of 8-bit multiplicative inverse are very strong. Note that, the main
constituent of AES security is its 8-bit multiplicative inverse S-box. Second, LF-
SRs are wonderful constructs for cryptography, but traditionally LFSRs have
been used only in stream ciphers. Halka uses LFSR for block cipher enhancing
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intra-S-box statistical properties. Moreover, LFSRs are extremely low-power de-
vices making the power utilization low which is a requirement for lightweight
cryptography. Third, as it will be shown later, the security model of Halka com-
bines the strengths of both the AES and PRESENT [9], the later being one of the
most popular lightweight block ciphers. This fact provides us with the confidence
on the security of Halka. Fourth, S-boxes of Halka are calculated dynamically
without the need for storing them in array. The code size is also very small. This
helps software implementation in extremely memory constrained devices. Fifth,
the hardware cost in terms of gate equivalent is low and seven percent better
than PRESENT[9]. Sixth, it provides a unique parametrization feature which
doesn’t have any cryptographic weakness or strength but can be useful in var-
ious applications (e.g. multi-party communication, as a session parameter etc).
Finally, Halka provides provision for “Super S-box”, enabling super-fast software
performance. With eight super S-boxes of size 8×256 bytes, a round transforma-
tion is achieved with only eight array lookup along with eight integer addition
for 64-bit architecture. For 32-bit architecture, round transformation is achieved
with only eight array lookup along with sixteen integer addition with the same
size of the array. In this respect, Halka is unique in lightweight cryptography
where both software aspects and hardware aspects are taken care of.

Lightweight cryptography has been subjected to attacks due to their simplic-
ity [8], [23], [31], [37], [41]. Even PRESENT has been subjected to linear crypt-
analysis in various forms in [12], [35], differential combined with algebraic attack
[1], [43] and saturation attack [15]. Most of these weaknesses are due to small
S-boxes. Hence, we get a strong motivation to design a new lightweight block
cipher with 8-bit S-boxes with the existing security strengths of PRESENT.

This paper is organized as follows. Section 2 provides the schematic of mul-
tiplicative inverse implementation using LFSR that can be used for AES. It
describes the compact hardware method in Section 2.1 and a method for better
speed in Section 2.2. Section 2.3 provides the description of parametrization of
the S-box. Section 3 introduces a new lightweight block cipher proposal Halka.
The security analysis of Halka is performed in Section 4 and the hardware cost
is determined in Section 5. Finally, Section 6 describes the super s-box structure
where we can have a super-fast software performance.

2 Multiplicative Inverse Using LFSR

In this section, we reproduce the compact hardware implementations for cal-
culating multiplicative inverse using maximum length LFSR as shown in [16].
See [29] for a detailed description of LFSR. Throughout the rest of the paper
referring to LFSR would mean a maximum length LFSR with a given primitive
polynomial.

2.1 Compact Hardware Mode

We begin this section with an introduction of how mathematically multiplicative
inverse can be calculated using LFSR. The LFSR transformation can be written
as for a single cycle:
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S(t + 1) = T · S(t)
where, T is the LFSR transformation matrix, S(t) is the state of the LFSR

at tth time instant or the initial seed and S(t + 1) is the state of the LFSR at
(t + 1)th time instant i.e. after running one clock cycle. We can generalize the
above equation for any number of cycles p as:

S(t + p) = T p · S(t)
It can be noted that for a maximum length LFSR, running 2n−1 cycles gives

back the initial state (where n is the length of the LFSR), i.e.:
S(t + 2n − 1) = T 2n−1 · S(t) = S(t) ⇒ T 2n−1 = 1, which is the identity

element.
To calculate the multiplicative inverse of a given input S(t + p), the task is

to find out a new state S(t + ṕ) of the LFSR so that p + ṕ = 2n − 1, implying,
S(t+ p+ ṕ) = S(t+ 2n− 1) = S(t) or alternatively, T p ·T ṕ = T 2n−1. The above
implies the following equation for an 8-bit LFSR:

S(t + ṕ) = S(t + 255− p) (1)

One way to implement this is to run the LFSR with a particular initial seed
till the LFSR state matches the input, then re-initialize the LFSR with the same
seed and run it. When the total number of cycles in both the run is 255 (for 8-
bit LFSR) the state of the LFSR gives the multiplicative inverse. Comparison of
two eight bit variable requires eight XOR gates, eight NOT gates and one eight
input NAND gate along with the LFSR circuit. Additionally, eight 2:1 Mux are
required for reloading the initial value to the LFSR. However, we find a better
optimization as given below.

Note that, the comparison of the LFSR state with the constant initial seed
is very easy. It only needs an eight input NAND (or AND) gate along with a
few NOT gates. The input to this NAND gate are the LFSR state bits. For the
bits that are zero in the initial seed, the corresponding state bits are negated
by NOT gates. When the state becomes equal to the constant initial seed, the
output of the NAND gate becomes zero.

Then, we use the following algorithm where the comparison is only performed
with constant initial seed.

Require: 8-bit LFSR, initial seed=S(t), S-box input=S(t+p)
1: Initialize the LFSR with lfsr state=S-box input=S(t+p)
2: Run the LFSR in the forward direction till lfsr state=initial seed=S(t)
3: Run the LFSR in the reverse direction
4: Stop when total number cycles in both the above steps is 255
5: Output lfsr state=S(t+ṕ)

Theorem 1. The algorithm above outputs the multiplicative inverse of S-box input,
S(t+p).

Proof. Let, S-box input correspond to the lfsr state after running p cycles of
LFSR from initial seed. This is the state of the LFSR at step 1. Then, in step 2,
the number of cycles run is, 255−p, but the LFSR contains the initial seed=S(t)
at this point. The number of cycles run in step 4 is 255− (255− p) = p. But as
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mentioned in step 3, the LFSR is running in reverse direction at this point with
initial seed as S(t). Hence the state of the LFSR is S(t-p). Since, S(t)=S(t+255),
the state of the LFSR can also be denoted as S(t+255-p). From Equation 1, this
state is the multiplicative inverse of S(t+p). ut

Hardware Implementation: The practical implementation is as follows.
1. Use eight two-input flip-flops (e.g. scan flip-flops) to store the LFSR state.
2. Arrange one of the inputs of the flip-flops to make the forward LFSR

transformation for a given primitive polynomial. Use 2:1 Muxes at the input to
load the S-box input on Reset signal. As the combinational logic of the LFSR is
applied only on the first flip-flop, the initial loading can also be applied serially
where the 2:1 Mux is used only at the first flip-flop. An eight input NAND gate
from the existing counter can indicate the completion of eight cycles for the serial
loading. The output of this NAND8 gate can go to another 2-input NAND gate
to control the Reset signal. The state of the LFSR counter after eight cycles is
considered as the initial state for counting the S-box cycles.

3. Arrange the other inputs of the flip-flops to make reverse LFSR transfor-
mation for the same primitive polynomial.

4. The output of the LFSR is connected to an 8-input NAND gate (via a few
NOT gates) whose output is connected to the Select input of the flip-flops (via
a flip-flop so that the output stays there after a match is found). This provides
the comparison with the constant seed and the control logic for the LFSR to run
in the reverse direction.

5. An 8-bit LFSR counter is used. The output of the counter is connected
to an 8-input NAND gate (via a few NOT gates) to signal when LFSR state
contains the multiplicative inverse of the input. This provides the control logic
to indicate the completion of 255 cycles.

6. The circuit diagram is shown in Figure 1.
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Fig. 1. Circuit Diagram for Compact Hardware Mode

Hardware Cost and Gate Count: We use the primitive polynomial x8 +x4 +
x3 +x2 +1 which requires three XOR gates for the LFSR feedback function. The
total numbers of various gates required to realize the circuit are eight 2-input
flip-flops, six 2-input XOR gates, one NAND8 gates and two NOT gates. Using
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serial loading, the initialization requires 1 mux, 1 NAND8 and 1 NAND gate. The
counter requires one NAND8 gate, three XOR gates and eight 1-input flip-flops.
In addition, to avoid the S-box giving zero as output when the input is zero, two
NOT gates are added at the input. Using Standard Cells UMCL18G212T3, the
total equivalent gate count is 6 × 16 + 2.67 × 9 + 4 × 3 + 0.67 × 2 + 2.33 × 1 +
1× 1 + 0.67× 2 = 138.

To compare with the existing standards, Canright’s implementation takes
253 GE and Satoh’s implementation takes 275 GE. Hence Canright’s implemen-
tation is 85 percent more expensive than this method. The speed is lower in
terms of number of cycles. But as stated before, the number of cycles should
not be the only metric as the experience shows that the speed reduces drasti-
cally when the number of gates is increased due to gate delay. However, as AES
uses a polynomial which is irreducible but not primitive, getting the exact AES
S-box using this method is not possible. Maximum length LFSRs necessarily
need primitive polynomials. Hence, this comparison is with respect to AES-like
S-boxes. The AES designers have mentioned that other S-boxes satisfying the
same cryptographic properties as with the AES S-box can be used for AES.
However, till date that replacement was never attempted as there was no real
benefit of doing that. This method generates AES-like S-boxes with same cryp-
tographic properties as in the AES S-box and provides a real benefit of saving
the hardware count greatly. By reusing the data state flip-flops for the LFSR and
with the common counter for all S-boxes in the S-box layer, the hardware count
of AES S-box can be as low as 50 gate equivalent per S-box (see Appendix for
a detailed calculation). Hence, we can think about replacing the non-primitive
irreducible polynomial of AES with a primitive polynomial that can provide the
implementation using LFSR with a great reduction in hardware. Note that, the
“super S-box” implementation, Canright’s and Satoh’s implementations will still
be applicable after changing the polynomial. But, since the AES S-box is widely
scrutinized and deployed, we leave it at this point for the community to decide
on that.

2.2 Parametrization

The multiplicative inverse S-box using LFSR takes the initial seed, S(t), as a
parameter. Selection of a seed doesn’t have an impact on the main security
properties of the S-box i.e. bias, non-linearity, differential uniformity, SAC etc.
This also provides a great advantage that the intra-S-box linear transformation
used in AES is not required for LFSR based implementation of multiplicative
inverse. Since the internal linear transformations are different for different seeds,
the number of terms in algebraic expression will vary for different seeds. The
algebraic degree, however, is always 7, hence this is not a big threat. LFSRs
are already known for their excellent statistical properties which are applied to
the S-box automatically. The only additional hardware required is for avoiding
the zero to zero mapping in the multiplicative inverse. This can be achieved by
putting just a couple of NOT gates at the output of forward S-box and in the
input of the reverse S-box. However, special care may be needed in selecting the
S-box when used in a cipher depending on the linear layer or the structure of the
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cipher. In order to alleviate any concern with this variable number of terms in
algebraic expression, we provide a concrete S-box table and compare the security
properties with AES.

2.3 A Concrete S-box
A concrete S-box Table was generated with initial seed as 0x16 and constant
value 0x24 that is XORed at the output requiring two NOT gates. These values
were used for the specific implementation of Halka. The full table is shown in
Table 1.

Table 1. A Concrete S-box

24 2c 20 dc 26 73 d8 91 25 b7 8f 9c da 1f fe e9

9f a4 d5 6d c3 71 32 78 96 db 55 b9 4c 49 6e 42

9a f9 1d 64 3 5c a0 0 4a d7 e3 8e 75 af b a

7d 4d 5b 1a 1c e7 6a 74 10 6 92 29 81 79 17 40

7 7b 69 ca c8 b8 ef 84 c2 37 3a 98 df 66 12 b6

13 8 5d fc 47 31 f1 21 8c 14 e1 51 33 19 b3 65

88 4e 90 70 1b a8 3b cc 38 15 45 a7 83 39 c de

a1 3e c1 b5 eb 7f ac a2 1 76 9b 8a b4 bd 99 16

35 d4 8b 4f 2 54 53 be 52 c7 ea 9 41 c6 f4 b1

58 57 6b 2d f8 ab 87 7a f6 59 a3 85 61 3f 9e ed

63 bf fd b2 e8 18 d2 48 7c 95 f 2e 44 ce 5f a6

f0 8d 3c f5 46 23 1e d0 2f ee ba 34 6f 5a 4 5e

c5 f2 c4 11 e2 7e e0 e dd bb 9d 62 80 2b ae 50

aa 97 bc c9 94 72 e5 d3 77 86 2a cd b0 5 d9 d1

e6 e4 a9 ad d6 56 6c 30 43 ff 89 cb 60 f7 67 cf

a5 36 c0 d 93 fb 82 f3 27 ec 4b 68 22 fa 28 3d

The comparison of security properties of the S-box generated with the above
parameters with AES S-box is shown in Table 2. It can be seen that the security
properties are essentially same as it is expected. Note that, we have used alge-
braic normal form to compare the algebraic properties for convenience, unlike
the univariate polynomial expression given in original AES specification.

Table 2. Comparison of Security Properties with AES

S-box Max Alg Min Alg Alg Diff Bias Max Min Max Min
Term Term Deg Uni SAC SAC NL NL

AES 145 110 7 4 2−4 144 116 114 112

Halka 139 118 7 4 2−4 140 112 114 112

Thus, we presented a novel and compact method for implementing multi-
plicative inverse for 8-bit S-boxes. The area requirement is so small that even a
lightweight block cipher can be proposed with 8-bit S-boxes. In the next section,
we provide a schematic of a lightweight block cipher, Halka, with 8-bit S-boxes.

3 Halka : A Lightweight Block Cipher

Halka is a block cipher having 64-bit block size and 80 bit Key size with pos-
sible applications in pervasive computing including RFID, sensor network and
smart devices where 80-bit Key size is sufficient. Internally, it has a substitution
permutation network structure where a layer of 8-bit S-boxes are used for substi-
tution with wiring permutation and an XOR with a round Key. The S-boxes are
calculated dynamically and have the properties of multiplicative inverse with
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respect to a primitive polynomial. In this instance of Halka, the polynomial
X8 + X4 + X3 + X2 + 1 is used. There are 24 rounds of this transformation
before the cipher text is produced. The initial seed used in LFSRs provides an
optional parameter for the cipher. The algorithmic description of block cipher
Halka is given below:

Require: Key K, Plaintext P
1: STATE S=P
2: generateRoundKeys(K)
3: for i=1 to 24 do
4: addRoundKey(S,Ki)
5: transformSBoxLayer(S)
6: permute(S)
7: end for
8: addRoundKey(S,K25)

3.1 Details of a Round
A particular round of Halka consists of an XOR with round key, S-box transfor-
mation and a wire permutation.
XOR with Round Key: Let us denote the state at ith round as Si =
(si0 · · · si63) and round key Ki = (ki0 · · · ki63). At the beginning of each round
a bitwise XOR is performed between the state and the round key:

Si ← Si ⊕Ki

S-box Transformation: The S-box transformation layer consists of eight 8-
bit S-boxes arranged in parallel. Let us denote the S-box transformation G(S).
The state Si is divided into eight byte words, bwj (0 ≤ j ≤ 7) with bwj =
(si8∗j+0 · · · si8∗j+7). With this transformation, we have:

Si ← G(bw0) ‖ · · · ‖ G(bw7)

Permutation: After the S-box layer, a linear permutation is performed. The
permutation is random with the constraint that every bit from each 8-bit S-box
affects one and only one bit in each of the eight 8-bit S-boxes in the next layer.
The permutation is performed as:

sik ← sij , j, k ∈ (0, · · · , 63), where j and k mapping is shown in Table 3.

Table 3. Halka Permutation Mapping

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
k 10 21 28 38 44 48 59 1 51 15 41 2 60 34 24 20 56 6 17 31 36 53 12 46 30 52 11 4 23 35 40 63

j 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
k 8 39 3 43 57 49 16 25 37 42 61 50 0 9 18 26 58 55 7 19 29 14 47 32 33 5 62 45 13 54 22 27

Key Schedule: Halka takes an 80-bit Key as input which is stored in a key-
state register KS = (ks0, · · · , ks79). At every round, the round key Ki is derived
from the leftmost 64 bits of KS. Hence,
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Ki ← (ks79 · · · ks16)

The key state registers are then rotated by 57 bit position to the left and
then the leftmost eight bits are transformed using the S-box and finally the 5-bit
round counter is XORed with ks19ks18ks17ks16ks15 i.e. the rightmost bits which
will be transferred to round-key. The round counters are the actual counter value
for that round. Mathematically,

(ks79ks78 · · · ks1ks0) = (ks22ks21 · · · ks24ks23)
(ks79 · · · ks72) = G(ks79 · · · ks72)

(ks19ks18ks17ks16ks15) = (ks19ks18ks17ks16ks15)⊕ round counter

4 Security Analysis of Halka

In this section, we provide the security analysis of Halka. The security model
of Halka is derived from both AES and PRESENT. It uses 8-bit multiplicative
inverse S-box that makes the resistance against differential and linear cryptanal-
ysis easily provable as shown next and uses bit-wise permutation that prevents
structural attacks.

4.1 Differential and Linear Cryptanalysis

Differential cryptanalysis [2] was introduced by Biham against the DES cipher.
On the other hand, linear cryptanalysis was introduced by Matsui [30], also
applied to DES first. These two are the most devastating attacks against block
cipher and it is imperative that any new block cipher shows the resistance against
differential and linear cryptanalysis.

For Halka it is straightforward to show the resistance against linear and
differential cryptanalysis.

Theorem 2. After 24 rounds of Halka, the probability of any differential char-
acteristics is 2−288 and the linear bias is 2−192

Proof. Since Halka uses a wiring permutation where each bit from the previous
layer affects a different S-box, the branch number is 3. The branch number gives
the lower bound of the active S-boxes. Hence, the total number of output active
S-boxes is two. Now the differential uniformity of multiplicative inverse is 4 [34].
Hence the differential probability is 2−6 for eight bit S-boxes used in Halka. The
probability of a differential per round is (2−6)2 = 2−12 [22]. After 24 rounds, the
total probability of any differential characteristic is (2−12)24 = 2−288.

The linear bias of multiplicative inverse is 2−4. Hence, on a similar reasoning
with differential probability, it can be shown that the total linear bias of Halka
is (2−4)2)24 = 2−192. ut

An improvement of the above bound is possible as follows. For an S-box,
there are several differential with probability 2−7 such that the input differential
has one active bit and output differential has just one active bit too (this kind
of analysis is used in cryptanalysis of Keccak). Since the linear layer is a bit
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permutation, we can find simply a differential characteristic which has exactly
one active S-box in each round. So the actual lower bound of the probability for
r rounds is 2−7×r. When the number of rounds is 24, the probability is 2−168.
We also tried to perform advanced differential attack like truncated differential
analysis [25], [26]. The first hurdle was that the S-box listed in the paper is
a perfect S-box with respect to differentials. For all the input differences, the
number of non-zero entries in the difference distribution table was exactly 127.
Every row in the difference distribution table (of course, except the first row)
contains 126 twos and 1 four. Hence, we found it extremely difficult and tedious
to find a specific truncated differential characteristic that propagates through
the S-boxes easily. Such a good distribution made the impossible differential
analysis also very difficult. Augmented with this was the difficulty for the random
permutation. The above facts provides us with the confidence of the security of
Halka with respect to differential attacks. See Appendix for a couple of specific
cases.

4.2 Related Key and Slide Attacks
The related key attack [3] and slide attack [4] exploit the weakness in key schedule
algorithm. These attacks try to find distinguishers in the sub-keys. The related
key attack has even been successful to find a related key distinguisher on reduced
round AES-256 [5]. Other related attacks are a boomerang attack [40] on the
full round of AES [6] and a near practical related key attack [7].

However, Halka uses PRESENT style key-scheduling algorithm. There is no
evidence that such attacks could be applicable to PRESENT key scheduling
algorithm. Halka simply strengthens the PRESENT key scheduling algorithm
by using an 8-bit S-box. We see now how the arguments against related key and
slide attacks given in PRESENT are made stronger for Halka.

– all bits in the key state are a non-linear function of 80-bit key by round 11.
– each bit in the key register after round 11 depends on at least eight of the

user-supplied key bits, and
– each bit has an algebraic degree 7 by round 11. This is further enhanced for

32 bits in the remaining four rounds.

4.3 Other Attacks
We describe how a few more common attacks are thwarted in Halka.
Structural Attacks: Structural attacks like integral attack[27] and bottleneck
attack[18] exploit the word like structures in the cipher. Halka permutation is
bitwise and hence deriving such word like structures is not possible.
Algebraic Attack: Halka uses AES-like S-box which can be described by eight
algebraic equations of degree 7 where the number of terms range from 139 to
118. Unlike 4-bit S-boxes used in PRESENT, this system cannot be described
in quadratic equations with small number of terms. Hence, it doesn’t require an
extensive analysis unlike PRESENT against algebraic attacks for their applica-
bility on Halka reinforcing the claim of enhanced security over PRESENT.
Cube Attack: Cube attack [17] has been mounted on LFSR based stream
ciphers by deriving low degree black-box polynomial. Since the cipher uses LFSR
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one may think Cube Attack may be applicable. But note that the LFSR is used
only for implementation. The theory of the cipher is derived from the strengths
of multiplicative inverse like AES. AES is believed to be immune to cube attacks.
Hence, such an attack is not applicable for this cipher.
Side Channel Attack: Among the side channel attacks, simple power attack
and simple timing attack are not possible as there is always a constant number
of cycles in the S-box and the permutation is only wiring. But as shown in [11]
the multiplicative inverses have a rather high transparency order [36] leading to
differential power analysis (DPA) [28]. Since the S-box is generated using LFSR,
small redundant circuits could be developed to keep the power consumption
constant in every cycle which would help preventing DPA.

There have been some cryptanalytic efforts against PRESENT reported in
the literature [1], [43], [12], [35], [15] which are mainly based on the smaller S-box
of PRESENT. For example, [12] specifically builds on weak correlation property
of the PRESENT S-box and some what regular bit permutation. However, the
multiplicative inverse based S-box in Halka seems to weaken them as its linear
bias is 2−4 and the differential probability is 2−6. Also, the permutation in
Halka is perfectly random. Hence such attacks unlikely to succeed against Halka.
The block ciphers have undergone major cryptanalytic efforts in the last few
decades. So it is impossible to cover all of them here. Nevertheless, we covered
the important ones to have enough confidence on the security of Halka. In the
next section, we check the hardware cost of Halka.

5 Hardware Cost of Halka
As the goal of Halka is to provide strong security with very minimal hardware,
the S-boxes are implemented in the compact hardware mode as described before.
The following are the hardware modules and their associated cost i.e. gate count
for hardware implementation of Halka.
S-box Layer: The S-box layer requires eight 8-bit S-boxes. As shown previously,
the hardware requirement for each S-box is 138 gate equivalent. However, this
cost includes the cost of the 8-bit counter which will be common for all the S-
boxes. Hence we need to subtract the cost of the counter circuit. The counter
requires two NOT gates, one NAND8 gate, three XOR gates and eight 2-input
flip-flops. The total hardware cost of the counter is 0.67 × 2 + 4 × 1 + 2.67 ×
3 + 6 × 8 = 61.33. Hence the cost of the each S-box sans the counter is 138-
61.33=76.67 gate equivalent. Hence the total hardware cost of the S-box layer is
76.67× 8 + 61.33 = 674.69.
Data State: Since the S-box layer already uses flip-flops for LFSR, the same
set of LFSRs will be used for data state. However, to load the LFSR content for
different rounds eight 2:1 Muxes, a NAND2 and a NAND8 gate will be required
using serial loading for each eight bit block. Hence, the total hardware cost for
the Data State is 2.33× 8 + 1 + 4 = 23.64 gate equivalent.
Permutation: Since Halka uses wire permutation, the hardware cost for per-
mutation is zero.
Round Counter: A round counter is required to count upto 24 for 24 rounds
of Halka. This needs a 5-bit LFSR counter where the hardware requirement is
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five flip-flops, one XOR gate, one 5-input NAND gate. Total hardware cost is
6× 5 + 2.67× 1 + 4× 1 = 36.67

Key State: The key state requires 80-bit flip-flops and the total cost is 480.49
(same as in PRESENT) gate equivalent.

Key State S-box: It requires 76.67 gate equivalent reusing the counter from
S-box layer.

Key State Counter XOR: Four XOR gates are required totalling 4× 2.67 =
10.68 equivalent gates.

Key XOR: Sixty four XOR gates are required totalling gate equivalent count
as 170.84 (same as PRESENT).

Total Gate Count: The total hardware cost of Halka is 676.49+23.64+36.67+
480.49 + 76.67 + 10.68 + 170.84 = 1475.

So, the total hardware cost of Halka is 7 percent better than PRESENT
(which requires 1569 gate equivalent). However, Halka increases the security of
PRESENT greatly by using 8-bit multiplicative inverse as S-box similar to AES.
A detailed comparison of other lightweight block ciphers (including PRESENT)
can be found in [21] that could be extended for comparison with Halka. We don’t
reproduce the Table here due to space limitation. Note that, PRESENT reports
an implementation on later work with less than 1000 GE by serializing the S-
boxes. Such serialization of S-boxes is also possible in Halka greatly reducing
the gate count in overall implementation (a future work). Note that, the mux
and the counter hardware required for serialization becomes half of PRESENT
in Halka. This compensates the additional hardware required for 8-bit S-boxes
over 4-bit S-boxes.

6 Software Implementation

One main advantage of Halka over PRESENT is that it allows efficient software
implementation. In this respect, it can have “super s-box” structure like AES
and hence, it is comparable with AES in terms of software efficiency.

6.1 Implementation in 64-bit Architecture

A super S-box of 256 elements with each element of size 64 bits is constructed
as follows. For each index of the 256 element array, the S-box transformation is
performed with that index. The output of the S-box are mapped according to
the permutation defined in Table 3 for each of the eight S-boxes to eight bits of
a 64-bit integer. Rest all bits of the 64-bit integer is kept as zero. This 64-bit
integer is kept at that index of the array. Thus a table of size 8 ∗ 256 bytes is
formed. This is performed for all the eight S-boxes. Thus there are eight such
tables (arrays).

The round transformation (including substitution and permutation) is per-
formed as follows. For jth input byte (of 64-bit input block), after the jth super
S-box lookup, a simple integer addition is performed. Note that, simple addi-
tion is sufficient as for each bit position of this 64-bit block, there could be a
maximum one logic 1 in this addition operation implying no carry bit.
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6.2 Implementation in 32-bit, 16-bit and 8-bit Architectures
In architectures below 64-bits, the size of the Table remains the same, but the
64 state bits should be divided into required number of integers. The table look-
up and the addition operations are performed in the same way as with 64-bit
architecture, but on the individual integers. For example in 32-bit architecture,
two 32-bit integers are used for each of the super s-box entry. After super s-box
lookup, both the 32-bits integers are added with the output of other bytes.

Note that, the schema presented above can also be extended for PRESENT
which is still unpublished. The only previously reported work [20] for efficient
implementation of PRESENT in software provides an implementation for 8-bit
architecture. But this method is applicable for all 64-bit, 32-bit, 16-bit and 8-bit
architectures. However, if this schema is adopted for PRESENT, the number
of array look-ups required is sixteen and the number of integer additions is also
sixteen for 64-bit architecture. In addition, PRESENT has 31 rounds as opposed
to 24 rounds in Halka. Hence, PRESENT will be slower by three times compared
to Halka if this approach is adopted.

7 Conclusion

In this paper a new lightweight block cipher is proposed. The cipher has 8-bit
multiplicative inverse which is implemented using a novel algorithm requiring
very compact hardware. The cipher is shown to require similar gate count as
PRESENT yet provides a lot more security.
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8 Appendix

8.1 Test Vectors

Key=0xff ff ff ff ff ff ff ff ff ff
Plaintext=0x00 00 00 00 00 00 00 00
Ciphertext=0xf7 4f 84 47 f6 80 64 38
==============
Key=0x00 00 00 00 00 00 00 00 00 00
Plaintext=0x00 00 00 00 00 00 00 00
Ciphertext=0x01 36 ff 2b 22 fd ae d5
==============
Key=0xff ff ff ff ff ff ff ff ff ff
Plaintext=0xff ff ff ff ff ff ff ff
Ciphertext=0xca 6f 36 92 22 52 f0 5a

8.2 Notes on Gate Equivalent

We have not done the actual implementation on ASIC as we don’t have those
tools. Instead, we have used Xilinx 7i FPGA to check the hardware. Gate equiv-
alents for various hardware primitives that are used in this paper for estimation
are given in the following Table. These figures are mainly taken from the thesis
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of Poschman (http://eprint.iacr.org/2009/516.pdf) to have a fare comparison
with PRESENT. Note that, NAND8 does not exist in those libraries. But ATL
60 and ATLS60 series datasheet shows that a NAND8 gate needs 3.5 times the
site count of a NAND2 gate. The datasheet can be found in the following link:
http://www.datasheetcatalog.org/datasheet/atmel/DOC0388.PDF. So, I think
we can safely assume that if the support of NAND8 gate is provided in the li-
brary used in PRESENT, the gate equivalent count will be 4. If the reader is
not convinced with that assumption, the error margin is really less. We have
only three NAND8 gates in the compact circuit. In the worst case, the NAND8
gate will require 7 GE by combining 2-input NAND gates. In that case, the gate
equivalent count of compact hardware mode will be 138+3(7-4)=147.

Table 4. Gate Vs Gate Equivalent Count

Gate GE Gate GE Gate GE Gate GE

NOT 0.67 NAND, NOR 1 2:1 MUX 2.33 NAND8 4

XOR 2.67 AND, OR 1.33 2-input FF 6

8.3 A Note on Permutation of Halka

Halka uses a random permutation with a constraint that each bit in the input
S-box affects a different S-box in the next layer. This could have been achieved
by the following permutation which is easy to describe and easier to implement
in software.

si8∗j+k → si8∗k+j , ∀j, k ∈ (0, · · · , 7)

Now observe the following with respect to the above permutation layer (thanks
to an anonymous referee). The state of input differences: (00, 0x7F, 0x7F, · · · , 0x7F )
results in the identical state of output differences (00, 0x7F, 0x7F, · · · , 0x7F )
and hence is invariant with respect to the permutation. Similarly, for the state
(0x80, 00, · · · , 00). Depending on the exact structure of the S-box this may be
exploited to build iterative trails. For example, if the differentials (0x7F → 0x80)
and (0x80 → 0x7F ) both have non-zero probability with respect to the S-box,
one can construct the following 4-round iterative trail:

0x8000000000000000 = Input XOR difference to round 1
[S-LAYER]
0x7F00000000000000
[P-LAYER]
0x0080808080808080
[S-LAYER]
0x007F7F7F7F7F7F7F
[P-LAYER]
0x007F7F7F7F7F7F7F
[S-LAYER]
0x0080808080808080
[P-LAYER]
0x7F00000000000000
[S-LAYER]
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0x8000000000000000
[P-LAYER]
0x8000000000000000 = Output XOR difference after round 4
But, for the specific S-box in Halka, both the above differentials have zero

probability and hence this trail is not possible. However, this could be easily
extended for any pair of values from the following two sets (0x80, 0x40, 0x20,
0x10, 0x08, 0x04, 0x02, 0x01) and (0x7F, 0xBF, 0xDF, 0xEF, 0xF7, 0xFB, 0xFD,
0xFE). We don’t have any LFSR based S-box using all the seeds with all the
primitive polynomials of degree eight where the differentials are zero for all the
pairs above.

The current permutation of Halka is such that such trails cannot be con-
structed. We did not find any such trail with the current Halka permutation.
But we keep this section to let the cryptanalysts know about this and explore
this further for the cryptanalysis of Halka.


