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Abstract
Encryption and compression are frequently used together in both network and storage sys-

tems, for example in TLS. Despite often being used together, there has not been a formal
framework for analyzing these combined systems; moreover, the systems are usually just a sim-
ple chaining of compression followed by encryption. In this work, we present the first formal
framework for proving security in combined compression-encryption schemes and relate it to the
traditional notion of semantic security. We call this entropy-restricted semantic security. Addi-
tionally, we present a new, efficient cipher, called the squeeze cipher, that combines compression
and encryption into a single primitive and provably achieves our entropy-restricted security.

Keywords. Compression, Encryption, Secure compression, Entropy, Provable security

1 Introduction
Individuals and organizations are producing and retaining data in volumes that are unprecedented.
One technique widely used to reduce the footprint of the data is to simply filter it through a
compression algorithm before trasmission or storage. Indeed, many popular file systems utilize
transparent file compression, including Microsoft’s NTFS [23], Apple’s HFS+ [1], and Oracle’s
ZFS [26]; additionally, both the standard internet protocol HTTP [9] and Google’s own SPDY [12]
support compression. Concurrent with the accumulation of mountains of data, thefts of the data
have been increasing in frequency, sophistication, and aggression. Encryption plays a key role in
securing the data from these attacks both while at rest (e.g., in NTFS, HFS+, and ZFS) and while
in transit (e.g., TLS [8] and SPDY), and applying compression before encryption is a natural choice.
However, since compression changes the characteristics of the text being encrypted, we must take
care to precisely describe and analyze the security provided by the combination of these primitives.

Unfortunately, there are some drawbacks to combining compression and encryption together
in a naïve fashion. Firstly, without the creation of special constructions merging compression and
encryption, the system must perform two passes over the data: compressing then encrypting. It
would be ideal to achieve a compressed and encrypted output in a single pass over the data. While
the compression and encryption could be set up to operate in parallel (i.e., data is encrypted in a
streaming manner as it comes out of the compression routine), there is still “twice” the amount of
work being done. Though it seems that current systems employing compression and encryption are
not achieving optimal efficiency, more troubling, by combining these primitives together it becomes
impossible to achieve semantic security. Specifically, in the standard security game, the advesary A
is permitted to select any two messages to be encrypted; thus, A may simply select one to consist
entirely of 0’s and select the other uniformly at random. With overwhelming probability, these
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will compress to different lengths and hence produce ciphertexts of different lengths, making them
trivially distinguishable. In addition to this, it has been observed in [16] that the compressibility
of a file is a side-channel leaks non-trivial information about the file itself, giving hints about both
the content and the interal structure of the file. See [16] for a full discussion of the information
leakage of a general composition of compression and encryption and [27] for a real-world exploit
using this side-channel.

Contributions. Our contributions to this topic are several. First, in this work we present the first
formal definition of security for combined compression-encryption systems, generalizing semantic
security in a natural way to apply to compressing ciphers. Futhermore, this definition readily
extends to provide definitions for both adaptive and non-adaptive chosen-ciphertext security. In
addition, we provide a novel construction for a compressing cipher that provably achieves our new
security definition and is both theoretically and practically efficient.

Organization. The remainder of this paper is organized as follows. In Section 2, we provide
preliminary definitions for the tools that will be used throughout this work. Section 3 details
our construction for secure compression called the squeeze cipher. Section 4 provides a detailed
security analysis of the squeeze cipher proving that it achieves the claimed level of security. Section 5
provides a brief experimental evaluation of the cipher showing its practicality. And finally, before
we conclude, Section 6 provides a high-level overview of previous work on secure compression.

2 Preliminaries
Notation. We denote the security parameter by λ and the empty string by Λ. Let PPT stand for
probabilistic polynomial-time. If Alg is a PPT algorithm, let [Alg(π)] denote the set of all possible
outputs of Alg when run on parameters π. Let x R← S denote sampling x from the set S uniformly
at random. Let ◦ denote concatenation and l(s) and |s| the length of a string s. Let C be the space
of ciphertexts andM the space of messages. Let P(n) be the set of all permutations of {0, 1}n.
2.1 Basic Definitions
First, we provide a definition of data compression. Roughly, data compression is an encoding of
a sample from a data source such that, on average, an encoded message is no longer than the
original data. We concern ourselves with being shorter on average as it is not possible to achieve
compression in all cases since, for example, there are 2k k-bit binary strings and only 2k− 1 strings
of length less than k.
Definition 1. Let M ⊆ A∗ be a space of messages over alphabet A with associated probability
distribution D overM. An encoding forM is a map C :M→ {0, 1}∗. An element in the image
ofM is a codeword. If any sequence of codewords can be parsed unambiguously, then C is called
uniquely decodable. �

We only consider uniquely decodable codes. Let p(a) be the probability of sampling a from
M according to D. The average length of a code is defined as, L(C) =

∑
m∈M p(m)l(C(m)).

Hopefully, we have that L(C) ≤
∑
m∈M p(m)l(m). If this holds, then we will just refer to C as

a compression function. We call the associated inverse map from the set of codewords to M the
decoding function and denote it with D. If C is a compression function, then we will call D the
decompression function.

We define a keyed compression function to be a compression function that takes an additional
parameter k, such that k is required to correctly decompress the input. Any plain compression
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scheme trivially satisfies this definition by having the key-generation algorithm K always output ⊥
and by letting C and D be the usual compression and decompression functions. Of course, such a
set up gives little, if any, privacy. Note, also, that any length-preserving cipher also satisfies this
definition since the identity function is a valid compression function.
Definition 2. A keyed compression function over a message spaceM⊆ A∗ is a triple of (possibly
probabilistic) polynomial-time algorithms (K, C,D) where,
• K takes as input 1λ and outputs a key k.
• C is a compression function that takes as input a key k and a plaintext m ∈ M and outputs
a (compressed) ciphertext c ∈ {0, 1}∗.
• D takes as input a key k and a ciphertext c ∈ {0, 1}∗ and outputs the plaintext m ∈M∪{⊥}.

We require that for all k ∈ [K(1λ)], for all m ∈M, D(k, C(k,m)) = m. �
As part of the construction of our compressing cipher, we will use a pseudo-random permutation

(PRP) as part of a key-derivation process that incorporates a nonce (or initialization vector) into
each encryption. Let Of be an oracle for the function f(k, ·) (where k ← {0, 1}λ). We do not give
the adverary A access to an oracle for f−1 and hence only require a “weak” PRP. The cryptographic
definitions used and the security analysis performed in this work will be concrete, but for simplicity
we will often omit the exact security of a given primitive.
Definition 3. A keyed permutation f : {0, 1}λ × {0, 1}n → {0, 1}n is (t, q, ε)-indistinguishable, if
for all PPT distinguishers D running in time t and making q queries to Of , successfully distinguishes
f from a permutation p chosen uniformly at random from P(n) with probability at most 1

2 + ε. �
If we relax the restrictions on D and only require that t and q be polynomially-bounded, then

if ε is negligible, we say that f is computationally indistinguishable from a random permutation, or
just computationally secure.

We also utilize a pseudo-random generator G in our compressing cipher to help randomize the
compression and decompression functions. Since we would like our scheme to be able to encrypt
multiple messages, we require the PRG to have a fresh seed for each encryption. Normally, a
distinguisher D for G is given a string s of length at most b from an oracle O and must guess whether
s is random or pseudo-random. But, since we allow our adversary to make multiple encryption
queries we must have a PRG that is secure even if it is reseeded multiple times. Therefore, we allow
D to issue “reseed” requests to O. If O is simply G, then it is initialized with a new random seed
and a new sample is given to D. If O produces random bits, then D is just given a new random
string.1 A PRG that is secure in this setting we call reseedably-indistinguishable.
Definition 4. A PRG G is (t, r, b, ε)-reseedably-indistinguishable if for all PPT distinguishers D,
running in time t, making at most r reseed requests, and receiving at most b bits as input per
seeding, succeeds in distinguishing the output of G from random with probability at most 1

2 + ε. �
We will assume that G can produce a super-polynomial number of bits and that, in addition

to the sample s, D may request additional, subsequent bits from the output of G. For this reason,
in the rest of this work we will omit the b parameter. As before, relaxing the restrictions on D
and letting t and r be just polynomially bounded, if ε is negligible then we say that such a PRG is
computationally secure. Note that requiring that a PRG be reseedably-indistinguishable does not
significantly change its strength. In Appendix A we formally prove the polynomial-equivalence of

1This models typical reseeding of a PRG in practice, i.e., generate a random new seed and forget the old one.
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reseedable-indistinguishability and standard indistinguishability through a straightforward hybrid
argument. We summarize this result with the following lemma.
Lemma (Indistinguishability Equivalience). Let G be a (t, b, ε)-indistinguishable PRG, then G is
(εr2, r + 1, b, t− r)-reseedably-indistinguishable.
2.2 Entropy-restricted Semantic Security
In considering the security of combining compression and encryption together, as stated before, it
is not possible for a such a system to be IND-CPA secure. In particular, since the adversary A may
choose arbitrary challenge messages, it can select a high-entropy m0 and a low-entropy m1. With
these, a keyed compression function will likely produce a much shorter output for m1 than for m0,
allowing A to easily distinguish them.

Instead of IND-CPA security, we aim for an entropy restricted variant. Specifically, we restrict
A so that m0 and m1 must both come from the same class of messages C ⊂ M. A scheme is secure
relative to a class C if the encryptions of any m0,m1 ∈ C are indistinguishable. For example, if
C = M, then we have normal semantic security. Letting C be a keyed compression function, we
can define Cl1,l2 = {m ∈ M : l1 ≤ |C(m)| ≤ l2}, i.e., m0 and m1 compress to lengths within a
fixed range. This can be extended to all of M, partitioning the message space into equivalence
classes—where two messages are equivalent if their encryptions are indistinguishable. Note that,
given a scheme that is secure when l1 = l2, we can extend it to the case where l1 < l2 by simply
adding random padding until all ciphertexts have length l2.

We define entropy-restricted IND-CPA security via a game. The game is nearly identical to the
game for IND-CPA security, but we change the requirement on the challenges to be m0,m1 ∈ C,
for some class C ⊂ M. Define SuccER-CPA

Π,A,C (1λ) to be the probability that an adversary A succeeds
in the ER-CPA game for class C. Similarly, define AdvER-CPA

Π,A,C (1λ) = |SuccER-CPA
Π,A,C (1λ)− 1

2 | to be the
advantage of A in the ER-CPA game.
Definition 5. We say that a symmetric cryptosystem Π = (Gen,Enc,Dec) is (t, q, ε)-entropy-
restricted CPA secure for a class of messages C ⊂ M, if for all PPT A running in time t and
making at most q queries to the encryption oracle O, AdvER-CPA

Π,A,C (1λ) is at most ε. �
If t and q are both polynomially bounded, and ε is negligible, then we simply say that Π is

ER-CPA secure. Stronger definitions of security are possible including analogous definitions for
entropy-restricted versions of IND-CCA-1 and IND-CCA-2 security (called ER-CCA-1 and ER-
CCA-2, respectively). We will use only ER-CPA security in this work. For simplicity we will only
consider the classes of messages Cl1,l2 where l1 = l2, since a scheme secure for those classes can
be extended to a scheme that is secure for l1 < l2. Note that any IND-CPA secure cryptosystem
combined with a compression pre-processing step is automatically ER-CPA secure. Specifically, if
A breaks the ER-CPA security of the scheme, then we can construct B which takes each query
q made by A, compresses it, and then queries its own oracle. When A outputs its challenges m0
and m1, we know that the compressed lengths are equal and so, once compressed, they are valid
challenges for B to use. Analogous reductions show that an IND-CCA-1 and IND-CCA-2 secure
ciphers are ER-CCA-1 and ER-CCA-2 secure (respectively).

Even though ER-CPA security and its variants are new definitions of security, they relate in a
simple way to the standard definitions. Firstly, as shown above, being secure in the usual sense
implies security in our entropy-restricted context. Secondly, there are many results constructed
from IND-CPA/CCA-1/CCA-2 primitives, but, crucially, few of these results depend on the length
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Algorithm 1 The LZW compression algorithm.
Input: Character stream I
Output: Stream of table indices

Initialize table T to contain all single-character strings.
prefix← Λ . The current prefix of the input
i← number of single-character strings . The index of the first free entry in T
while there is more input in I do

Read next character c
if prefix ◦ c in T then

prefix← prefix ◦ c . Extend prefix with c and continue processing input
else

Output index of prefix in T . prefix ◦ c not in T : add it to T
T [i]← prefix ◦ c
i← i+ 1
prefix← c . Continuing processing the input starting at c

if prefix 6= Λ then . Output index of the remaining input
Output index of prefix in T

of the input message. Thus, many of these results also hold when considered in the context of ER-
CPA/CCA-1/CCA-2 security. This is intuitively true since the restriction that challenge messages
have the same length is to ensure that the ciphertexts have the same length, i.e., the length of
the object given to A does not divulge information about the input message. As an example, the
results on ciphertext unforgeability in [15] also hold in our entropy-restricted context.
2.3 LZW Compression
In [31], Welch proposed a modification of the older LZ78 compression algorithm [38]. The proposed
algorithm, known as LZW, is a dictionary-based compression algorithm where the dictionary is
constructed as the input is processed. The dictionary D starts with all single-character strings. At
each iteration, the next characters are scanned and the algorithm matches the longest prefix of the
input p that is in D, (i.e., p ∈ D but p ◦ c 6∈ D, where c is the next character). The index of p
in D is output and the string p ◦ c is added to D. The algorithm then repeats the process on the
remaining input starting with the next character c. This is shown in Algorithm 1.

Decompression works in much the same way but process indices instead of characters: reading
in the next index, looking up the corresponding entry in D, and outputting the string s. It then
takes the first character c of s and appends it to the previous output string s′, inserting s′ ◦ c into
D. Decompressing is detailed in Algorithm 4 in Appendix B. Note that there is a special case in
decompression: the input may contain the string c ◦ p ◦ c ◦ p ◦ c, where c ◦ p is already in D. The
compression algorithm will match c ◦ p and insert c ◦ p ◦ c into D, then match c ◦ p ◦ c and output
its index. But, at the receiver, the second index refers to an empty entry in D. Since we assume
no errors in the input, we know that if the index points to the next available cell (where the new
entry will be placed), then we are in this special case. However, if the index does not point to the
next available cell then the data has been corrupted and we have a decoding error.

The table used can be of fixed size or it can grow dynamically. The former requires either some
sort of deterministic eviction policy or freezing the dictionary when it becomes full. Growing the
dictionary dynamically requires that the encoder and decoder grow the table at the same time.
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Figure 1: LZW compression (left) compared with the squeeze cipher (right).

Typically, the table is doubled in size (and outputs become one bit longer) when an entry fills the
table. This approach is most common as it gives better compression, using fewer bits early on in
the encoding process. Note that our cipher is compatible with any dictionary management scheme
that is not dependent on the order of the entries in the dictionary (e.g., least-recently-used).

3 Squeeze Cipher
To turn the LZW algorithm into a cipher, we change the management of the dictionary D and
randomize it. Briefly, we randomize the layout of D using a PRG and then incrementally re-
randomize it while encrypting the input message (to ensure that we do not simply have a fancy
substitution cipher). As a first attempt, we could simply randomly permute D after each iteration.
This guarantees that each dictionary entry’s index is uniformly distributed, and the cipher easily
achieves perfect secrecy. However, this is quite inefficient as it requires O(n logn) bits and O(n)
time to generate and apply a random permutation to the dictionary.2 Thus, we would have at least
a factor of n slowdown in the speed of the cipher relative to the plain LZW algorithm.

To avoid this gross inefficiency, we only randomize the entry that was used and re-use the
remaining “unused” randomness. That is, each time an entry in D is used, it is swapped with
another (possibly empty) entry in D chosen at random. This leaves much of D untouched and
the unused randomness (i.e., the random positions of the other entries) can be re-used. When a
new entry is inserted, its position is chosen at random from the unoccupied cells (accomplished
by repeatedly sampling an index at random until an empty cell is encountered). Note that if the
dictionary is a random permutation of k out n elements, then selecting at random from the empty
cells produces a random k + 1 out of n permutation.

The number of times this sampling must be repeated depends on the load in the table (i.e.,
the ratio of occupied cells to the total number of cells)—denote the load in D by α. To keep the
number of samples small, with high-probability, we put an upper bound on α, call this β. With
high-probability, there will be at most a logarithmic number of samples, but on average, there
will be a only constant number (i.e., 1/(1− β)). Note, however, that by leaving part of D empty,
we sacrifice some compressibility to achieve better speed. LZW, on the other hand, has no such
requirement and may use every entry in D.

At the start of encryption, an initialization vector iv is generated (e.g., via a counter) and used to
help seed the PRG G. Specifically, we apply a pseudo-random permutation f : {0, 1}λ × {0, 1}λ →
{0, 1}λ, where λ is the length of the IV, and compute the seed by fk(iv) = seed, where k is the secret

2The Fisher-Yates algorithm can generate a permutation of n elements in O(n) time [10].
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Algorithm 2 Squeeze cipher encryption.
Input: key kprp, input character stream I
Output: encrypted output stream O

InitSqueeze(kprp, iv, G, prefix, c, T )
while there is more input in I do . Start compressing and encrypting stream I

Read next character c
if prefix ◦ c in T then

prefix← prefix ◦ c
else

Output index i of prefix in T
RandomSwap(i, T ) . swap prefix with a random entry in T
RandomInsert(prefix ◦ c, T ) . insert prefix ◦ c randomly into T
prefix← c

if prefix 6= Λ then . Make sure we get any straggling input
Output index i of prefix in T

key. The IV is prepended to the output so that receiver can properly initialize G for decryption.
Note that since f is a PRP, the output of G seeded with seed is indistinguishable from its output
when seeded with a truly random seed.

The decryption algorithm is specified in Algorithm 5 located in Appendix C. It behaves much
as the original decompression algorithm in Algorithm 4 but with one subtle complication. Since we
are randomly inserting entries into D, we have to be more careful with the special case described
earlier, where prev = c ◦ s is sent followed by prev ◦ c = c ◦ s ◦ c.3 Here, instead of testing that the
received index k is equal to the next free index, we peek ahead at the pseudo-random index for the
next inserted entry (denoted r) and check if k = r. Note that this is not simply a matter of looking
at the next few pseudo-random bits. Since there can be a sequence of collisions during insertion
and the inserted entry may be evicted multiple times, we must find the final resting place of the
inserted entry by pre-computing the entire the random insertion procedure.

Efficiency. LZW compression is efficient, taking O(n) time (where n is the input size) since, with
a dictionary that performs constant time look-ups, it performs just a constant amount of work at
each step. For squeeze, the compression and decompression functions can also use these efficient
data structures for look-ups and processing the input/output characters. The primary different
between squeeze and LZW is the dictionary management where squeeze partially randomizes the
dictionary at each step with RandomSwap and RandomInsert. Assume that it takes O(1) time
for the PRG to produce a random index. Then, the RandomSwap step only takes O(1) time, but
RandomInsert could take more. Note that since the load in the dictionary is α ≤ β for some
bound β, and since each iteration of the while-loop is independent of the others, on average there
will be 1/(1 − β) iterations. Moreover, with high-probability there will be at most log1/(1−β) d
iterations, where d is the size of the dictionary (note that d < n). Thus, we have that both
encryption and decryption take O(n log d) time with high-probability.

3Recall that, technically, we receive an index for an entry that is not yet defined (but will be next).
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Algorithm 3 The InitSqueeze and RandomInsert functions.
function InitSqueeze(kprp, iv, G, p, c, T )

Generate fresh iv
Compute seed = fkprp(iv)
Initialize G with seed
p← Λ, c← Λ
Initialize table T
for each single character string s do

RandomInsert(s, T )

function RandomInsert(s, T )
Choose a random index r in T
while T [r] 6= Λ do

Choose a new random index r in T
T [r]← s

function RandomSwap(i, T )
Choose a random index r in T
Swap T [i] and T [r]

4 Security
In this section we prove the ER-CPA security of the squeeze cipher. We proceed by first proving
two lemmas that establish two loop-invariants for the encryption and decryption; then we will prove
the main theorem that squeeze is ER-CPA secure. The security of squeeze hinges on the random
permutation of the dictionary entries. Intuitively, if the entries are randomly permuted, then an
adversary observing the output cannot derive any correlations between the output indices and the
input strings. In our construction, we are outputting a sequence of dictionary entries and in so
doing, we provide glimpses into the internal ordering of the entries in the dictionary. The goal of
each of RandomSwap and RandomInsert is to restore the random permutation.
Lemma 1. Given a random k permutation of n elements, if we reveal an arbitrary entry, applying
RandomSwap to that entry produces a random permutation of k out of n elements.

Proof. Given a k out of n permutation, there are n!/(n−k)! possible permutations. After revealing
one entry, we now have a k − 1 out of n − 1 permutation, giving (n−1)!

((n−1)−(k−1))! = (n−1)!
(n−k)! possible

permutations. RandomSwap selects an element uniformly at random from the n possible positions
(including empty positions) and swaps it with the revealed element. Each of the n possible swaps
produces a unique configuration, giving a total of n (n−1)!

(n−k)! = n!
(n−k)! possible permutations. Note

that the k − 1 out of n − 1 permutation is uniformly distributed, and since the swap is uniformly
distributed among n possibilities, the final k out of n permutation is uniformly distributed.

Thus, RandomSwap restores the k out of n permutation after each invocation. As a corollary,
this ensures that if we stop inserting elements into the dictionary (i.e., when it is full) but keep
calling RandomSwap at the appropriate time, then we will maintain the security of the scheme.
Now we prove that adding an element to the dictionary through RandomInsert produces a random
permutation on the entries.
Lemma 2. Given a random k permutation of n elements, RandomInsert produces a random
k + 1 out of n permutation of the elements.

Proof. Note that we are given a k out of n permutation that is uniformly distributed. RandomIn-
sert selects a position at random from the n − k remaining positions and inserts the new entry
there. This gives a total of (n−k) n!

(n−k)! = n!
(n−k+1)! possibilities, which is exactly the number of k+1

permtuations of n elements. Note that since the original permutation was uniformly distributed, as
was our selection of the new position, the resulting permutation is also uniformly distributed.
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Thus, we have the after each iteration of the encoder or decoder, the positions of the dictionary’s
entries form a random k out of n permutation. Now we prove that the squeeze cipher is ER-CPA
secure. Squeeze is, at its most basic level, a PRG integrated into the LZW compression algorithm
with a PRP for session key derivation. This simple combination gives us straightforward proof of
security whereby we can reduce ER-CPA security to the indistinguishability of the PRG and the
PRP. Moreover, this reduction is tight. In the proof, for simplicity, we assume all encryption oracle
queries take time at most te. Let C(G, f) denote squeeze instantiated with PRG G and PRP f .
Theorem. Let G be a (t1, r, ε1)-reseedably-indistinguishable PRG that takes seeds of length λ,
and let f be a (t2, r, ε2)-indistinguishable PRP over {0, 1}λ. Then the squeeze cipher C(G, f) is
(t′, r − 1, δ)-ER-CPA secure where t′ = min{t1 − rte, t2 − rte} and δ = 2(ε1 + ε2) + r(r−1)

2λ+1 .

Proof. Suppose A can break the ER-CPA security of squeeze and that f is a truly random function.
Consider the following distinguisher D for G using A as a subroutine with access to a PRG oracle
O. On input 1λ, D runs A and for each query message m from A, D simply requests a re-seeding
of O, generates a unique iv, and then encrypts m following the specification of the squeeze cipher.
When given the challenge messages m0 and m1, D selects a random bit b, encrypts mb to produce
cb and gives cb to A. When A outputs its guess b′, D outputs 1 if b′ = b, and 0 otherwise.

Note that we do not use an initialization vector for generating the seed for the PRG in O since
the seed is chosen uniformly at random and, thus, is distributed identically to f(iv), when using a
fresh iv for each encryption. Now, if the bits given to A are random, then the possible encryptions
of m0 and m1 are identically (and uniformly) distributed, so A’s success probability is exactly 1

2 . If
the bits are pseudo-random, then A succeeds with some advantage δ, giving D a success probability
of 1

2 + δ
2 . Since G is (t, r, ε1)-indistinguishable, we have that δ ≤ 2ε1, there were at most r − 1

reseedings, and the running time of A is t′ = t1 − qte.
We remove the assumption that f is a random function (RF) by first replacing f with a random

permutation (RP). Note that for any distinguisher D̃, the only way to distinguish an RP from an
RF is to find a collision in the latter. Thus, D̃ has an advantage of at most q(q− 1)/2λ+1, where q
is the number of oracles queries and λ is the function output size. So the advantage gained by any
adversary against squeeze is at most µ = r(r−1)/2λ+1, where r is the number of reseeding requests.
Replace f , now, with a PRP and consider the following F given access to an oracle Of that may be
an RP or a PRP. If F believes Of to be a pseudo-random, then it outputs 1, otherwise it outputs
0. F runs A, and for each query m, F generates a fresh iv, queries Of (iv) = s, and then encrypts
m in the normal way using the PRG G. This process repeats for the subsequent queries and the
challenge messages. Eventually, A outputs a guess b′; if b′ = b, F outputs 1, else it outputs 0.

If Of is a random permutation, then A’s success probability is at most 1
2 + µ + 2ε1, which

implies that F is incorrect with the same probability. If Of is a PRP, then A’s chance of success
is at most δ greater than 1

2 + µ + 2ε1, for some δ. This gives a total success probability of
1
2(1

2 −µ− 2ε1) + 1
2(1

2 +µ+ 2ε1 + δ) = 1
2 + δ

2 . Since f is a (t2, r, ε2)-indistinguishable, we know that
δ/2 ≤ ε2. This implies that A’s advantage in distinguishing m0 from m1, when G is a PRG and f
is a PRP, is 2(ε1 + ε2) + µ. Note that the number of encryption oracle queries is exactly equal to
the number of reseedings of G, and is thus upper-bounded by r. Finally, we have that F ’s running
time is upper-bounded by t2, so A’s running time is upper-bounded by t2 − rte.

Corollary. Let G be a computationally secure, reseedably-indistinguishable PRG that takes seeds of
length λ, and let f be a computationally secure PRP over {0, 1}λ, then C(G, f) is ER-CPA secure.
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Figure 2: Chart comparing squeeze with 12-bit and 16-bit indices to standard compression algo-
rithms. Lower numbers indicate better compression.

Attacks on Squeeze. The proof of security for squeeze given above is a straightforward reduction
to the security of the PRG and the PRP. Note however, that this theorem guarantees the privacy
of the scheme, but says nothing about its resilience to more powerful attacks or misuse of the
cipher. The security of squeeze hinges upon the uniqueness of the initialization vector iv. Reuse of
an IV will cause two (or more) ciphertexts to have the same dictionary randomization and would
be vulnerable to known-plaintext attacks. Indeed, repeated use of an IV turns squeeze into a
fancy substitution cipher. Correlations among the IVs are allowed since the PRP will send them to
different, pseudo-random outputs. However, if the PRP is weak, correlated IVs may have correlated
outputs and weaken the security of the PRG.4

Squeeze is also vulnerable to chosen-ciphertext attacks. In particular, given the encryption c
of a challenge message mb, an attacker A can flip bits in c to produce another ciphertext c′. Since
the dictionary is laid out randomly with load α, any manipulated portion of the ciphertext has
a probability ≈ α of begin valid. As long as α is non-negligible, c′ is likely a valid (and unique)
ciphertext that may be given to a decryption oracle. If c′ is produced by manipulating the tail of
c, then the uncorrupted portion of c′, once decrypted, will share a prefix with mb. This is foiled if
α is negligible (e.g., < 2−128), since any corruption will almost certainly result in an invalid index
and a decryption failure. But then the table is almost completely empty and the compression ratio
will suffer greatly; indeed, all but the largest of inputs will certainly expand.

5 Experiments
In this section we provide a summary of experiments evaluating the compressibility and speed of
the squeeze cipher as compared to LZW and the standard algorithms gzip and bzip2. The test
data used is the Canterbury corpus from [25]. It is a standard corpus of documents for testing
lossless compression algorithms and includes many different test files. We compare the algorithms
on a subset of the corpus: a text file of random digits, the Bible, a segment of E.coli DNA, a
snapshot of the CIA World Fact Book, the first million digits of π, and a C source file. These files
highlight the varying performance of the algorithms on different inputs. The tests were performed
in a on a 2.6GHz, Intel Core i5 processor with 4GB of RAM running Arch Linux. We consider two
possible dictionary sizes for squeeze, 212 entries and 216 entries—denoted squeeze-12 and squeeze-16
respectively; both use the Salsa20 stream cipher as the PRG [3]. In each, the load is at most 0.5,

4PRG security guarantees assume that the seeds are independent and random, so correlated seeds may produce
weakened streams. See [14] for an analysis of this problem and constructions secure against malicious inputs.
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Figure 3: Charts comparing the speed of compression (left) and decompression (right) in squeeze
to standard compression algorithms and LZW. Numbers are in megabytes per second.

and once the dictionary is full no entries are added or removed. Each of gzip and bzip2 are run at
their default compression levels and the executables were compiled with gcc with the -O2 flag.
Compression Ratio. The compression ratio is defined as the (compressed) output size divided
by the (uncompressed) input size. A smaller number signifies better compression. We can see
in Figure 2 that the compression ratio achieved by squeeze-12 and squeeze-16 is comparable to
that of the other algorithms. On some data squeeze is quite competitive, while on other data it
does relatively poorly. Part of the poor performance is due to the dictionary management. If
the dictionary fills up, then the algorithm can no longer adapt to the input and will provide poor
compression if the characteristics of the data change. An example where this does not matter is on
the E.coli test data. The DNA of E.coli consists of only a few characters and contains many of the
same patterns throughout—i.e., it all “looks” the same. However, with the C source code, squeeze
does not perform well since code does not exhibit as much regularity as, say, English text.
Compression Speed. In Figure 3, we compare the compression and decompression speeds of
squeeze with those of gzip, bzip2, and lzw. Again we compare both 12-bit and 16-bit indices for
squeeze and lzw, and use gzip and bzip2 at their default compression levels. The load of the table
in squeeze was kept to 1

2 , but lzw was given a maximum load of 1 since there was no need to keep
its table partially empty. Each of lzw, gzip, and bzip2 perform compression followed by AES in
CBC mode. The second three files are the “large” files from the Canterbury corpus, allowing us to
measure the steady-state of the algorithms. Each value in the table is the average of 10 runs.

In general, both squeeze and lzw greatly out-perform bzip2 in both compression and decompres-
sion (with one exception). However, their performance compared to gzip varies greatly. In many
cases gzip has the fastest decompression speed, except for the E.coli input file—which is clearly
where lzw and squeeze perform the best. The high speeds achieved by lzw and squeeze are due to
the simple dictionary management scheme. Namely, they both freeze their dictionary when it is
full, and can thereby boost the speed of the inner loops. This is further evidenced by the fact that
gzip greatly out-performs both algorithms on the small file fields.c. Note that this also explains
why squeeze is able to out-perform lzw on files such as fields.c: namely, its dictionary fills up ear-
lier. Overall, however, we can see that squeeze is, indeed, a practical keyed compression algorithm,
capable of achieving speeds comparable to standard algorithms with mature implementations.

6 Previous Work
Compression has featured as an important part of many schemes, being used as a pre-processing step
before encryption. Several popular compression schemes include encryption as a post-processing

11



step, including WinRAR, WinZIP, and PKZip. WinRAR uses AES-128, while WinZIP uses a
combination of AES-128/256 and HMAC-SHA-1, but has several weaknesses detailed in [18]. PKZip
used a custom stream cipher that was broken in [4] (the attack was improved in [30]). Looking
at the security implications of compression, in [16] the author points out that adding compression
as a pre-processing step for encryption can weaken security. For example, when using an adaptive
compression algorithm, if an adversary knows a prefix of the input (e.g., packet headers), he can
use the overall compressibility to learn partial information about the unknown portion. This was
later demonstrated in an attack on TLS that can steal HTTP session cookies [27].
Huffman Codes. In [11], the authors analyze the difficulty of decoding a Huffman encoded file
without having the prefix tree used to encode the file. They focus on unambiguously decoding
the file, which is shown to not be possible in certain situations. However, they do not consider
partial partial recovery of input file, and, indeed, it appears that many files can be partially (but
not necessarily fully) decoded. In [34], the authors use Huffman encoding with multiple encoding
trees, where an optimal tree is generated and then mutated to produce different trees. They use a
secret, random ordering of the trees to encode the input symbols.
Burrows-Wheeler Transform. The Burrows-Wheeler transform, first described in [5], is an
invertible partial-sorting algorithm that permutes the input characters so that identical characters
are (roughly) grouped together. The authors then utilize move-to-front encoding followed by Huff-
man encoding to compress the data (bzip2 is the most popular implementation [28]). In [19] the
author modifies the Burrows-Wheeler transform by using a secret, randomly chosen ordering of the
input alphabet. The move-to-front encoding uses a separate, secret ordering of the alphabet. This
algorithm was shown to be weak in [29], succumbing to both chosen and known plaintext attacks.
LZ-based Codes. In [35] the authors propose a secure compression scheme based on the LZW
algorithm similar to this work. They start with the initial dictionary randomly permuted and each
new entry is inserted at a random position. There are several drawbacks to this scheme. First,
they deal with collisions during insertion by evicting the occupying entry and moving it to the end
of the dictionary (extending the dictionary by one entry). When the dictionary is full—which can
happen since they use finite-length indices—this can evict one of the single-character strings from
the dictionary and cause encoding to fail. Second, their construction does not re-randomize an
entry after using it. So, as long as an entry is never in a collision, the corresponding string always
maps to the same output index, turning the scheme into a substitution cipher.

In [36], the authors propose another secure LZW algorithm using a randomized dictionary.
They start by randomly permuting the initial dictionary and use a keyed hash function to insert
subsequent entries into a random position. After encoding a string, they apply a random partial
permutation to the dictionary. There are a few short comings of this algorithm. Firstly, it is
never stated how collisions are handled when an insertion is performed: it is implicitly assumed
that there are no collisions. Secondly, their scheme is extremely vulnerable to chosen plaintext
attacks as detailed in [20]. Finally, the permutation step the apply after each encoding step is quite
expensive as it touches the entire dictionary, reducing the efficiency of the algorithm from O(n) to
O(nd) (where d is the size of the dictionary). In our construction, each encoding step is on average
constant time, and encoding and decoding take time O(n log d) with high probability.
Arithmetic Coding. Arithmetic coding works by dividing the interval [0, 1) into disjoint segments
whose lengths correspond to the probability of a particular symbol occurring in the input stream.
The algorithm reads an input symbol, sets the interval bounds to the end points of the symbol’s
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associated interval and then recurses on that interval. At the end of the input stream, the algorithm
has an interval that uniquely determines the sequence of input symbols and it outputs the shortest
element in that interval. The probability distribution, called the model, can be fixed or dynamic.

There have been several efforts to combine arithmetic coding with encryption. One example
is [17] where the authors split each interval into smaller segments and then permute them all
together. The work [37] provides a chosen ciphertext attack on this scheme that breaks output of
the encoder in time linear in the number of ciphertext queries. In [6], the authors present known
and chosen plaintext attacks against a simple arithmetic coder with a fixed and secret input model;
using b+ 2 chosen plaintext characters, they can recover the distribution with b bits of precision.

In [32], the authors present two schemes for secure adaptive arithmetic coding: in the first,
the key is the initial (random) model of encoder, while in the second the encoder starts with a
fixed model but ingests a random string before encoding any input. In [2] the authors give a
chosen plaintext attack on the first scheme that “floods” the encoder to force it into a known (and
decodable) state. In [21], the authors build on [2] giving key-recovery attacks on both schemes,
via adaptive chosen plaintext attacks. In [13], the authors propose a randomized encoder where
the partitions of the interval are randomly permuted at each step. Their scheme succumbs to a
chosen plaintext attack where the attacker probes the encoder with incrementally longer plaintexts
to learn the ordering of the intervals at each step. The scheme in [33] divides each symbol’s interval
into small subintervals, permutes them all together, and then encodes via a reverse application of
the skew tent map (shown to be equivalent to arithmetic coding in [22]).

7 Conclusion & Future Work
In this paper we have presented the first formal framework for analyzing combined compression
and encryption schemes and give an efficient construction that is provably secure in the framework.
There are several open questions with this work. First and foremost, the LZW algorithm is inher-
ently sequential in nature (and hence, so is squeeze). Developing a random access variant of the
squeeze ciphers would be synergistic with real-world uses of data. There exist both ciphers and
compression functions that allow random access, so there does not appear to be anything inher-
ently precluding a compressing cipher from also having this property. Moreover, allowing random
access implies parallelizability (at least in decompression), which would be a boon for use on multi-
core systems. Another question is whether or not these techniques can be adapted to alternative
compression paradigms. Here, we provided a construction based on a self-constructing dictionary,
alternatives include prediction by partial matching (e.g., [7]), grammar-based codes (e.g., [24]), and
integrating a variant of the Burrows-Wheeler transform. And of course, additional optimizations
in the compression and efficiency of the squeeze cipher are desirable.
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A Equivalence of Indistinguishability and Reseedable Indistin-
guishability

Here we prove the equivalence of normal indistinguishability for a pseudo-random generator and
our notion of reseedable-indistinguishability. Intuitively, these notions seem equivalent since a dis-
tinguisher D could always generate random seeds for the PRG G and look at its output. Moreover,
the distinguisher could also generate all the random bits it desires. So, reseeding the source of
input bits should give only a negligible benefit in distinguishing. We prove this below.
Lemma (Indistinguishability Equivalience). Let G be a (t, b, ε)-indistinguishable PRG, then G is
(εr2, r + 1, b, t− r)-reseedably-indistinguishable.

Proof. The proof proceeds via a standard hybrid argument. Suppose we have a distinguisher D
that makes r + 1 re-seeding requests and can distinguish the output of G from a random oracle
with probability at least δ. And suppose we have an input string s that may be the output of G
under a random seed or a random string. D outputs 1 if it thinks its input was the output of G
under random seeds and 0 otherwise.

Define Hi, where 1 ≤ i < r+1, be the distribution where the first i samples given to D are from
G using a random seed for each sample, the i+ 1-th sample be the input string, and all remaining
samples are random strings. Note that D can distinguish H1 from Hr+1 with probability at least
δ. So, there exists some 1 ≤ j < r + 1 where D can distinguish Hj and Hj+1 with probability at
least δ/r. We construct algorithm A to distinguish the output of G from random using D as a
subroutine.

First, on input 1λ and string s (where s← Db, with b
R← {0, 1}, D0 = Un and D1 = {G(s)|s←

Uλ}), choose a random index j between 1 and r (inclusive). Run D on input 1λ. For the first j
samples given to D, choose a random seed sk and give D the output of G(sk). For the j + 1-th
query, give D the input string s, and for all remaining requests, give D a random string. D then
outputs a bit b′, and A outputs it as well.

Note that the input given to D is from either Hj or Hj+1. With probability at least 1
r , the j

selected is then one where D successfully distinguishes the distributions with probability at least
δ/r. That is, D outputs 0 when its input is from Hj and 1 when its input is from Hj+1 with
with probability at least δ/r (in each case). This means that A succeeds with probability at
least δ/r2. Since G is (ε, t)-indistinguishable, we have that it is also (εr2, r + 1, t − r)-reseedably-
indistinguishable.5

5Note that we assume that generating a random string and generating G(s) for a random seed both take constant
time.
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B LZW Decompression
Algorithm 4 The LZW decompression algorithm.
Input: Sequence of indices I
Output: Stream of characters or the error symbol ⊥

Initialize table T to contain all single-character strings.
c← Λ . first character of next output string, initialize to empty
prev← Λ . the previously output string, initialize to empty
i← number of single-character strings
while there is more input in I do

Read next index k
if T [k] is defined then . k is a valid index

c← head(T [k]) . Take the first character of T [k].
T [i]← prev ◦ c . prev ◦ c was the value inserted after encoding prev.
i← i+ 1

else if T [k] is not defined and k = i then . Special case: original input was prev ◦ prev ◦ c
c← head(prev) . The first character of prev is c.
T [k]← prev ◦ c . We’re decoding prev ◦ c.
i← i+ 1

else
Output ⊥ and exit . decoding failed: invalid index

Output T [k] . Finally: output T [k] and update prev
prev← T [k]

Here we present the full algorithm for LZW decompression in Algorithm 4. Note that the
algorithm must handle the special case where the input contains the string c ◦ w ◦ c ◦ w ◦ c, where
c ◦ w is parsed first. In the compression algorithm, c ◦ w ◦ c is added next to the dictionary. But,
the decompressor cannot add this entry to the dictionary until it knows the first character of the
next string of the input. The special case handles this situation.
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C Squeeze Decryption
Algorithm 5 The squeeze decryption algorithm.
Input: key kprp, input stream of indices I
Output: output character stream O
Read iv from I

. Initialize PRG G, table T , and variables prev and c
InitializeSqueeze(kprp, iv, G, T , prev, c, m)
while there is more input in I do . Start decompressing and decrypting stream I

Read next index i
Compute the pseudo-random index r of the new entry . i.e., where the new prev ◦ c will be
if T [i] is undefined and (i 6= r or prev = Λ) then

Output ⊥ and fail . decoding failed: invalid index
. Skip these two tests on the first iteration

if T [i] is defined and i 6= r and prev 6= Λ then . i is valid and not part of a collision
c← head(T [i])
RandomInsert(prev ◦ c, T )

else if i = r and prev 6= Λ then . Special case: original input was prev ◦ prev ◦ c
c← head(prev)
RandomInsert(prev ◦ c, T ) . We’re decoding prev ◦ c and it will be in position r = i

Output T [i] . Finally: output T [i] and update prev
prev← T [i]
RandomSwap(i, T ) . Move prev to a random position
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