
Prover Anonymous and Deniable Distance-Bounding

Authentication∗
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Abstract

In distance-bounding authentication protocols, a verifier confirms that a prover
is (1) legitimate and (2) in the verifier’s proximity. Proximity checking is done by
running time-critical exchanges between both parties. This enables the verifier to
detect relay attacks (a.k.a. mafia frauds). While most distance-bounding protocols
offer resistance to mafia and distance frauds as well as to impersonation attacks,
only few protect the privacy of the authenticating prover.

One exception is the protocol due to Hermans, Peeters, and Onete developed in
2013, which offers strong privacy guarantees with respect to a Man-in-the-Middle
adversary. However, this protocol provides no privacy guarantees for the prover
with respect to a malicious verifier, who can fully identify the prover. Having in
mind possible verifier corruption or data leakage from verifiers to a centralized
server, we suggest that stronger privacy properties are needed.

In this paper, we propose an efficient distance-bounding protocol that gives
strong prover privacy guarantees even with respect to the verifier or to a cen-
tralized back-end server, storing prover information and managing revocation and
registration. Specifically, we formally model and define prover anonymity, a prop-
erty guaranteeing that verifiers infer only the legitimacy of the prover but not his
identity, and deniability, which ensures that the back-end server cannot distin-
guish prover behavior from malicious verifier behavior (i.e., provers can deny that
they authenticated). Finally, we present an efficient protocol that achieves these
strong guarantees, give exact bounds for each of its security properties, and prove
these statements formally.

1 Introduction

Distance-bounding protocols [BC93] were originally designed to counter relay attacks [DGB88]
in authentication protocols. In these attacks, an adversary uses two proxies to relay
messages between two devices (i.e., the prover and the verifier). The prover is typi-
cally a mobile device or an identification RFID tag. The verifier is usually a reader or
a terminal equipped with an internal clock and is either offline or connected to a back-
end server. Repeatedly measuring the time span of some round trips of lightweight
communication allows the verifier to check that the prover is within his vicinity. In-
deed, only the prover should be able to appropriately respond to the challenges sent
by the verifier during these rounds. Thus, distance-bounding protocols provide two
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functionalities: prover-to-verifier authentication and a prover proximity-check for the
verifier.

While the seminal paper on distance bounding by Brands and Chaum [BC93]
did not focus on the RFID setting, due to the lightweight nature of the distance-
approximation phase, distance-bounding protocols have been widely adopted in this
community. Most RFID distance-bounding protocols employ symmetric cryptography
(i.e., shared secrets between legitimate provers and the verifier) for efficiency reasons.
Unfortunately, most of these protocols do not (strongly) protect the privacy of the
provers against a Man-In-the-Middle (MIM) adversary and no protocol does so against
the verifier, who can directly identify and trace a prover through his secret. In addition,
most papers assume that there exists a list of trusted verifiers that is always accessible
to the provers. The fact that these verifiers are trusted (i.e., uncorrupted) and will not
trace provers is a very strong assumption. In addition, even if uncorrupted verifiers
might not trace provers, it is sometimes easier to gain access to the (static) verifier
– and his data – than to the (mobile) prover. This threat to privacy is magnified if
provers can be tracked by a centralized back-end server storing their credentials.

Besides the original protocol of Brands and Chaum, which uses public-key digi-
tal signatures, other distance-bounding protocols in the literature rely on asymmet-
ric primitives, such as the constructions due to Reid et al. [RNTS07], Bussard and
Bagga [BB05] and the more recent one of Hermans, Peeters, and Onete [HPO13] (which
we thereafter call the HPO protocol). Using public-key primitives is more promising
to obtain good privacy properties. Indeed, Vaudenay [Vau07] and Paise and Vaude-
nay [PV08] showed that it is impossible to achieve strong privacy guarantees by relying
only on symmetric primitives. Thus, we ask the following fundamental question, that
has not (to our knowledge) been so far treated in the literature.

• Can we design an efficient distance-bounding protocol providing strong security
guarantees, while preserving the prover privacy even against verifiers?

In this paper, we give a positive answer to this question by proposing an efficient
distance-bounding protocol, in which the prover is authenticated in a fully-private and
secure manner, such that even a MIM adversary controlling a verifier cannot trace
the prover. Our construction is a proof-of-concept that a protocol with such strong
security and privacy properties can be designed, and is targeted for computationally
stronger mobile devices than common RFID tags. In a nutshell, our scheme is an
extension of the HPO protocol [HPO13], which already provided very strong privacy
guarantees (i.e., narrow-strong and wide-insider-forward privacy – as defined by Vau-
denay [Vau07]) with respect to a MIM adversary. In fact, our construction achieves
better privacy guarantees (i.e., wide-strong privacy) both against a MIM adversary
and against an adversary that has access to the verifier’s full internal state. This pro-
tocol also provides the very strong property of prover deniability with respect to a
back-end server in possession of all the provers’ credentials.

More precisely, our contributions are threefold. First after having introduced
the preliminary notions in Section 2, in Section 3 we define the property of prover
anonymity, extending the (RFID) privacy model of Hermans et al. [HPVP11]. Our
adversary runs in three modes, depending on whether she personifies a MIM adversary,
an honest-but-curious verifier, or a malicious verifier. Second, in Section 4.2 we propose
a distance-bounding protocol building on the HPO protocol (outlined in Section 4.1),
in a setting in which an entity called the back-end server, handling prover creation

2



and revocation, provides an infrastructure enabling provers to authenticate simply as
a member of the set of legitimate users. Finally, in Section 4.3 we prove that our
construction inherits the near-optimal mafia-fraud and the distance-fraud resistances
(as outlined in Section 2), and the impersonation security of the HPO protocol, has
similar soundness and correctness guarantees, but provides better privacy properties,
even with respect to the verifier and to the back-end server. Specifically, our scheme
is wide-strong prover anonymous, and deniable with respect to the back-end server.

2 Preliminaries

In this section, we describe the system model, the problem statement, as well as the
security and privacy requirements.

2.1 System Model

We consider a (distance-bounding) authentication system with a single verifier V, a
set of provers P = {P1, . . . ,Pk} and a back-end server Srv.

The server Srv is offline most of the time and takes care of prover creation and
revocation. At every update of P, Srv updates the authentication information available
on a public board B. We associate Srv with one-time private/public key pair (z,Z),
used with an unforgeable signature scheme S = (SS.KGen, Sign,Vfy), and we assume
that the server can self-certify these keys.

Each prover Pi has a key pair (xi,Xi) for authentication. The public part Xi is
stored on B and updated by Srv. In contrast, the private1 part xi is known only by
the prover and Srv. In our security and privacy models, we give the adversary the
possibility to register insider provers, who share their private keys with the adversary.

The verifier has a private/public key pair (y,Y) used for authentication (e.g., a
static Diffie-Hellman key pair) and may also store auxiliary information in his internal
state.

The adversary has access to (1) the public information contained on the board B,
(2) the private information of the insider provers, and (3) for our prover-anonymity
and deniability models, to the full internal state of the verifier. The attacker can (1)
change the information on B, (2) corrupt provers (thus learning their non-volatile in-
ternal state), or (3) act as a MIM between provers and verifiers (this includes strictly
interacting with one party, or relaying/modifying messages between parties). Possible
objectives of the adversary could be to break the correctness of the protocol (e.g.,
causing a Denial-of-Service or DoS), to attack the security of the distance-bounding
authentication (e.g., by committing mafia or distance fraud, slow-phase prover imper-
sonation or impersonation in the presence of prover corruption, called soundness), or
to break the privacy of the prover (e.g., prover anonymity or deniability).

2.2 Problem Statement

Concretely, we are aiming for a protocol solving the following problems.

Problem 1 (Authentication problem). Prevent an illegitimate party from authenti-
cating to an honest verifier, while ensuring that legitimate parties always authenticate.

1In this paper, we use interchangeably the terms “private” and “secret” when referring to a key
that is not public.
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Problem 2 (Distance-Bounding problem). Prevent mafia and distance frauds, as well
as impersonation attacks.

Problem 3 (Privacy problem). Prevent MIM adversaries, (honest-but-curious or ma-
licious) verifiers, and even the back-end server from linking two prover authentication
sessions.

These problems are addressed in the literature in slightly different settings. Specifi-
cally, the formal model of distance-bounding security presented by Dürholz et al. [DFKO11]
defines mafia, distance, and (simulation-based) terrorist-fraud resistance, as well as
lazy-phase impersonation security for a single prover and a single verifier. This model
is used by many protocols [DFKO11, FO13a, HPO13, FO13b] as it is sufficiently formal
to give precise security bounds. In contrast, the notion of prover (MIM) privacy (in
authentication and distance bounding) must assume the existence of multiple provers
(and usually a single verifier). The privacy framework for (RFID) authentication due
to Hermans et al. [HPVP11], which we use in this work, considers many potentially
corrupted provers. Ideally, one should also account for multiple provers in distance-
bounding. While this is beyond the scope of this paper, the recent work of Boureanu
et al. [BMV13] makes a step towards generalizing distance-bounding security to the
multi-prover setting. However, this model is not compatible with the framework of
Dürholz et al.. As our protocol extends the HPO distance-bounding protocol, whose
properties are proved within the framework of Dürholz et al., we rely on the same
model in this paper.

To summarize, our objective is to develop a protocol based on a model using the
strong security requirements (correctness and soundness) of the multi-prover authenti-
cation framework of Hermans et al. while extending this model to capture our stronger
privacy requirements. We proceed by outlining the models we use in the following
subsections.

2.3 Correctness and Soundness

Authentication protocols must respect two security properties: namely, correctness and
soundness [Vau07, HPVP11]. Hence, a legitimate prover should (almost) always be
authenticated by an honest verifier (correctness). This implicitly rules out transmission
errors. Meanwhile, no adversary, interacting arbitrarily with the verifier and any
corrupted prover, should be authenticated as an honest (i.e., non-corrupted) target
prover by an honest verifier (soundness).

These definitions do not capture the fact that the adversary can interact with
the public board B. Thus, we updated them to take this aspect into account in the
following manner (the formal security definition is given in Section 3).

Definition 1 (Extended Correctness). A legitimate prover should be (almost) always
be authenticated by an honest verifier, even in the presence of an adversary that can
change the board in a way that is undetectable by both the prover and the verifier.

An adversary can change the information on the board B, but if this is detected
by the prover or the verifier, they abort the protocol execution. We disregard attacks
in which the adversary changes B to deny the prover the possibility to authenticate,
assuming sufficient redundancy of the board. In contrast, if the prover and verifier
cannot detect the adversary’s changes, the two parties will engage in an authentication
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process that will fail. Such DoS attacks are a real threat and must be included in our
model. Thus, we give the following definition of extended soundness.

Definition 2 (Extended Soundness). No adversary, having (unregistered) insider
provers and interacting arbitrarily with the verifier, the board, and corrupted provers,
should be authenticated as legitimate by an honest verifier.

This definition of extended soundness is very strong. To achieve this goal, as well
as strong privacy guarantees, we have to make two security assumptions. First, the
server Srv is assumed to revoke all corrupted provers upon corruption, which implies
that it must be informed whenever the prover token is stolen or damaged. Another
way of seeing this assumption is that the adversary plays a two-phase game: initially,
in phase (1) she can corrupt any provers at will (without their being revoked), but she
does not win if she authenticates on behalf of any provers, corrupted or not; in phase
(2) she cannot corrupt provers, but she wins if she authenticates successfully. Before
phase (2) starts, the server is assumed to revoke all the corrupted provers. Thus, esen-
tially, we assume that the adversary can do anything she wants for a while, but then
after that time, the server revokes all the corrupted users and the adversary must au-
thenticate without any more corruptions. Second, when the insider provers yield their
private keys to an adversary, we assume they will no longer be registered by Srv. Oth-
erwise, the adversary would be able to authenticate trivially as a legitimate prover by
using the insider prover credentials. These assumptions are necessary since we require
that the verifier cannot distinguish which prover is authenticated. In usual soundness
models, the guarantee we have is that an adversary who can corrupt provers cannot
authenticate on behalf of an uncorrupted prover. However, in our case, there is no way
for the verifier to know on behalf of which prover the adversary has authenticated,
unless corrupted and insider provers are in fact made illegitimate by non-registration,
resp. revocation. In fact, our protocol provides the same kind of soundness guarantees
as usual authentication schemes.

2.4 Privacy

Privacy is hard to define for authentication protocols, a fact reflected in the numer-
ous models proposed in the literature [JW07, Vau07, PV08, NSMSN08, MLDL09,
DLYZ11, HPVP11]. In [HPVP11], Hermans et al. captured privacy against MIM ad-
versaries through an indistinguishability game between an adversary and legitimate
provers, extending efforts by Juels and Weis [JW07] and including prover corruption
as introduced by Vaudenay [Vau07].

In a typical security game, an adversary is defined by her objective (i.e., the game
she plays), her potential actions (i.e., the oracles she queries) and any possible restric-
tion in her interactions with the system (i.e., the rules of the game). In a generic
privacy indistinguishability game, the adversary picks two legitimate entities of her
choice. A challenger then selects one of them and allows the adversary to interact with
it through predefined oracles. The adversary wins the game if she can determine the
entity selected by the challenger.

The adversary considered in the model proposed in [HPVP11] can register valid
provers (called insiders), interact arbitrarily with the verifier and the prover selected
by the challenger, query the result of an authentication session, and corrupt provers
to obtain their private information. The adversary can request the challenger to run
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the selection process multiple times with multiple input pairs. Interactions take place
through predefined oracles described in [HPVP11]. Thereafter, we present an intuitive
description of the most important ones.

Prover Creation. The adversary inputs an identifier id and the CreateProver oracle
creates Pi along with his new private/public key pair (xi,Xi). The adversary obtains
as output the handle2 Pi.

Insider Creation. The adversary inputs an identifier id and the CreateInsider ora-
cle internally runs CreateProver, before leaking the generated private part xi to the
adversary.

Draw and Release Provers. For the DrawProver oracle, the adversary inputs the
identities of two available provers Pi and Pj . Then, the oracle returns a handle to one
of them, thus allowing an anonymous access to him. Both provers become unavailable.
Subsequently, the adversary runs the Free oracle to release both Pi and Pj . DrawProver
and Free may be run multiple times, resulting in the challenger consistently drawing
either the first or the second input prover.

Interactions. Through oracles, the adversary can interact as a MIM between the
verifier and the selected (anonymised) prover, launching sessions and relaying messages
or changing/injecting arbitrary messages to any of the two parties.

Prover Corruption. The adversary inputs the identity of provers Pi and the oracle
Corrupt returns the non-volatile internal state of this prover.

Result. The adversary can also learn the result of a completed execution of the game.
The Result oracle returns 1 if the prover is authenticated, 0 if this is not the case, and
⊥ if the protocol has aborted.

At the end, the adversary wins the game if she can identify which prover is consis-
tently selected by DrawProver.

Following the classification proposed by Vaudenay [Vau07], Hermans et al. [HPVP11]
consider several classes of adversaries. These adversaries can be classified as wide or
narrow depending on whether respectively they use Result or not. In parallel, they
can be weak (if they cannot use Corrupt), forward (if only Corrupt can be used after
a Corrupt query), destructive (if Corrupt destroys the corrupted prover’s handle), or
strong (if there is no restriction on the use of the oracles). Note that destructive and
strong privacy in authentication protocols cannot be achieved with the symmetric key
paradigm as shown by Paise and Vaudenay [PV08].

The original model of Hermans et al. [HPVP11] does not allow the adversary to
register malicious insiders for which she knows the private keys (this situation was
already considered by Vaudenay [Vau07]). By adding the notion of insider privacy,
Peeters and Hermans [PH12] extended the model to capture this addition and proposed
a protocol achieving this notion. Their protocol has strong security guarantees and
provides narrow-strong and wide-forward insider privacy. This scheme is the basis of
the HPO protocol [HPO13]. The formal privacy definition of Hermans et al. is the
following.

Definition 3 (MIM-Privacy). A protocol is Γ-private if and only if for all polynomial
time MIM adversaries A in class Γ, the adversary cannot win the privacy game with
a non-negligibly advantage over the probability obtained by a random guess.

2In a nutshell, a handle is a variable associated with an object (such as a protocol session or a
prover), which enables the adversary to interact with this object.
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Three aspects are not considered in the above model. First (and specific to our
setting), the presence of the server Srv and its corresponding public board B introduces
new interactions such as an adversary changing the board contents.

More importantly, the above definition does not guarantee prover privacy with
respect to a legitimate verifier. In fact, in both the protocol of Hermans et al. [HPVP11]
and in the related HPO scheme [HPO13] (as well as in most distance-bounding and
authentication protocols), the verifier can always distinguish which prover has actually
authenticated. The extension of the privacy notion to capture prover unlinkability with
respect to the verifier is addressed in Section 3.

Finally (again specific to our setting), we require prover privacy with respect to
Srv. In particular, we demand prover deniability with respect to a server, even if it
has access to the verifier’s full internal state (see Section 3).

2.5 Distance-Bounding Security

In the single-prover/single-verifier model of Dürholz et al. [DFKO11], the adversary
can open adversary-prover or adversary-verifier sessions, or simply observe prover-
verifier sessions. The verifier has a clock that can accurately measure the time elapsed
between sending a challenge and receiving the response. If a round trip transmission
is timed, it is simply called a time-critical (fast) phase. Otherwise, it is called a lazy
(slow) phase. The four main security notions of distance-bounding protocols are the
following ones.

Definition 4 (Distance Fraud Resistance). No legitimate prover located outside the
prover’s proximity should be able to authenticate.

Definition 5 (Mafia Fraud Resistance). No MIM adversary should authenticate to a
verifier even in the presence of a prover, except by purely relaying messages.

The notion of pure relay is a controversial one. Indeed, Dürholz et al. [DFKO11]
conservatively rule out only relays of exactly the same messages in the same order.
This model also allows errors or noise in the transmissions. We skip these complexities
here, noting that it is easy to modify protocols to take them into account.

Definition 6 (Lazy Impersonation Resistance). No MIM adversary should be able to
authenticate to the verifier in the lazy phases except by purely relaying messages.

This notion is independent of the notion of soundness, as defined by Hermans et
al. [HPO13]. We refer the reader to the appendix for an in-depth discussion of this
relationship.

Definition 7 (Terrorist Fraud Resistance). If
a MIM adversary aided by a malicious, offline prover can authenticate to the verifier,
then the information provided by the prover will give him at least an equal chance to
authenticate later, even if he is unaided.

The latter notion, called simulation-based terrorist fraud resistance by Fischlin and
Onete [FO13b], is a very strong notion. While we advocate the use of schemes achieving
this strong notion, we leave the improvement of our protocol to gain terrorist-fraud
resistance as future work.
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3 Prover Anonymity

We have to extend the privacy model of Hermans et al. [HPVP11] in two directions:
(1) model the interactions of the adversary with the board B and (2) generalize the
privacy notion to protect provers against malicious verifiers and the server Srv.

For the first extension, we introduce the ChangeBoard oracle that allows an ad-
versary to alter the contents of B with her own input. For the second one, we first
introduce the notion of prover anonymity, requiring that an adversary cannot link
sessions of provers even if she learns the verifier’s full internal state. We next define
the concept of deniability, demanding that Srv (knowing all the provers’ private keys)
cannot distinguish a real protocol transcript from a simulated one, even if the verifier
gives his full internal state.

For prover anonymity, we rely on the notion of collusion between an adversary and
a verifier to capture honest-but-curious and malicious verifiers. This enables us to
present our model as an extension to the privacy model of Hermans et al. [HPVP11].
Both in our model and the original model, the honest-but-curious verifier always follows
the protocol but tries to link prover sessions. Thus, we have to restrict an MIM
adversary to be a simple proxy between the verifier and the prover as opposed to
a fully-functional MIM colluding with a verifier, which is equivalent to a malicious
verifier. We call this extended privacy property prover anonymity.

In order to make the distinction between the different behaviors of the verifier, a
new parameter flag is associated with the game that specifies the oracle behavior. This
parameter takes one of three different values: hon, hbc, mal, standing respectively for
an honest verifier, an honest-but-curious verifier or a malicious verifier.

The Effect of flag. At the beginning of the privacy game, the adversary selects the
value of flag. If flag ∈ {hbc, mal}, the adversary receives the verifier’s full internal
state. In addition, whenever the verifier sends a message to the adversary (e.g., via
SendVerifier or Launch queries, see [HPVP11]), the adversary also receives an update
of the internal state. This information enables the adversary to check the legitimacy of
the prover without Result queries. Essentially, for flag ∈ {hbc, mal}, the verifier always
behaves honestly, but passes on his full internal state to the MIM adversary. If flag =
hbc, the adversary may only relay the prover-verifier communication, modeled by the
oracle Execute. In this case, the adversary cannot interact with Corrupt, CreateInsider,
nor any other interaction oracle3. If flag = mal, the adversary cannot corrupt provers
or create insiders but may use any interaction oracle as in the original game. Finally,
if flag = hon, the adversary runs the original MIM-privacy game, while also being able
to modify the content of B.

Extended interaction model. We introduce two additional oracles, namely Change-
Board and Execute. The first oracle allows the adversary to change B, while the second
triggers an honest prover-verifier protocol execution in which the adversary acts as a
proxy.

ChangeBoard(B′). This oracle changes the contents of the public board B with the new
contents B′.
Execute(·). When given as input a prover index I, this oracle executes the protocol be-

3This restriction can be relaxed, for both the hbc and the mal modes, to allow CreateProver and
CreateInsider queries. This is equivalent to achieving both deniability and honest-but-curious prover
anonymity.
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tween the prover I and the verifier. The prover index I is either an index i ∈ {1, . . . , k},
for k, the number of provers of the system, or the anonymized handle as returned
by DrawProver. More specifically, when calling Execute, then Launch is first called,
yielding a handle prot and a first verifier message. Afterwards, the oracle executes
SendProver for I with the message returned by Launch. This process is repeated by
alternating queries to SendVerifierflag and SendProver, essentially relaying the commu-
nication between the two parties. At the end of the protocol, the transcript of prot is
returned. If the protocol aborts prematurely, a special symbol ⊥ is appended at the
end of the transcript.

We also modify the following oracles defined in the original model of Hermans et
al. [HPVP11].

CreateProver(·). When given as input an identifier id, this oracle runs prover initial-
ization for a prover Pi. The private/public key pair is generated and stored in Pi and
Srv. The server updates the board B according to B′.
CreateInsider(·). When given as input an identifier id, this oracle creates a new prover
Pi. The private/public key pair of this prover is given to the adversary. In the privacy
model, the key pair is registered with Srv and B is updated accordingly. In the sound-
ness model, the private key is not given to the server. As already discussed, we make
this assumption in view of the strong privacy guarantees we require.

SendProver(·, ·, ·). This oracle takes as input either an anony–mised index I and a
message m (in the privacy model) or an index i ∈ {1, . . . , k}, a message m, and a
protocol handle prot (in the soundness model). For the privacy model, this oracle
works as in the original (privacy) model. For the soundness model, m is sent to Pi in
the protocol session prot.

Corrupt(·). This oracle takes as input either an anony–mised index I (in the privacy
model) or a prover index i ∈ {1, . . . , k} (in the soundness model). For the privacy
model, this oracle works as in the original (privacy) model. For the soundness model,
as soon as this oracle is used, the prover is revoked and Srv removes the information
of the prover from its database and updates B accordingly.

SendVerifierflag(·, ·). This oracles takes as input a message m and a protocol handle. If
flag = hon, the oracle works as originally defined. If flag ∈ {hbc,mal}, it returns the
message m′ as done by the verifier V and the full internal state of V.

Note that the oracles SendProver, Corrupt, and CreateInsider run differently for the
soundness and the privacy models. To distinguish these modes, we use the notation
Oracle∗ if this oracle runs currently in the soundness model.

The games. We start by describing the extended correctness game. The adversary
is given access to CreateProver, ChangeBoard, Result, and Execute. The adversary wins
if there is a session prot for which Result(prot) returns 0. The adversary’s advantage
AdvEC(A) corresponds to her winning probability.

For the extended soundness game, the adversary A is given access to CreateProver,
CreateInsider∗, ChangeBoard, Launch, SendProver∗, SendVerifier, Result and Corrupt∗.
A wins if there is a session prot, for which Result(prot) returns 1 and there is no
SendProver∗ query with input (·, ·, prot). Her advantage AdvSound(A) is her winning
probability.

For the prover anonymity game, the adversary A starts by selecting a value flag ∈
{hon, hbc,mal}. Then, A is given access to ChangeBoard, DrawProver, and Free. If
flag = hon, A gets access also to CreateProver and Corrupt (depending on the adversary
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model). The adversary also has access to Launch, SendProver, SendVerifierflag and
possibly Result (if flag ∈ {hon,mal}) or to Execute (if flag = hbc). Note that for
flag ∈ {hbc, mal}, the use of Result is no longer necessary, as the adversary knows the
verifier’s full internal state (in this case, narrow privacy is equivalent to wide privacy).
A wins if she can find which prover has been selected by DrawProver. Her advantage
AdvPAnon(A) is her winning probability minus the guessing probability 1

2 . We preserve
the same definition and adversary classes as Hermans et al..

Finally, we also define the notion of deniability in the presence of an honest-but-
curious back-end server Srv4. Let stateV denote the full internal state of the verifier V
and let Sim denote a simulator taking as input stateV and returning a transcript τSim.
We require that the transcript of a honest session between V and a (legitimate) prover
chosen by Srv is identical to a simulated transcript generated by V (from Srv’s point
of view, for the same state stateV). In reach this property, we introduce a final oracle.

DenyRoRb,stateV
(·). This oracle is conditioned on a bit b and on the verifier’s state stateV

given by the verifier V to the server Srv. When given as input an index i ∈ {1, . . . , k},
the oracle runs either an honest session between Pi and V in state stateV (if b = 0) and
returns the session transcript τ0, or it runs Sim on stateV and returns the simulated
transcript τ1 (if b = 1). The oracle also outputs the updated (τb, stateV).

For the deniability game, the adversary (i.e., here the server Srv) is given stateV

and access to the CreateProver and DenyRoR oracles. The adversary wins if she outputs
the correct bit used as input to DenyRoRb,stateV

(·). Her advantage Advdeny(A) is her

probability to win minus the guessing probability 1
2 . A protocol is perfectly deniable if

the advantage of the best adversary is 1
2 .

4 Our construction

Our protocol extends the existing HPO protocol of Hermans, Peeters, and Onete [HPO13],
which is narrow-strong and wide-insider-forward MIM-private, as well as correct, sound,
and resistant to mafia and distance frauds. We briefly outline this protocol and then
modify it in order to achieve our privacy notions of prover anonymity and deniability.

4.1 The HPO Distance-Bounding Protocol

Consider the classical elliptic curve cryptography setting on a subgroup G =< P > of
prime order q defined by the points on the elliptic curve E over a finite field Fq. The
point P is a generator of this group. Each prover Pi has a private/public key pair
(xi,Xi), for xi ∈ Zq and Xi := xiP . The verifier has a private/private key pair (y,Y),
for y ∈ Zq and Y := yP , and knows all Xi.

Overview. The protocol presented in Figure 1 merges authentication and distance-
bounding (with near-optimal mafia-fraud resistance). First, the parties exchange
nonces, which are points on E : two on the prover side (R1, R2) and one on the verifier
side (R3). Intuitively, the prover needs two nonces to preserve his MIM privacy. These
nonces will effectively blind (from the point of view of a MIM adversary) the prover’s
key in the final authentication string s.

Following the nonce exchange, n time-critical phases take place. Before starting
them, the verifier chooses an integer e ∈ Zq, and truncates it to n bits. These bits are

4This can be extended to a malicious server by adding further NIZK-PK in our protocol.
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Verifier V

r1, r2 ∈R Zq

R1 := r1P, R2 := r2P

R1, R2 6= O?
r3 ∈R Zq

R3 := r3P

R3 6= O?
p0||p1 = [xcoord(r1R3)]2nc

p̂0||p̂1 = [xcoord(r3R1)]2nc

pick e ∈R Zq ; set ci = [e]i; i ∈ Znc

start timeri
ci

fi = (1 − ci)p
0

i + cip
1

i

store timeri, fi
f∗

i = (1 − ci)p̂
0

i + cip̂
1

i

nc time-critical rounds

e

c0||c1|| . . . ||cnc == [e]nc?
d = xcoord(r2Y)

s = xj + er1 + r2 + d

d̃ = xcoord(yR2)

X̃ = (s− d̃)P − eR1 −R2 ∈ D?
timeri ≤ ∆t?; fi = f∗

i ? ∀i

Figure 1: Secure, wide-strong insider-private distance-bounding protocol.

associated with the challenges ci, for i = 1, . . . , n. The prover’s responses are computed
by taking the first 2n bits of xcoord(), which correspond to uniformly distributed
random bits [HPO13]. The function xcoord() computes the x-coordinate of a point on
E . Note that the number n of time-critical phases is small compared to the group size.
For each challenge ci, the prover responds with a bit either from p0 or p1.

Intuition. This protocol can be viewed either as a privacy-enhanced distance-bounding
protocol or as a distance-ap–proximation-enhanced MIM-private authentication proto-
col. The randomness of the 2n bits ensures the distance-fraud resistance. All distance-
bounding responses are session-specific, and the string s hides the prover’s secret key
from a MIM adversary. Finally, binding the response s to the challenge string e en-
sures nearly perfect mafia-fraud resistance. Thus, this protocol ensures both distance
bounding and MIM-private authentication while being efficient. The exact security
properties of this protocol are outlined in the appendix.
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4.2 Prover Anonymous and Deniable Scheme

In order to preserve the prover anonymity against a (honest-but-curious or malicious)
verifier, we adapted the HPO protocol in two distinct places. The first change concerns
the initial nonce-exchange phase, in which the prover and the verifier will rely on an
homomorphic encryption scheme and a Non-Interactive-Zero-Knowledge (NIZK) Proof
of Knowledge system to derive a session key. The second change occurs during the last
authentication phase, in which the prover uses his private key to compute a response
attesting of his legitimacy without revealing his identity. To ensure long-term forward
privacy, we assume that all ephemeral keys and random nonces are discarded as soon
as possible. We obtain better prover anonymity guarantees (i.e., wide-strong prover
anonymity) than the corresponding degree of MIM privacy of the HPO protocol (i.e.
narrow-strong and wide-insider-forward). We also preserve the same (high) correctness,
soundness, and distance-bounding security guarantees, while also achieving deniability
with respect to an honest-but-curious back-end server.

Setting. We specify a homomorphic encryption scheme5 HE = (HE.KGen,HEnc,HDec)
with message-space G, which is IND-RCCA and IK-CCA secure (see the appendix for
the definitions of these concepts).

We assume that Srv generates and self-certifies its private/public key pairs (z,Z).
The keys are updated and certified at every prover creation and revocation, and the
certificates of old keys are placed on a revocation list. These keys are used with an
EUF-CMA signature scheme S = {SS.KGen,Sign,Vfy}.

Finally, the prover will use a NIKZ-PK system PK = (par,Prove,Vf,Sim,Ext). In
this system, the witness is a private/public encryption key pair and the randomness
used to encrypt, while the statement is that a specific ciphertext c is the encryption of
the value Qi with i ∈ {1, . . . , k} for publicly known values Qi with probability exactly
1
k . This scheme should have perfect completeness.

Prover setup. Prover creation associates a prover Pi, for i ∈ {1, . . . , k}, with a secret6

key xi ∈ Zq and an auxiliary public key Qi stored by Pi and Srv. The key Qi is defined

as
∏k

j=1;j 6=i xjP , for i = 1, . . . , k, while the public key Q is defined as follows Q :=∏k
i=1 xiP . These values are updated dynamically as provers are created and revoked.

The server publishes on B a tuple containing the message m := Q1, . . . ,Qk,Q, and
generates a signature key pair, certifies it, and publishes the signature σ := Sign(z,m)
on B.

Prover revocation. Whenever prover Pi is revoked, the server removes his secret key
xi from his database and updates all the values Qj , Q and σ in its internal database
and on the public board B.

Protocol intuition. Most of the structure of the HPO protocol is preserved. However,
instead of authenticating as the prover in possession of key xj , Pj proves that he can
compute xjQj = Q. At each session, the (potentially malicious) verifier generates a
random value r and expects to retrieve the value rQ from the string S sent by Pj .
The prover is not given the value r explicitly. Instead, he computes HEnc(epk,Qi)

5In practice, we use the homomorphic EC ElGamal encryption scheme. Thus, knowing
HEnc(pk,Qi), anyone can compute HEnc(pk, rQi). This is equal to r ◦ HEnc(pk,Qi), which denotes
the multiplication of the encryption r times by itself.

6The term secret is used here to emphasize the fact that xi and Qi cannot be derived one from the
other.
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under an ephemeral private/public key pair (esk, epk) known from the prover only.
Afterwards, the verifier uses the homomorphic property of the encryption scheme to
return HEnc(epk, rQi). Finally, the prover decrypts the value and computes xi(rQi) =
rQ.

Retrieving information from the board. Though not explicitly depicted in Fig-
ure 3, both the prover and the verifier only retrieve information from B if the signature
σ and the corresponding certificate are valid.

The full interaction model is shown in Figure 2 and our protocol is depicted in
Figure 3.

Server 

Prover Verifier 

Adv 

Board B 

Update 

Alter 

Relay 
Change 

Retrieve Retrieve 

Figure 2: Interactions diagram between the different parties.

Security intuition. The construction keeps the distance-fraud resistance of the HPO
protocol, as the time-critical responses are generated similarly in both schemes. For
mafia-fraud resistance, the new response string S hides rQ in the same way as xj is
hidden in the HPO protocol. We effectively prevent adversaries from changing the
board contents or replaying old boards (without being detected) by using one-time
(certified) signature key pairs. For the soundness property, we show that no MIM
adversary can modify the ciphertext or obtain rQ. In fact, if the adversary encrypts
a different public auxiliary key Qj , she cannot produce the last response S without
knowing xj . This is impossible since any corrupted prover is automatically revoked,
the board is always updated before authentication and the credentials gained cannot
be reused by the MIM adversary.

Next, we analyze the privacy properties of the protocol, which is the main result of
our paper. For MIM privacy (i.e., an honest verifier), the following observations can
be made. First, each prover authenticates under the same public key Q, sent with the
response string S. Thus, the only way a MIM adversary can learn the identity of the
prover by linking sessions in which the same value Qi was used. Second, the corruption
of Pi yields the long term secret xi and the corresponding public value Qi, but not
the nonces or the ephemeral keys used for encryption. Thus, even upon corruption,
the MIM adversary cannot distinguish previous and future encryptions of Qi. Third,
the IND-RCCA and IK-CCA security of HE and the zero-knowledge and soundness
properties of the NIZK proof essentially ensure that the encrypted values Qi do not
leak, and cannot be effectively tampered with by the adversary.

The same considerations hold for an honest-but-curious verifier, who also knows

13



xj ,Y,Qj

Prover Pj

y, {Qi}
k
i=1

,Q

Verifier V

r1, r2 ∈R Zq

R1 := r1P , R2 := r2P

esk ∈R Zq epk := eskP

R1, R2, epk, c := HEnc(epk,Qj), πj := NIZK(c well formed)

R1, R2 6= O?
Verify NIZK proof πj

r, r3 ∈R Zq ; R3 := r3P

R3, c
′ := r ◦ c := HEnc(epk, rQj)

Decrypt c′ to r′P

R3 6= O?
p0||p1 = [xcoord(r1R3)]2nc

p̂0||p̂1 = [xcoord(r3R1)]2nc

pick e ∈R Zq ; set ci = [e]i; i ∈ Znc

start timeri
ci

fi = (1 − ci)p
0

i + cip
1

i

store timeri, f
∗

i

fi = (1 − ci)p̂
0

i + cip̂
1

i

nc time-critical rounds

e

c0||c1|| . . . ||cnc == [e]nc?
D = r2Y

S = xj(rQj) + eR1 + R2 + D

D = yR2

Q̃ := (S−D̃)−eR1−R2 = rQ?
timeri ≤ ∆t?; fi = f∗

i ∀i?

Figure 3: Our prover-anonymous and deniable distance-bounding construction.

the verifier’s private key y and the ephemeral value r chosen for each session. However,
HE still hides the encrypted value Qi.

Intuitively, a malicious verifier can perform one of the following actions: (1) choose
a convenient value r (however, this affects all provers equally) or (2) try to learn the
value Qi encrypted by the prover (this fails due to the IND-RCCA and IK-CCA security
of HE).

Finally, our protocol is deniable with respect to the back-end server. The crucial
detail for this property is that, while the verifier does not know the secret keys xi, he
can compute the value rQ since he knows Q. This is how the simulator computes the
response, and thus the simulation is perfect.

14



4.3 Security Analysis

In this section, we prove the security properties of our protocol. Since this is common
to all properties, we omit to model the certification scheme used by Srv. We simply
remark that ACert := Advcert(A) + Advunf(A1) accounts for forging a certificate (e.g.,
its revocation date) or a signature.

Theorem 1 (Security and privacy of the protocol). Consider the protocol in Figure 3,
instantiated for a subgroup G :=< P > of prime order q of an elliptic curve E over a
field Fq. Let ACert be the advantage of a best forger for either the signature scheme S or
for the certification scheme used to certify keys for S. In this situation, the following
holds:

• For any extended correctness adversary A, there is an adversary A1 against the
unforgeability of the signature scheme S such that AdvEC(A) ≤ ACert.
• For any (t, qV)-adversary A against the distance-fraud resistance of the protocol,

there is an adversary A1 against the indistinguishability from random of the
truncation of a DDH product such that: AdvDF(A) ≤ qV{34}

n
+ Advdist(A1) +

ACert, in which qV is the number of verifier-adversary sessions.
• For any (t, qP , qV, qOBS)-mafia-fraud adversary A there are the adversaries A1

against the indistinguishability from random of the truncation of a DDH product,
A2 against the hardness of the DLog problem, and A3 against the soundness of
the protocol, such that

AdvMF(A) ≤ qV ·
(
1
2

)n
+

(
qV + qOBS

2

)
· 2−|G| +

(
qP

2

)
· 2−|G| + ACert +

Advdist(A1) + 2qVAdvDL(A2) + AdvSound(A3).

• For any extended soundness adversary A, there are the adversaries A1 against the
soundness of the NIZK proof and A2 against the hardness of the DLog problem,
such that

AdvSound(A) ≤
(
q

2

)
· 2−|G| + ACert + q(AdvNIZK.Snd(A1) + AdvDL(A2)),

in which q is the number of sessions run by A.
• For any wide-strong-prover anonymity adversary A, there are the adversaries
A1 against the zero-knowledge property of the NIZK-PK, A2 against the IND-
RCCA of the homomorphic encryption scheme, A3 against the IND-RCCA of
the encryption scheme (possibly different from A2), A4 against the IK-CCA of
the encryption scheme, and A5 against the soundness of the NIZK-PK such that:

AdvPAnon(A) ≤ ACert + qA.

where it holds: A = AdvNIZK.ZK(A1) + AdvIND-RCCA(A2) + AdvIND-RCCA(A3) +
2AdvIK-CCA(A4) + AdvNIZK.Snd(A5).
Moreover, for an honest-but-curious wide-strong prover-anonymity adversary Ahbc,
we have

AdvPAnon(Ahbc) ≤ ACert + qA∗,

in which A∗ is AdvNIZK.ZK(A1) + AdvIND-RCCA(A2) + AdvIND-RCCA(A3).
• The protocol is perfectly deniable with respect to an honest-but-curious server.
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• For any (qP , qV, qOBS)-impersonation adversary A, there are adversaries A1 against
the extended soundness of the protocol, A2 against the mafia-fraud resistance of
the protocol, and adversaries A3 against the soundness of the NIZK proof, A4

against the key indistinguishability of the encryption scheme, and A5 breaking
the DLog assumption such that:

AdvImp(A) ≤ qV(AdvNIZK.Snd(A3) + AdvDL(A5) + AdvIK-CCA(A4)) +

AdvSound(A1) + Advmafia(A2).

Proof. Extended Correctness. This inequality follows trivially. Indeed, A can access
only the oracles CreateProver, ChangeBoard, Result, and Execute. If ChangeBoard is not
used, then the protocol has perfect correctness (as the NIZK-PK system is perfectly
correct). If ChangeBoard is used and A succeeds with advantage AdvEC(A), we can
construct either a forger against S, or one against the certification scheme. Thus,
AdvEC(A) ≤ ACert using our notation.

Extended Soundness. Consider the session in which A succeeds with probability
AdvSound(A) to authenticate. First, we account for the changes of values of the board,
losing a term ACert. We can now make the a priori assumption that the prover will
not use Corrupt or CreateInsider (both result in a change on B such that the obtained
credentials are no longer useful). Next, we rule out the possibility of having collisions
of values of r between this session and any other session, losing in the way a term(
q
2

)
·2−|G|. Finally, we modify the original game such that A is considered to lose if she

can send a first message to the prover consisting of a ciphertext c and a NIZK-PK π
such that c does not encrypt a legitimate value Qi. The modified game is equivalent
up to a success term of qAdvNIZK.Snd(A1) with the original game (we can construct an
adversary against the soundness of the NIZK-PK outputting the forged NIZK-PK).

Note that for soundness, the adversary cannot run a full MIM attack for the session
that she succeeds in. Based on the soundness of the NIZK-PK, the adversary will
receive in the challenge session, the value r ◦ c = HEnc(epk,Qi), for a value Qi and a
private/public key pair (esk, epk) chosen by her. Thus, the adversary learns rQi, but
not the value of r (by the DLog assumption). As a result, we lose a term AdvDL(A2).

Distance and Mafia Fraud. These proofs are identical to the corresponding proofs
for the HPO protocol [HPO13], only accounting for the additional term ACert. However,
note that the advantage against soundness, which is used for the mafia-fraud resistance,
is different for our construction.

Prover anonymity. We discuss each adversary mode in {hon, hbc, mal}. Consider
an hypothetical adversary A that can win the wide-strong privacy game in hon mode.
We assume a priori that all the provers have already been corrupted, and A knows
the values xi, for i = 1, . . . , k. Note that the volatile ephemeral key pair (esk, epk) is
not leaked upon corruption. We first rule out any illegitimate change to B as in the
soundness model, thuslosing a term ACert. Then, we can rule out that A can deter-
mine which selection DrawProver has done by just performing honest executions with
provers and verifiers. We use a standard hybrid argument, enabling us to progressively
change the game in order to make interactions with an anonymised Pi (as selected by
DrawProver) identical to interactions with an anonymised Pj . In this argument, we
progressively change each of the q executions initiated by the adversary such that in
both executions we send an encryption of the same message, with a correct associated
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proof. Whenever A is set to receive from the prover selected by DrawProver (i.e., either
Pi or Pj) the values c∗ := HEnc(epk,Q∗) and π∗

7, A receives instead the values ci and
πi (not necessarily generated with the same randomness). We argue that this does not
change A1’s success probability. First, note that the NIZK proofs do not reveal any in-
formation about which Qi value is being encrypted (just that it is one of those values).
At the expense of a term qAdvNIZK.ZK(A1), we rule out that A can distinguish πi from
πj . Furthermore, at the expense of a term qAdvIND-RCCA(A2), we rule out that A can
distinguish ci from cj . In the same way, we gradually replace the response strings r ◦ci
and r ◦ cj by r ◦ ci every time, and lose a total term of qAdvIND-RCCA(A3). We now
note that both transcripts are identically distributed, as they no longer depend on the
auxiliary values xi and Qi. As a consequence, the adversary’s best strategy is to guess.

Whereas the original HPO protocol is only narrow -strong private since the final
response string s depends on xi, our protocol is wide-strong private since the corre-
sponding string S does not depend anymore on this key.

So far, the proof would apply for hbc mode as well, since A can only observe honest
sessions and since the received values R,R3, and y do not interfere with our reasoning
above.

Now, we argue that A gains nothing by changing any of the messages in a MIM
interaction. Since the time-critical rounds do not depend on the secret key of the
prover, without loss of generality we can replace the random strings R1, R2, R3, the
time-critical challenges, and the time-critical responses by independent and truly ran-
dom values. We next rule out the possibility that A learns under which ephemeral
public key epk the drawn prover encrypts his auxiliary value. This follows from the
IK-CCA property of the encryption scheme, thus by a standard hybrid argument we
lose a term qAdvIK-CCA(A4). Then, we rule out the possibility that A can send a ver-
ifiable NIZK proof for an encryption of a value other than one of the auxiliary values
and the possibility that the sent ciphertext is anything but a possible re-randomization
of the original ciphertext, losing a term qAdvNIZK.Snd(A5). Note that if A replaces
the encrypted value Qi by some other value (encrypting it under a different ephemeral
public key) and generates the corresponding NIZK-PK, the drawn prover will not be
able to decrypt the received ciphertext to the correct value irrespective of whether the
adversary’s re-encryption was done for the same value Qi or for another one. Thus
we can assume that the first message, sent by the prover, cannot be tampered with
by A. In the same way, we can argue that A cannot replace the verifier’s r ◦ c by
anything that can help A to distinguish (we lose again a term qAdvIK-CCA(A4)). At
this point, the two protocol transcripts (as output by Execute or as collected at the end
of a protocol execution) are again identically distributed. This concludes the proof for
hon mode.

Finally, assume that the wide-strong adversary is in mal mode. The proof goes
exactly as for the honest case, with the only difference being that A knows which value
r was used when sending the verifier’s homomorphic encryption r ◦HEnc(epk,Qi), and
A can modify this value (this will make both provers fail in the same way). If some
re-encryption is done under a different public key (we ruled out that A can learn the
value of epk used by the prover), this will result in the same behavior (illegitimate) for
both provers since decrypting with the wrong key will give a wrong plaintext.

7πi is a NIZK-PK that the value encrypted in the ciphertext is one of the legitimate auxiliary
values.
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Deniability. The Simulator takes as input the verifier’s full internal state including y,
but does not have any of the provers’ secret keys. The Simulator works as follows: (1)
it chooses random integers r1, r2, r3, r, e and a random index i ∈ {1, . . . , k}, computing
R1, R2, R3, r2Y and [r1R3]2n; (2) it generates a private/public ephemeral key pair
(esk, epk); (3) it encrypts the value Qi for the chosen i under the key epk (i.e., c :=
HEnc(epk,Qi)); (4) it (honestly) generates the NIZK-PK π that c encrypts the value
Qi with probability exactly 1

k ; (5) it honestly performs the homomorphic operation,
yielding r ◦ c; and (6) it computes the response S := rQ + eR1 + R2 + r2Y. This
simulation is perfect, and so we have deniability without any loss.

Impersonation resistance. In addition of proving the soundness of the protocol, we
argue here that the MIM adversary cannot authenticate to an honest verifier even in the
presence of an honest prover, except by purely relaying the lazy-phase transmissions.
In the impersonation resistance model, no corruption is allowed. We assume that
there exists an impersonator A succeeding with advantage AdvImp(A). We first rule
out the possibility that A can authenticate without simultaneous access to a prover,
losing a term AdvSound(A1). The transcript of the protocol (for the lazy rounds) has
to be different in the successful impersonation attempt respectively for the adversary-
prover session and for the verifier-adversary session. We exclude the possibility that
A changes either R1 or R3 and manages to pass the time-critical rounds, losing a term
equal to the mafia-fraud resistance of the protocol Advmafia(A2). Then, we claim
that if the ciphertext sent by the prover is modified, without modifying the proof, the
verifier will detect it and abort (we lose a term qAdvNIZK.Snd(A3)). Assume that A
effectively modifies the ciphertext c, the randomness R2, the NIZK proof π, and the
verifier’s response (which should contain r ◦ c) such that the authentication succeeds.
At the expense of a term qAdvIK-CCA(A4), we assume that A learns nothing about
the ephemeral key used to encrypt the prover’s ciphertext c. If A encrypts Qi under a
different public key, possibly also changing the verifier’s response, then authentication
succeeds only if A is able to essentially modify R2 such that the response accounts for
modification, which is equivalent to breaking the DLog assumption.

5 Conclusion and Future Work

As our capacity to store and manipulate large amount of data increases, the risks
associated with the leak of personal data are currently exploding. In this context,
privacy with respect to Man-in-the-Middle adversaries in authentication and distance-
bounding protocols is no longer enough to ensure sufficient privacy for the provers.
In particular, in distance-bounding authentication, insiders such as the verifiers and
the back-end server are able to forward large amounts of users’ data to governmental
agencies or to other third parties. Thus, strong privacy guarantees should also be given
to provers with respect to parties interested in the tracking of users.

In this paper, we advocate the use of stronger models for prover privacy in au-
thentication and distance bounding, and consequently introduce the notion of prover
anonymity, capturing the guarantee of privacy with respect to both MIM adversaries
and verifiers (honest-but-curious or malicious). To realize this, we have presented a
protocol achieving wide-strong privacy in this sense. Furthermore, this protocol is
deniable with respect to a centralized back-end server.

Whereas our scheme is mafia-fraud, distance-fraud, and impersonation resistant, it
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is still insecure against terrorist-fraud attacks. The attack is a type of insider attack in
the sense that the prover helps (in some measure) the adversary to authenticate. The
next step is to modify the protocol to gain terrorist-fraud resistance. Another impor-
tant direction for further work is to investigate the minimal conditions under which a
generic composition of distance-bounding protocols and authentication schemes that
are private with respect to both insiders and outsiders can attain our notion of privacy.
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A Soundness vs. Impersonation

Though closely related, the notions of soundness [HPVP11] and lazy-phase imperson-
ation [DFKO11] are independent. Thus, it makes sense to prove them both sepa-
rately. Clearly, impersonation resistance does not imply soundness since it models a
multiprover setting, considers the security of the whole protocol and enables corrup-
tion. However, a subtle difference in the definition of lazy-phase impersonation re-
sistance [DFKO11] is required to argue that soundness does not imply impersonation
resistance. Indeed, the soundness definition [HPVP11] stipulates that the adversary
does not interact with the prover during a successful impersonation attempt.

In contrast, impersonation security [DFKO11] allows this, requiring that lazy-phase
transcripts of the simultaneous adversary-verifier and adversary-prover sessions are
different during the impersonation attempt. This subtle difference helps an adversary
if the information of a legitimate prover (or some redundancy in the protocol) may
allow the adversary to change the received information in order to authenticate.

Specifically, one can easily build a separating counterexample, in which the prover’s
authentication response (which is session-specific and unpredictable by a MIM adver-
sary) can be slightly altered (for instance by flipping an “unimportant” bit) to obtain
a legitimate response. This protocol is sound (because the response is session specific
and cannot be generated by the MIM adversary), but not lazy-phase impersonation-
resistant, because the adversary can authenticate in the presence of an honest prover,
without generating an identical transcript.

B Assumptions

In this appendix, we present the number-theoretic assumptions and the security prop-
erties of the primitives used for both constructions. The following computationally
hard problems are based on a subgroup G =< P > of prime order q defined by the
points of an elliptic curve E over a finite field Fq. All these parameters are publicly
known. Finally, let dlog(Q) denote the discrete logarithm of a point Q ∈ G with
respect to the group generator P .

Discrete Log (DLog). Given elements P and R = rP, for r ∈ Zq, compute the value
r.

One More Discrete Log (OMDL). Given the access to an oracle GenP generating
elements and an oracle DLog solving the discrete logarithm problem in G, after hav-
ing generated m elements in G and used DLog at most m − 1 times, determine the
corresponding m discrete logarithms.

x-Logarithm (XL). Given an element aP ∈ G, determine if its discrete logarithm a
is congruent to the x-coordinate of a point R ∈ E .

Decisional Diffie-Hellman(DDH). Given the elements aP , bP , and cP ∈ G, de-
termine if cP = abP .

Oracle Diffie-Hellman (ODH). Given the elements aP , bP ∈ G, a one-way hash
function H, the value of H(cP ) and an oracle returning H(bZ), for any point Z 6= ±aP ,
determine if H(cP ) = H(abP ).

Extended ODH. Given the elements aP , bP ∈ G, a one-way hash function H, the
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values of H(cP ) and xcoord(cP ) + a and an oracle returning H(bZ), for any point
Z 6= ±aP , determine if H(cP ) = H(abP ).

Oracle Indistinguishability with Insiders (OII). This problem has been intro-
duced by Hermans, Peeters and Onete [HPO13]. Given X = {x1, . . . , xn} ⊂R Z∗q and
I = {i1, . . . , im} ⊂R Z∗q the sets of private keys of the insiders and the legitimate
provers, respectively, and a counter ctr initialised to 0. At the beginning of the game,
the adversary is given I and access to the system through three oracles. The first
oracle ChGen(j, k) returns (ctr, r̂ctr + xj) or (ctr, r̂ctr + xk), for r̂ctr ∈ Z∗q . The choice
depends on which prover DrawProver has chosen. The counter ctr is then incremented
and the value r̂ctr is stored in a table. The second oracle TestOut(S, ctr) returns 1 if
(dlog(S − r̂ctr)P ) ∈ X ∪ I and 0 otherwise. Finally, the third oracle TestX(S) oracle
returns 1 if dlog(S) ∈ X and 0 otherwise. At the end of the game, the adversary gets
X and must determine which prover the DrawProver oracle has chosen.

IND-RCCA Encryption. The notion is defined with respect to an equivalence
relation such that the decryption oracle does not decrypt ciphertexts equivalent to the
challenge ciphertext (we call such equivalence a “replay of the ciphertext”). The game
is played between an adversary and a challenger. At the beginning of the game, the
challenger generates the private/public key pair (sk, pk) by running the key-generation
algorithm. Given the public key, the adversary is given access to a decryption oracle
instantiated with the private key. At some point, the adversary outputs two messages,
and the challenger encrypts either the first, or the second message, outputting the
so-called challenge ciphertext. The adversary can query the decryption oracle on any
ciphertext that is not a replay of the challenge ciphertext, and she must eventually
guess whether the challenge ciphertext encrypts the first or the second message. The
advantage of the adversary is defined by her probability to win the game minus the
guessing probability of 1

2 .

IK-CCA Encryption. The notion of key indistinguishability stipulates that a ci-
phertext does not reveal anything about the public key under which the message is
encrypted. In this game, the challenger generates two public keys (providing decryp-
tion under each of the two private keys), and after several decryption queries, returns a
message, which will be encrypted under either the first or the second public key. After
more decryption queries, the adversary has to guess under which key the challenge
ciphertext was encrypted. The advantage of the adversary is her probability to win
minus the guessing probability of 1

2 .

EUF-CMA of Signature Schemes. The usual notion of existential unforgeability
against chosen message attacks (EUF-CMA) applies to signature schemes (SS.KGen,Sign,Vfy)
and stipulates that an adversary, given the public key generated by SS.KGen, and ac-
cess to an oracle that produces a signature σ = Sign(sk,m) on the input of an arbitrary
message m, should be able to produce a tuple (m∗, σ) – for a new message m∗ for which
the oracle has not been queried – with at most a negligible probability.

NIZK correctness (completeness). For any legitimate witness/statement pair, the
verification of any proof generated with the witness for that statement should (almost)
always verify. The NIZK-PK system is perfectly complete if these proofs always verify.

NIZK soundness. No adversary can output a valid proof for a statement outside
the language.
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NIZK zero-knowledge. An adversary cannot distinguish a proof returned by the
prover using a legitimate witness from a proof returned by a simulator without the
witness. Thus, the proof leaks no information about the witness.

C HPO Security Properties

The following lemma summarizes the results presented by Hermans, Peeters, and
Onete [HPO13].

Lemma 2. Consider the protocol in Figure 1, instantiated for a subgroup G :=< P >
of prime order q of an elliptic curve E over a field Fq. The following holds:

• The protocol is (perfectly) correct in the sense of [HPVP11].
• The protocol is sound in the sense of [HPVP11], under the One More Discrete

Logarithm (OMDL) assumption. The security loss is the probability that two
challenges e and e′ chosen at random coincide ( i.e.,

(
q
2

)
2−q).

• The protocol has a distance-fraud resistance of (loosely) qV{34}
n

, in which qV is
the number of sessions the adversary opens with the verifier. The loss here is
the advantage in distinguishing the truncated DDH product from random, de-
noted Advdist(A), which is negligible according to the results of Chevalier et
al. [CFPZ09]. Thus, the output p0||p1 is uniformly random and the probability
that p0i = p1i is 1

2 for each i = 1, . . . n.
• The protocol has a (loose) mafia-fraud resistance of qV{12}

n
. The loss consists

of a collision term for the nonces R1, R3, the advantage in distinguishing the
truncated DDH product from random, denoted Advdist(A), and the advantage of
breaking the soundness of the protocol, denoted AdvSound(A′).
• The protocol is narrow-strong and wide-forward-insider private, under the XL

assumption, the ExtODH assumption, and the OII assumption. The security
loss for an adversary making at most nDrawTag queries to the Prover-drawing
oracle consists of: a term 2nDrawTag · (AdvextODH(A) + AdvXL(A′)) for narrow-
strong privacy (coming from a standard hybrid argument reducing a narrow-
strong privacy adversary to a successful ExtODH distinguisher, and from re-
placing the value computed d computed by the prover by a random value), and a
term 2nDrawTag(AdvextODH(A) + AdvXL(A′) +
AdvOII(A′′)) for wide-forward-insider privacy.
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