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Abstract

Algebraic manipulation detection (AMD) codes, introduced at EUROCRYPT 2008, may,
in some sense, be viewed as keyless combinatorial authentication codes that provide security
in the presence of an oblivious, algebraic attacker. Its original applications included robust
fuzzy extractors, secure message transmission and robust secret sharing. In recent years,
however, a rather diverse array of additional applications in cryptography has emerged. In
this paper we consider, for the first time, the regime of arbitrary positive constant error
probability ϵ in combination with unbounded cardinality M of the message space. There
are several applications where this model makes sense. Adapting a known bound to this
regime, it follows that the binary length ρ of the tag satisfies ρ ≥ log logM +Ωϵ(1). In this
paper, we shall call AMD codes meeting this lower bound optimal. Known constructions,
notably a construction based on dedicated polynomial evaluation codes, are a multiplicative
factor 2 off from being optimal. By a generic enhancement using error-correcting codes,
these parameters can be further improved but remain suboptimal. Reaching optimality
efficiently turns out to be surprisingly nontrivial. Owing to our refinement of the mathe-
matical perspective on AMD codes, which focuses on symmetries of codes, we propose novel
constructive principles. This leads to an explicit construction based on certain BCH codes
that improves the parameters of the polynomial construction and to an efficient randomized
construction of optimal AMD codes based on certain quasi-cyclic codes. In all our results,
the error probability ϵ can be chosen as an arbitrarily small positive real number.

1 Introduction

Algebraic manipulation detection (AMD) codes, introduced at EUROCRYPT 2008 [5], may, in
some sense, be viewed as keyless combinatorial authentication codes that provide security in
the presence of an oblivious, algebraic attacker. Briefly, a systematic AMD encoding is a pair
consisting of a message m and a tag τ . Given the message, the tag is sampled probabilistically
from some given finite abelian group, according to a distribution depending on the details of the
scheme. The attack model considers an adversary which substitutes an intercepted pair (m, τ)
by a pair (m̃, τ̃) with m̃ ̸= m such that it knows ∆ := τ̃ − τ and such that ∆ is independently
distributed from τ . It may, however, depend on m. The error probability ϵ of an AMD code
upper bounds the success probability of the best strategy to have a substitution accepted as a
valid encoding. 1
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The original applications [5] of AMD codes included robust fuzzy extractors, secure message
transmission, and robust secret sharing. During the last few years, however, several interesting
new applications have emerged. Namely, AMD codes play a role in topics such as construction
of non-malleable codes [7], codes for computationally bounded channels [10], unconditionally
secure multiparty computation with dishonest majority [3], complete primitives for fairness [9],
and public key encryption resilient against related key attacks [13].

In this paper we consider, for the first time, the regime of arbitrarily small positive constant
error probability ϵ in combination with unbounded cardinality M of the message space. This
model makes sense for most of the known information-theoretic applications of AMD codes.
This is the case for secure message transmission, robust secret sharing and robust fuzzy extrac-
tors [5], and also for non-malleable codes [7, Theorem 4.1], unconditionally secure multiparty
computation with dishonest majority [3, Theorem 8.3], and codes for computationally simple
channels [10]. 2

Adapting a known bound to the constant-error model, it follows that the binary length ρ of
the tag τ satisfies

ρ ≥ log logM +Ωϵ(1),

where the hidden constant is about −2 log ϵ. In this work, optimal AMD codes are those meeting
this lower bound, i.e., their tag-length is log logM + Oϵ(1). Known constructions, notably a
construction based on dedicated polynomial evaluation codes [5], are a multiplicative factor 2
off from being optimal (Proposition 2.4). By a generic combination of these polynomial AMD
codes with asymptotically good error-correcting codes, AMD codes with tag-length

ρ = log logM + log log logM +Oϵ(1)

are obtained (Proposition 2.5), which is still suboptimal. Bridging the gap to optimality effi-
ciently turns out to be surprisingly nontrivial.

Owing to our refinement of the mathematical perspective on AMD codes, which focuses on
symmetries of codes, we propose novel constructive principles. As we show, this leads to the
following results.

1. There is a straightforward Gilbert-Varshamov type nonconstructive proof of the existence
of optimal AMD codes (Theorem 3.4).

2. There is an explicit construction of AMD codes based on cyclic codes (Theorem 3.6).
A construction with equivalent parameters to the polynomial construction from [5] is
retrieved immediately by instantiating the latter with Reed-Solomon codes. Instantiating
it with narrow-sense primitive BCH codes, AMD codes with improved parameters are
obtained (Theorem 5.4).

3. There is an efficient randomized construction of optimal AMD codes, based on twists of
asymptotically good quasi-cyclic codes of finite index (Theorem 3.7). As an aside, the
hidden constant in this construction is actually quite small, namely about −6 log ϵ, which
is roughly 3 times the hidden constant in the lower bound (Remark 6.4).

Note that in all our results, the error probability ϵ can be chosen as an arbitrarily small
positive real number.

2Nevertheless, other applications require negligible error probability.
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Related Work The reader is referred to the survey [6] for more information about known
results, techniques and applications of AMD codes. A class of AMD codes with a stronger
security requirement was recently introduced in [11, 12]. Namely, all algebraic manipulations,
even those that do not change the message m but only the tag τ , should be detected with high
probability. This additional requirement is not needed in most of the applications of AMD
codes. 3 Our novel constructions of AMD codes in this paper satisfy that stronger security
requirement. 4 A variant of AMD codes achieving leakage resilience has been presented [1].

2 Best Previous Constructions

The following definition of systematic AMD code was introduced in [5, 6]. A new, equivalent
definition, which fits our refinement of the mathematical perspective on AMD codes, is given
in Section 3.

Definition 2.1. A systematic (M,n, ϵ)-AMD code consists of a map f : M× G → V , where
M is a set and G, V are finite abelian groups such that M = |M| > 1 and n = |G| · |V |, and

|{g ∈ G : f(m, g) + c = f(m′, ge)}| ≤ ϵ · |G|.

for all m,m′ ∈ M with m ̸= m′ and for all (e, c) ∈ G× V .

A simple example of a systematic AMD code, the so-called multiplication AMD code, is
given in Proposition 2.2. It is extracted from the robust secret sharing construction in [4]. The
proof of this result is straightforward.

Proposition 2.2. Let q be a positive prime power and k, ℓ positive integers with k ≥ ℓ, and
take an embedding of Fℓ

q into Fqk . Then the map f : Fℓ
q × Fqk → Fqk given by f(m, g) = mg

(here the embedding of Fℓ
q into Fqk is used to compute the product mg) defines a systematic

(qℓ, q2k, 1/qk)-AMD code.

We present next the family of efficient AMD codes, with rather good parameters, that was
introduced in [5]. The reader is referred to [5, 6] for more details about this construction.

Proposition 2.3. Let Fq be a finite field of characteristic p. Let d > 0 be an integer such that
d+ 1 < q and p is not a divisor of d+ 2. Then the function f : Fd

q × Fq → Fq defined by

f((m1, . . . ,md), g) = gd+2 +

d∑
i=1

mig
i

determines a systematic (qd, q2, (d+ 1)/q)-AMD code.

The following discussion, which is adapted from [6, Section 6], demonstrates the flexibility in
the values of the parameters of this family of AMD codes. In addition, it proves Proposition 2.4.

Consider a prime p, a real number ϵ0 with 0 < ϵ0 < 1, and an integer M0 ≥ 1/ϵ0. Take the
smallest integer d such that d+ 2 is not divisible by p and logM0 ≤ d(log(d+ 1)− log ϵ0),

k =

⌈
log(d+ 1)− log ϵ0

log p

⌉
,

3It is nevertheless essential for the non-malleable secret sharing schemes introduced in [9].
4The only exceptions appearing in this paper are the non-constructive family in Corollary 4.8 and the (known)

multiplication AMD code in Proposition 2.2. The AMD code from [5] also satisfies the stronger security require-
ment.
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and q = pk. Then M = qd ≥ M0 and ϵ = (d+ 1)/q ≤ ϵ0. Therefore, there exists in the family
introduced in Proposition 2.3 an (M,p2k, ϵ0)-AMD code, which can be trivially transformed
into an (M0, p

2k, ϵ0)-AMD code, with tag-length

ρ = 2k log p ≤ −2 log ϵ0 + 2 log(d+ 1) + 2 log p

≤ −2 log ϵ0 + 2 log

(
− logM0

log ϵ0
+ 3

)
+ 2 log p.

We have used here that (k−1) log p ≤ log(d+1)− log ϵ0 and (d−2)(log(d−1)− log ϵ0) ≤ logM0.
The following two propositions are direct consequences of this discussion.

Proposition 2.4. For every fixed value of ϵ with 0 < ϵ < 1 and arbitrarily large values of M ,
there exist systematic (M,n, ϵ)-AMD codes in the family introduced in Proposition 2.3 such that
the asymptotic behavior of the tag-length is ρ = 2 log logM +O(1).

When comparing the result in Proposition 2.4 with the asymptotic lower bound in Corol-
lary 4.3, we observe that the construction of AMD codes in [5] is a multiplicative factor 2 off
from being optimal.

Finally, we observe here that it is possible to obtain an almost optimal construction by
combining the AMD codes above with asymptotically good family of Fq-linear error-correcting
codes. The idea is to encode the message x ∈ M with the error-correcting code C, take the
tag (g, Cg(x)), where g is chosen uniformly at random from Gs, the cyclic group of order s, and
Cg(x) ∈ Fq is the g-th component of the codeword C(x), and then encode the tag (g, Cg(x))
with a suitable AMD code.

Proposition 2.5. For every fixed value of ϵ with 0 < ϵ < 1 and arbitrarily large values of M ,
there exist systematic (M,n, ϵ)-AMD codes such that the asymptotic behavior of the tag-length
is ρ = log logM + log log logM +O(1).

Proof. Consider a family of Fq-linear codes with constant rate R > 0 and constant relative
minimum distance δ ≥ 1 − ϵ. That is, for arbitrarily large values of s there is in the family a
code C : Fk

q → Fs
q with length s, dimension k ≥ Rs and minimum distance at least δs. For every

h in Gs and x ∈ M = Fk
q , let Cg(x) ∈ Fq be the g-th component of the codeword C(x). We have

seen before that one can find for these values of s AMD codes f ′ : M′ ×G′ → V ′ with message
space M′ = Gs × Fq, error probability ϵ, and tag-length log log sq + O(1) = log log s + O(1).
The proof is concluded by considering the AMD code

f : Fk
q × (Gs ×G′) → Fq × V ′

defined by f(x, (g, g′)) = (Cg(x), f
′((g, Cg(x)), g

′)).

3 Overview of Our Results

To enable a bird’s eye view on our main results, we first briefly sketch our refinement of the
mathematical perspective on AMD codes. Let V and G be finite abelian groups. Define the
finite abelian group

V [G] =
⊕
g∈G

V,

together with the group action denoted by “·” that turns V [G] into a so-called G-module by
having G act on the coordinates. More precisely, if x ∈ V [G] with “coordinates” x(g) ∈ V
(g ∈ G), then

h · x ∈ V [G]
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is defined such that
(h · x)(g) := x(−h+ g),

for all g ∈ G. 5 In particular, the G-action permutes coordinates. A G-submodule C ′ is a
subgroup of V [G] that is invariant under the G-action, i.e.,

G · C ′ = C ′,

or equivalently, h · x ∈ C ′ for all h ∈ G, x ∈ C ′. Let Γ ⊂ V [G] denote the G-submodule of
constants, i.e., it consists of the elements x ∈ V [G] such that x(g) = x(g′) for all g, g′ ∈ G. If
x ∈ V [G], then G · x is the G-orbit of x, i.e., it is the set of elements {h · x | h ∈ G}. Note that,
if x ̸= 0, then this is not a G-submodule.

Definition 3.1. For x, y ∈ V [G], the AMD-equivalence relation in V [G] is defined by

x ∼ y if and only if x ∈ (G · y + Γ).

For x ∈ V [G], the equivalence class of x under the AMD-equivalence relation is denoted by
cl(x).

Consider the set V [G]/ ∼, i.e., V [G] taken modulo this equivalence relation. Also consider
the induced Hamming-distance dH, which defines the distance between classes cl(x), cl(x′) ∈
V [G]/ ∼ as the minimum of the (regular) Hamming-distance dH(y, y

′) taken over all y ∈ cl(x)
and y′ ∈ cl(x′). 6 Observe that dH(cl(x), cl(x′)) = dH({x}, cl(x′)). For a subset C ⊂ V [G], the
image of C under reduction by the equivalence relation is denoted by C ⊂ V [G] / ∼.

Our new perspective concerns the observation that “good” AMD codes correspond to codes
C ⊂ V [G] such that |C| = |C|, the cardinality |C| is “large” and the minimum distance dmin(C)
of C ⊂ V [G] / ∼ (i.e, in terms of the induced Hamming-distance) is “large” as well. Only
systematic algebraic manipulation detection codes are considered in this paper. The reader is
referred to [6] for additional definitions and results about this and other classes of algebraic
manipulation detection codes. For completeness, we present in Appendix 2 the equivalent
definition of asymptotic AMD code from [5].

Definition 3.2 (AMD Codes). Let ϵ be a real number with 0 ≤ ϵ ≤ 1 and let M , n be integers
with M,n ≥ 1. A systematic (M,n, ϵ)-algebraic manipulation detection (AMD) code consists of
finite abelian groups G, V and a subset C ⊂ V [G] such that |C| = |C| = M and |G| · |V | = n,
and dmin(C) ≥ (1−ϵ) · |G|. The tag-length of an (M,n, ϵ)-AMD code is the quantity ρ = log2 n.

We prove in the following that Definitions 3.2 and 2.1 are equivalent. First assume that
C ⊂ V [G] is a systematic AMD code given in Definition 3.2. Consider the map f : C ×G→ V
defined by (x, g) 7→ x(g). Then it is easy to verify that this coincides with Definition 2.1. On
the other hand, assume that we have a systematic AMD code given in Definition 2.1. Consider
the set C := {

∑
g∈G f(m, g)g : m ∈ M}. Then it is straightforward to verify that C is a

systematic AMD code given in Definition 3.2.
In applications, a bijection ϕ : M → C between the message space M and the code C is

fixed. To encode a message m ∈ M, take x = ϕ(m), select h ∈ G uniformly at random and set

τ := (h, x(h)) ∈ G× V

5Note that, (h′ · (h · x))(g) = x(−h− h′ + g) = (h′ + h) · x, for all h, h′, g ∈ G and x ∈ V .
6The (regular) Hamming-distance between two elements of V [G] is, of course, the number of non-zero coordi-

nates in their difference.
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as the tag.

AMD codes are a relaxation of combinatorial authentication codes. Their purpose is similar,
namely ensuring message integrity. However, AMD codes are keyless and security is only
guaranteed against a non-adaptive, algebraic adversary that has a priori knowledge of m and
effectively replaces (m, τ) by (m′, τ ′) ∈ M× (G× V ), under the following restrictions:

• m′ ̸= m.

• Effectively selects an offset (e, c) ∈ G× V and sets τ ′ = (h+ e, x(h) + c) ∈ G× V.

• The selection of (m′, e, c) may only depend on the messagem and independent randomness
chosen by the adversary. In particular, this selection does not depend on h.

Then the adversary is successful if and only if x′(h + e) = x(h) + c, where x′ = ϕ(m′) ∈ C. It
follows that success is equivalent to ((−e) · x′)(h) − c = x(h). Since x and x′ are in distinct
equivalence classes and since h ∈ G is uniformly random and independent of x, x′, e, c, the
success probability of the adversary is at most ϵ because

1− dH(cl(x), cl(x′))

|G|
≤ 1−

dmin(C)

|G|
≤ ϵ.

In several specialized situations the adversary is effectively reduced to non-adaptive, al-
gebraic attack. Moreover, authentication codes are typically not an option there: the secret
key is susceptible to the same attack. Interestingly, the choice of the groups V,G is typically
immaterial in applications. 7

These observations motivate the following novel approaches to show existence of good AMD
codes. Suppose, for now, that C ′ ⊂ V [G] is such that

1. C ′ is a G-submodule.

2. Γ ⊂ C ′.

Suppose that |C ′| is “large” and that the (regular) minimum distance dmin(C
′) is “large.”

In order to get a good AMD code out of this, it now suffices to develop an (efficient) method to
select a subset C ⊂ C ′ such that for each distinct x, x′ ∈ C, the intersection between the orbits
G · x and G · x′ is empty (orbit avoidance). This way, one potentially achieves an AMD code C
such that

|C| ≥ |C ′|
|V | · |G|

,

where the denominator upper bounds the cardinality of a class, and such that the error proba-
bility ϵ satisfies

ϵ = 1−
dmin(C

′)

|G|
.

This discussion is summarized in the following result.

Lemma 3.3. Suppose C ′ ⊂ V [G] is a G-submodule, Γ ⊂ C ′, and dmin(C
′) ≥ (1 − ϵ) · |G|

for some ϵ with 0 < ϵ < 1. Then there exists a systematic

(
|C ′|

|V | · |G|
, |V | · |G|, ϵ

)
-AMD code

C ⊂ C ′.

7Except perhaps that it is sometimes convenient if neither |V | nor |G| has a small prime divisor.
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As we show, this approach immediately leads to a greedy, non-constructive proof of the
existence of optimal AMD codes. 8

Theorem 3.4. For every real number ϵ with 0 < ϵ < 1, there exist AMD codes with unbounded
message space cardinality M and error probability at most ϵ whose tag-length ρ satisfies

ρ = log logM +Oϵ(1),

which is optimal.

Remark 3.5 (Locking trick). Now drop the condition that Γ ⊂ C ′. This complicates the
situation as the (regular) relative minimum distance of the code C ′ no longer gives a non-
trivial upper bound on the error probability of the AMD code C, i.e., the code obtained after
application of orbit avoidance. But if |V | is constant, the situation can be reduced to the
previous situation by means of our locking trick, without harming asymptotic performance:
simply augment an AMD encoding with a standard AMD encoding (with appropriate error
probability) of the value x(h) in the tag τ = (x, x(h)). This way, at the cost of an additive
constant increase in tag-length, we may as well assume that the adversary does not change the
V -component of the tag. This obviates the need for considerations involving the constants Γ.
As a consequence, the relative minimum distance of C ′ once again governs the error probability
ϵ of the AMD code C. 9

Any AMD code with the suitable parameters can be used in the locking trick as, for example,
the simple multiplication AMD code in Proposition 2.2. 10 .

Hence, the remaining question is about effective construction. We apply the idea above to
cyclic Fq-linear codes and show an efficiently enforceable algebraic conditions on the generator
polynomial to ensure orbit avoidance. If V = K is a (finite) field, then K[G] is a ring, where
multiplication is defined from the G-action by convolution, and henceK[G] is aK-algebra (since
K is contained in a natural way). A cyclic Fq-linear code is a G-submodule of Fq[G], where
G is a finite cyclic group. It is convenient, though, to work with the following more common,
equivalent definition.

Let q be a positive prime power and let Fq be a finite field with q elements. Let s be a
positive integer that is not a multiple of the characteristic p of Fq. Set V = Fq and G = Gs, the
cyclic group of order s. Let πq(s) = ord∗s(q) be the multiplicative order of q mod s. An Fq-linear
cyclic code C ′ of length s is an ideal of Fq[Gs] ≃ Fq[X]/(Xs − 1), and hence it is generated by

the class a(X) ∈ Fq[X]/(Xs − 1) of some polynomial a(X) ∈ Fq[X] that divides Xs − 1. This
polynomial is called the generator of the cyclic code C ′.

Theorem 3.6. Let Fq be a finite field and s > 1 an integer that is not a multiple of the
characteristic p of Fq. Let C ′ ⊂ Fq[X]/(Xs − 1) be an Fq-linear cyclic code of length s with
generator a(X) ∈ Fq[X]. Let d be the minimum distance of C ′. Suppose that the following
conditions are satisfied.

1. The all-one vector is in C ′ or, equivalently, (X − 1) does not divide a(X).

2. There is a primitive s-th root of unity ω ⊂ Fq with a(ω) ̸= 0.

3. πq(s) < s− deg a− 1.

8In fact, a Gilbert-Varshamov style argument.
9Note that locking only makes sense if |V | is very small compared to |G|; otherwise this is too costly!

10If an AMD code under the stronger security requirements from [11] is needed, then one should select for the
lock an AMD code that also satisfies those requirements as, for instance, the polynomial AMD code from [5].
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Then there exists an explicit construction of a (qs−deg a−πq(s)−1, sq, (s−d)/s)-AMD code C ⊂ C ′.

For every real number ϵ with 0 < ϵ < 1, instantiation with Reed-Solomon codes defined over
a large enough finite field leads to an explicit construction of AMD codes with arbitrarily large
message space cardinality M and tag-length 2 log logM + Oϵ(1), which is the same as in the
explicit construction from [5] (see Appendix 2). Instantiation with narrow-sense primitive BCH
codes defined over a large enough finite field leads to an explicit construction of almost-optimal
AMD codes, i.e., achieving tag-length (1 + δ) log logM + Oϵ(1) where δ is an arbitrary real
constant with 0 < δ < 1.

One quickly sees that achieving optimality along the lines of twists on cyclic codes as dis-
cussed above would require the existence of asymptotically good cyclic Fq-linear codes, which
is one of the central open problems in the theory of error correcting codes. 11 The remainder
of our results is concerned with bypassing this major open problem.

Our final result is a randomized construction of optimal AMD codes.

Theorem 3.7. For every real number ϵ with 0 < ϵ < 1, there exist an efficient, randomized
construction of explicit AMD codes with arbitrarily large message space cardinality M and tag-
length ρ = log logM +Oϵ(1), which is optimal.

Relying on our AMD perspective as outlined above, it is achieved by a series of twists on a
result in a beautiful paper by Bazzi and Mitter [2] on asymptotically good quasi-cyclic codes of
constant index ℓ. Let ℓ ≥ 2 and define V = Fℓ

2. One of their results (stated in our terminology
here) is that there exists a randomized construction of Gs-submodules C ′ ⊂ Fℓ

2[Gs] of rate
log |C ′|/(ℓs) = 1/ℓ achieving the Gilbert-Varshamov bound when s tends to infinity. 12 The
error probability of this randomized construction is exponentially small in s if the lengths s are
carefully selected.

We use four twists on their result to show our claim. First, we generalize it to work over all
finite fields Fq, with ℓ ≥ 2 an arbitrary integer constant. This ensures that relative minimum
distance arbitrarily close to 1 can be achieved, and hence ϵ can be selected arbitrarily close to 0.
This generalization is straightforward, using some results from [8]. Second, we need to resort to
the locking trick in Remark 3.5. Third, we need an adaptation of the efficient orbit avoidance
method alluded to above. This adaptation is necessary not only because of the shift from cyclic
codes to quasi-cyclic ones, but also because of the probabilistic nature of the construction.
Fourth, we need to craft the lengths s with additional care to ensure that the rate of the code
drops by at most a multiplicative positive constant factor after application of orbit avoidance.

4 Nonconstructive Optimal AMD Codes

In this section, we present the proof of Theorem 3.4. We begin by presenting the asymptotic
lower bound in Corollary 4.3, which is a consequence of the bound in Proposition 4.2. This
bound is a refinement of similar bounds presented in [6, 11]. We are going to use the following
trivial result

11It would not even be enough if asymptotically good cyclic Fq-linear codes exist for some value of q. Namely,
to suit our purposes, such codes should exist for infinitely many values of q and, when sending q to infinity, the
relative minimum distance achieved should tend to 1. Finally, a certain condition on the lengths of the codes
should hold. Specifically, given such a value of q, the lengths ℓ(C′) occurring must satisfy πq(ℓ(C

′)) ≤ γℓ(C′) for
some absolute real constant γ > 0. Otherwise the orbit-avoidance eats away too many codewords, causing the
rate to drop to 0. If the codes do not contain the all-one vector, the locking trick alluded below could be applied.

12i.e., the relative minimum distance δ > 0 of these codes is such that H2(δ) = 1/ℓ, where H2(·) is the binary
Shannon-entropy function.
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Proposition 4.1. Let ϵ be a real number with 0 < ϵ < 1 and let C ⊂ V [G] be an (M,n, ϵ)-AMD
code. Then |G| ≥ 1/ϵ and |V | ≥ 1/ϵ. As a consequence, the tag-length ρ satisfies ρ ≥ −2 log ϵ.

Proof. Consider x, x′ ∈ C with x ̸= x′. Then there exists c ∈ V such that the set {g ∈ G :
x(g)− x′(g) = c} has cardinality at least |G|/|V |.∣∣{g ∈ G : x(g)− x′(g) = c}

∣∣ ≥ ⌈ |G|
|V |

⌉
.

Therefore,

(1− ϵ) · |G| ≤ dH(cl(x), cl(x′)) ≤ |G| −
⌈
|G|
|V |

⌉
≤ min

{
|G| − 1, |G| − |G|

|V |

}
and the proof is concluded.

Other lower bounds on the tag-length are obtained by applying some known classical bounds
from coding theory, as in Proposition 4.2. As a corollary, we obtain a lower bound on the
asymptotic behavior of the tag-length. 13

Proposition 4.2. Let ϵ be a real number with 0 < ϵ < 1. Suppose that M ≥ 1/ϵ. Then the
tag-length ρ of a systematic (M,n, ϵ)-AMD code satisfies

ρ ≥ log logM − 2 log ϵ−max{0, log(− log ϵ)}.

Proof. Let C ⊂ V [G] be an (M,n, ϵ)-AMD code. From the definition of AMD code, C +Γ is a
code of size M · |V |, length |G| and minimum distance at least (1− ϵ)|G| over the alphabet V .
Therefore, by the Singleton bound, M ≤ |V |ϵ·|G|, and hence

log |G| ≥ log logM − log ϵ− log log |V |.

By Proposition 4.1, log |G| ≥ − log ϵ and log |V | ≥ − log ϵ. Take x = log |V |, y = log |G|,
A = max{1,− log ϵ}, and B = log logM . Since B− logA ≥ 0, the minimum value of x+y under
the constraints x, y ≥ A and y ≥ A+B−log x is attained when x = A and y = A+B−logA.

Corollary 4.3. For every real number ϵ with If 0 < ϵ < 1, the tag-length ρ of the AMD codes
with arbitrarily large message space cardinality M and error probability at most ϵ satisfies

ρ ≥ log logM +Ωϵ(1).

Application of the Hamming and Plotkin bounds instead of the Singleton bound gives better
results, but the asymptotic results are not improved. Next, we prove Theorem 3.4 by using a
variation on the Gilbert-Varshamov bound.

Definition 4.4. Consider a finite field Fq, a real number ϵ with 1/q < ϵ < 1, and a positive
integer s. Then the quantity A′

q(s, ϵ) is defined as the maximum cardinality M of an (M,n, ϵ)-
AMD code C ⊂ Fq[Gs].

Proposition 4.5. With conditions as above,

A′
q(s, ϵ) ≥

⌊
qs

qs · Vq(s, 1− ϵ)

⌋
,

where Vq(s, 1− ϵ) is the volume of a sphere in Fq[Gs] with radius (1− ϵ)s.

13The looser, but easier to prove, lower bound ρ ≥ log logM − log ϵ is enough to obtain the asymptotic lower
bound in Corollary 4.3. Nevertheless, the bound in Proposition 4.2 provides a better description of the behavior
of the tag-length ρ in relation to the error probability ϵ.
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Proof. Suppose that the result is false and take an (M,n, ϵ)-AMD code C ⊂ Fq[Gs] with M =
A′

q(s, ϵ). Observe that | cl(x)| ≤ qs for every x ∈ Fq[Gs]. Therefore, the number of elements y ∈
Fq[Gs] such that dH({y}, cl(x)) < (1−ϵ)s is at most qs·Vq(s, 1−ϵ). Since |C|·qs·Vq(s, 1−ϵ) < qs

there exist a vector y ∈ Fq[Gs]r C such that

dH(cl(y), cl(x)) = dH({y}, cl(x)) ≥ (1− ϵ)s

for all x ∈ C. Therefore, C has not maximum cardinality among all codes with the required
property, a contradiction.

Corollary 4.6. Let q be a positive prime power, let ϵ be a real number with 1/q < ϵ < 1, and
let s be a positive integer. Then there exists a systematic(⌊

qs

qs · Vq(s, 1− ϵ)

⌋
, qs, ϵ

)
-AMD code

with V = Fq and G = Gs, the cyclic group of order s.

Lemma 4.7. With conditions as above,

lim
s→∞

logA′
q(s, ϵ)

s
≥ (1−Hq(1− ϵ)) log q,

where Hq is the q-ary entropy function.

Proof. The result follows immediately from Corollary 4.6 by taking limits, taking into account

that, by coding theory, lim
s→∞

logq Vq(s, 1− ϵ)

s
= Hq(1− ϵ).

Finally, Theorem 3.4 is an immediate consequence of the following result.

Corollary 4.8 (Non-constructive optimality). For any real constant c > 0, fix a positive prime
power q and a real number ϵ with ϵ = 1/q+1/q1+c. Then there exist AMD codes with arbitrarily
large message space cardinality M , error probability at most ϵ and tag-length

ρ = log log |M | − (2 + c) log ϵ+O(1).

Note that the tag-length is minimal up to an additive constant.

5 An Explicit Construction from Cyclic Codes

This section is devoted to prove Theorem 3.6. We present here an effective method to select,
from any given cyclic code, a number of codewords in different AMD-equivalence classes. By
Lemma 3.3, this provides an effective construction of systematic AMD codes.

5.1 General Construction

Let Fq be a finite field. Let s > 1 be an integer that is not a multiple of the characteristic p
of Fq. Then Fq[Gs] is a ring, where the product is defined from the Gs-action by convolution.
So, Fq[Gs] is an Fq-algebra. Since Xs − 1 is separable, it follows by the Chinese Remainder
Theorem that Fq[Gs] ≃ Fq[X]/(Xs − 1) is a product of finite extension fields of Fq. Let ω ∈ Fq

be a primitive s-th root of unity. Then the degree of Fq(ω) over Fq equals

πq(s) = ord∗s(q),
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the multiplicative order of q mod s. Equivalently, it equals the degree of the minimal polyno-
mial of ω over Fq. It is also the largest degree occurring among the irreducible factors in the
factorization of Xs − 1 over Fq[X] as each of the s roots sits in some intermediate extension of
Fq(ω) ⊃ Fq.

Definition 5.1. Let a(X) ∈ Fq[X] be a polynomial such that a(X) divides Xs − 1 and let
ω ∈ Fq be a primitive s-th root of unity with a(ω) ̸= 0. We define D(a(X), ω) ⊂ Fq[X] as the
set of all polynomials f(X) ∈ Fq[X] such that

1. f(ω) = 1, and

2. deg f < s− deg a− δ, where δ = 0 if (X − 1) divides a(X) and δ = 1 otherwise.

An Fq-linear cyclic code C ′ of length s is a Gs-submodule of Fq[Gs]. Equivalently, it is an
ideal C ′ ⊂ Fq[X]/(Xs−1) generated by the class of some polynomial a(X) ∈ Fq[X] that divides
Xs − 1. This polynomial is called the generator of the cyclic code C ′. Then

C ′ =
{
a(X)f(X) : f(X) ∈ Fq[X] and deg f < s− deg a

}
⊂ Fq[X]/(Xs − 1).

Let C ′ be an Fq-linear cyclic code with generator a(X) and suppose that a(ω) ̸= 0 for some

primitive s-th root of unity ω ∈ Fq. Let C ⊂ C ′ be the set of all codewords a(X)f(X) ∈
Fq[X]/(Xs − 1) with f ∈ D(a(X), ω).

Lemma 5.2. No two distinct elements in C are in the same AMD-equivalence class.

Proof. Suppose that there exist two different polynomials f, g ∈ D such that the corresponding
codewords in C are in the same AMD-equivalence class. Then

Xℓa(X)f(X) + λ(Xs−1 + · · ·+X + 1) ≡ a(X)g(X) (mod Xs − 1)

for some ℓ with 0 ≤ ℓ < s. Therefore, ωℓa(ω)f(ω) = a(ω)g(ω), and hence ωℓ = 1 by the
definition of C. Since ω is a primitive root, ℓ = 0. Consequently,

a(X)(f(X)− g(X)) ≡ −λ(Xs−1 + · · ·+X + 1) (mod Xs − 1). (1)

Suppose that (X−1) divides a(X). Then λ ̸= 0 because deg(f−g) < s−deg a, but this implies
that a(X) divides Xs−1 + · · · + X + 1, a contradiction. Suppose now that (X − 1) does not
divide a(X), and hence δ = 1 and deg(f−g) < s−deg a−1. But then (1) is impossible because
deg(a(f − g)) is too small, a contradiction again.

Lemma 5.3. Suppose that πq(s) < s− deg a− δ. Then |C| = qs−deg a−πq(s)−δ.

Proof. Take h = s − deg a − δ and let Fq[X]<h be the Fq-vector space of the polynomials in
Fq[X] with degree at most h − 1. Since πq(s) < h, application of Lemma A.1 implies that the
kernel of the Fq-linear map Fq[X]<h → Fq[ω], f 7→ f(ω) has dimension h− πq(s).

The proof of Theorem 3.6 is now straightforward from Lemmas 3.3, 5.2 and 5.3.
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5.2 Instantiations

Applying Theorem 3.6 to Reed-Solomon codes provides, for every real number ϵ with 0 < ϵ < 1,
an effective construction of (M,n, ϵ)-AMD codes with unbounded message space cardinality M
and tag-length 2 log logM +Oϵ(1), which is the same as in the polynomial construction from [5]
(see Section 2). Indeed, consider a prime power q, a primitive element α of F∗

q , an integer

k with 1 ≤ k ≤ q − 1, and the polynomial a(X) = (X − α)(X − α2) · · · (X − αq−k−1). By
applying Theorem 3.6 to the Fq-linear cyclic code with length q − 1 generated by a(X), which
is a Reed-Solomon code with minimum distance d = q − k, one obtains an effective AMD code
with parameters (qk−2, q(q − 1), (k − 1)/(q − 1)). The proof of our claim is concluded by using
a similar argument as for the polynomial construction from [5] (see Section 2).

The instantiation to narrow-sense BCH codes is not so immediate. We refer to Appendix B
for the background on BCH codes.

Let e ≥ 1 be an integer. Let s = qe − 1. Choose an element α of Fqe of order s = qe − 1.
Let m(i)(x) ∈ Fq[x] denote the minimal polynomial of αi with respect to Fq. For 0 < ϵ < 1, put
d = (1− ϵ)s and consider the BCH code B of length s = qe − 1 with the generator polynomial
a(X) := lcm{m(1)(X),m(2)(X), . . . ,m(d−1)(X)}. Then the minimum distance of B is at least
d. Let fai,j(X) be the polynomials defined in (2) of Appendix B.

By Lemma B.4, the dimension s − deg a of B is equal to the dimension of the Fq-span
Vs−d = Vϵs of {fai,j(X) : 1 ≤ i ≤ t, 1 ≤ j ≤ sai , deg fai,j ≤ ϵn}. Hence, dim(B) = s− deg a ≥
(ϵ(q − 1) + 1)e ≈ e + 1 + (ϵq)e. Note that in this case πq(s) = e. Applying Theorem 3.6, we
obtain the following AMD codes.

Theorem 5.4. For any ϵ ∈ (0, 1), any integer e ≥ 1 and prime power q, there exists an effective
(q(ϵq)

e
, (qe − 1)q, ϵ)-AMD code. Thus, the tag-length equals to

e+ 1

e
log logM − (e+ 1) log ϵ+O(1).

Proof. Note that the message size M = q(ϵq)
e
satisfies log logM ≈ e · log ϵ + e · log q. The tag-

length satisfies log q+log(qe−1) ≤ (e+1) log q ≤ e+ 1

e
log logM − (e+1) log ϵ. This completes

the proof.

Remark 5.5. When e = 1 in Theorem 5.4, we get almost the same result as in the one in [5]. If
we choose e = (log logM)0.5 in Theorem 5.4, then the tag-length is log logM+O((log logM)0.5).

6 Monte-Carlo Construction of Optimal AMD Codes

In this section we prove Theorem 3.7. Namely, we present an efficient randomized construction
of explicit optimal AMD codes. We proceed as follows. We begin by presenting in Theorem 6.1
a randomized construction of Gs-submodules C ′ ⊂ Fℓ

q[Gs]. By considering the codes C ′ over
the alphabet Fq, they have rate logq |C ′|/(ℓs) = 1/ℓ and minimum relative distance δ arbitrarily
close to 1 achieving the Gilbert-Varshamov bound when s tends to infinity. This is an extension
of the corresponding result by Bazzi and Mitter [2] for the case q = 2. This extension is based
on some results from [8]. The error probability of this randomized construction is exponentially
small in s if the lengths s are carefully selected. Then we apply the general method derived from
Lemma 3.3 to those Gs-submodules C ′ ⊂ Fℓ

q[Gs]. Since Γ ̸⊂ C ′, we have to use the locking trick
in Remark 3.5. Furthermore, we have to adapt orbit avoidance to this probabilistic scenario
involving quasi-cyclic codes. In addition, we need to craft the lengths s with additional care
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to ensure that the rate of the AMD code remains positive after application of orbit avoidance.
Finally, in Remark 6.4, we use a simple modification to reduce the size of the hidden constant
in the tag-length.

Let Fq be a finite field and s > 1 an integer such that the characteristic p of Fq does not
divide s. As before, Gs denotes the cyclic group of order s. Recall that, if ω ∈ Fq is a primitive
s-th root of unity, then the degree of Fq(ω) over Fq equals πq(s) = ord∗s(q), the multiplicative
order of q mod s. The smallest degree of an extension of Fq containing some (not necessarily
primitive) s-th root of unity different from 1 equals

αq(s) = min
p′|s

ord∗p′(q) = min
p′|s

πq(p
′),

where the minimum ranges over all prime divisors p′ of s. Equivalently, this equals the smallest
degree occurring among the irreducible factors in the factorization of Xs−1 + · · · +X + 1 over
Fq[X].

Let Fq be a finite field and let s, ℓ be positive integers such that s is coprime with q. An Fq-
linear (s, ℓ)-quasi-cyclic code C ′ is of the form C ′ = {(fa1, . . . , faℓ) : f ∈ Fq[Gs]} ⊂ (Fq[Gs])

ℓ,
for some fixed a1, ..., aℓ ∈ Fq[Gs]. In particular, C ′ is an Fq-linear code of length sℓ.

Let R ⊂ Fq[Gs] be the set formed by all a ∈ Fq[Gs] with
∑

g∈Gs
a(g) = 0. Equivalently, R is

the set of all a(X) ∈ Fq[X]/(Xs − 1) with a(1) = 0. Recall that Hq denotes the q-ary entropy
function. The following theorem is a consequence of the results in [2, 8].

Theorem 6.1. For a finite field Fq, an integer ℓ > 1, and an integer s that is not a multiple
of the characteristic p of Fq, consider the randomized construction of quasi-cyclic codes

C ′ = {(fa1, . . . , faℓ) : f ∈ Fq[Gs]} ⊂ (Fq[Gs])
ℓ,

where a1, . . . , aℓ are selected uniformly at random from R. Now consider C ′ as an Fq-linear
code of length sℓ. If δ is a real number with 0 < δ < 1− 1/q and

Hq(δ) ≤ 1− 1

ℓ
−

logq s

ℓαq(s)
,

Then the probability that the relative minimum distance of the code C ′ is below δ or the rate of

C ′ is below
1

ℓ
− 1

ℓs
is at most q−β, where

β = ℓαq(s)

(
1− 1

ℓ
−Hq(δ)

)
− (ℓ+ 2) logq s− ℓ(1 + logq ℓ)

As a consequence, for fixed values of δ, q and ℓ, if αq(s) grows asymptotically faster than log s,
this code achieves the Gilbert-Varshamov (GV) bound for rate 1/ℓ with high probability.

There is a natural identification between Fℓ
q[Gs] and (Fq[Gs])

ℓ. Indeed, every element x ∈
Fℓ
q[Gs] is of the form (x(g))g∈Gs , where x(g) = (x1(g), . . . , xℓ(g)) ∈ Fℓ

q for every g ∈ Gs. Then

x ∈ Fℓ
q[Gs] can be identified with (x1, . . . , xℓ) ∈ (Fq[Gs])

ℓ. By this identification, every Fq-linear

(s, ℓ)-quasi-cyclic code C ′ is a Gs-submodule of Fℓ
q[Gs].

We proceed next with the detailed description of our efficient randomized construction of
explicit optimal AMD codes. Given a real number ϵ with 0 < ϵ < 1, take a large enough prime
power q such that 1/q < ϵ and a large enough integer ℓ such that 1/ℓ < 1−Hq(1− ϵ). Note that
this means that if an Fq-linear code is on the GV-bound and it has rate 1/ℓ, then its relative
minimum distance is at least 1− ϵ.

Next, we select arbitrarily large values of s such that the following conditions are satisfied.
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1. The characteristic p of Fq does not divide s.

2. The value αq(s) grows asymptotically faster than log s. By Theorem 6.1, this ensures that
the relative minimum distance or the code C ′ is at least 1− ϵ, except with exponentially
small (in s) probability.

3. Finally, πq(s) ≤ s/(ℓ+1). This condition is needed to ensure that the rate of the code drops
by at most a multiplicative positive constant factor after application of orbit avoidance.

We describe next how to efficiently select arbitrarily large values of s satisfying those con-
ditions. Take s a product of 2 distinct odd primes, In addition, we require that these primes
are different from the characteristic p of Fq, they have roughly the same size, and they satisfy
πq(p

′) > log2 p′. Then αq(s) grows asymptotically faster than log s. Indeed, since the primes
p′ are of similar size, αq(s) = Ω(log2 s). By the Prime Number Theorem, a random prime
satisfies πq(p

′) > log2 p′ with quite high probability. We can efficiently check that the condition
is satisfied by simply factoring p′ − 1 over a factor basis consisting of the primes up to log2 p′

(brute-force suffices as the factor basis is so small). Moreover, by the Chinese Remainder The-
orem, it is straightforward to verify that the exponent of the group (Z/sZ)∗ is at most s/2 if s
is the product of 2 distinct odd primes. Therefore, πq(s) ≤ s/2.

Given a large enough integer s sampled as above, take a primitive s-th root of unity ω and
a code C ′ = {(fa1, . . . , faℓ) : f ∈ Fq[Gs]} ⊂ Fℓ

q[Gs] such that a1, . . . , aℓ ∈ R are selected
independently and uniformly at random. By Theorem 6.1, the relative minimum distance of C ′

is at least 1 − ϵ except with probability exponentially small in s. In addition, we require that
ai(ω) ̸= 0 for every i = 1, . . . , ℓ and that there is no s-th root of unity η ̸= 1 with ai(η) = 0 for
every i = 1, . . . , ℓ. The first property is used in Lemma 6.2 and the second property is used in
Lemma 6.3. By using a similar argument as in the proof of Lemma 5.3, the probability that
ai(ω) = 0 for some i = 1, . . . , ℓ is at most ℓq−πq(s). The probability that there is some s-th root
of unity different from 1 that is a root of each ai(X) is at most (s− 1)q−ℓπq(s). Therefore, these
two additional requirements do not substantially decrease the success probability (use union
bound) if αq(s) is much larger than log s.

Let D ⊂ Fq[X] be the subset of polynomials f(X) ∈ Fq[X] such that deg f < s − 1 and

f(ω) = 1. The code C ⊂ C ′ is now formed by the codewords (f(X)a1(X), . . . , f(X)aℓ(X)) ∈ C ′

such that f(X) ∈ D

The following two lemmas are conditioned on the “bad events” described above not hap-
pening.

Lemma 6.2. Gs · x and Gs · x′ have empty intersection for every x,x′ ∈ C with x ̸= x′.

Proof. Assume that the result is false. Then there exist polynomials f(X), f ′(X) ∈ D such
that Xi · f(X) · aj(X) ≡ f ′(X) · aj(X) mod (Xs − 1) for some integers i, j with 1 ≤ i < s and
1 ≤ j ≤ ℓ. Then this implies the identity ωi = 1, which is nonsense since ω is a primitive s-th
root of unity.

Lemma 6.3. |C| ≥ qs−1−ℓπq(s) = qΩ(s).

Proof. Consider the map ϕ : Fq[X]<s → (Fq[X]/(Xs − 1))ℓ defined by ϕ(f) = (fa1, . . . , faℓ).
Then the kernel of this map is spanned by the polynomial Xs−1+ · · ·+X+1. Since the degrees
of the polynomials in D are smaller than s − 1, it follows that |D| = |ϕ(D)| = |C|. It now
suffices to lower bound |D|. By Lemma A.1, the kernel of the map ψ : Fq[X]<s → Fq, f 7→ f(ω)
has dimension s − πq(s). Hence, |D| ≥ qs−1−πq(s). The claim follows since πq(s) ≤ s/2 by
hypothesis.
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The final ingredient in our construction is the locking trick in Remark 3.5, that is, we use
the multiplication AMD code described in Proposition 2.2 to encode x(g) ∈ Fℓ

q. Since ϵ > 1/q,
we can take k = ℓ, and hence we add to the tag two elements from Fqℓ .

14 This increases the
tag-length by an additive constant.

This concludes the proof of Theorem 3.7.

Remark 6.4 (Small hidden constant). Even though this randomized construction of AMD
codes is optimal, the hidden constant is very large because so is the value of ℓ. This drawback
can be avoided with a simple modification to our construction. Namely, instead of the tag
(g,x(g)) ∈ Gs×Fℓ

q with a lock for x(g), use the tag (g, h, xh(g)) ∈ Gs×Gℓ×Fq with locks for h
and xh(g). In this way, the tag-length is reduced from log s+ 3ℓ log q to log s+ 3 log ℓ+ 3 log q,
which is around log s− 6 log ϵ.
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A A Generalization of Lagrange’s Interpolation Theorem

It is convenient to recall a simple extension of the usual version of Lagrange Interpolation.

Lemma A.1. Let K be a field. Fix an algebraic closure K of K. Suppose α1, . . . , αm ∈ K
satisfy the property that if m > 1 then their respective minimal polynomials hi(X) ∈ K[X]
are pair-wise distinct. Equivalently, αi, αj are not Galois-conjugate over K if i ̸= j. For
i = 1, . . . ,m, define

δi = deg hi (= dimK K(αi)).

Moreover, define

M =

m∑
i=1

δi.

Let K[X]≤M−1 denote the K-vector space of polynomials f(X) ∈ K[X] such that deg f ≤M−1.
Then the evaluation map

E : K[X]≤M−1 −→
m⊕
i=1

K(αi)

f(X) 7→ (f(αi))
m
i=1

is an isomorphism of K-vector spaces.

B On BCH codes

Let q be a prime power and let e ≥ 1 be a positive integer. Put s = qe − 1.
For any a ∈ Zs, we define a q-cylotomic coset modulo s

Sa := {a · qi mod s : i = 0, 1, 2, . . . }.

It is a well-know fact that all q-cyclotomic cosets partition the set Zs. Let Sa1 , Sa2 , . . . , Sat
stand for all distinct q-cyclotomic cosets modulo s. Then, we have that Zs = ∪t

i=1Sai and
s =

∑t
i=1 |Sai |. We denote by sa the size of the q-cyclotomic coset Sa. The following fact can

be easily derived.

Lemma B.1. For every a ∈ Zs, the size sa of Sa divides e which is the order of q modulo s.

Proof. It is clear that sa is the smallest positive integer such that a ≡ aqsa mod s, i.e, sa is the
smallest positive integer such that s/ gcd(s, a) divides qsa − 1. Since s/ gcd(s, a) also divides
qe − 1, we have e ≡ 0 mod sa by applying the long division.
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Now for each Sa, we form sa polynomials in the following way. Let α1, . . . , αsa be an Fq-basis
of Fqsa (note that Fqsa is a subfield of Fqe). Define the polynomials

fa,j(X) :=

sa−1∑
i=0

(αjX
a)q

i

(2)

for j = 1, 2, . . . , sa.

Lemma B.2. For every a ∈ Zs, we have the following facts.

(i) The polynomials fa,j(X) for j = 1, 2, . . . , sa are linearly independent over Fq.

(ii) fa,j(β) belongs to Fq for all β ∈ Fqe.

Proof. The first statement is clear since the coefficients ofXa in fa,j(X) are αj and α1, α2, . . . , αsa

form an Fq-basis of Fqsa . To prove (ii), it is sufficient to prove that (fa,j(β))
q = fa,j(β) for every

β ∈ Fqe . Consider

(fa,j(β))
q =

(
sa−1∑
i=0

(αjβ
a)q

i

)q

=

sa−1∑
i=0

(αjβ
a)q

i+1

=

sa−1∑
i=1

(αjβ
a)q

i

+ αqsa

j βaq
sa

=

sa−1∑
i=1

(αjβ
a)q

i

+ αjβ
a = fa,j(β).

This completes the proof.

Lemma B.3. The following properties hold.

(i) The set {fai,j(X) : j = 1, 2, . . . , sai , i = 1, 2, . . . , t} is linearly independent over Fq.

(ii) Let V be the Fq-span of the set {fai,j(X) : j = 1, 2, . . . , sai , i = 1, 2, . . . , t}. Then the map

π : V → Fs
q; f(X) 7→ ((f(α))α∈F∗

qe
(3)

is an Fq-isomorphism.

Proof. (i) The degrees of fai1 ,j1(X) and fai2 ,j2(X) are distinct for any i1 ̸= i2. Thus, the desired
result follows from Lemma B.2(ii).

Since both V and Fs
q have the same dimension, it is sufficient to prove that π is injective.

This is clear since all polynomials in V has degree at most s− 1.

Choose an element α of Fqe of order s = qe − 1. Let m(i)(X) ∈ Fq[X] denote the minimal
polynomial of αi with respect to Fq. For 1 ≤ d ≤ s, consider the BCH code B of length
s = qe − 1 with the generator polynomial l.c.m{m(1)(X),m(2)(X), . . . ,m(d−1)(X)}. Then the
minimum distance of B is at least d.

Lemma B.4. With notations defined above, we have B = π(Vn−d), where Vn−d is the Fq-span
of the set {fai,j(X) : deg(fai,j(X)) ≤ n− d}.
Proof. It is clear that f(X) =

∑s−1
i=0 fiX

i ∈ Fq[X]/(Xs−1) belongs to B if and only if f(αi) = 0
for i = 1, 2, . . . , d−2. This means that (f0, f1, . . . , fs−1) belongs to the dual code of the following
code

{(a(1), a(α), . . . , a(αs−1)) : a(X) ∈ Fq[X]; 1 ≤ deg(a(X)) ≤ d− 1}.
On the other hand, the dual of the above code is in fact the generalized Reed-Solomon code

GRS(s− d) := {(a(1), a(α), . . . , a(αs−1)) : a(X) ∈ Fq[X]; deg(a(X)) ≤ s− d}.

This means that B = Fs
q ∩GRS(s− d). The desired result follows from Lemma B.3(ii).
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