
An Applicable Public-Key-Cryptosystem Based On
NP-Complete Problems

Björn Grohmann

nn@mhorg.de

1 Introduction

The expected security of some proposed Public-Key-Cryptosystems relys on the expected
hardness of problems with the following pattern. Given a field F, a matrix A ∈ Fn×m, a
vector b ∈ Fn and a set of vectors S ⊆ Fm. The question is: does there exist a vector
x ∈ Fm such that

Ax = b and x ∈ S, (1)

and if so, can x be computed efficiently?

In fact, depending on the field F and the set S, there is a long list of problems that
turn out to be NP-hard (resp. NP-complete), like e.g. SPARSE-APPROXIMATION,
SYNDROME-DECODING, etc.

There is a strong hope that PKCs based on NP-hard problems will survive against
attacks by Quantum-Computers in the future. One of the main challenges, besides
security, in designing these systems is to make them efficient.

In this article, we will propose a (to the best of the authors’ knowledge) new type
of Public-Key-Cryptosystem, based on the pattern described above. The next section
gives a detailed description of the system followed by an analysis of its performance and
its expected security.

The proposed PKC has two main advantages that will make it applicable to the
real world. The first one is a decoding algorithm with an expected runtime of O(n)
elementary operations. The second advantage is that the corresponding matrix A is of
the form A = [A′ | I], where I is the identity matrix and A′ being completely random,
in contrast to e.g. McEliece-Type systems (cf. [1]), which means that these entries can
be replaced by the values of any (PRNG-) function and therefore the public key can be
reduced to having linear size.

1

2 An Applicable Public-Key-Cryptosystem

We start by fixing some notation. Let Z be the set of integers. For a prime p > 2, the finite
field with p elements will be denoted by Fp and its subgroup of non-zero elements by F×p .
We will use a representation of elements of Fp of the form Fp = {−(p−1)/2, . . . , (p−1)/2}
and we will frequently view integers as elements of Fp and vice versa, if the context allows
this. All vectors x ∈ Fnp will be viewed as column vectors, the transpose of a vector x

will be denoted by xT . For two vectors x = (xi)
T
i and y = (yi)

T
i we denote their (inner)

product by xTy =
∑
i xiyi. For two integers s and t, with s 6 t, we will write 〈s, t〉n to

denote the set of vectors xT = (x1, . . . , xn) ∈ Zn with s 6 xi 6 t, for i = 1, . . . , n, so, by
abuse of notation, Fnp = 〈−(p − 1)/2, (p − 1)/2〉n. Finally, the number of elements of a
finite set S will be denoted by |S |.

We now come to the description of the Public-Key-Cryptosystem. For this, Alice fixes a
positive integer n, a prime p of size ∼ 2

√
n logn, a (PRNG-) function f : Z× Z −→ Fp and

a cryptographic hash-function h : Fp −→ Fp.

Her secret key will consist of a random element α ∈ Fp and two randomly cho-
sen (bit-) vectors e = (e1, . . . , en)

T and e′ = (e′1, . . . , e
′
n)
T , with ei, e

′
i ∈ {0, 1}, for

i = 1, . . . , n.

She then computes for i = 1, . . . n:

εi =

 n∑
j=1

f(i, j)ej

+ αe′i. (2)

Her public key consist of the data: n, p, f, h and ε = (ε1, . . . , εn)
T .

Now, if Bob wants to send a message β ∈ Fp to Alice, he randomly selects two
(bit-) vectors d = (d1, . . . , dn)

T and d′ = (d′1, . . . , d
′
n)
T , with di, d

′
i ∈ {0, 1}, for

i = 1, . . . , n, and computes for j = 1, . . . , n:

δj =

(
n∑
i=1

f(i, j)di

)
+ βd′j (3)

as well as

τB =

(
n∑
i=1

εidi

)
− β (4)

and sends δ = (δ1, . . . , δn)
T , τB and h(β) to Alice.

2

To decode the message, Alice first computes

τA =

(
n∑
i=1

δiei

)
− τB (5)

and then starts the following iteration process:

First, she picks integers s0 = bn/4c and t0 = bn/4c + 1. At each step k = 0, 1, 2, . . . , she
tests if

h

(
τA − skα

tk

)
= h(β), (6)

where all computations take place in Fp. If equation (6) holds, she saves (τA−skα)/tk ∈ Fp
and stops the process. Else, she puts (sk+1, tk+1) to be one of the remaining (integer)
points having a small distance to the center (s0, t0), for example:

-

?��

6

6
- - -

?

(s0, t0) (sk, tk)

Figure I: “Snake-Decoding”

We will start the analysis by showing that this decoding procedure is in general
quite efficient:

Theorem 1 The decoding algorithm given above produces the message β with a probability
close to 1 within an expected runtime of O(n) steps.

Proof. The correctness of the Theorem follows from the fact that τA = s′α + t′β, with
s′ =

∑
i e
′
idi and t′ = 1+

∑
i eid

′
i. Since the expected value of s′ is n/4 (resp. 1+n/4 for

t′) and their variance is
√
n
√
3/4, the Theorem follows. �

Next, we will focus on the (expected) security of the system. For this, let A ∈ Fn×mp be
any matrix and b ∈ Fnp a vector. We take a closer look at the solutions (x,y, λ) of the
equation

Ax + λy = b, (7)

3

with x ∈ Fmp , y ∈ Fnp and λ ∈ Fp.

In case of n = m, A = (f(i, j))i,j and b = ε it is clear that any solution (x,y, λ)
of equation (7) leads to an effective (but not necessarily efficient) decoding algorithm of
the system, since

xTδ− τB = dTyλ+ (1+ xTd′)β. (8)

We may, for example, take λ = 0 and assume that the matrix A is invertible. Then,
putting x0 = A

−1ε would lead to

xT0δ− τB = (1+ xT0d
′)β, (9)

but since d′ is a random bit-vector there is, in general, no efficient way to compute β
without any knowledge of d′.

As we have already seen, bit-vectors do the trick, although these are not the only
solutions which may lead to efficient decoding algorithms. Before we come to a general
description of suitable solutions, we note down the following

Theorem 2 Given a prime p > 2, positive integers n,m, a matrix A ∈ Fn×mp and a
vector b ∈ Fnp . Deciding, whether there exist vectors x ∈ {0, 1}m, y ∈ {0, 1}n and an
element λ ∈ Fp, such that Ax + λy = b, is NP-complete.

Proof. This is a special case of Theorem 4, see below. �

To describe those solutions that might lead to an efficient decoding algorithm of
the system, we denote by

Xp = lim←−
n

Fnp (10)

the projective limit (see [2]) of the vector spaces Fnp , n = 1, 2, . . . , equipped with the
natural embeddings ιn : Fnp ↪→ Xp. We further define a counting function

κ : Xp −→ Z ∪ {∞} (11)

in the following way: Let x ∈ Xp. If there exists a positive integer m and a vector x ∈ Fmp ,
such that ιm(x) = x, then

κ(x) =
∣∣∣{xTc | c ∈ {0, 1}m

}∣∣∣, (12)

else, we set κ(x) =∞.

Note, that for λ ∈ F×p we have κ(λx) = κ(x) and also κ(x + y) 6 κ(x)κ(y),

4

whenever κ(x), κ(y) 6∈ {0,∞}. In what follows, we will always write κ(x) instead of
κ(ιm(x)) for a vector x ∈ Fmp .

It is obvious that the computation of κ is a rather “difficult task” in general, even
for finite dimensions:

Theorem 3 Given a prime p > 2, positive integers n, t and a vector x ∈ Fnp . Deciding,
whether κ(x) < t, is NP-hard and coNP-hard.

Proof. To begin with, it is clear that an algorithm that can efficiently decide whether
κ(x) < t, for any t, can be used to efficiently compute κ(x) itself.
Next, we shall use a well known map from Boolean functions to a set of inte-
gers (see [3]): let F = (v00 ∨ v01 ∨ v02) ∧ · · · ∧ (v(k−1)0 ∨ v(k−1)1 ∨ v(k−1)2), with
vij ∈ {x0, . . . , xm−1} ∪ {¬x0, . . . ,¬xm−1}, be a Boolean function in 3-conjunctive normal
form, having k clauses and m variables. We may further assume w.l.o.g., that each
variable appears at most once in each clause.
We start by defining integers Xij (resp. Yij), for i = 0, . . . ,m − 1 and j = 0, . . . , k − 1,
in the following way: whenever “xi” (resp. “¬xi”) appears in the j-th clause, we put
Xij = 10

j+m (resp. Yij = 10
j+m), else we set Xij = 0 (resp. Yij = 0).

We further define for each i integers ai = 10i +
∑
j = Xij and bi = 10i +

∑
j = Yij

and for each j integers cj = 10j+m, dj = 2cj. The last integer we define will be

e = 2
∑k−1
j=0 dj +

∑m−1
i=0 10

i.

Finally, we define vectors x = (a0, . . . , am−1, b0, . . . , bm−1, c0, . . . , ck−1, d0, . . . , dk−1)
T and

xe = (a0, . . . , am−1, b0, . . . , bm−1, c0, . . . , ck−1, d0, . . . , dk−1, e)
T and we may assume that

p > 10m+k and therefore view x (resp. xe) as an element of F2(m+k)
p (resp. F2(m+k)+1

p).
After all this preparation and after what has been said, it is now easy to see, that F is
satisfiable if and only if there exists a vector z ∈ {0, 1}2(m+k) such that xTz = e if and only
if κ(xe) < 2κ(x). This implies the NP-hardness. But since κ(xe) 6 κ(e)κ(x) = 2κ(x) the
coNP-hardness also follows. �

Notabene. Please note that the statement of the last Theorem does not imply
that any problem involving “κ” is automatically a (NP-) hard problem. For example:
“Given x ∈ Fnp , decide if κ(x) < n” is not likely to be NP-hard. Why? Because this
problem is in coNP and therefore its NP-hardness would imply “NP=coNP”.

The classification of vectors x with “small κ(x)” appears to be a difficult task. In
what follows, we will try to tackle this problem from two sides, but before that, we state
the following

Definition 1 Let l be a positive integer, A ∈ Fn×mp be a matrix and b ∈ Fnp a vector. We

5

say that a solution (x,y, λ) of the equation

Ax + λy = b, (13)

with x ∈ Fmp , y ∈ Fnp and λ ∈ Fp, has level l, if

(nm)l−1 < max (κ(x), κ(λy), κ(x)κ(λy)) 6 (nm)l. (14)

It is clear that a “low-” or “moderate-level-solution” is a necessary (but not necessarily
sufficient) condition for the decoding algorithm described above to work efficiently. On
the other hand, as we have seen in the preceding Theorem, the determination of the level
of a solution can be quite hard.

Nevertheless, there are solutions that can be classified quite easily, for example, all
solutions of the form (x,y, λ), with x ∈ {0, 1}m, y ∈ {0, 1}n and λ ∈ Fp have level 1, and
we know from Theorem 2 that they are, in general, hard to compute. The same holds for
example for sparse solutions, i.e. solutions where most of the entries of x and y are zero.
Since this is a well studied problem (cf. the SPARSE-APPROXIMATION-PROBLEM,
which is known to be NP-hard in general) we may refer the reader to the literature.

There is yet a larger class of solutions, whose level can be reasonably bounded
from above, but nevertheless are not easy to compute in general:

Theorem 4 Given a prime p > 2, positive integers n,m, a matrix A ∈ Fn×mp and a
vector b ∈ Fnp . Deciding, whether there exist vectors x ∈ 〈−r, r〉m, y ∈ 〈−r, r〉n, with a
positive integer r <

√
p, and an element λ ∈ Fp, such that Ax + λy = b, is NP-complete.

Proof. Again, let F = (v00 ∨ v01 ∨ v02) ∧ · · · ∧ (v(k−1)0 ∨ v(k−1)1 ∨ v(k−1)2), where
vij ∈ {x0, . . . , xm−1} ∪ {¬x0, . . . ,¬xm−1}, be a Boolean function in 3-conjunctive normal
form, with k clauses and m variables, and let us again assume, that each variable appears
at most once in each clause.
We will define a matrix A = (aij)i,j ∈ F(k+2)×m

p and a vector b = (b0, . . . , bk+1)
T ∈ F(k+2)

p

in the following way: the i-th row of A, where i = 0, . . . , k − 1, correponds to the i-th
clause of F in a sense that if “xj” appears in that clause, we put aij = 1, if “¬xj” is in the
clause, we set aij = −1, else aij = 0. We further set bi = r + 1 − si, where si ∈ {0, 1, 2, 3}

denotes the number of negative literals of clause i.
The last two rows of A are set to zero, while we define bk = 1 and bk+1 = r.
Assuming p to be large enough, we now show that F is satisfiable if and only if the
equation Ax + λy = b has a solution of the required form:
If we suppose that F is satisfiable with an assignment x̂ = (x̂0, . . . , x̂m−1)

T ∈
{TRUE,FALSE}m, then, setting x = (x0, . . . , xm−1)

T , with xj = 1, if x̂j = TRUE,

6

else xj = 0, for j = 0, . . . ,m − 1, y = (y0, . . . , yk−1, 1, r)
T , with yi = bi −

∑
j aijxj, for

i = 0, . . . , k− 1, and λ = 1, leads to a solution of the given equation.
If, on the other hand, we are given a solution (x,y, λ) of the required form it then
follows from bk = 1, bk+1 = r and r <

√
p that λ = ±1 and therefore, if we define

x̂ = (x̂0, . . . , x̂m−1)
T such that x̂j = TRUE, if xj ∈ {1, . . . , r}, else x̂j = FALSE, for

j = 0, . . . ,m− 1, this leads to F(x̂) = TRUE, by construction of the matrix A. �

As is easily seen, for all vectors x ∈ 〈−r, r〉n, we have κ(x) 6 2rn + 1. At least
for small r, this is quite moderate. Let for a moment, c > 0 denote an integer constant,
and let us further call a vector x ∈ Fnp smooth, if x ∈ 〈−c, c〉n. It should be clear that
“smooth solutions” lead to efficient decoding algorithms, but as the preceding Theorem
shows, are hard to compute in general. As already mentioned above, the same is true for
“sparse solutions”. It therefore seems reasonable to believe that a combination of both
will cover a large part of the class of “moderate-level-solutions”, i.e. those solutions that
would challenge the security of our system.

Theorem 5 Let c, t > 0 be integer constants. Given a prime p > 2, positive integers
n,m, a matrix A ∈ Fn×mp and a vector b ∈ Fnp . Deciding, whether there exist vectors

x =
∑t
i=1 αixi and y =

∑t
i=1 βiyi, with αi, βi ∈ Fp, xi ∈ 〈−c, c〉m, yi ∈ 〈−c, c〉n, for

i = 1, . . . , t, and an element λ ∈ Fp, such that Ax + λy = b, is NP-complete.

Proof. With the knowledge of the previous Theorem, the proof is quite simple: all we
need to do is to “force” the vectors x and y to match the pattern of Theorem 4. For this,
set r = ((2c + 1)t − 1)/2. Since c and t are constant, we may assume that r <

√
p. We

now extend the matrix A ∈ F(k+2)×m
p and the vector b = (b0, . . . , bk+1)

T ∈ F(k+2) from the
proof of Theorem 4 to a matrix

A′ =

 A 0

0 I2r
0 0

 ∈ F(k+2+2r+2r)×(m+2r)
p , (15)

where I2r is the identity matrix of rank 2r, and a vector

b′ = (b0, . . . , bk+1,−r, . . . ,−1, 1, . . . , r,−r, . . . ,−1, 1, . . . , r)
T ∈ F(k+2+2r+2r)

p . (16)

These modifications make sure that for any solution (x,y, λ), we have x ∈ 〈−r, r〉m′
and

λy ∈ 〈−r, r〉n′
, with m′ = m + 2r and n′ = k + 2 + 2r + 2r. The rest runs analogous to

the proof of Theorem 4. �

Let us summerize the discussion:

7

• We have presented a Public-Key-Cryptosystem with an efficient decoding algo-
rithm, where all of its main components can be chosen completely at random.

• It has been proven, that a direct computation of Alice’ secret key, resp. Bobs
private data is in general a NP-complete task.

• It has been shown that a necessary conditon for other solutions to work, is that
they have to have a small “level”, and that the computation of a “level” itself can turn
out to be a (very) hard problem in general.

• We have started to analyse the class of “moderate-level-solutions” and it has
been shown that the problem of computing “smooth solutions”, “sparse solutions” or a
combination of both is in general NP-complete.

References

[1] McEliece, J.R.: A public-key cryptosystem based on algebraic coding theory. In:
Deep Space Network Progress Report 42-44, Jet Propulsion Lab, California Institute
of Technology, pp. 114-116 (1978)

[2] Neukirch, J.: Algebraische Zahlentheorie. Springer, Berlin, Heidelberg (1992)

[3] Schoening, U: Theoretische Informatik kurz gefasst. BI-Wissenschaftsverlag,
Mannheim (1992)

[4] Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete Log-
arithms on a Quantum Computer. arXiv:quant-ph/9508027 (1995)

8

