
Automated Proof for Authorization Protocols of
TPM 2.0 in Computational Model (full version)

Weijin Wang, Yu Qin, Dengguo Feng

Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences, Beijing, China

{wangweijin,qin_yu,feng}@tca.iscas.ac.cn

Abstract. We present the first automated proof of the authorization
protocols in TPM 2.0 in the computational model. The Trusted Plat-
form Module(TPM) is a chip that enables trust in computing platforms
and achieves more security than software alone. The TPM interacts with
a caller via a predefined set of commands. Many commands reference
TPM-resident structures, and use of them may require authorization.
The TPM will provide an acknowledgement once receiving an authoriza-
tion. This interact ensure the authentication of TPM and the caller. In
this paper, we present a computationally sound mechanized proof for
authorization protocols in the TPM 2.0. We model the authorization
protocols using a probabilistic polynomial-time calculus and prove au-
thentication between the TPM and the caller with the aid of the tool
CryptoVerif, which works in the computational model. In addiction, the
prover gives the upper bounds to break the authentication between them.

Key words: TPM, Trusted Computing, formal methods, computational
model, authorization

1 Introduction

The Trusted Platform Module(TPM) is a chip that enables trust in computing
platforms and achieves higher levels of security than software alone. Starting
in 2006, many new laptop computers have been sold with a Trusted Platform
Module chip built-in. Currently TPM is used by nearly all PC and notebook
manufacturers and Microsoft has announced that all computers will have to
be equipped with a TPM 2.0 module since January 1, 2015 in order to pass
the Windows 8.1 hardware certification. Moreover, the TPM specification is an
industry standard [20] and an ISO/IEC standard [14] coordinated by the Trusted
Computing Group.

Many commands to the TPM reference TPM-resident structures, and use of
them may require authorization. When an authorization is provided to a TPM,
the TPM will provide an acknowledgement. As we know, several vulnerabilities
of the authorization in the TPM 1.2 have been discovered [9, 10, 16, 12]. Most of
them are found by the formal analysis of the secrecy and authentication proper-
ties. These attacks highlight the necessity of formal analysis of the authorization

2 Weijin Wang, Yu Qin, Dengguo Feng

in the TPM 2.0. But as far as we know, there is not yet any analysis of autho-
rization protocols in the TPM 2.0. Hence, we perform such an analysis in this
paper.

There are two main approaches to the verification of cryptographic protocol.
One approach, known as the computational model, is based on probability and
complexity theory. Messages are bitstring and the adversary is a probability
polynomial-time Turing machine. Security properties proved in this model give
strong security guarantees. Another approach, known as the symbolic or Dalev-
Yao model, can be viewed as an idealization of the former approach formulated
using an algebra of terms. Messages are abstracted as terms and the adversary
is restricted to use only the primitives. For the purpose of achieving stronger
security guarantees, we provide the security proof of the authorization protocols
in the computational model. Up to now, the work in the literatures are almost
based on the symbolic model, our work is the first trial to formally analyze the
authorization in the computation model.

Related work and Contributes. Regarding previous work on analyzing the
API or protocols of TPM, most of them are based on the TPM 1.2 specifications
and analyses of the authorization are rare. Lin [16] described an analysis of
various fragments of the TPM API using the theorem prover Ptter and the
model finder Alloy. He modeled the OSPA and DSAP in a model which omits
low level details. His results in the authorization included a key-handle switching
attack in the OSAP and DSAP. Bruschi et al. [9] proved that OIAP is exposed
to replay attack, which could be used for compromising the correct behavior
of a Trusted Computing Platform. Chen et.al found that the attacks about
authorization include offline dictionary attacks on the passwords or authdata
used to secure access to keys [10], and attacks exploiting the fact that the same
authdata can be shared between users [11]. Nevertheless, they did not get the
aid of formal methods. Delaune et.al. [12] have analyzed a fragment of the TPM
authentication using the ProVerif tool, yet ignoring PCRs and they subsequently
analyzed the authorization protocols which rely on the PCRs [13]. Recently, Shao
[18] et.al. have modeled the Protect Storage part of the TPM 2.0 specification
and proved their security using type system.

In our work, we first present the automated proof of authorization proto-
cols in the TPM 2.0 at the computational leval. To be specific, we model the
authorization protocols in the TPM 2.0 using a probabilistic polynomial-time
calculus inspired by pi calculus. Also, we propose correspondence properties as
a more general security goal for the authorization protocols. Then we apply the
tool CryptoVerif [4–6] proposed by Blanchet, which works in the computational
model, to prove the correspondence properties of the authorization protocols in
the TPM 2.0 automatically. As a result, we show that authorization protocols in
the TPM 2.0 guarantee the authentication of the caller and the TPM and give
the upper bounds to break the authentication.

Title Suppressed Due to Excessive Length 3

Outline. We review the TPM 2.0 and the authorization sessions in the next
section. Section 3 describes our authorization model and the definition of security
properties, Section 4 illustrates its results using the prover CryptoVerif. We
conclude in Section 5.

2 An overview of the TPM authorization

When a protected object is in the TPM, it is in a shielded location because the
only access to the context of the object is with a Protected Capability (a TPM
command). Each command has to be called inside an authorization session. To
provide flexibility in how the authorizations are given to the TPM, the TPM 2.0
specification defines three authorization types:

1. Password-based authorization;
2. HMAC-based authorization;
3. Policy-based authorization.

We focus on the HMAC-based authorization. The commands that requires the
caller to provide a proof of knowledge of the relevant authV alue via the HMAC-
based authorization sessions have an authorization HMAC as an argument.

2.1 Session

A session is a collection of TPM state that changes after each use of that session.
There are three uses of a session:

1. Authorization – A session associated with a handle is used to authorize use
of an object associated with a handle.

2. Audit – An audit session collects a digest of command/response parameters
to provide proof that a certain sequence of events occurred.

3. Encryption – A session that is not used for authorization or audit may be
present for the purpose of encrypting command or response parameters.

We pay attention to the authorization sessions. Both HMAC-based authorization
sessions and Policy-based authorization sessions are initiated using the command
TPM2 StartAuthSession. The structures of this command can be found in
TPM 2.0 specification, Part 3 [20]. The parameters of this command may be
chosen to produce different sessions. As mentioned before, we just consider the
HMAC-based authorization sessions and set the sessionType =HMAC. The
TPM 2.0 provides four kinds of HMAC sessions according to various combination
of the parameters tpmkey and bind:

1. Unbound and Unsalted Session. In the version of session, tpmkey and
bind are both null.

2. Bound Session. In this session type, tpmkey is null but bind is present and
references some TPM entity with authV alue.

4 Weijin Wang, Yu Qin, Dengguo Feng

3. Salted Session. For this type of session, bind is null but tpmkey is present,
indicating a key used to encrypt the salt value.

4. Salted and Bound Session. In this session, both bind and tpmkey is
present. The bind is used to provide an authV alue, tpmkey encrypts the
salt value and the sessionkey is computed using both of them.

A more detailed description of the sessions is given in [20].

2.2 Authorization protocols

We start with modelling the authorization protocols constructed from an ex-
ample command, named TPM2 Example, within some authorization sessions.
TPM2 Example is a more generic command framework other than a specif-
ic command which can be found in TPM 2.0 specification, Part 1 [20]. This
command has two handles (handleA and handleB) and use of the entity asso-
ciated with handleA required authorization while handleB does not. Therefore,
handleB does not necessarily appear in our protocol models.

We take the authorization protocol based on Salted and Bound Session as
an example. The other three protocols will be presented in the Appendix A.

Protocol based on Salted and Bound Session. We omit some size param-
eters that will not be involved in computation, such as commandSize,
authorizationSize and nonceCallerSize. The specification of the protocol
is given in the Figure 1. For the protocol based on Salted and Bound Session,
the Caller sends the command TPM2 StartAuthSession to the TPM,
together with a handle of the bound entity, an encrypted salt value, a hash
algorithm to use for the session and a nonce nonCallerStart which is not
only a parameter for computing session key but also a initial nonce setting
nonce size for the session. The response includes a session handle and a nonce
nonceTPM for rolling nonce. Then the Caller and TPM both compute the
session key as

sessionKey = KDFa(sessionAlg, bind.authV alue||salt,ATH,

nonceTPM,nonceCallerStart, bits)

and save nonceTPM as lastnonceTPM , where KDFa() is a key derivation
function (a hash-based function to generate keys for multiple purposes).
After that, TPM2 Example within such a session will be executed. If the
session is used to authorize use of the bound entity, i.e. bind.Handle =
key.Handle, then

comAuth =HMACsessionAlg(sessionKey,

(cpHash||nonceCaller||lastnonceTPM ||sessionAttributes)),

where cpHash = HsessionAlg(commandCode||key.name||comParam). Next
the TPM will generate a new nonceTPM named nextnonceTPM for next

Title Suppressed Due to Excessive Length 5

Fig. 1. Protocol based on Unbound and Unsalted Session

rolling and send back an acknowledgment

resAuth = HMACsessionAlg(sessionKey,

(rpHash||nextnonceTPM ||nonceCaller||sessionAttributes)),

where rpHash = HsessionAlg(responseCode||commandCode||resParam).

Else if the session is used to access a different entity, i.e. bind.Handle 6=
key.Handle, then

comAuth =HMACsessionAlg(sessionKey||key.authV aule,
(rpHash||nonceCaller||lastnonceTPM ||sessionAttributes)),

and

resAuth =HMACsessionAlg(sessionKey||key.authV alue,
(rpHash||nextnonceTPM ||nonceCaller||sessionAttributes)).

When finalizing current session, Both Caller and TPM save nextnonceTPM
as lastnonceTPM .

3 Authorization Model and Security Properties

In the beginning of this section, we model the authorization protocols of TPM
2.0. Our model uses a probabilistic polynomial-time process calculus, which is
inspired by the pi calculus and the calculi introduced in [17] and [15], to for-
malize the cryptographic protocols. In this calculus, messages are bitstrings and
cryptographic primitives are functions operating on bitstrings. Then we define
the security properties of the participants in our model.

6 Weijin Wang, Yu Qin, Dengguo Feng

QC =!iC6Nc4[iC]();

new NC Start : nonce; new salt : nonce; new r1 : seed;

c5[iC](handlebind, NC Start, enc(salt, tpmkey, r1));

c8[iC](nT : nonce);

let skseed = hash1(concat6(salt,getAuth(handlebind, authbind)),

concat5(ATH,nT , NC Start, bits)) in

let skC = mkgen(skseed) in

new NC : nonce;

let cpHash = hash(hk, concat3(comCode,getName(handlebind), comParam)) in

let comAuth = mac(concat1(cpHash,NC , nT , sAtt), skC) in

even CallerRequest(NC , nT , sAtt);

c9[iC](comCode, handlebind, NC , sAtt, comAuth, comParam);

c12[iC](= resCode,= handlebind, nT next : nonce,= sAtt, resHM : macres,= resParam);

let rpHa = hash(hk, concat4(comCode, resCode, resParam) in

if check(concat2(rpHa, nT next,NC , sAtt), skC , resHM) then

event CallerAccept(NC , nT next, sAtt).

Fig. 2. Formalization of Caller’s actions

3.1 Modelling the Authorization Protocols.

To be more general, we present the Caller’s actions base on Salted and Bounded
Session used to access the bound entity in the process calculus as an example.
(The formalizations of the other sessions will be present in Appendix C.)

We defined a process QC to show Caller’s actions, detailed in Figure 2. The
replicated process !iC≤NP represents N copies of P , available simultaneously,
where N is assumed to be polynomial in the security parameter η. Each copy
starts with an input c4[iC], means that the adversary gives the control to the
process. Then the process chooses a random nonce NC Start, a salt value for
establishing a session key, and a random seed r1 for encryption. The process
then sends a message handlebind, NCStart, enc(salt, tpmkey, r1) on the channel
c5[iC]. The handlebind is the key handle of the bound entity. This message will
be received by the adversary, and the adversary can do whatever he wants with
it.

After sending this message, the control is returned to the adversary and
the process waits for the message on the channel c8[iC]. The expected type of
this message is nonce. Once receiving the message, the process will compute
a session key skC and an authorization comAuth. The function concati(1 ≤
i ≤ 6) are concatenations of some types of bitstrings. We also use the functions
getAuth and getName to model the actions getting the authorization value
and key name of the enitity from the key handle. comCode, resCode, comParam

Title Suppressed Due to Excessive Length 7

QT =!iT6Nc2[iT](bdhandle : keyHandle, cCode : code, rCode : code,

cParam : parameter, rParam : parameter);

c3[iT]();

c6[iT](= bdhandle, nC Start : nonce, e : ciphertext);

new NT : nonce;

let injbot(saltT) = dec(e, tpmkey) in

let skseed = hash1(concat6(saltT ,getAuth(bdhandle, authbind)),

concat5(ATH,NT , nC Start, bits)) in

let skT = mkgen(skseed) in

c7[iT](NT);

c10[iT](= cCode,= bdhandle, nC : nonce, sAttRec : flags, comHM : macres,= cParam);

if getContinue(sAttRec) = true then

let cpHa = hash(hk, concat3(cCode,getName(bdhandle), cParam)) in

if check(concat1(cpHa, nC , NT , sAttRec), skT , comHM) then

even TPMAccept(nC , NT , sAttRec);

new NT next : nonce;

let rpHash = hash(hk, concat4(cCode, rCode, rParam) in

let resAuth = mac(concat2(rpHash,NT next, nC , sAttRes), skT) in

event TPMAcknowledgment(nC , NT next, sAttRec);

c11[iT](rCode, bdhandle,NT next, sAttRec, recAuth, rParam).

Fig. 3. Formalization of TPM’s actions

and resParam represent the command code, respond code, remaining command
parameters and the response parameters respectively. sAtt stands for the session
attributes, which is a octet used to identify the session type. Since our analysis
uses the same session type, we model it a fixed octet here.

When finalizing the computation, the process will execute the event Caller-
Request(NC , nT , sAtt) and send the authorization comAuth, together with
comCode,handlebind,NC ,sAtt and comParam on the channel c9[iC]. Then the
process waits for the second message from the environment on the channel
c12[iC]. The expected message is resCode, handlebind, nT next, sAtt, resHM and
resParam. The process checks the first component of this message is resCode
by using the pattern = resCode, so do the handlebind, sAtt and resParam;
the two other parts are stored in variables. The process will verify the re-
ceived acknowledgment resHM . If the check succeeds, QC executes the event
CallerAccept(NC , nT next, sAtt).

In this calculus, executing these events does not affect the execution of the
protocol, it just records that a certain program point is reached with certain
values of the variables. Events are used for specifying authentication proper-

8 Weijin Wang, Yu Qin, Dengguo Feng

ties, as explained next session. We show the TPM’s action in the Figure 3,
corresponding to the Caller’s action.

3.2 Security Properties

Definition of Authentication. The formal definitions can be found in [6].
The calculus use the correspondence properties to prove the authentication of
the participants in the protocols. The correspondence properties are properties
of the form if some event has been executed, then some other events also have
been executed, with overwhelming probability. It distinguishes two kinds of cor-
respondences, we employ the description from [8] below.

1. A process Q satisfies the non-injective correspondence event(e(M1, ...,Mm))

⇒
∧k

i=1 event(ei(Mi1, ..., Mimi)) if and only if, with overwhelming proba-
bility, for all values of the variables in M1, ...,Mm, if the event e(M1, ...,Mm)
has been executed, then the events ei(Mi1, ...,Mimi

) for i ≤ k have also
been executed for some values of the variables of Mij(i ≤ k, j ≤ mi) not in
M1, ...,Mm.

2. A process Q satisfies the injective correspondence inj-event(e(M1, ...,Mm))

⇒
∧k

i=1 inj-event(ei(Mi1, ..., Mimi
)) if and only if, with overwhelming

probability, for all values of the variables in M1, ...,Mm, for each execution
of the event e(M1, ...,Mm), there exist distinct corresponding executions of
the events ei(Mi1, ...,Mimi) for i ≤ k for some values of the variables of
Mij(i ≤ k, j ≤ mi) not in M1, ...,Mm.

Security Properties of the authorization. One of the design criterion of
the authorization protocol is to allow for ownership authentication. We will
formalize these security properties as correspondence properties. Firstly, we give
the informal description of the security properties.

1. When the TPM receives a request to use some entity requiring authorization
and the HMAC verification has succeeded, then a caller in possession of the
relevant authV alue has really requested it before.

2. When a caller accepts the acknowledgment and believes that the TPM has
executed the command he sent previously, then the TPM has exactly finished
this command and sent an acknowledgment.

The first property expresses the authentication of the Caller and the second
one expresses the authentication of the TPM. We can formalize the properties
above as injective correspondence properties:

inj-event : TPMAccept(x, y, z)⇒ inj-event : CallerRequest(x, y, z). (1)

inj-event : CallerAccept(x, y, z)⇒ inj-event : TPMAcknowledgment(x, y, z).
(2)

Title Suppressed Due to Excessive Length 9

4 Authentication Results with CryptoVerif

In this section, we will take a brief introduction of CryptoVerif and the assump-
tion used in our model. Then we present security properties directly proven by
CryptoVerif under the assumptions in the computational model.

4.1 CryptoVerif

There are two main approaches to the verification of cryptographic protocol-
s. One approach is known as the computational model and another approach,
is known as the symbolic or Dalev-Yao model. The CryptoVerif, proposed by
Blanchet[4–7], can directly prove security properties of cryptographic protocols
in the computational model. This tool is available on line at:

http://prosecco.gforge.inria.fr/personal/bblanche/cryptoverif/

CryptoVerif builts proofs by sequences of games [19, 3]. It starts from the
initial game given as input, which represents the protocol to prove in interaction
with an adversary (real mode). Then, it transforms this game step by step using
a set of predefined game transformations, such that each game is indistinguish-
able from the previous one. More formally, we call two consecutive games Q
and Q′ are observationally equivalent when they are computationally indistin-
guishable for the adversary. CryptoVerif transforms one game into another by
applying the security definition of a cryptographic primitive or by applying syn-
tactic transformations. In the last game of a proof sequence the desired security
properties should be obvious (ideal mode).

Given a security parameter η, CryptoVerif proofs are valid for a number
of protocol sessions polynomial in η, in the presence of an active adversary.
CryptoVerif is sound: whatever indications the user gives, when the prover shows
a security property of the protocol, the property indeed holds assuming the given
hypotheses on the cryptographic primitives.

4.2 Assumptions

We introduce the basic assumptions and cryptographic assumptions adopted by
our model and the CryptoVerif as follow.

Basic Assumptions. One of the difficulties in reasoning about authorization
such as that of the TPM is non-monotonic state. If the TPM is in a certain
state s, and then a command is successfully executed, then typically the TPM
ends up in a state s′ 6= s. Suppose two commands use the same session, the
latter must use the nonce generated by the former called nextnonceTPM as the
lastnonceTPM when computing the authorization comAuth. In other words,
the lastnonceTPM in the latter is equal to the nextnonceTPM in the former.
CryptoVerif does not model such a state transition system.

We address these restrictions by introducing the assumption described by the
S. Delaune et.al [12], such that only one command is executed in each session.

10 Weijin Wang, Yu Qin, Dengguo Feng

Cryptographic Assumptions. In the analysis of the authorization protocols,
the Message Authentication Code (MAC) scheme is assumed to be unforgeable
under chosen message attacks (UF-CMA). Symmetric encryption is assumed to
be indistinguishable under chosen plaintext attacks (IND-CPA) and to satisfy ci-
phertext integrity (INT-CTXT). These properties guarantee indistinguishability
under adaptive chosen ciphertext attacks (IND-CCA2), as shown in [2].

We assume that the key derivation function is a pseudo-random function and
use it to derive, from a key seed, a key for the message authentication code. The
key seed is generated from a keying hash function. The keying hash function is
assumed to be a message authentication code, weakly unforgeable under chosen
message attacks, which is in accordance with [1]. To be specific, we compute
the sessionkey in a more flexible way, the result of the keying hash function is
a keyseed and the sessionkey is generated from this keyseed using a pseudo-
random function.

4.3 Experiment Results

Here we present authentication results directly proven in the computational mod-
el by CryptoVerif 1.16 under assumptions mentioned above.

Experiment 1: Case of Unbound and Unsalted Session. In this case,
we consider a protocol without session key. The attacker can obtain the key
handle but cannot get the corresponding authV alue. The Caller and TPM
will compute the HMAC keyed by authV alue directly.

But unfortunately, we cannot achieve the injective correspondences between
the event CallerAccept and TPMAcknowledgment in (2) by CryptoVerif
directly because of limitations of the prover: it crashes when proving this prop-
erty. However, it succeeds in the non-injective case, hence we complete this proof
by hand.

Lemma 1. In the protocol based on Unbound and Unsalted Session, if the prop-
erty:

CallerAccept(NC,nextnT, sAtt)⇒
TPMAcknowledgment(nC, nextNT, sAttRec)

holds, then we have

inj:CallerAccept(NC,nextnT, sAtt)⇒
inj:TPMAcknowledgment(nC, nextNT, sAttRec).

Proof. Since the non-injective property succeeds, we can find iC ≤ N such that
NC [iC] = nC [u[iC]], nT next[iC] = NT next[u[iC]], sAtt[iC] = sAttRec[u[iC]]
and iT ≤ N such that u[iC] = iT .

Suppose that there exists another i′C and i′T satisfy the property above,
and u[i′C] = i′T . In order to prove injectivity, It remains to show that the

Title Suppressed Due to Excessive Length 11

probability of {iT = i′T , iC 6= i′C} is negligible. The equality iT = i′T , i.e.
u[iC] = u[i′C], combined with NC [iC] = nC [u[iC]] and NC [i′C] = nC [u[i′C]] im-
plies that NC [iC] = nC [u[iC]] = nC [u[i′C]] = NC [i′C]. Since NC is defined by
restrictions of the large type nonce, NC [iC] = NC [i′C] implies iC = i′C with over-
whelming probability, by eliminating collisions. This implies that the probability
of {iT = i′T , iC 6= i′C} is negligible. ut

With Lemma 1, we prove the injective correspondence properties in (1) and
(2) under assumptions of UF-MAC in the MAC scheme and collision resistant
in hash function using CryptoVerif.

Experiment 2: Case of Bound Session. We must compute the sessionkey
bound to an entity in this protocol. According to the authorization entity,
there are two kinds of protocols in this experiment. Firstly we consider the
session is used to authorize use of the bound entity with an authorization val-
ue authV aulebind, the HMAC is keyed by sessionKey. In another situation, we
employ the bound session to access a different entity with an authorization value
authV auleentity. The sessionKey is still bound to the entity with authorization
value authV aluebind while the HMAC will take the concatenation of sessionkey
and the authV auleentity as a key.

Providing the MAC scheme assumed to be UF-MAC and hash function in
the random oracle model, we prove the injective correspondence properties of
two kinds of protocols mentioned above using CryptoVerif.

Experiment 3: Case of Salted Session. This session can be treated as the
enhanced version of unbound and unsalted session. Salting provides a mechanism
to allow use of low entropy authV alue and still maintain confidentiality for
the authV aule. If the authV alue used in an unsalted session has low entropy,
the attacker will perform an off-line attack, which is detailed in the TPM 2.0
specification, Part 1 [20].

The salt value may be symmetrically or asymmetrically encrypted. In our
analysis, We assume an IND-CPA and INT-CTXT probabilistic symmetric en-
cryption scheme is adopted by the participants. We show that this protocol satis-
fies the injective correspondence properties in (1) and (2) under the assumption
of IND-CPA, INT-CTXT and UF-MAC.

Experiment 4: Case of Salted and Bound Session. If the bound entity has
a low entropy, it will still be under threat of the off-line attack. This session looks
like the enhanced version of bound session. Unlike the bound session only using
the authorization value of bound entity to compute the sessionKey, this session
employs both the authV aluebind and the salt value. The remaining computation
is the same as the bound session and the session also exist two kinds of the
protocols.

Nevertheless, we can still prove the injective correspondence properties of
two kinds of protocols using CryptoVerif under the assumption of IND-CPA,
INT-CTXT and UF-MAC.

12 Weijin Wang, Yu Qin, Dengguo Feng

As a result, We formalize the experiment results mentioned above as the fol-
lowing theorems. The authentication of TPM can be represented as the theorem
1.

Theorem 1. In the all kinds of authorization protocols, if there is an instance
of:

1. The TPM received a Caller’s command with a request for authorization of
some sensitive data,

2. The TPM executed this command and the HMAC check in this command
has succeeded.

Then with overwhelming probability, there exists a distinct corresponding in-
stance of:

1. The Caller is exactly in possession of the authV alue of this sensitive data.

2. The Caller has exactly send this command with a request for authorization
of this sensitive data.

We formalize the authentication of TPM as the following theorem.

Theorem 2. In the all kinds of authorization protocols, if there is an instance
of:

1. The Caller received an acknowledgment from the TPM,

2. The HMAC check in the response has succeeded and the Caller accepted the
acknowledgment.

Then with overwhelming probability, there exists a distinct corresponding in-
stance of:

1. The TPM has precisely received the callers request and executed this com-
mand,

2. The TPM has really send an acknowledgment to the Caller.

The proofs for the Theorem 1 and Theorem 2 in the case of Salted and
Bound Session used to access the bound entity and the corresponding upper
bounds to break the authentication between the Caller and TPM can be found
in Appendix B. The other cases can be proved in a similar way, so we omit the
details because of length constrains.

Note that in the case of Unbound and Unsalted Session, CryptoVerif is
only able to prove the non-injective correspondence property between the even
CallerAccept and TPMAcknowledgment, but thanks to Lemma 1, we can
obtain the results of Theorem 2.

Title Suppressed Due to Excessive Length 13

5 CONCLUSIONS

We have proved the security of authorization protocols in the TPM 2.0 using the
tool CryptoVerif working in the computational model. Specifically, we presented
a detailed modelling of the protocols in the probabilistic calculus inspired by
the pi calculus. Additionally, we model security properties as correspondence
properties. Then we have formalized and mechanically proved these security
properties of authorization protocols in the TPM 2.0 using Cryional model.

As future work, we will find out the reason why the prover crashes when
proving the injective correspondences between the event CallerAccept and
event TPMAcknowledgment in the protocols based on the Unbound and
Unsalted Sessions and try to improve the prover to fix it. We will extend our
mode with the asymmetric case encrypting the salt value. Also, we argue that
our model can be adapted to prove the confidentiality using CryptoVerif and it
will be our future work.

Acknowledgments. The research presented in this paper is supported by
the National Natural Science Foundation of China under Grant Nos. 91118006,
61202414 and the National Grand Fundamental Research 973 Program of China
under Grant No. 2013CB338003. We also thank the anonymous reviewers for
their comments.

References

1. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message au-
thentication. In CRYPTO’96, volume 1109 of LNCS. Springer, 1996

2. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In ASIACRYPT 2000,
volume 1976 of LNCS Springer, December 2000

3. M. Bellare and P. Rogaway, The security of triple encryption and a framework
for code-based game-playing proofs, in EUROCRYPT 2006, ser. LNCS, vol. 4004.
Springer, 2006, pp. 409-426, 2006

4. B. Blanchet. B. Blanchet, A computationally sound mechanized prover for security
protocols, IEEE Transactions on Dependable and Secure Computing, vol. 5, no. 4,
pp. 193-207, October-December 2008

5. B. Blanchet. A Computationally Sound Mechanized Prover for Security Protocols.
In IEEE Symposium on Security and Privacy, May 2006

6. B. Blanchet. Computationally sound mechanized proofs of correspondence asser-
tions. In CSF 2007, July 2007

7. B. Blanchet and D. Pointcheval. Automated Security Proofs with Sequences of
Games. In CRYPTO 2006, volume 4117 of LNCS. Springer, Aug. 2006

8. B. Blanchet, A. D. Jaggard, A. Scedrov and J.-K. Tsay. Computationally Sound
Mechanized Proofs for Basic and Public-Key Kerberos. In Proceedings of the 2008
ACM symposium on Information, computer and communications security. ACM
Tokyo, Japan, pp. 87-99, 2008

9. D. Bruschi, L. Cavallaro, A. Lanzi, and M. Monga. Replay attack in TCG specifica-
tion and solution. In Proc. 21st Annual Computer Security Applications Conference
(ACSAC’05),pages 127-137. IEEE Computer Society, 2005

14 Weijin Wang, Yu Qin, Dengguo Feng

10. L. Chen and M. D. Ryan. Offine dictionary attack on TCG TPM weak authori-
sation data, and solution. In Future of Trust in Computing. Vieweg & Teubner,
2009

11. L. Chen and M. D. Ryan. Attack, solution and verification for shared authorisation
data in TCG TPM. In Proc. 6th International Workshop on Formal Aspects in
Security and Trust(FAST’09), pages 201-216, 2009

12. S. Delaune, S. Kremer, M. D. Ryan, and G. Steel, A formal analysis of authen-
tication in the TPM. in Proc. 7th International Workshop on Formal Aspects in
Security and Trust(FAST’10), Pisa, Italy, 2010

13. S. Delaune, S. Kremer, M. D. Ryan and G. Steel. Formal Analysis of Protocols
Based on TPM State Registers. In Proc. 24th IEEE Computer Security Founda-
tions Symposium (CSF’11), pp. 66-80, 2011

14. ISO/IEC PAS DIS 11889: Information technology C security techniques C Trusted
Platform Modules

15. P. Laud. Secrecy Types for a Simulatable Cryptographic Library. In CCS 2005,
May 2005

16. A. H. Lin. Automated Analysis of Security APIs. Masters thesis, MIT, 2005.
http://sdg.csail.mit.edu/pubs/theses/amerson-masters.pdf

17. J. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A Probabilistic
Polynomial-Time Process Calculus for the Analysis of Cryptographic Protocols.
Theoretical Computer Science, 353(1-3), 2006

18. J. Shao, D. Feng, and Y. Qin. Type-based analysis of protected storage in the
tpm. In Proc. 15th International Conference on Information and Communications
Security (ICICS’13), pages 135-150. Springer International Publishing, November
2013

19. V. Shoup, Sequences of games: a tool for taming complexity in securi-
ty proofs, Cryptology ePrint Archive, Report2004/332, 2004, available at
http://eprint.iacr.org/2004/332

20. Trusted Computing Group. TPM Specification version 2.0. Parts 1-4, revision
00.99, 2013.
http://www.trustedcomputinggroup.org/resources/tpm library specification

A Authorization Protocols

We describe another three authorization protocols in here roughly.

Protocol based on Unbound and Unsalted Session. Showed in the Fig-
ure 4, where

comAuth =HMACsessionAlg(key.authV alue,

(cpHash||nonceCaller||lastnonceTPM ||sessionAttributes)),

and

resAuth =HMACsessionAlg(key.authV alue,

(rpHash||nextnonceTPM ||nonceCaller||sessionAttributes)),

Title Suppressed Due to Excessive Length 15

Fig. 4. Protocol based on Unbound and Unsalted Session

Protocol based on Bound Session. Showed in the Figure 5, where

sessionKey = KDFa(sessionAlg, bind.authV alue,′ATH ′,

nonceTPM,nonceCallerStart, bits),

and if the session is used to authorize use of the bound entity, that is
key.Handle = bind.Handle, then

comAuth =HMACsessionAlg(sessionKey,

(cpHash||nonceCaller||lastnonceTPM ||sessionAttributes)).

resAuth =HMACsessionAlg(sessionKey,

(rpHash||nextnonceTPM ||nonceCaller||sessionAttributes)),

else

comAuth =HMACsessionAlg(sessionKey||key.authV aule,
(rpHash||nonceCaller||lastnonceTPM ||sessionAttributes)),

resAuth =HMACsessionAlg(sessionKey||key.authV alue,
(rpHash||nextnonceTPM ||nonceCaller||sessionAttributes)),

Protocol based on Salted Session. Showed in Figure 6, where

sessionKey = KDFa(sessionAlg, salt,′ATH ′, nonceTPM,

nonceCallerStart, bits),

16 Weijin Wang, Yu Qin, Dengguo Feng

Fig. 5. Protocol based on Bound Session

comAuth =HMACsessionAlg(sessionKey,

(cpHash||nonceCaller||lastnonceTPM ||sessionAttributes)),

and

resAuth =HMACsessionAlg(sessionKey,

(rpHash||nextnonceTPM ||nonceCaller||sessionAttributes)).

B Proof of Theorem 1 and Theorem 2

B.1 Proof of Theorem 1

Proof. Case of Salted and Bound Session used to access the bound entity : When
the TPM successes to check the HMAC it receives, it executes an event TP-
MAccept(nC , NT , sAttRec) that contains the nonce nC from the Caller, the
nonce NT it generates and the session attributes sAttRec it receives, where
the sAttRec is a octet to indicate how the session is to be applied. When the
Caller completes his computations of HMAC, he executes an event CallerRe-
quest(NC , nT , sAtt) that contains the nonce NC generated himself and a nonce
nT he receives and the session attributes sAtt he sets. CryptoVerif can then
automatically prove the query:

inj-event : TPMAccept(x, y, z)⇒ inj-event : CallerRequest(x, y, z).

The proof done by the CryptoVerif consists essentially in applying the secu-
rity assumptions on symmetric key encryptions, the MAC and the random hash

Title Suppressed Due to Excessive Length 17

Fig. 6. Protocol based on salted Session

oracle, after some simplifications. In more detail, the CryptoVerif performs the
following transformations:

– Firstly it simplifies the key of hash1:

concat6(salt,getAuth(handlebind, authbind)),

We already know that the role of salt value is to improve the entropy so
that the sessions can resist the off-line attack. In the CryptoVerif, the type
nonce is defined as large, which means that the type nonce is large enough
so that all collisions with random elements of nonce can be eliminated, and
the random number chosen in the type nonce has a high entropy. Therefore,
it will not lose the security if we treat the new bitstring salt||authbind as a
nonce in the CryptoVerif. Without loss of generality, the CryptoVerif treat it
as salt (the salt value is type nonce) when process the game transformation.

After these simplifications, the Caller’s session key will be

hash1(salt, concat5(ATH,nT , NC Start, bits))

and the TPM’s session key will be

hash1(saltT , concat5(ATH,NT , nC Start, bits)).

However, CryptoVerif still cannot apply the security assumption of the hash1

in that it cannot insure that the saltT is the same as salt unless it has applied
the security assumption of the symmetric encryption.

– CryptoVerif then apply the security assumption of hash with the key hk. This
security property is represented in CryptoVerif by the equivalence shown in

18 Weijin Wang, Yu Qin, Dengguo Feng

!ih≤nh new k : Tk; !i≤n(x : bitstring)→ h(k, x)

≈0

!ih≤nh !i≤n(x : bitstring)→
find u ≤ n suchthat defined(x[u], r[u]) ∧ x = x[u]

then r[u]

else new r : T ; r

Fig. 7. Definition of Hash Function in the Random Oracle Model

Figure 7, where h stands for function hash. In this equivalence, the left-
hand side chooses a hash key hk and provides an oracle returning the hash
of its argument x. The right-hand side provides a corresponding oracle. This
oracle, however, looks for x in the array x that contains all the hash inputs
that have accessed to the hash oracle. When x is found in this array, that is,
there exists u such that x = x[u], the oracle returns the corresponding hash
r[u]. When no such x is found, the oracle randomly chooses a new value r
and returns it. This definition is related to the fact that a random oracle
is unimplementable: otherwise, the adversary could implement it without
being explicitly given access to it.

Using this equivalence, CryptoVerif can transform a game by replacing the
left-hand side with the right-hand side. Then each argument of a call to
hash is first stored in an intermediate variable, x259 for concat3 (com-
Code,getName(handlebind),comParam) and x257 for concat4 (comCode,
resCode,resParam), and each occurrence of a call to hash is replaced with a
lookup in the two arrays that contain arguments of calls to hash, x259 and
x257. When the argument of hash is found in one of these arrays, the returned
result is the same as the result previously returned by hash. Otherwise, we
pick a fresh random number and return it.

– After each cryptographic transformation , the game is simplified. CryptoVerif
uses essentially equational reasoning to replace terms with simpler terms and
tries to determine the result of tests, thus removes branches that cannot be
executed.

Then the CryptoVerif removes the assignments on tpmkey, that is, it replaces
tpmkey with its value kgen(r).

CryptoVerif applies the INT-CTXT property, represented by the equivalence
of Figure 8, on the key tpmkey = kgen(r). The left-hand side chooses a ran-
dom seed r and provides two oracles: one for encryption and another for
decryption. The right-hand side provides two correspondence and indistin-
guishable oracles. The first one still uses for encryption, but additionally
stores the ciphertext in the variable z, which is implicitly an array indexed
by the number of the call to the encryption oracle. The second one, instead

Title Suppressed Due to Excessive Length 19

of decrypting its argument y, looks for y in the array z that contains all
computed ciphertexts. When y is found in this array, the oracle returns the
corresponding plaintext x[u], otherwise, the oracle returns ⊥, meaning that
decryption failed. This equivalence means that, with overwhelming probabil-
ity, the attacker is unable to produce a valid ciphertext without calling the
encryption oracle, so this equivalence represents the INT-CTXT property.

CryptoVerif can apply equivalence int ctxt(enc) to transform a game as
follows: it replaces occurrences of enc(salt,kgen(r), r1) with let x309 =
salt in let z308 = enc(x309, kgen

′(r), r1) in z308, and dec(e,kgen(r)) with
a lookup that looks for e in the array z and return the x309 in case of success
and ⊥ in case of failure.

– After the cryptographic transformation, the game is simplified again. In par-
ticular, it removes assignments on saltT and replace with salt.

Then CryptoVerif applies the IND-CPA property, as shown in Figure 8. This
equivalence expresses that the oracle that encrypts x is indistinguishable
from a oracle that encrypts Z(x), where Z(x) represents a bitstring of zeros,
of the same length as x.

CryptoVerif then replace enc(salt, kgen′(r), r1) with enc′(Z(salt), kgen′(r), r1).

– After applying this transformation, the game is simplified. In particular,
terms of the form Z(x) are simplified to constants when the length of x is
constant, which removes the dependency on x.

Now CryptoVerif can apply the security assumption of the hash1 since saltT
has been guaranteed to be the same as salt. The security property is also
represented by the equivalence shown in the Figure 7, whereas h stands
for hash1. Using this equivalence, CryptoVerif can transform a game by
replacing the left-hand side with the right-hand side, just like the case of
hash, hence, we omit the details here.

– After replacing terms with simpler terms and removing assignments that
are useless and branches that cannot be executed, CryptoVerif achieves a
simplified game. In this game, The skC appears in two branches, skC =
mkgen(r318) and skC = mkgen(r316), while skT appears in just one branch,
skT = mkgen(r318). Then CryptoVerif renames variable skC into skC333

,skC332

such that skC332 = mkgen(r318) and skC333 = mkgen(r316).

CryptoVerif removes assignments on skC333
= mkgen(r316) and applies e-

quivalence of uf cma(mac), shown in Figure 9, with r316 and simplifies the
game. However, provided key seed r316, there is no corresponding skT in the
process of TPM, hence, this attempt of CryptoVerif is meaningless except
for some knowledge for adversary.

– After that, CryptoVerif removes assignments on skC332
and skT , that is

, replaces skC332
and skT with mkgen(r318). Then it applies equivalence

20 Weijin Wang, Yu Qin, Dengguo Feng

!ik≤nk new r : keyseed; (

!ie≤ne new r′ : seed; (x : cleartex)→ enc(x,kgen(r), r′),

!id≤nd(y : ciphertext)→ dec(y,kgen(r)))

≈

!ik≤nk new r : keyseed; (

!ie≤ne new r′ : seed; (x : cleartex)→
let z : ciphertext = enc(x,kgen′(r), r′) in z,

!id≤nd(y : ciphertext)→
find u ≤ ne suchthat defined(x[u], r′[u], z[u]) ∧ z[u] = y

then injbot(x[u]) else ⊥

(INT-CTXT)

!ik≤nk new r : keyseed; (

!ie≤ne(x : cleartex)→ new r′ : seed; enc(x,kgen(r), r′)

≈

!ik≤nknew r : keyseed; (

!ie≤ne(x : cleartex)→ newr′ : seed; enc′(Z(x),kgen′(r), r′)

(IND-CPA)

Fig. 8. Definition of IND-CPA and INT-CTXT Encryption

of uf cma(mac) again, but with r318. The equivalence is represented in
Figure 9. In this equivalence, the left-hand side chooses a random seed r
and provides two oracles: the first one computes the MAC of x under key
mkgen(r) and the second one checks whether the ma is the MAC of m.
The right-hand side provides two corresponding oracles: the first one still
compute the MAC of x, we use mac′ and mkgen′ just to prevent a repeated
application of the transformation induced by this equivalence. The second
one replace a MAC checks check(m,mkgen(r),ma) with a lookup in the
array x of messages whose mac has been computed with key mkgen(r):
if m is found in the array of x and check(m,mkgen(r),ma) successes, it
returns true, otherwise, it turn false since the check fails (up to negligible
probability). In other words. If the check succeeded with m not in the array
x, the adversary would have forged a MAC.

Specifically, provided r318 is a key seed used only in terms of form mac
(x,mkgen(r318)) and check(m, mkgen(r318),ma)). It replace all occur-
rences of mac(x,mkgen(r318)) with mac′(x,mkgen′(r318)) and check(m,
mkgen(r318),ma)) with a lookup.

Title Suppressed Due to Excessive Length 21

!ik≤nknew r : mkeyseed; (

!im≤nm(x : macinput) := mac(x,mkgen(r)),

!ic≤nc(m : macinput,ma : macres) := check(m,mkgen(r),ma))

≈

!ik≤nknew r : mkeyseed; (

!im≤nm(x : macinput) := mac′(x,mkgen′(r)),

!ic≤nc(m : macinput,ma : macres)

find u ≤ n suchthat defined(x[u]) ∧ (m = x[u]) ∧ check′(m,mkgen′(r),ma)

then ture else false)

Fig. 9. Definition of UF-CMA MAC

CryptoVerif then simplifies the game and succeeds proving the desired cor-
respondence.

The probability P (t) that an attacker running in time t breaks the corre-
spondence

inj-event : TPMAccept(x, y, z)⇒ inj-event : CallerRequest(x, y, z)

is bounded by CryptoVerif by P (t) ≤ 42.5×N2

|nonce| + N × Pmac(tG31 + (N2 +

2N − 3)tcheck + (N2 + 8N − 9)tmac + (N − 1)tmkgen, N + 9, N + 3, l) + N ×
Pmac(tG24+t+(9N−9)tcheck+(3N−3)tmac+(N−1)tmkgen, 3, 9, l)+Penc(tG14+
t,N) + Pencctxt(tG11 + t,N,N)) where N is the maximum number of ses-
sions of the protocol participants, |nonce| is the cardinal of the set of nonces,
Pmac(t,N,N ′, l) is the probability of breaking the UF-CMA property in time
t for one key, N MAC queries, N ′ verification queries for massages of length at
most l, Penc(t,N) is the probability of breaking the IND-CPA property in time
t and N encryption queries, Pencctxt(t,N,N ′) is the probability of breaking
the INT-CTXT property in time t, N encryption queries, and N ′ decryption
queries, and tG11

,tG14
,tG24

,tG31
are bounds on the running time of the part of

the transformed games not included in the UF-CMA or INT-CTXT or IND-CPA
equivalence, which are therefore considered as part of the attacker against the
UF-CMA or INT-CTXT or IND-CPA equivalence, and tcheck, tmac and tmkgen

are the maximal runtime of one call to functions, correspondingly, check, mac
and mkgen. The first terms of P (t) comes from elimination of collisions between
nonces, while the other terms come from cryptographic transformations. ut

B.2 Proof of Theorem 2

Proof. Similar to the proof of theorem 1, and The probability P (t) that an
attacker running in time t breaks the correspondence

inj-event : CallerAccept(x, y, z)⇒ TPMAcknowledgment(x, y, z)

22 Weijin Wang, Yu Qin, Dengguo Feng

is bounded by CryptoVerif by P (t) ≤ 6.5×N2

|nonce| + N × Pmac(tG31
+ (N2 + 2N −

3)tcheck +(N2 +8N−9)tmac +(N−1)tmkgen, N+9, N+3, l)+N×Pmac(tG24 +
t+ (9N − 9)tcheck + (3N − 3)tmac + (N − 1)tmkgen, 3, 9, l) +Penc(tG14

+ t,N) +
Pencctxt(tG11

+ t,N,N)). ut

C CryptoVerif formalizations

In this section, we will show all the CryptoVerif formalizations of both Caller
and TPM.

C.1 Unbound and Unsalted Session

We formalize the Caller’s action as follow.

QC =!iC6Nc4[iC]();

new NC : nonce;

let cpHash = hash(hk, concat3(comCode,getName(handleentity),

comParam)) in

let comAuth = mac(concat1(cpHash,NC , nT , sAtt),getAuth(handleentity, r)) in

even CallerRequest(NC , nT , sAtt);

c5[iC](comCode, handleentity, NC , sAtt, comAuth, comParam);

c8[iC](= resCode,= handleentity, nT next : nonce,= sAtt,

resHM : macres,= resParam);

let rpHa = hash(hk, concat4(comCode, resCode, resParam) in

if check(concat2(rpHa, nT next,NC , sAtt),getAuth(handleentity, r), resHM) then

event CallerAccept(NC , nT next, sAtt).

We formalize the TPM’s action as follow.

QT =!iT6Nc2[iT](enhandle : keyHandle, cCode : code, rCode : code,

cParam : parameter, rParam : parameter);

new NT : nonce;

c3[iT](NT);

c6[iT](= cCode,= enhandle, nC : nonce, sAttRec : flags,

comHM : macres,= cParam);

if getContinue(sAttRec) = true then

let cpHa = hash(hk, concat3(cCode,getName(enhandle),

cParam)) in

if check(concat1(cpHa, nC , NT , sAttRec),getAuth(enhandle, r), comHM) then

even TPMAccept(nC , NT , sAttRec);

Title Suppressed Due to Excessive Length 23

new NT next : nonce;

let rpHash = hash(hk, concat4(cCode, rCode, rParam) in

let resAuth = mac(concat2(rpHash,NT next, nC , sAttRes),getAuth(enhandle, r)) in

event TPMAcknowledgment(nC , NT next, sAttRec);

c7[iT](rCode, enhandle,NT next, sAttRec, recAuth, rParam).

C.2 Bound Session used to access bound entity

We formalize the Caller’s action as follow.

QC =!iC6Nc4[iC]();

new NC Start : nonce;

c5[iC](handlebind, NC Start);

c8[iC](nT : nonce);

let skseed = hash1(getAuth(handlebind, authbind),

concat5(ATH,nT , NC Start, bits)) in

let skC = mkgen(skseed) in

new NC : nonce;

let cpHash = hash(hk, concat3(comCode,getName(handlebind),

comParam)) in

let comAuth = mac(concat1(cpHash,NC , nT , sAtt), skC) in

even CallerRequest(NC , nT , sAtt);

c9[iC](comCode, handlebind, NC , sAtt, comAuth, comParam);

c12[iC](= resCode,= handlebind, nT next : nonce,= sAtt,

resHM : macres,= resParam);

let rpHa = hash(hk, concat4(comCode, resCode, resParam) in

if check(concat2(rpHa, nT next,NC , sAtt), skC , resHM) then

event CallerAccept(NC , nT next, sAtt).

We formalize the TPM’s action as follow.

QT =!iT6Nc2[iT](bdhandle : keyHandle, cCode : code, rCode : code,

cParam : parameter, rParam : parameter);

c3[iT]();

c6[iT](= bdhandle, nC Start : nonce);

new NT : nonce;

let skseed = hash1(getAuth(bdhandle, authbind),

concat5(ATH,NT , nC Start, bits)) in

let skT = mkgen(skseed) in

24 Weijin Wang, Yu Qin, Dengguo Feng

c7[iT](NT);

c10[iT](= cCode,= bdhandle, nC : nonce, sAttRec : flags,

comHM : macres,= cParam);

if getContinue(sAttRec) = true then

let cpHa = hash(hk, concat3(cCode,getName(bdhandle),

cParam)) in

if check(concat1(cpHa, nC , NT , sAttRec), skT , comHM) then

even TPMAccept(nC , NT , sAttRec);

new NT next : nonce;

let rpHash = hash(hk, concat4(cCode, rCode, rParam) in

let resAuth = mac(concat2(rpHash,NT next, nC , sAttRes), skT) in

event TPMAcknowledgment(nC , NT next, sAttRec);

c11[iT](rCode, bdhandle,NT next, sAttRec, recAuth, rParam).

C.3 Bound Session used to access a different entity

We formalize the Caller’s action as follow.

QC =!iC6Nc4[iC]();

new NC Start : nonce;

c5[iC](handlebind, NC Start);

c8[iC](nT : nonce);

let skseed = hash1(getAuth(handlebind, authbind),

concat5(ATH,nT , NC Start, bits)) in

let skC = mkgen(skseed) in

new NC : nonce;

let cpHash = hash(hk, concat3(comCode,getName(handleentity),

comParam)) in

let comAuth = mac(concat1(cpHash,NC , nT , sAtt),

concat6(skC ,getAuth(handleentity, authentity))) in

even CallerRequest(NC , nT , sAtt);

c9[iC](comCode, handleentity, NC , sAtt, comAuth, comParam);

c12[iC](= resCode,= handleentity, nT next : nonce,= sAtt,

resHM : macres,= resParam);

let rpHa = hash(hk, concat4(comCode, resCode, resParam) in

if check(concat2(rpHa, nT next,NC , sAtt),

concat6(skC ,getAuth(handleentity, authentity)), resHM) then

event CallerAccept(NC , nT next, sAtt).

Title Suppressed Due to Excessive Length 25

We formalize the TPM’s action as follow.

QT =!iT6Nc2[iT](bdhandle : keyHandle, enhandle : keyHandle, cCode : code,

rCode : code, cParam : parameter, rParam : parameter);

c3[iT]();

c6[iT](= bdhandle, nC Start : nonce);

new NT : nonce;

let skseed = hash1(getAuth(bdhandle, authbind),

concat5(ATH,NT , nC Start, bits)) in

let skT = mkgen(skseed) in

c7[iT](NT);

c10[iT](= cCode,= enhandle, nC : nonce, sAttRec : flags,

comHM : macres,= cParam);

if getContinue(sAttRec) = true then

let cpHa = hash(hk, concat3(cCode,getName(enhandle),

cParam)) in

if check(concat1(cpHa, nC , NT , sAttRec),

concat6(skT ,getAuth(enhandle, authentity)), comHM) then

even TPMAccept(nC , NT , sAttRec);

new NT next : nonce;

let rpHash = hash(hk, concat4(cCode, rCode, rParam) in

let resAuth = mac(concat2(rpHash,NT next, nC , sAttRes),

concat6(skT ,getAuth(enhandle, authentity))) in

event TPMAcknowledgment(nC , NT next, sAttRec);

c11[iT](rCode, enhandle,NT next, sAttRec, recAuth, rParam).

C.4 Salted Session

We formalize the Caller’s action as follow.

QC =!iC6Nc4[iC]();

new NC Start : nonce; new salt : nonce; new r1 : seed;

c5[iC](handlebind, NC Start, enc(salt, tpmkey, r1));

c8[iC](nT : nonce);

let skseed = hash1(salt, concat5(ATH,nT , NC Start, bits)) in

let skC = mkgen(skseed) in

new NC : nonce;

26 Weijin Wang, Yu Qin, Dengguo Feng

let cpHash = hash(hk, concat3(comCode,getName(handleentity),

comParam)) in

let comAuth = mac(concat1(cpHash,NC , nT , sAtt),

concat6(skC ,getAuth(handleentity, authentity))) in

even CallerRequest(NC , nT , sAtt);

c9[iC](comCode, handleentity, NC , sAtt, comAuth, comParam);

c12[iC](= resCode,= handleentity, nT next : nonce,= sAtt,

resHM : macres,= resParam);

let rpHa = hash(hk, concat4(comCode, resCode, resParam) in

if check(concat2(rpHa, nT next,NC , sAtt),

concat6(skC ,getAuth(handleentity, authentity)), resHM) then

event CallerAccept(NC , nT next, sAtt).

We formalize the TPM’s action as follow.

QT =!iT6Nc2[iT](enhandle : keyHandle, cCode : code, rCode : code,

cParam : parameter, rParam : parameter);

c3[iT]();

c6[iT](nC Start : nonce, e : ciphertext);

new NT : nonce;

let injbot(saltT) = dec(e, tpmkey) in

let skseed = hash1(saltT , concat5(ATH,NT , nC Start, bits)) in

let skT = mkgen(skseed) in

c7[iT](NT);

c10[iT](= cCode,= enhandle, nC : nonce, sAttRec : flags,

comHM : macres,= cParam);

if getContinue(sAttRec) = true then

let cpHa = hash(hk, concat3(cCode,getName(enhandle),

cParam)) in

if check(concat1(cpHa, nC , NT , sAttRec),

concat6(skT ,getAuth(enhandle, authentity)), comHM) then

even TPMAccept(nC , NT , sAttRec);

new NT next : nonce;

let rpHash = hash(hk, concat4(cCode, rCode, rParam) in

let resAuth = mac(concat2(rpHash,NT next, nC , sAttRes),

concat6(skT ,getAuth(enhandle, authentity))) in

event TPMAcknowledgment(nC , NT next, sAttRec);

c11[iT](rCode, enhandle,NT next, sAttRec, recAuth, rParam).

Title Suppressed Due to Excessive Length 27

C.5 Salted and Bound Session used to access a different entity

We formalize the Caller’s action as follow.

QC =!iC6Nc4[iC]();

new NC Start : nonce; new salt : nonce; new r1 : seed;

c5[iC](handlebind, NC Start, enc(salt, tpmkey, r1));

c8[iC](nT : nonce);

let skseed = hash1(concat6(salt,getAuth(handlebind, authbind)),

concat5(ATH,nT , NC Start, bits)) in

let skC = mkgen(skseed) in

new NC : nonce;

let cpHash = hash(hk, concat3(comCode,getName(handleentity),

comParam)) in

let comAuth = mac(concat1(cpHash,NC , nT , sAtt),

concat7(skC ,getAuth(handleentity, authentity))) in

even CallerRequest(NC , nT , sAtt);

c9[iC](comCode, handleentity, NC , sAtt, comAuth, comParam);

c12[iC](= resCode,= handleentity, nT next : nonce,= sAtt,

resHM : macres,= resParam);

let rpHa = hash(hk, concat4(comCode, resCode, resParam) in

if check(concat2(rpHa, nT next,NC , sAtt),

concat7(skC ,getAuth(handleentity, authentity)), resHM) then

event CallerAccept(NC , nT next, sAtt).

We formalize the TPM’s action as follow.

QT =!iT6Nc2[iT](bdhandle : keyHandle, enhandle : keyHandle, cCode : code,

rCode : code, cParam : parameter, rParam : parameter);

c3[iT]();

c6[iT](= bdhandle, nC Start : nonce, e : ciphertext);

new NT : nonce;

let injbot(saltT) = dec(e, tpmkey) in

let skseed = hash1(concat6(saltT ,getAuth(bdhandle, authbind)),

concat5(ATH,NT , nC Start, bits)) in

let skT = mkgen(skseed) in

28 Weijin Wang, Yu Qin, Dengguo Feng

c7[iT](NT);

c10[iT](= cCode,= enhandle, nC : nonce, sAttRec : flags,

comHM : macres,= cParam);

if getContinue(sAttRec) = true then

let cpHa = hash(hk, concat3(cCode,getName(enhandle), cParam)) in

if check(concat1(cpHa, nC , NT , sAttRec),

concat7(skT ,getAuth(enhandle, authentity)), comHM) then

even TPMAccept(nC , NT , sAttRec);

new NT next : nonce;

let rpHash = hash(hk, concat4(cCode, rCode, rParam) in

let resAuth = mac(concat2(rpHash,NT next, nC , sAttRes),

concat7(skT ,getAuth(enhandle, authentity))) in

event TPMAcknowledgment(nC , NT next, sAttRec);

c11[iT](rCode, enhandle,NT next, sAttRec, recAuth, rParam).

