
FORSAKES: A Forward-Secure Authenticated Key Exchange

Protocol Based on Symmetric Key-Evolving Schemes

Mohammad Sadeq Dousti and Rasool Jalili

Data & Network Security Lab, Department of Computer Engineering, Sharif
University of Technology, Tehran, Iran

March 1, 2014

Abstract

This paper suggests a model and a definition for forward-secure authenticated key exchange
(AKE) protocols, which can be satisfied without depending on the Diffie-Hellman assumption.
The basic idea is to use key-evolving schemes (KES), where the long-term keys of the system get
updated regularly and irreversibly. Protocols conforming to our model can be highly efficient,
since they do not require the resource-intensive modular exponentiations of the Diffie-Hellman
protocol. We also introduce a protocol, called FORSAKES, and prove rigorously that it is a
forward-secure AKE protocol in our model. FORSAKES is a very efficient protocol, and can be
implemented by merely using hash functions.

Keywords. Authenticated Key Exchange Protocol, Forward Security, Key Evolving Schemes,
Provable Security, Security Model.

1 Introduction

Establishing secure channels is a prominent problem in secure networks. Transmitting confidential
data, or ensuring its integrity over a public channel is impossible without secure channels. While
communicating parties can utilize their long-term keys (LTKs) for confidentiality or integrity, it is
generally considered a bad practice. The standard approach is to first exchange ephemeral keys, and
then use these keys to establish secure channels.

On the surface, designing efficient and secure authenticated key-exchange (AKE) protocols does not
seem to be a complicated task. However, the history shows otherwise. One of the earliest key exchange
protocols, the Needham–Schroeder protocol [1], was soon found to have a subtle flaw [2]. Another
example is the Otway–Rees [3] protocol, which is shown to be susceptible to typing attacks [4, 5].
In another work, Bird et al. [6] formulated an attack called parallel session attack , and showed that
several protocols were vulnerable to it. In particular, the attack was successfully mounted on several
proposed ISO-9798 protocols. It is interesting to know that, after over 20 years, the ISO-9798 family
of protocols is still open to some attacks [7]. A survey of attacks against entity authentication and
AKE protocols can be found in [8,9].

One of the main reasons for the existence of such attacks is the concurrent nature of AKE protocols.
The designers of vulnerable AKE protocols often fail to account for all possible scenarios which can
happen in a concurrent setting. A more important reason, identified by cryptographers after a while,
was the lack of a proper model and definition for AKE protocols.

A model specifies the resources (time, space, etc.) available to each party and the adversary, the
way they communicate, and the special abilities at the adversary’s disposal (capturing all possible

1

A slightly corrected version of this paper is published in volume 9, issue 4 of Advances in
Mathematics of Communications (AMC), November 2015. The paper is accessible from:

http://dx.doi.org/10.3934/amc.2015.9.471

http://dx.doi.org/10.3934/amc.2015.9.471

attacks in a general way). A definition specifies what it means for the protocol under consideration
to be secure in the model. As soon as the model and definition are determined, the security of many
protocols can be formally proven or refuted.

While providing a certain level of assurance, a security proof is not the panacea. In particular:

• Proving security theorems and verifying the proofs are daunting tasks, and often prone to errors
themselves;

• It is possible that the model fails to capture certain attacks, or the definition is inadequate for
some security requirements;

• The proofs are sometimes misinterpreted. For instance, an asymptotic proof of security might be
of limited significance in practice, where concrete proofs of security are needed [10].

A prime example of the first two items is apparent in the work of Krawczyk [11]: He puts forward a
general model for AKE protocols, as well as a security definition. Based on this model/definition, an
efficient AKE protocol called MQV [12,13] is analyzed, and several security flaws are detected. MQV
is then updated into an improved version, called HMQV. Finally, the security of HMQV is proven
formally. However, Menezes [14] points out to a few mistakes in the proof, as well as the failure of
the model to capture several practical attacks. Subsequently, Krawczyk added an appendix to the
full version of his paper [11], discussing how to evade such flaws. His model has since been a de facto
standard in designing provably secure AKE protocols (see Section 1.2 for a survey).

The bottom line is that one must be careful while proposing a new security model or definition,
and should take every possible measure to write sound security proofs. That said, a provably secure
AKE protocol is certainly preferable than one which is designed and analyzed in an ad hoc manner,
due to the delicate nature of these protocols, as discussed above. For this reason, researchers started
to propose models and definitions for AKE protocols in different settings, for which ad hoc protocols
already existed. Some of these settings are as follows: Two-party setting, three-party setting, public-
key setting, group key exchange, and password-based AKE. We survey these settings in Section 1.2.

In this paper, we put forward a model and definition for a class of AKE protocols, which were
previously designed ad hoc, and then prove the security of our proposed protocol. Informally, this
class contains lightweight AKE protocols which provide forward security. By lightweight, we mean
the protocols which do not use heavy operations such as modular exponentiation. Forward security,
also called perfect forward secrecy (PFS), is an important property of AKE protocols. It was first
defined by Günther [15], used famously in the Station-to-Station protocol (STS) [16], and formalized
by [11,17–19]. This concept is defined informally below:

Informal Definition. An AKE protocol is said to be forward secure if, even if the long-term keys (LTKs)
are revealed to the adversary, the ephemeral keys generated prior to the exposure of the LTKs remain
protected from the adversary.

Most (if not all) provably-secure AKE protocols satisfying the forward security property use a variant
of the Diffie-Hellman (DH) protocol [20], which requires the heavy modular exponentiations. On the
other hand, forward secure and lightweight AKE protocols are often designed ad hoc. The basic idea
of such protocols is not to use DH, but to modify the LTKs regularly.

Unfortunately, ad hoc protocols are often prone to attacks. A famous “ultra lightweight” AKE
protocol, called SASI [21], provides a good example. SASI attempts to provide forward security
without depending on DH, but is found to be flawed by several researchers [22–24]. While proven
insecure, SASI (and similar protocols) follow a remarkable approach to forward security: They update
the LTKs regularly and irreversibly. If the adversary gets hold of an updated LTK Knew, she will
be unable to infer the previous LTK Kold, as doing so requires inverting the one-way function. Since
the ephemeral keys depend essentially on Kold, it must be impossible for the adversary to obtain the
ephemeral keys from Knew. We will use the term Key-Evolving Schemes (KES) for protocols which

2

update their LTKs at specific occasions. In this paper, we are interested in symmetric KES protocols,
where each pair of parties may have a pre-shared symmetric key.

Types of KES. The literature distinguishes two types of KES:

1. LTKs are updated after a specific event in the system. For instance, AKE protocols can update
the LTK upon the exchange of each ephemeral key. This is the approach that SASI and many
other AKE protocols follow.

2. LTKs are updated at specific time intervals. A good example of this approach is RSA SecurIDr

(for description and analysis, see [25–28]). This technique is also used in forward-secure public-key
encryption [29], though the latter uses a DH-based construction.

Updating LTKs after each key exchange provides forward security in its entirety. However, it is only
suitable for the case of smart cards or security tokens, where the device performs no more than one
instance of an AKE protocol at each moment. Consider what happens if there are multiple instances
of the AKE protocol between two parties, and one instance is completed: The LTKs will get updated,
which in turn renders all other instances of the AKE protocol invalid. Therefore, the first solution is
not viable for networks such as the Internet, where each party might run several concurrent instance of
the AKE protocol with another party (for instance, consider the communications between two routers,
or two security gateways).

The second approach, which we adopt in this paper, is more promising for concurrent settings.
However, it only satisfies the forward security property partially.1 As explained in [29], the lifetime
of the system is divided into many time stages. At the beginning of each time stage, the LTKs get
updated. If the adversary gets hold of an LTK K in time stage T , she must be unable to find the
ephemeral keys generated using K in time stage T − 1 or earlier. On the other hand, the security
of ephemeral keys generated using K in time stage T is not guaranteed. The faster the LTKs get
updated, the more forward security is satisfied. However, if the update frequency is too high, there
will be no time for the actual key exchange to take place. Therefore, the update frequency should be
set reasonably to prevent loss of functionality while preserving the forward security. Depending on
the unique requirements of the system, update frequencies of once per minute, once per hour, or once
per day might be appropriate. However, an update frequency of once per second seems inadequate.

Another issue which might arise is the use of time in security protocols. It is important to note
that the precise value of the time is of no significance to our model, as we will not deal with time
stamps. The important issue is to keep the the time synchrony between the parties, such that they
perceive the same time stage all the time. The current technology allows us to produce devices, such
as the RSA SecurIDr, which can keep the time synchrony for a long time. Furthermore, when the
update frequency decreases (say, once a day), an asynchrony of a few seconds might be acceptable.

1.1 Contributions

The contributions of this paper are as follows:

• We put forward a new model for AKE protocols, where the LTKs evolve over time. We also define
what it means for an AKE protocol to be secure in our model, satisfying the forward security
property.

• Our model/definition has an algorithmic flavor. That is, we first explain the concept in plain
English, and then try to algorithmically describe it. The significance of this approach is that our
definitions can be incorporated into tools for automatic verification of security protocols.

1Note that SecurIDr uses a hybrid approach: It updates LTKs on a regular basis, but allows only a single use of
the LTK in each time interval. If a second authentication is required, the user should wait for the next time interval.
Therefore, SecurIDr provides full forward security, at the cost of being unable to handle concurrent authentications.

3

• We design an AKE protocol, and rigorously prove its security within the model and according to
the above definition. The protocol is aptly named FORSAKES, because it is a Forward Secure
AKE based on KES. (Recall that AKE stands for Authenticated Key Exchange, and KES stands
for Key-Evolving Scheme.)

• FORSAKES is designed in the random oracle model (Section 2) without any assumptions. Most
AKE protocols depend on some cryptographic assumption, even if they use the random oracle
model. For instance, [11, 18, 30] are proven secure in the random oracle model, but use some form
of the Diffie-Hellman assumption as well (e.g., Decisional Diffie-Hellman or Gap Diffie-Hellman).

• Since we prove the security of FORSAKES without any assumptions, it is unconditionally secure
in the random oracle model. In other words, there is no restriction on the running time of the ad-
versary, and the security proof holds even for infinitely powerful adversaries. (While the adversary
can have infinite running time, she is not free to make as many query as she likes to the system or
the random oracle. See the proofs for more information.)

• We use the random oracle model only to simplify the proofs. However, since we do not use the
facilities provided by the random oracle model (such as viewing or programming the adversary’s
queries), it is possible to replace the random oracle with a pseudorandom function [31], to achieve
a secure AKE protocol in the standard model. See Section 6 for more information.

• While there are efficient and provably secure pseudorandom function [32], using the random oracle
heuristic and replacing all instances of the random oracle with a hash function such as SHA-1 yields
a more practical protocol. In the case of FORSAKES, we can obtain a protocol which uses nothing
but hash functions, which is particularly suitable for constrained devices such as smart cards or
tokens. See Section 6 for more information.

1.2 Related Work

Early papers on secure authentication were either ad hoc, or adopted the zero-knowledge model of
Feige, Fiat, and Shamir [33], which was suitable only for smart-card identification. In this paper,
we are not concerned with such approach. A comprehensive account of papers on zero-knowledge
identification can be found in [34, Section 2.2].

Formalization of a model and definition for both entity authentication and AKE protocols started
with the seminal work of Bellare and Rogaway [35]. They recognized that each party can take part in
multiple instances of the protocol (each of which was called a session), and modeled each session as
an oracle, to which the adversary could make three types of queries: send, reveal, and test. A send
query allowed the adversary to deliver a specific message to some session of her choice, and observe
the result. A reveal query gave the adversary the session key of a specific session. A test query
flipped a coin, and based on the result, gave the adversary either a random value or the session key
of the target session. The goal of the adversary was to distinguish whether she is given the random
value, or the actual session key.

The ideas of [35] were notable is several ways: (1) They defined the security of AKE protocols
based on a distinguishability game. (2) They defined a notion of session freshness. If the adversary
makes a reveal query to the target session before or after the test query, she can obtain the session
key, and distinguish whether she is given a random value or the actual session key. Therefore, a
revealed session is no longer fresh. This is also the case if the “partner session” of the target session
is revealed. Therefore, there was a need to define partnership. (3) They defined partnership via the
concept of matching conversations. It simply means that two sessions are partners if every message
that one sends is received by the other, and vice versa (except possibly the last message, which can
always be deleted by the adversary, without being detected by the sender).

Notice that [35] modeled the two-party authentication/AKE based on symmetric keys. The present
paper uses a similar model. Furthermore, [35] uses random oracles in their proofs, similar to the proofs

4

of this paper. However, the AKE definition of [35] does not support the concept of forward security.
Actually, their model does not allow the adversary to obtain the long-term keys at all.

It is notable that Blake-Wilson et al. [17, 36] adapted the Bellare–Rogaway model [35] for the
case of asymmetric keys. Accordingly, their definition was updated to recognize the forward security
property, as well as protection against new types attacks which are meaningful only in an asymmetric
setting, such as Key-Compromise Impersonation (KCI) or Unknown Key-Share (UKS) attacks.

Another change of model was due to Bellare and Rogaway [37] themselves: They proposed a model
for the case of three-party AKE, which is the setting used in the Needham–Schroeder protocol [1].
Their model supported a new type of query, corrupt, which allowed the adversary to obtain, and
even set the long-term keys. An important achievement of their work was to differentiate between the
notions of mutual authentication and authenticated key exchange, and to provide a protocol called
3PKD, which only satisfied the latter.

The notion of partnership in [37] was modeled via an “existentially guaranteed partnering func-
tion,” a notion that the authors called unintuitive later [18]. Furthermore, the specific partnering
function used in the proof of security of 3PKD was later found to be flawed [38].

Shoup and Rubin [39] changed the three-party AKE model of [37] by adding yet another type of
query, access. This query allowed modeling a virus on the host machine, accessing the smart card
which contained the long-term key.

Several later papers, like [40,41], tried to model AKE protocols using the notion of simulatability ,
rather than indistinguishability. The former approach is common in modeling secure multiparty
computations. This approach was criticized by Canetti and Krawczyk as being “over-restrictive”,
since “it ruled out protocols that seem to provide sufficient security” [19].

Bellare, Pointcheval, and Rogaway [18] proposed yet another model for AKE protocols, this time
formalizing password-based AKE (PAKE) protocols. Passwords are considered low-entropy secrets,
and the model and security definition should prevent offline dictionary attacks against PAKE protocols.
The also utilized the notion of session identifiers as a means of defining partnership, and took an
algorithmic approach towards formalizing the model and definition. In this paper, we will follow a
similar algorithmic approach.

Canetti and Krawczyk [19] used a technique introduced in [40] to define the AKE security in
an indistinguishability framework: They considered two models, one which provided authenticated
channels, while the other did not provide such luxury. The technique was to propose a general
compiler , to convert any protocol secure in the former model to one that was secure in the latter
model. The model proposed in [19] is generally called the CK model (CK stands for the initials of the
authors). The CK model is suitable for two-party AKE in an asymmetric (public-key) setting. It has
several important features:

• The CK model allows for modular design of AKE protocols. The protocol designer can design a
protocol in the authenticated channel model, prove its security, and then easily compile the protocol
into one which is secure in the unauthenticated channel model.

• The authors formalized the notion of secure channels, and showed that an AKE protocol proven
secure in their AKE model could be composed with any protocol proven secure in their secure
channel model. The composability theorem shows that any CK-secure AKE protocol can be used
to establish a CK-secure channel. Similarly, the composability of the Bellare–Rogaway model [35]
with secure channel protocols was later established [42]. See also [43] for another composable
model.

• The CK model was to become later known as the de facto standard in AKE security models. Many
other models can be considered as a variant of the CK model.

Canetti and Krawczyk proposed yet another security model for AKE protocols [44], this time in
the broader context of the Universal Composability (UC) framework [45]. Any protocol proven secure
in the UC framewok can be composed with other protocols, even insecure ones. This is important

5

for the Internet protocols, where the protocol designer cannot guarantee that the protocols executed
concurrently with his protocol are all secure. It was later shown that the UC-definition of AKE
protocols is flawed [46], and the flaw was corrected accordingly. A model for password-based AKE
protocols in the UC framework was later proposed [47,48] as well.

In his famous paper, Krawczyk [11] proposed an improvement to the CK model, which became
known as the CK+ model. In this model, the adversary was allowed to reveal party or session
information via three different types of queries: state-reveal queries, session-key queries, and party
corruption queries. These types of queries provide the adversary with a great flexibility.

LaMacchia, Lauter, and Mityagin [30] spotted several weaknesses in the CK and CK+ models.
Specifically, the CK model does not specify the precise result of the state-reveal queries: “An
important point here is what information is included in the local state of a session; this is to be
specified by each KE protocol” [19]. Furthermore, the security definition in both models does not
allow an adversary to use his full potential. Therefore, LaMacchia et al. put forward a new security
model/definition, called the extended CK (eCK). The eCK model replaced the state-reveal query
of CK/CK+ with an Ephemeral Key Reveal query. The latter query is specific to Diffie-Hellman
protocols, and allows the adversary to reveal the private exponent α in a gα mod p flow of the Diffie-
Hellman protocol. The security definition of LaMacchia et al. considered a session fresh, if either the
long-term key or the private exponent of that session is revealed, but not both (and the same should
hold for the partner session). This definition greatly increased the power of the adversary, and for
two years it was assumed to be the strongest AKE model/definition. However, Cremers [49] showed
that the state-reveal query of CK/CK+ is stronger than the Ephemeral Key Reveal query of
eCK, and therefore the models are incomparable. Cremers used the vagueness in the definition of the
state-reveal query to reveal the intermediate results of Diffie-Hellman computations in the NAXOS
protocol of LaMacchia et al., thus showing that NAXOS is insecure in the CK/CK+ model.

In 2010, Sarr et al. [50] tried to amplify the eCK model, by proposing another model in which the
adversary could reveal the intermediate results. Their model considered an implementation approach
where the private exponents of the Diffie-Hellman protocol were computed during the idle time of
a machine (i.e., before the protocol), and were stored in the RAM, which is considered an insecure
storage. They called their model strengthened eCK (seCK).

One year later, Yoneyama and Zhao [51] showed a flaw in the security proofs of Sarr et al. [50],
and concluded that achieving secure protocols in the seCK model is very hard, if not impossible.

The above survey shows the delicate nature of proposing security models and definitions for AKE
protocols. The reader interested in further comparison of these models and definitions can consult
[9, 49,52–54].

1.3 Organization

The rest of this paper is organized as follows: Section 2 defines the concepts and notation used
throughout this paper. Section 3 presents the FORSAKES protocol. In Section 4, we put forward our
new security model and definition for AKE protocols with a symmetric key-evolving scheme. Section 5
provides a rigorous proof of the security of FORSAKES according to the model/definition presented
in Section 4. Section 6 discusses the issues regarding the implementation of FORSAKES in practice.
Finally, Section 7 concludes the paper, and explains the future work.

This paper has an appendix, Appendix A, where we prove the security of a message authentication
code (MAC) based on random oracles. This proof is incorporated in the security proof of FORSAKES,
in Section 5.

6

2 Preliminaries

For c ∈ N, let [c] denote the set {1, 2, . . . , c}. For a finite set S, the notion e ←R S means that the
element e is picked from S randomly.

Let
(
n
k

)
denote the number of k-subsets of an n-set. By convention,

(
n
k

)
= 0 if k > n. Otherwise,(

n
k

)
= n!

k!(n−k)! .

We use n ∈ N as the security parameter, meaning that the resources (time, space, etc.) available
to all parties and algorithms are measured in n. As is customary in cryptography, n will be provided
to the algorithms in unary notation 1n (i.e., 1 is repeated n times). This is because the resources are
actually accounted based on the length of the input.

Throughout the paper, we use four functions `, r, k,K : N→ N, where `(n) is the length of entity
identifiers in the system, r(n) is an upper bound on the number of random bits used by each entity,
k(n) is the length of ephemeral keys, and K(n) is the length of long-term keys. We assume that the
exists a polynomial p : N → N, such that n ≤ `(n), r(n), k(n),K(n) ≤ p(n) for all n ∈ N. When the
context is clear, we may drop the parameter n. For instance, we may simply write r instead of r(n).

Let {0, 1}∗ denote the set of all finite binary strings, and {0, 1}n denote the set of all binary strings
of length n. The length of a string x ∈ {0, 1}∗ is denoted by |x|. The special symbol λ ∈ {0, 1}∗
denotes the empty string, i.e., |λ| = 0. For two strings x, y ∈ {0, 1}∗, let x || y denote the concatenation
of x and y. The result of the concatenation of λ with any string is the string itself. Another special
symbol is ∗. It is called the wildcard symbol, and matches a single bit. For instance, the result of the
comparison 1∗∗0 = 1010 is true.

We may occasionally assign 0 to a Boolean value to denote that it is logically false. Similarly, 1 is
to be interpreted as logical true.

A function f : N → R is called negligible if it vanishes faster than the inverse of any positive
polynomial. That is, f(n) < n−c for all c and all sufficiently large n ∈ N.

We use the random-oracle model (ROM) [55], where all parties, including the adversary, have
access to a random function O : {0, 1}∗ → {0, 1}k(n). Once O is queried on some value x ∈ {0, 1}∗
for the first time, a random k(n)-bit value y is chosen and returned. Notice that y is independent
of x and the identity of the entity making the query. From this point on, O will return y if it is
queried again on x. It is instrumental to think of O as an ideal hash function, having properties such
as one-wayness and collision resistance. The ROM will greatly simplify the security proofs, but as
discussed in Section 6, we can replace O with pseudorandom functions.

Convention. In writing the pseudocodes, we will assume minimal evaluation: In conditional state-
ment, the conjuncts or disjuncts are evaluated from left to right. As soon as the validity of the
statement is either proven or refuted, the remaining conjuncts or disjuncts are ignored. For instance,
consider the statement if(a and b): Assuming a is false, the value of b is ignored. The minimal
evaluation allows us to write shorter pseudocodes. For instance, in the above example, the variable of
b may be undefined unless a is true. If we had not used the minimal evaluation convention, we should
have written two separate if statements: The first one evaluated a, and only if it were true, the value
of b was evaluated.

3 The FORSAKES Protocol

To better understand the theoretical foundations of the AKE security model and definition presented
in the next section, let us first describe the FORSAKES protocol, which is more practically oriented.
Protocol 1 illustrates FORSAKES on a high level.

7

Initiator Responder

Msg1−−−−−−−−−−−−→
Msg2 ||Auth2←−−−−−−−−−−−−
Msg3 ||Auth3−−−−−−−−−−−−→

Protocol 1. The proposed AKE protocol. Details are described in Section 3.

System Time Stage. Let T be a variable denoting the current time stage of the system. T is
assumed to be 1 in the system’s epoch2, and is incremented every τ seconds. In this paper, we picked
T to be a 64 -bit unsigned integer. Therefore, our system supports 264 ≈ 1020 different time stages.
However, this choice is quite conservative, and integers with much shorter bit lengths are usually
appropriate as well.

Long-Term Keys. Suppose that FORSAKES initiator has identifier idx, and the responder has
identifier idy. Moreover, assume that they had shared a long-term key Kθ

xy in time stage T = θ.

This key is updated whenever the time stage is incremented. Let Kθ+1
xy denote the new key. In

FORSAKES, we have Kθ+1
xy ← O(Kθ

xy). Notice that the random oracle O can be considered as an

ideal hash function, which in particular, is ideally one-way. Therefore, Kθ+1
xy reveals no information

about Kθ
xy.

Session State. As pointed out earlier, FORSAKES supports many concurrent key exchanges to
run at a time. Each instance is called a session. The session information, also called the session
state, is kept in memory. The sessions use independent randomness, and their states should be stored
separately.

Each party keeps an internal session counter c, which is initially 0. Before a new session state is
stored, the session counter is incremented.

The variable stiz stores the session state on party z ∈ {x, y}, whose session counter is i. It is
composed of the following variables:

• sidiz ∈ {∗, 0, 1}2r: The session identifier. It is the (ordered) concatenation of two nonces: The
nonce sent by the initiator, and the nonce sent by the receiver. Let us denote by rndiz ∈ {0, 1}r
the randomness assigned to session i on party x. The nonce of each session is simply the session
randomness. Before the initiator receives the nonce of the responder, he sets the nonce of the
responder to ∗r (i.e., a wildcard string of length r).

• roleiz ∈ {‘I’, ‘R’}: The role of the party in the current session, which is either the initiator (‘I’)
or the responder (‘R’).

• pidiz ∈ {0, 1}`: The identifier of the session partner.

• T iz ∈ {0, 1}64: The time stage in which the session is initiated. We will see that FORSAKES is
designed so that all three messages should be exchanged within one time stage. Otherwise, the
session state will be deleted.

• skiz ∈ {0, 1}k: The first part of the ephemeral key, known as the session key. As is the case with
all secure AKE protocols, the session key will not be used during the FORSAKES. Instead, it will
be used used for confidentiality in the secure channel established by the AKE protocol. Therefore,

2The system’s epoch can be any instant in time. For instance, the Unix Epoch is the time 00:00:00 UTC on January
1, 1970.

8

Algorithm 1. Initiator’s handling of session initiation.

pidcx ← idy; // Partner ID, set by the caller.

Incoming Message: None (0)

1: c← c+ 1;
2: sidcx ← rndcx || ∗r; // ‘∗’ is a wildcard

3: rolecx ← ‘I’;
4: T cx ← T ;
5: skcx ← ikcx ← λ;
6: acccx ← λ; // Session fate is undecided yet.

7: stcx ← sidcx || role
c
x || pid

c
x ||T cx || skcx || ikcx || acccx;

8: Msg1 ← 1 || idx || pidcx ||T cx || rnd
c
x;

9: return Msg1

it is important to protect the session key properly. The next section shows that the security of an
AKE protocol is defined based on the proper protection of the session key.

• ikiz ∈ {0, 1}k: The second part of the ephemeral key, known as the integrity key. Once computed,
this key protects the integrity of FORSAKES messages.

• acciz ∈ {λ, 0, 1}: The acceptance decision of the session. In the beginning, the acceptance is
undecided (λ). When the session decides it acceptance, acciz will be either false (0) or true (1).

Next, we will explain how each message of FORSAKES is handled by the corresponding party.

Session Initiation. The initiator does not receive any message from another party. However, the
initiator session is supposedly called by some “higher-level application,” which can be thought as
the zeroth message of the protocol. The caller determines the identifier of the desired partner. Let
us assume that the ID of the initiator is idx, and the ID of the partner (i.e., the responder) is idy.
The algorithm used by the initiator to handle session initiation, and generation of the first protocol
message, is described by Algorithm 1.

The initiator first sets the session partner ID to idy, and then increases the session counter c. Next,
the session ID is set to rndcx || ∗r. Recall that rndcx is the current session’s randomness, while ∗r is a
wildcard string of length r. The reason of using a wildcard string becomes clear when we discuss how
the initiator handles the second message.

In the next step, the initiator sets the session time stage to T , the ephemeral keys are set to empty,
and the acceptance state is set to undecided (λ). Finally, the session state and Msg1 are set.

Notice that the session state includes every other state variable:

stcx ← sidcx || role
c
x || pid

c
x ||T cx || skcx || ikcx || acccx .

It will be the only variable that each session stores. That is, there will be no need to store other
variables, such as sidcx, separately. However, we will keep using other variables later, when the session
receives the second message. Here, it is implicitly assumed that session state is interpreted by the
party to its constituent parts.

Let us explain the construction of the first protocol message as well:

Msg1 ← 1 || idx || pidcx ||T cx || rnd
c
x . (1)

Notice that the message begins with 1, indicating that this is the first message of the protocol. It helps
the receiver—who may have participated in multiple concurrent sessions—to distinguish the incoming
message. It can prevent typing attacks [4, 5], where the adversary uses the syntactical similarity of
protocol messages to reorder them and mount an attack.

9

Algorithm 2. Responder’s handling of the first message.

Incoming Message: m = 1 || ids || idr ||Ts || rnds
1: if

(
idr 6= idy or Ts 6= T

)
2: return;

3: d← d+ 1;
4: piddy ← ids;

5: siddy ← rnds || rnddy;

6: roledy ← ‘R’;

7: T dy ← T ;

8: let KT
yx be the LTK shared between idy and piddy;

9: skdy ← O(KT
yx || 0 || sid

d
y);

10: ikdy ← O(KT
yx || 1 || sid

d
y);

11: accdy ← λ; // Session fate is undecided yet.

12: stdy ← siddy || role
d
y || pid

d
y ||T dy || skdy || ikdy || accdy;

13: Msg2 ← 2 || idy || idx ||T dy || sid
d
y;

14: Auth2 ← O(ikdy ||Msg2);
15: return Msg2 ||Auth2;

The message includes the identifier of the sender (idx), as well as the identifier of the partner (pidcx).
We include these two identifiers, in the order specified, in all messages of FORSAKES. This prevents
parallel session attacks [6], where the attacker opens two sessions with a single party in parallel. She
then sends every message he receives from the first session in the second session, and vice versa.

Msg1 includes the current time stage of the initiator. This inclusion is because the receiver should
reject the message if it is delivered in a different time stage.

Finally, Msg1 includes the nonce of the initiator (rndcx). The nonce is used to prevent replay
attacks. Furthermore, we will see that the nonce of both parties affects the ephemeral keys in an
essential way.

Handling the First Message. The first message of the protocol is specified in Equation 1. Upon
receiving this message, the receiver verifies the syntax, and if approved, follows Algorithm 2. Notice
that the incoming message is described as m = 1 || ids || idr ||Ts || rnds, where the subscripts s and r
denote the sender and receiver, respectively. For instance, ids means the sender ID, while idr means
the sender ID.

The receiver first checks whether the message is intended for him (idr = idy), and whether the
time stage in which the first message was generated is the same as the local time stage (Ts = T).
If either condition fails, the responder executes the return command, meaning that he is no longer
interested in this message.

Remark 1. An alternative approach is to return an error message to the initiator, but it might be
wasteful of the computation time and bandwidth. The protocol designer should customize this part,
if desired. C

Next, the responder increments his session counter d. While not necessary, we called the receiver’s
session counter d, to distinguish it from the initiator’s session counter c.

The receiver sets the partner ID to ids, the session ID to rnds || rnddy, the session role to ‘R’, and

the session time stage to T . We also assume that KT
yx is the current value of the LTK shared between

the initiator and the responder. (If such a key does not exist, the incoming message will be rejected.)

10

Algorithm 3. Initiator’s handling of the second message.

Incoming Message: m =

Msg2︷ ︸︸ ︷
2 || ids || idr ||Ts || sid ||Auth2

1: if
(
sidix 6= sid for all i ∈ [c]

)
2: return; // No session matches with m.

3: if
(
sidix = sid for more than one i ∈ [c]

)
4: stix ← λ for all such i’s;
5: return; // Unique match is required.

6: let i ∈ [c] be the unique value such that sidix = sid;
7: if

(
ids 6= pidiy or idr 6= idx or Ts 6= T or Ts 6= T ix or roleix 6= ‘I’ or accix 6= λ

)
8: stix ← λ;
9: return;

10: let KT
xy be the LTK shared between idx and pidix;

11: sidix ← sid; // No more wildcards.

12: skix ← O(KT
xy || 0 || sid

i
x);

13: ikix ← O(KT
xy || 1 || sid

i
x);

14: if
(
Auth2 6= O(ikix ||Msg2)

)
15: stix ← skix ← ikix ← λ;
16: return;

17: accix ← 1;
18: stix ← sidix || role

i
x || pid

i
x ||T ix || skix || ikix || accix;

19: Msg3 ← 3 || idx || pidix ||T ix || sid
i
x;

20: Auth3 ← O(ikix ||Msg3);
21: return Msg3 ||Auth3

It is now possible to compute the ephemeral keys based on the current LTK, as well as the nonces
of both sessions (note that the session ID is the concatenation of nonces):

skdy ← O(KT
yx || 0 || sid

d
y)

ikdy ← O(KT
yx || 1 || sid

d
y) .

After setting the ephemeral keys, the acceptance state of the session is set to undecided (λ), and
the session state is constructed. Then, the second message is generated with a similar syntax to the
first message. There are two differences, though: (1) The second message includes the session ID
rather than a single nonce; and (2) The second message is authenticated using the integrity key. The
construction of the message and the authenticator is as follows:

Msg2 ← 2 || idy || idx ||T dy || sid
d
y

Auth2 ← O(ikdy ||Msg2) .

Finally, the responder sends Msg2 ||Auth2 to the initiator.

Handling the Second Message. After verifying the message syntax, the initiator executes Algo-
rithm 3 to handle the second message. It is first verified whether there exists a session whose identifier
matches the session ID included in the incoming message. It is here that wildcard matching is im-
portant: Notice that the initiator only knows the first part of the session ID, and the second part is
chosen by the responder. If no match is found, the incoming message is rejected (via return).

Next, it is verified that exactly one match exists. If there are two or more sessions whose ID’s
matches the sid on the incoming message, all such sessions will be deleted by setting them to empty

11

Algorithm 4. Receiver’s handling of the third message.

Incoming Message: m =

Msg3︷ ︸︸ ︷
3 || ids || idr ||Ts || sid ||Auth3

1: if
(
sidiy 6= sid for all i ∈ [d]

)
2: return; // No session matches with m.

3: if
(
sidiy = sid for more than one i ∈ [d]

)
4: stiy ← λ for all such i’s;
5: return; // Unique match is required.

6: let i ∈ [d] be the unique value such that sidiy = sid;

7: if
(
ids 6= pidiy or idr 6= idy or Ts 6= T or Ts 6= T iy or roleiy 6= ‘R’ or acciy 6= λ

)
8: stiy ← skiy ← ikiy ← λ;
9: return;

10: if
(
Auth3 6= O(ikiy ||Msg3)

)
11: stiy ← skiy ← ikiy ← λ;
12: return;

13: acciy ← 1;

14: stiy ← sidiy || role
i
y || pid

i
y ||T iy || skiy || ikiy || acciy;

string, and rejecting the incoming message (via return). This event should occur only with exponen-
tially small probability (see Corollary 1 on page 26).

Remark 2. Notice that deleting a sensitive object by freeing the memory allocated is a bad security
practice, because the traces of that object can reside in the memory for a long time. Therefore, we
urge the implementors to securely erase (wipe) the objects from the memory. This paper adopts the
convention that assigning the empty string λ to a previously initialized variable denotes the secure
wipe of the memory allocated to it. C

Now that the unique session state matching the incoming message is found, six more verifications
are performed: (1) The ID of the sender matches the ID of the session partner, (2) the ID of the
receiver matches the ID of the current party, (3) the time stage of the sender matches the current
time stage, (4) the current time stage matches the session time stage, (5) the role of the current session
is ‘I’, meaning that it anticipated the second protocol message, and (6) the session did not accept
or reject previously. If any of these conditions does not hold, the session state is securely wiped, and
the incoming message is rejected (via return).

Let us assume that KT
xy is the current value of the LTK shared between the initiator and the

responder. (If such a key does not exist, the state is securely wiped, and incoming message will be
rejected.) By symmetry, we have KT

xy = KT
yx.

Next, the initiator updates the session ID to sid. This effectively replaces the wildcard string with
a proper value. He will then set the ephemeral keys, and verifies the integrity of the second message
by comparing Auth2 to the value it must be. If the verification fails, the ephemeral keys and the
session state are securely wiped, and the incoming message is rejected (via return).

Otherwise, the acceptance state is set to true, and the session state as well as the third message
are computed.

Handling the Third Message. The responder verifies the third message syntactically, and if it
is OK, executes Algorithm 4. The algorithm first checks whether the sid on the incoming message
matches a unique session state. If not, secure wipes will take place, and the incoming message is
rejected (via return).

12

Next, six more verifications are performed: (1) The ID of the sender matches the ID of the session
partner, (2) the ID of the receiver matches the ID of the current party, (3) the time stage of the sender
matches the current time stage, (4) the current time stage matches the session time stage, (5) the
role of the current session is ‘R’, meaning that it anticipated the third protocol message, and (6) the
session did not accept or reject previously. If any of these conditions does not hold, the session state
is securely wiped, and the incoming message is rejected (via return).

As a final verification, the integrity key is used to verify Auth3 on Msg3. If the verification fails,
the session state is securely wiped, and the incoming message is rejected (via return).

Ultimately, the receiver accepts, and updates the session state. This step concludes the description
of FORSAKES, but many practical issues are left to be discussed in Section 6.

4 Security Model & Definition

Now that we saw a practical AKE protocol (FORSAKES), it will be easier to understand the security
model and definition for general AKE protocols. In what follows, we first model a powerful adversary in
Section 4.1. The adversary can arbitrarily create new parties, share a long-term key between any pair
of parties, deliver arbitrary messages to them at any time, receive the response as well as information
about their internal state, get access to the long-term and session keys, and so on. In the next step,
we define what it means for an AKE protocol to be secure in the model. To this end, we define a
game between the adversary, and a hypothetical entity called the challenger. The game provides the
adversary with all the abilities specified in the model. The goal of the adversary is to distinguish any
session key of her choice, from a random value provided by the challenger. The security definition is
as permissive on the adversary as possible. In other words, we deem the adversary successful if she
succeeds in any non-obvious way. Examples of obvious winning strategies are when the adversary
reveals the session key of the target session, or a session partnered to the target session. Section 4.2
formalizes these obvious strategies, by defining what it means for a session to be partnered to another
session, and how a fresh session is defined. The actual definition of secure AKE protocols is described
in Section 4.3.

4.1 A Model for Key Exchange Protocols

As in the previous work, we put the adversary in “the center of the universe.” No message is delivered
without the permission of the adversary. The adversary can eavesdrop on, forge, redirect, replicate,
change, delete, and delay messages. Moreover, the adversary is free to obtain the internal state of
each session, or even acquire the long-term key of any pair of parties.

An innovation in our model is the ability of the adversary to dynamically create a network of
interconnected parties. In other words, the adversary can freely register new parties in the system,
and ask the system to share a long-term key between any pair of registered parties in the system.

Clock Model. In two-party protocols, every pair of parties wishing to share a session key may need
to have synchronized clocks. It is rarely a problem if the shared clock between A and B differs from
that of B and C. However, incorporating different shared clocks between various pairs of parties may
result in unnecessary clutter in the model. We therefore assume all parties in the system share a
universal clock. The system starts in time stage 1, which is incremented every τ seconds. The value
of the time stage is stored by the variable T .

4.1.1 Adversarial & Communication Model

The interactions between the adversary and the protocol entities can be modeled as a thought ex-
periment. The thought experiment (or the game) is played between a hypothetical challenger C and

13

Table 1. Global variables stored by C.

Variable Description

T The time stage of the system, which is initially 1.

N The number of parties in the system, which is initially 0.

ID A function mapping the real identifiers of parties to their ordinal identifiers. It is initially empty.

Table 2. Party-specific variables stored by C.

Variable Description

idx The `(n)-bit string identifier of party x.

Px The set of parties who share an LTK with party x.

sessx The set of sessions created on party x.

Kθ
xy The value of the LTK between x and y in time stage θ.

revealTimexy
An integer denoting the time stage in which the LTK between x and y is revealed to the
adversary.

the adversary A. The challenger allows the adversary to make a set of predefined queries, to which C
answers accordingly. The role of the challenger is to keep the state information, to verify the queries,
to run the protocol, and to respond to the adversary.

Input of C. The input of C is the security parameter n, in the unary form 1n. Furthermore, C has
black-box access to the AKE protocol Π. We denote this fact by CΠ(1n).

State Information of C. Let us discuss the state information which C keeps. As described below,
the state changes when either A or the universal clock makes a query to C.

The global state variables are detailed in Table 1. The variable ID requires an explanation: Each
party has two types of identifiers: An ordinal number, and an `(n)-bit binary string. The ordinal
number determines the order at which parties are created in the system. For instance, the fifth party
registered in the system receives the ordinal 5. This identifier is for internal use by A and C, and is
not used by the protocol itself. In contrast, the protocol uses the `(n)-bit identifiers. The set ID
contains both type of identifiers, paired together.

The challenger C also keeps state variables which are specific to one or more parties. These
variables are explained in Table 2. Finally, C keeps session-specific state variables, which are described
in Table 3. Notice that (x, s) denotes a session identified by s on party x.

Queries Allowed by C. Below, we list and describe the queries allowed by C. Except the first query
(which is made by the universal clock), all other queries are made by the adversary. For the sake of
simplicity (and not security), we assume that the adversary loses the game if she makes queries which
are “obviously wrong.” For instance, the adversary loses the game if she asks C to share an LTK
between two non-existent parties in the system. In such cases, the challenger immediately outputs 0
and aborts the game (0 means the adversary has lost the game).

I The TimeEvent() function. The universal clock calls this function at regular intervals (every τ sec-
onds). Upon receiving this query, C updates all long-term keys in the system by calling UpdateLTK(T,
KT
xy). In FORSAKES, the function UpdateLTK simply ignores its first argument, and performs an

14

Table 3. Session-specific variables stored by C.

Variable Description

pidsx The ordinal identifier of the party to whom the session (x, s) is partnered.

rndsx The randomness used in the session (x, s).

rolesx The role of the session (x, s), which is either ‘I’ (initiator) or ‘R’ (responder).

sksx The session key of the session (x, s).

skTimesx The time stage in which the session key of the session (x, s) is set.

accsx
The acceptance state of the session (x, s). It is λ if the decision is yet to be made, 0 if it has
rejected, and 1 if it has accepted.

statesx
The state of the session (x, s). We assume that this variable encodes, among other information,
the value of sidsx, pidsx, sksx, and accsx.

exposedsx A Boolean variable, indicating whether the adversary has exposed the session (x, s).

Algorithm 6. The Register() function.

1: Register()
2: N ← N + 1;
3: idN ←R {0, 1}`(n);
4: ID ← ID ∪ {(idN , N)};
5: sessN ←PN ← ∅;
6: return idN ;

time-independent update: UpdateLTK(T,KT
xy)

def
= O(KT

xy). Immediately after the new key KT+1
xy is

computed, the old key KT
xy is wiped securely (See Remark 2).

After all LTKs are updated, C starts a new time stage by increasing T , and notifies the adversary
by calling Notify(A).

The pseudocode of the TimeEvent() function is described in Algorithm 5.

Algorithm 5. The TimeEvent() function.

1: TimeEvent()
2: for

(
x← 1 to N

)
3: for

(
y ∈Px

)
4: KT+1

xy ← UpdateLTK(T,KT
xy);

5: KT
xy ← λ; // secure wipe of the LTK

6: T ← T + 1;
7: Notify(A);

I The Register() function. The adversary calls this function to introduce a new party into the system.
Upon receiving this query, C increments N , and generates a random `(n)-bit identifier idN . The pair
(idN , N) is added to the set ID, and the set of sessions on N (sessN) and the set of parties who share
an LTK with N (PN) are set to empty. Finally, idN is returned to the adversary. Notice that the
adversary can keep track of N and ID by herself, and therefore C does not bother to return these
values.

The pseudocode of the Register() function is described in Algorithm 6.

15

I The ShareLTK(x, y) function. The adversary calls this function to share an LTK between the
parties whose ordinal identifiers are x and y. The challenger first checks if either x or y is nonexistent,
whether they are identical, and whether they have already shared a key. If either of these conditions
hold, the adversary loses the game. Otherwise, a random K(n)-bit key is shared between x and y, and
they will be added to the partner set of each other. Notice that by symmetry, KT

xy = KT
yx. Finally,

the reveal time of both keys is set to infinity.
The pseudocode of the ShareLTK(x, y) function is described in Algorithm 7.

Algorithm 7. The ShareLTK(x, y) function.

1: ShareLTK(x ∈ N, y ∈ N)
2: if

(
x > N or y > N or x = y or y ∈Px

)
3: output 0 and abort;

4: KT
yx ← KT

xy ←R {0, 1}K(n);
5: Px ←Px ∪ {y} and Py ←Py ∪ {x};
6: revealTimexy ← revealTimeyx ← +∞;

I The Send(x, s, y,m) function. The adversary calls this function to send a message m to (x, s),
claiming this message comes from party y. To start the protocol on the initiator side, the adversary
sends a zero message (m = 0). It is implicitly assume that m = 0 is not a valid protocol message
(which is the case for virtually all protocols), and therefore it is not misinterpreted by the receiving
party.

If party x or y do not exist in the system, or if y does not have an LTK with x, the adversary loses
the game.

Next, the challenger checks whether the session (x, s) exists, and if not, initializes (or changes) the
following variables:

• sessx: The session s is added to this set.

• skTimesx: It is set to 0, which means that the session key is not generated yet.

• rndsx: The randomness of the current session is picked randomly from {0, 1}r(n).

• rolesx: If the incoming message is 0, the session role is set to ‘I’. Otherwise, it is set to ‘R’.

• exposedsx: It is set to false (0), as the session is not exposed yet.

Let Π denote the AKE protocol executed by a single party. To run (x, s) on the incoming message
m (allegedly from y), the challenger feeds Π with the following pieces of information:

• the long-term key (KT
xy);

• the current time stage (T);

• the current session state (statesx);

• the session randomness (rndsx);

• the identifiers of the current party and its session partner (idx and idy); and

• the incoming message (m).

The output of Π is the outgoing message (m′), and the updated session state (statesx), and the updated
randomness (rndsx):

(m′, statesx, rnd
s
x)← Π(KT

xy, T, state
s
x, rnd

s
x, idx, idy,m) .

The reason why the randomness gets updates is explained in the description of the ExposeSS function
(see below).

16

Algorithm 8. The Send(x, s, y,m) function.

1: Send(x ∈ N, s ∈ N, y ∈ N,m ∈ {0, 1}∗)
2: if

(
x > N or y > N or y /∈Px

)
3: output 0 and abort;

4: if (s /∈ sessx)
5: sessx ← sessx ∪ {s};
6: skTimesx ← 0;
7: rndsx ←R {0, 1}r(n);
8: if (m = 0)
9: rolesx ← I;

10: else
11: rolesx ← R;

12: exposedsx ← 0;

13: (m′, statesx, rnd
s
x)←

Π(KT
xy, T, state

s
x, rnd

s
x, idx, idy,m);

14: (sidsx, pid
s
x, sk

s
x, acc

s
x)← fID(statesx);

// We implicitly assume that pidsx = y.

15: if
(
skTimesx = 0 and sksx 6= λ

)
16: skTimesx ← T ;

17: return (m′, sidsx, pid
s
x, skTimesx, acc

s
x);

As stated in Table 3, the session state encodes other values, including the session ID, the partner
ID, the session key, and the acceptance state of the session. These values are obtained by applying
some efficient function fID to statesx:

(sidsx, pid
s
x, sk

s
x, acc

s
x)← fID(statesx)

Notice that the subscript ID in fID means that f uses the set ID to translate the string partner ID
to the corresponding ordinal value. We implicitly assume that pidsx = y, and do not check for this
condition explicitly.

Next, the value of skTimesx is set: If it is still 0, but the session key is set, then skTimesx is set to
the current value of the time stage.

Upon the completion of the Send function, the challenger C returns the tuple (m′, sidsx, pid
s
x,

skTimesx, acc
s
x) to the adversary. Notice that the returned value does not include the session state

(statesx) or the session randomness (rndsx).
The pseudocode of the Send (x, y, s,m) function is described in Algorithm 8.

I The ExposeSS(x, s) function. This function is used to model the leakage of session-specific infor-
mation to the adversary.

If either party x or session (x, s) is non-existent, the adversary loses the game. Otherwise, exposedsx
is set to 1, and the pair (statesx, rnd

s
x) is returned to the adversary. That is, the adversary will get

hold of both the session state and the randomness used for this session.
In many key-exchange protocols, the exposure of the session randomness can have a devastating

result on the security of the protocol. For instance, in the Diffie–Hellman key exchange, the private
exponent of each session equals (or can be obtained directly from) the session randomness. Therefore,
the protocol Π is given a chance to affect rndsx in line 13 of Algorithm 8. As a general guideline,
the protocol designers should securely wipe the session randomness as soon as it is no longer needed.
However, some protocols use all the randomness in public communications, and do not need to wipe
it. For instance, FORSAKES uses the session randomness as nonce, which is sent in cleartext.

The pseudocode of the ExposeSS(x, s) function is described in Algorithm 9.

17

Algorithm 9. The ExposeSS(x, s) function.

1: ExposeSS(x ∈ N, s ∈ N)
2: if

(
x > N or s /∈ sessx

)
3: output 0 and abort;

4: exposedsx ← 1;
5: return (statesx, rnd

s
x);

I The RevealLTK(x, y) function. The adversary calls this function to receive the long-term key be-
tween parties x and y. If either party is non-existent, or they do not have an LTK, the adversary loses
the game. Otherwise, the variables revealTimexy and revealTimeyx are set to T , and KT

xy is returned.
The pseudocode of the RevealLTK(x, y) function is described in Algorithm 10.

Algorithm 10. The RevealLTK(x, y) function.

1: RevealLTK(x ∈ N, y ∈ N)
2: if

(
x > N or y > N or y /∈Px

)
3: output 0 and abort;

4: revealTimexy ← revealTimeyx ← T ;
5: return KT

xy;

In most papers, the adversary is given access to a Corrupt() query, which returns all long-term
keys stored on a single party. RevealLTK() is a more flexible query, since the adversary can pick the
exact LTK she wants to obtain. Moreover, since the adversary knows the set Px of parties to whom
x shares an LTK,3 she can effectively corrupt x by running RevealLTK() on x and every party in Px.

General Assumptions. We assume that Π and fID satisfy the following rules for all s, x ∈ N:

• If Π detects an error, it returns an empty string as the state and the outgoing message.

• On input an empty string, fID outputs the follow tuple: (sidsx, pid
s
x, sk

s
x, acc

s
x) = (λ,−1, λ, 0). Note

especially that the partner ID is set to −1 (invalid party), and the acceptance decision is set to 0
(false).

• If m is the last message of the protocol, Π outputs the empty message m′ = λ as the outgoing
message.

If Π does not detect an error, the following assumptions are also true:

• pidsx is set as soon as (x, s) receives the first message, and will not change to any other value during
the lifetime of (x, s).

• Neither sksx nor sidsx will change after skTimesx is set to T in line 16.

4.2 Session Partnership and Freshness

Before defining what it means for an AKE protocol to be secure, we need to define two central notions:
Session partnership, and session freshness. Our notion of session partnership, presented in Definition 1,
is adopted from [18].

Definition 1 (Session Partnership). Two sessions (x, s) and (y, t) are called partners if the
following conditions hold:

3This is because the parties share an LTK if and only if the adversary uses the ShareLTK() query.

18

1. sksx = skty 6= λ;

2. sidsx = sidty 6= λ;

3. rolesx 6= rolety;

4. pidsx = y and pidty = x;

5. siduz 6= sidsx for all (z, u) ∈ N2 − {(x, s), (y, t)}. This condition does not include wild-card matches.
�

The first and second conditions state that both sessions should output the same non-empty session
keys and session identifiers. The third condition requires that the sessions have different roles; i.e., one
is the initiator and the other is the responder. The forth condition states that the sessions recognize
the other party as the partner. Finally, the fifth condition requires that no other session besides (x, s)
and (y, t) outputs the same session identifier.

The rules stated for partnership are very strict. For instance, if the adversary succeeds in making
two sessions agree on different session keys or session identifiers, they are no longer considered partners.
As an another example, consider the case where the adversary observes the session ID of two sessions,
and succeeds in making a third session output the same session identifier. In this case, none of the
three sessions will be partnered to each other.
C uses the function FindPartnerSession(x, s) in Algorithm 11 to find the partner of the session (x, s),

if one exists according to Definition 1. It is assumed that C has already made the usual sanity checks,
and is assured that the session (x, s) exists in the system. The output of this function is a numeric
value, denoting the ordinal t of the partner session on the party y = pidsx. In other words, (y, t) is the
session partnered to (x, s). The value of t will be −1 if no partner session exists.

Algorithm 11. The FindPartnerSession(x, s) function.

1: FindPartnerSession(x ∈ N, s ∈ N)
2: if

(
sidsx = λ or sksx = λ

)
3: return −1;

4: c← 0 // number of partners

5: for z ← 1 to N
6: for all

(
u ∈ sessz

)
7: if

(
(z, u) 6= (x, s) and siduz = sidsx

)
8: c← c+ 1;
9: t← u;

10: if (c 6= 1) // no unique partner?

11: return −1;

12: y ← pidsx;
13: if

(
skty 6= sksx or sidty 6= sidsx or

rolety = rolesx or pidty 6= x
)

14: return −1;

15: return t;

The idea used in Algorithm 11 is as follows: We first count the number of sessions in the system,
except (x, s), whose session identifier is sidsx. According to Definition 1, there must be a unique session,
beyond (x, s), with session identifier sidsx. Therefore, if we count zero such sessions, or more than one
such session, then (x, s) has no partner session. Otherwise, the session with identifier sidsx is examined
for other conditions in Definition 1.

Now that the concept of partner sessions is established, one can define the concept of a fresh
session. Intuitively, if a session is unfresh, then the adversary knows enough information about that

19

session to trivially deduce the session key. For instance, if the adversary exposes a session after the
session key is established, then she already knows the session key. The same holds if the adversary
exposes the partner session of a session. Therefore, it is important to properly define the partner
session, as we just did.

In Section 4.3, we will define the security of AKE protocols as follows: We will allow the adversary
to target any fresh session, and receive either the session key or a random key. Her goal will then be
to distinguish the two cases. Consequently, it is important to define the concept of fresh sessions as
loosely as possible, so that when a protocol is proved secure in our model, it resist a variety of attacks.
Our definition of freshness is presented in Definition 2.

Definition 2 (Freshness). A session (x, s) is called fresh if the following conditions hold (here,
y = pidsx):

1. skTimesx < revealTimexy;

2. exposedsx = 0;

3. Let t← FindPartnerSession(x, s). If t 6= −1, then skTimety ≥ revealTimeyx and exposedty = 0. �

The first condition is a forward security requirement: If the LTK is revealed in a time stage later
than the one in which the session key is established, then the session key should remain protected.
Notice that the initial values for skTimesx and revealTimexy are 0 and +∞, respectively. Therefore,
condition 1 holds even if the session key is yet to be established, or the LTK is not revealed. The
second condition verifies that the session is not exposed. Finally, the third condition examines the
case when the session has a partner: In this case, the partner session should satisfy the first two
conditions above.
C uses the function fresh(x, s) in Algorithm 12 to find whether the session (x, s) is fresh, according

to Definition 2.

Algorithm 12. The fresh(x, s) function.

1: fresh(x ∈ N, s ∈ N)
2: if

(
skTimesx ≥ revealTimexy or exposedsx = 1

)
3: return 0;

4: y ← pidsx;
5: t← FindPartnerSession(x, s);
6: if

(
t 6= −1

)
7: if

(
exposedty = 1 or skTimety ≥ revealTimeyx

)
8: return 0;

9: return 1;

4.3 AKE Security Definition

Up until now, we defined a general model for interaction between the parties and the adversary.
Given this model, it is straightforward to give the definition of what it means for an authenticated
key exchange (AKE) protocol to be secure. We first need to augment the challenger C with two more
queries. We denote the augmented challenger by D. The new queries are the Test query, and the
Guess query. Contrary to previous queries, the adversary can make the Test and Guess queries only
once. Moreover, the Guess query is the last query in the system, after which D announces whether
the adversary wins, and aborts the game.

In a Test query, the adversary specifies a target session, which must be a fresh one containing a
session key. Next, D flips a coin, and depending on the result, answers with either the session key, or a
random value. The adversary continues the game by making arbitrary queries (except Test and Guess,

20

which can only be made once). Her goal is to gather as much information as possible, to find out
whether the value returned by the Test function is the actual session key, or merely a random value.
Notice that in this process, she cannot make any query which makes the target session non-fresh;
otherwise, she loses the game as soon as she makes a Guess query.

At some point in time, the adversary makes a Guess query, in which she announces her guess of
the coin flipped during the Test query. If the target session is still fresh, and the guess is correct, the
adversary wins the game. Otherwise, she loses.

Let us describe the queries in more detail. We will assume that D keeps three new global variables
beyond Table 1: X, S, and b. The pair (X,S) denotes the target session, and b specifies the random
coin. The initial value for b is −1.

I The Test(x, s) function. By making this query, the adversary specifies that (x, s) is her target
session of choice. If the party x or session (x, s) is non-existent, or the adversary has already made
a Test query, or the target session is unfresh, or the session key is not established yet, she loses the
game. (The second condition is checked by verifying b 6= −1, as the value of b will be set to either 0
or 1 by this function).

Next, the global variables X and S are set to x and s, respectively. The value of b is then set
according to a random coin flip. If b is 0, the session key of (x, s) is returned to the adversary.
Otherwise, a random k(n)-bit binary string is returned to the adversary. (Recall that k(n) is the
length of the session key.)

The pseudocode of the Test(x, s) function is described in Algorithm 13.

Algorithm 13. The Test(x, s) function.

1: Test(x ∈ N, s ∈ N)
2: if

(
x > N or s /∈ sessx or b 6= −1 or ¬ fresh(x, s) or sksx = λ

)
3: output 0 and abort;

4: (X,S)← (x, s);
5: b←R {0, 1};
6: if (b = 0)
7: key ← sksx;
8: else
9: key ←R {0, 1}k(n);

10: return key;

I The Guess(b′) function. By calling this function, the adversary announces her guess of the random
coin b. As a sanity check, the function checks whether a Test query is made before (if so, b 6= −1).
This is done because otherwise no target session is specified. Next, it is checked that the target session
is fresh. If either of of the conditions is false, the adversary loses.

The rest is pretty simple: If the adversary’s guess is correct (b′ = b), the adversary wins and Guess
outputs 1. Otherwise, the adversary loses and Guess outputs 0. In both cases, D aborts the game, as
Guess is the last possible query in the game.

The pseudocode of the Guess(b′) function is described in Algorithm 14.

Algorithm 14. The Guess(b′) function.

1: Guess(b′ ∈ {0, 1}∗)
2: if

(
b = −1 or b′ 6= b or ¬ fresh(X,S)

)
3: output 0 and abort;

4: output 1 and abort;

21

Denote by 〈DΠ,A〉(n) the single-bit output of the challenger D, when the protocol is Π, the
adversary is A, and the security parameter is n. We assume that D outputs 0 if A halts before D
returns any value. Define the AKE-advantage of A by the following equation:

Advake
A,D,Π(n)

def
= Pr

[
〈DΠ,A〉(n) = 1

]
− 1

2
, (2)

where the probability is taken over the random coins of D and A. We can now define the security of
AKE protocols.

Definition 3 (Secure AKE). An AKE protocol Π is called (n, T (n), ε(n))-secure if:

max
A

{
Advake

A,D,Π(n)
}
< ε(n) , (3)

where the maximum is taken over all probabilistic algorithms whose sum of running time and code
size is at most T (n).

We call Π a secure AKE if it is (n, T (n), ε(n))-secure for all positive polynomials T (·) and 1/ε(·),
and all sufficiently large n. �

The last sentence requires clarification. First, if 1/ε(·) is a polynomial, then ε(·) is an inverse
polynomial. Therefore, the requirement basically states that any adversary whose running time is a
polynomial must have an advantage in winning the game which is smaller than the inverse of any
polynomial (i.e., the advantage must be negligible).

5 Proving the AKE Security of FORSAKES

In this section, we provide proofs of AKE security for the FORSAKES protocol. The proof is quite
involved; therefore, it is divided into several parts. The first part, presented in Section 5.1, is in fact a
general proof, and is not specific to FORSAKES. It shows that if the adversary creates (polynomially)
more than two parties in the system, her AKE-advantage does not change by more than a polynomial.
Section 5.2 presents several lemmas about FORSAKES in a multiparty setting. Finally, Section 5.3
uses the aforementioned proofs to establish the security of FORSAKES in a two-party setting.

5.1 Reducing a Multi-Party Setting to a Two-Party Setting

Let qreg
def
= qreg(n) and qltk

def
= qltk(n) denote upper bounds on the number of Register and ShareLTK

queries that the adversary makes to D. Furthermore, let q
def
= q(n) be an upper bound on the total

number of queries that the adversary makes to D.
Theorem 1 states that the adversary can achieve essentially the same AKE-advantage (up to a

polynomial), if she registers exactly two parties in the system, rather than polynomially many.

Theorem 1. Let Π be any AKE protocol (not necessarily secure). For all n ∈ N and any (qreg, qltk)–
adversary A against Π which runs in time at most T (n), there exists a (2, 1)–adversary S which runs
in time at most TS(n) = TA(n) + q(n) · poly(n), such that:

Advake
S,D,Π(n) ≥

Advake
A,D,Π(n)

(qreg(n))2
.

The proof essentially results from three facts in the modeling:

1. The long-term keys (KT
xy) are generated independently from each other;

2. The randomness of sessions (rndsx) are generated independently from each other;

3. The session states (statesx) are stored and updated independently from each other.

22

Algorithm 15. The simulator S.

Initialization
1: α←R

[
qreg

]
and β ←R

[
qreg

]
− {α};

2: N, p, pα, pβ ← 0;

Query-Response. Respond to queries as follows:

3: TimeEvent ()
4: execute the query as specified in Algo-

rithm 5;

5: Register ()
6: if

(
N + 1 ∈ {α, β}

)
7: N ← N + 1;
8: p← p+ 1 and pN ← p;
9: forward the query to D and receive idN ;

10: else
11: execute Algorithm 6 and receive idN ;

12: return idN to A;

13: ShareLTK (x, y)
14: if

(
{α, β} = {x, y}

)
15: forward ShareLTK(px, py) to D;
16: else
17: execute the query as specified in Algo-

rithm 7;

18: Send (x, s, y,m)
19: if

(
{α, β} = {x, y}

)
20: forward Send(px, s, py,m) to D;
21: receive (m′, sidsx, pid

s
x, skTimesx, acc

s
x);

22: pidsx ← y;
23: else
24: execute the query as specified in Algo-

rithm 8;
25: receive (m′, sidsx, pid

s
x, skTimesx, acc

s
x);

26: return (m′, sidsx, pid
s
x, skTimesx, acc

s
x) to A;

27: ExposeSS (x, s)
28: y ← pidsx;
29: if

(
{α, β} = {x, y}

)
30: forward ExposeSS(px, s) to D;
31: receive (statesx, rnd

s
x);

32: else
33: execute the query as specified in Algo-

rithm 9;
34: receive (statesx, rnd

s
x);

35: return (statesx, rnd
s
x) to A;

36: RevealLTK (x, y)
37: if

(
{α, β} = {x, y}

)
38: forward RevealLTK(px, py) to D;
39: receive KT

xy;
40: else
41: execute Algorithm 10 and receive KT

xy;

42: return KT
xy to A;

43: Test (x, s)
44: y ← pidsx;
45: if

(
{α, β} = {x, y}

)
46: forward Test(px, s) to D and receive

key;
47: return key to A;
48: else
49: S halts with failure; // simulation fails

50: Guess (b′)
51: forward Guess(b′) to D;

Since the adversary A creates at most qreg parties, the number of long-term keys in the system will
be at most

(
qreg

2

)
≤ q2

reg.
The high-level strategy of the proof is as follows: First, the adversary S randomly picks two distinct

integers α and β from the set {1, . . . , qreg}. The values α and β will denote the ordinal identities of
two parties, which we call special parties. Next, S starts to simulate the game between A and D. It
answers all queries of A by itself, except those queries related to the special parties. The latter type
of queries are forwarded to D, and the answers are relayed back to A. In this way, S will make at
most two Register() queries, and at most one ShareLTK() query.

In the final stage, if A picks a session between the special parties as the test session, S will win

23

with the same probability that A wins. Otherwise, S loses. It will be shown that the probability of
the former event is at least 1/q2

reg, and therefore the theorem follows.
We now prove the theorem more rigorously.

Proof (of Theorem 1). Let S be the adversary described by Algorithm 15. Since the main purpose
of S is to simulate a multi-party AKE setting for A, we call it a simulator. Before going into the
details of the simulation, let us note that the following conventions were used to express this algorithm
more briefly:

1. Only the state variables used explicitly in the algorithm were defined and initialized. For instance,
the state variable T is used implicitly by the TimeEvent() function (lines 3–4 of Algorithm 15), but
since this use is not explicit, the variable T is neither defined nor initialized. The corresponding
definitions can be found in Section 4.

2. No sanity check is performed by S. As an example, when A makes a ShareLTK(x, y), it must
be verified that identities x and y exist in the system by checking whether x ≤ N and y ≤ N .
Moreover, x and y should not have already shared a long-term key. Such sanity checks are assumed
to be performed implicity by S, as specified by the rules in Section 4.

Below, each part of the simulator is explained in details.

I Initialization, lines 1–2. S first picks the ordinal identity of the two special parties. This is done by
picking two distinct random integers α and β from the set [qreg] = {1, . . . , qreg}. To make sure that the
numbers are distinct, α is first selected randomly from [qreg], and then β is picked from [qreg]− {α}.

Next, the state variables required for performing the experiment are defined and initialized. N
keeps the number of parties which will be registered by A. Other state variables (p, pα, and pβ) keep
a mapping between the ordinal identities of the special parties in the game between A and S, and the
game between S and D. The mapping is detailed in the description of the Register() query below.

I TimeEvent(), lines 3–4. A TimeEvent() query is made by D. The simulator S answers this query
by running Algorithm 5, which involves incrementing T , notifying A, and updating all long-term keys.

I Register(), lines 5–12. When A makes a Register() query, S first checks whether this is either
the αth or βth query of type Register (the if statement at line 6). If this is the case, N and p are
incremented, and pN is set to p. Example 1 illustrates how the mapping works.

Example 1. Assume that A is an adversary which makes at most twenty Register() queries. There-
fore, S picks α and β randomly and distinctly from the set {1, . . . , 20}. Assume that α = 18 and
β = 13. When A makes the thirteenth Register() query, S assigns p ← p + 1 = 1, and p13 ← p = 1,
and registers the first party with D. When A makes the eighteenth Register() query, S assigns
p← p+ 1 = 2, and p18 ← p = 2, and registers the second party with D. C

Next, the query is forwarded to D, and the identifier idN is received.
On the other hand, if this is neither the αth nor βth query of type Register, it is treated ordinarily

via a call to Algorithm 6, where idN is computed. Finally, idN is returned to the adversary A.
Notice that from the viewpoint of A, the value of idN is distributed identically, regardless of

whether N + 1 ∈ {α, β} or not. Therefore, S simulates the Register() query perfectly.

I ShareLTK(x, y), lines 13–17. The simulator S first checks whether {x, y} = {α, β}, which means
either “x = α and y = β” or “x = β and y = α”. If this is the case, the adversary A wants a
long-term key to be shared between the special parties. Therefore, the query is forwarded to D, with
one subtlety: S makes the proper mapping, and sends ShareLTK(px, py) to D. Otherwise, Algorithm 7
is executed.

Nothing is sent back to the adversary as the returned value. Internally, either calling D or calling
Algorithm 7 creates a random and independent key between the corresponding parties. Therefore, S
simulates the ShareLTK() query perfectly.

24

I Send(x, s, y,m), lines 18–26. The simulator S first checks whether {x, y} = {α, β}.

• If this is the case, A wants to send a message between two special parties. This is handled by
making the proper mapping (x to px and y to py), and forwarding the query to D. After receiving
the answer (m′, sidsx, pid

s
x, skTimesx, acc

s
x) from D, the simulator modifies pidsx. It is because in the

returned value, pidsx = py; whereas py should be mapped back to y. This is consistent with the
comment on line 14 of Algorithm 8.

• If {x, y} 6= {α, β}, then A wants to send a message between two non-special parties, or between
a special and a non-special party. In this case, Algorithm 8 is executed, and the result (m′, sidsx,
pidsx, skTimesx, acc

s
x) is received.

In either case, the tuple (m′, sidsx, pid
s
x, skTimesx, acc

s
x) is returned to A. This tuple is generated by

running the protocol Π, and then extracting the information from statesx via the function fID (see lines
13–16 of Algorithm 8). Notice that the inputs to Π are distributed identically regardless of whether
{x, y} = {α, β} or not: The long-term key and the session randomness are always uniformly random,
and the session state statesx is initially empty. The time stage T is incremented independently, and
the rest of the inputs to Π (i.e., idx, idy, and m) are determined by the adversary.

Therefore, from the viewpoint of A, the output of Send is identically distributed regardless of
whether {x, y} = {α, β} or not, and S simulates this query perfectly.

I ExposeSS(x, s), lines 27–35. The simulator first finds the partner of the session (x, s) by letting
y ← pidsx. If both partners are the special parties, the ExposeSS query is forwarded to D (making
proper mappings), and the results are returned to A. Otherwise, Algorithm 9 is executed, and the
results are returned to A.

In both cases, the returned value is of the form (statesx, rnd
s
x). As explained above (while describing

the way a Send query is treated), these values are identically distributed regardless of whether A is
dealing with special parties or not. Therefore, S simulates this query perfectly.

I RevealLTK(x, y), lines 36–42. If this query is made for the key shared between the special par-
ties, D will respond the query (S makes proper mappings beforehand). Otherwise, Algorithm 10 is
executed.

In both cases, a long-term key is returned, which is distributed randomly, and is consistent with
the rest of A’s view. Therefore, S simulates this query perfectly.

I Test(x, s), lines 43–49. This is the only query where S may fail to simulate the view of A. The
simulator first finds the partner of the test session (x, s) by letting y ← pidsx. If the partners of the
test session are the special parties, the query is forwarded to D (making proper mappings), and the
result is returned to A.

Otherwise, the simulator fails. This failure is not because S cannot continue the simulation; rather,
continuing the simulation is pointless. This is because S should make at most two register queries to
D, and then attempt to distinguish a random value from the session key of one of the sessions between
these two parties, using A as a guide. If A picks a test session whose partners are not the special
parties, then S cannot attain its goal, and fails as a result.

Since S perfectly simulates the whole experiment up to a Test query, A has no way of distinguishing
special and non-special parties. Therefore, as A has registered at most qreg parties before a Test query,
there are at most

(
qreg

2

)
≤ q2

reg pairs of parties in the system. Consequently, the probability that both
partners of the test session are special parties is at least 1/q2

reg.
As a result, the probability that the simulation does not fail is at least 1/q2

reg. Notice that if this
is the case, the view of the adversary A is simulated perfectly.

25

I Guess(b′), lines 50–51. The simulator simply forwards the guess b′ to D. This will finish the
simulation, as D finishes the game as soon as it receives the Guess query.

Conditioned on the fact that the simulation does not fail, S forwards a Guess query, and wins with
the same advantage of A. We just proved that the simulation does not fail with probability at least
1/q2

reg. Therefore,

Advake
S,D,Π(n) ≥

Advake
A,D,Π(n)

q2
reg

.

Notice that S answers each query of A with at most a polynomial overhead. Therefore, the running
time TS(n) of S is TA(n) + q(n) · poly(n). �

Theorem 1 has an important implication: Since for polynomial-time adversaries, the number of qreg

queries are at most a polynomial in n, the advantage of the adversary in a multi-party setting is at
most polynomially more than her advantage in a two-party setting.

Furthermore, consider practical settings, where the number of parties in the system is at most on
the scale of ten thousand. If the advantage of the adversary in the two-party setting is 2−256, then
her advantage with ten-thousand parties will be at most 2−256 × (10, 000)2 ≈ 2−229, which is still a
very low advantage.

5.2 FORSAKES in a Multi-Party Setting

In this section, we investigate FORSAKES in a multi-party setting. We start by considering the
probability that two parties receive the same identifier.

Fact 1. Let the adversary register at most qreg
def
= qreg(n) parties, and assume the system uses ran-

dom `
def
= `(n)-bit identifiers. Then, the probability that at least two identifiers are equal is at most(

qreg
2

)
2−` ≤ q2

reg2−`.

In the following, we assume that the identifiers are unique. Later, in Theorem 2, we account for the
probability stated in Fact 1.

Fact 2. The probability that two particular sessions in FORSAKES output the same nonce is 2−r(n).

Notice that Fact 2 fact holds even if the adversary obtains the long-term keys and the session keys.
This is because the adversary has no control over the nonce generated by any session: The session

simply reads a string of length r
def
= r(n) from his random tape, and outputs it.

Let σ
def
= σ(n) be an upper bound on the number of sessions the adversary creates on the parties.

If the adversary issues at most qsnd(n) queries of type Send, then σ(n) ≤ qsnd(n). This is because new
sessions can only be created via a Send query.

The following corollary is immediate by noting that in a system with σ sessions, there are
(
σ
2

)
pairs

of sessions.

Corollary 1. In an execution of FORSAKES with σ
def
= σ(n) sessions, the probability that (at least)

two sessions output the same nonce is at most
(
σ
2

)
2−r ≤ σ22−r.

Let us call an execution of FORSAKES colliding if at least two sessions output the same nonce.
Otherwise, the execution is called non-colliding. A FORSAKES session ID is composed of the con-
catenation of the initiator and responder nonces. The adversary can affect either of the nonces (via
the Send query), but not both. Therefore, we obtain the following corollary.

Corollary 2. In a non-colliding execution of FORSAKES, no two sessions output the same session
ID.

In the rest of this section, we assume that the execution is non-colliding. The influence of the
collision, stated in Corollary 1, will be accounted later in Theorem 2. Consequently, we will assume
that the fifth condition of Definition 1 never holds.

26

Properties of FORSAKES messages. Let M be the set of nonempty messages which the ad-
versary receives from parties. In FORSAKES, the first message is not equipped with an integrity
mechanism (such as a MAC), and it can be forged easily. However, the second and third messages
are authenticated. Assume the adversary issues a Send(x, s, y,m) query, where m is the second or
third protocol message (i.e., it is prefixed with either ‘2’ or ‘3’). Lemma 1 and Lemma 2 (in the next
section) consider two separate cases, depending on whether m belongs to M or not.

Lemma 1. Let m ∈M be the second or third message of FORSAKES, delivered via Send(x, s, y,m).
Assume that after the delivery, accsx = 1. Then, the probability of the following events is 0 (assuming
a non-colliding execution):

1. m was generated by any party other than y;

2. m was destined at any session other than (x, s).

The lemma holds even if all long-term and session keys in the system are known to the adversary.

Proof. First, notice that since the message m is generated by some party in the system, it is not
important which keys are known to the adversary; she merely takes the delivery.

Any second-or-third FORSAKES messagem ∈M is authenticated. Sincem includes the identifiers
of the sender and receiver respectively, (x, s) rejects m if the sender is any party other than y.
Consequently, accsx = 1 shows that the sender must have been y, and case (1) is ruled out.

The second and the third messages of FORSAKES carry the session identifier. Since the execution
is assumed to be non-colliding, it is impossible that the message have been destined at any session
other than (x, s), and accsx = 1. Therefore, case (2) is ruled out as well. �

Remark 3. Lemma 1 shows, in particular, that parallel session attacks [6] are impossible against
FORSAKES. C

The next section considers the case m /∈ M, and concludes the proof of the AKE security of
FORSAKES.

5.3 Proof of AKE-Security of FORSAKES in a Two-Party Setting

In Section 5.1, we proved that any efficient adversary A against an AKE protocol in a multi-party
system can be reduced to a an efficient adversary S against an AKE protocol in a two-party system,
such that the running times and advantages of A and S are identical up to a polynomial. Therefore,
this section restricts the adversaries to those registering at most two parties.

We also assume that the adversary against a two-party system does not make “foolish” actions
which result in immediate loss of the game. Several of such assumptions are detailed below:

• Any adversary registering less than two parties has an AKE advantage of 0, since there will be no
test session to attack. Therefore, we assume that the adversary registers exactly two parties. Let
x and y denote the ordinal identifiers of the two registered parties, in arbitrary order. That is,
{x, y} = {1, 2}.
• If the adversary does not share any long-term keys between x and y, or she tries to share more than

one long-term keys between them, she will have an AKE advantage of 0. Therefore, we assume
that the adversary registers exactly one long-term key KT

xy = KT
yx between x and y.

• Let (X,S) denote the test session, and (Y, S∗) be the session partnered to it (the latter does not
necessarily exist). If the adversary exposes (X,S) or (Y, S∗), then she will have an AKE advantage
of 0. Therefore, we assume that the adversary does not make the queries ExposeSS(X,S) or
ExposeSS(Y, S∗).

27

Algorithm 16. The algorithm which FO,RO
K ,T

O
K ,VO

K (1n) uses to handle Π (i.e., protocol FORSAKES). We as-
sume that the input is well formed, and do not check for syntactical issues. Note that in this experiment, F only
uses the T O

K and VO
K oracles.

Function Π(−, T, statesx, rnd
s
x, idx, idy,m)

1: m′ ← st← λ;

Case m = 0:
2: sidsx ← rndsx || ∗r; // ‘*’ is a wildcard

3: m′ ← 1 || idx || idy ||T || rndsx;
4: st← sidsx || ‘I’ || idy ||T || 0k || 0k ||λ;

Case m = 1 || ids || idr ||T ||ns:
5: if

(
ids 6= idy or idr 6= idx

)
6: return (m′, st);

7: sidsx ← ns || rndy;
8: Msg2 ← 2 || idx || idy ||T || sidsx;
9: Auth2 ← T OK (Msg2, 1 || sidsx);

10: m′ ←Msg2 ||Auth2;
11: st← sidsx || ‘R’ || idy ||T || 0k || 0k ||λ;

Case m =

Msg2︷ ︸︸ ︷
2 || ids || idr ||T || sid ||Auth2:

12: if
(
ids 6= idy or idr 6= idx or sid 6= sidsx

)
13: return (m′, st);

14: sidsx ← sid; // No more wildcards.

15: if
(
¬VOK(Msg2, 1 || sidsx,Auth2)

)
16: return (m′, st);

17: if
(
m /∈M and fresh(x, s)

)
18: output (Msg2, 1 || sidsx,Auth2) and

abort;

19: Msg3 ← 3 || idx || idy ||T || sidsx;
20: Auth3 ← T OK (Msg3, 1 || sidsx);
21: m′ ←Msg3 ||Auth3;
22: st← sidsx || ‘I’ || idy ||T || 0k || 0k || 1;

Case m =

Msg3︷ ︸︸ ︷
3 || ids || idr ||T || sid ||Auth3:

23: if
(
ids 6= idy or idr 6= idx or sid 6= sidsx

)
24: return (m′, st);

25: if
(
¬VOK(Msg3, 1 || sidsx,Auth3)

)
26: return (m′, st);

27: if
(
m /∈M and fresh(x, s)

)
28: output (Msg3, 1 || sidsx,Auth3) and

abort;

29: m′ ← λ;
30: st← sidsx || ‘R’ || idy ||T || 0k || 0k || 1;

31: return (m′, st);

• If the adversary reveals either the long-term keys KT
xy or KT

yx before or at the same time stage
that the test session generates the session key, she will have an AKE advantage of 0. Therefore,
we assume that the adversary either does not make RevealLTK(x, y) or RevealLTK(y, x) query, or
makes either of these queries in a time stage after the session key of the test session is generated.

Lemma 2 pertain to the case m /∈M, where the adversary A successfully forges a second-or-third
message of FORSAKES. It is the “dual” of Lemma 1 in the previous section, which considered the
case m ∈ M. On a high level, Lemma 2 converts an adversary who successfully delivers a second-or-
third message m /∈M (without being detected), to an adversary who forges a message authentication
code. For discussions related to the construction and security of a random-oracle based MAC, see
Appendix A. Let qro(n) denote an upper bound on the number of the queries which the adversary
makes to the random oracle.

Lemma 2. Let A be an adversary against FORSAKES, who succeeds with probability εA(n) in deliv-
ering a second-or-third message m /∈ M in a non-colliding execution, to a fresh session (x, s), after

28

which accsx = 1.
Then, there exists a (qro, 2σ + 2, qsnd, qsnd)–forger F against RO-Multi-MAC (Construction 2)

which wins the Multi-MAC-Forge (Algorithm 17) with probability εF (n) = εA(n).
Furthermore, the running times of A and F are related by TF (n) = TA(n) + q(n) · poly(n).

Proof. By construction, FORSAKES sessions created at time stage T will not accept any message at
time stage T + 1 or later. Therefore, with no loss of generality, we limit the scope to one time stage;
that is, the long-term key does not get updated.

Let F be the adversary against the RO-Multi-MAC, who takes part in the Multi-MAC-Forge
experiment. By definition of this experiment, F has access to four oracles: O, ROK , T OK , and VOK .
During the experiment, F uses A as a black-box, and simulates for A a two-party execution of
FORSAKES, and answers to A’s queries as follows (as before, we assume that A does not make an
invalid query, which makes her lose the authentication game):

• Random oracle queries: The queries are forwarded to F ’s random oracle, and the answers are
returned to A.

• Register(): A random id ∈ {0, 1}` is selected by F . This id is then returned to A by F .

• ShareLTK(x, y): Nothing is actually done, since the Multi-MAC-Forge experiment has already
picked a random key in the initialization phase.

• Send(x, s, y,m): This query is handled by F as in Algorithm 8; however, when the protocol Π (i.e.,
FORSAKES) is called, F runs Algorithm 16. The idea behind this algorithm is simple: It does
not have access to the LTK, but uses the tag-generation oracle T OK to generate Auth2 and Auth3

(see Protocol 1), and uses the tag-verification oracle VOK to verify them. It also checks whether the
incoming message belongs to the set M. If a second-or-third message has a valid tag, but is not
in M, it means that A has successfully forged a valid message (assuming the session is fresh). In
this case, the forger F outputs the forgery just found, and finishes the game successfully.

• ExposeSS(x, s): First, F uses the ROK oracle to get the session and integrity keys. This is done by
setting sksx ← ROK(0 || sidsx) and iksx ← ROK(1 || sidsx). Next, statesx is updated, by setting sksx and
iksx into the session and integrity key “placeholders” of statesx. Finally, the pair (statesx, rnd

s
x) is

returned to A.

• RevealLTK(x, y): This query is not allowed at the current time stage, since it makes all sessions
unfresh. However, A can be given the value of the long-term key at the next time stage. To this
end, F simply queries the ROK oracle at λ, to receive the key K ′ = ROK(λ) = O(K ||λ) = O(K).
This is the value of K in the next time stage, and is returned to A.

• Test(x, y): First, F flips a random coin b. If b = 1, a random k(n)-bit binary string is returned to
A. Otherwise, F sets sksx ← ROK(0 || sidsx), and returns sksx to A.

• Guess(b′): This query finishes the game with failure, since it is the ultimate query of A, and she
has not forge any messages yet.

Since the execution is non-colliding, Lemma 1 shows that no messages output by sessions can be
delivered with a fake source, or at a fake destination. The forger F simulates the view of A successfully.
F succeeds if and only if A succeeds. Therefore, εF (n) = εA(n).

The maximum number of queries F makes to its oracles are as follows:

• qro queries at O.

• 2σ + 2 queries at ROK . There are at most σ sessions on the system, each of which can be exposed.
Every ExposeSS query requires 2 queries at ROK . Furthermore, there can be at most one RevealLTK
and one Test query, each of which requires 1 query at ROK . Therefore, the total number of queries
at ROK is at most 2σ + 2.

29

• qsnd queries at T OK , and qsnd queries at VOK . This is because each message sent may need a tag
verification, and a tag generation.

We now pertain to the running-time analysis of F . Notice that F answers each query of A with
at most a polynomial overhead. Therefore, the running time TF (n) of F is TA(n) + q(n) · poly(n). �

It is now easy to prove that FORSAKES is a secure AKE protocol, because we just proved that the
adversary has very little chance of delivering messages at the wrong destination, or forging messages.

Theorem 2 (Main Theorem). In the two-party setting, FORSAKES is a secure AKE protocol, as
per Definition 3.

Proof. Define the following events:

• E1: Two parties receive the same identifier.

• E2: The system is colliding.

• E3: The adversary successfully delivers a second-or-third message m ∈ M, with a fake source or
at a wrong destination.

• E4: The adversary successfully forges a second-or-third message m /∈M, whose destination session
is fresh.

The facts and lemmas in this and previous sections proved that the probability that either of of these
events happen is exponentially small in n. Therefore, let us condition the probabilities on the event
E1 ∧ E2 ∧ E3 ∧ E4.

Based on the conditioning above, the adversary has three choices:

1. Faithfully deliver a message;

2. Delay the delivery of a message beyond a time stage;

3. Delete a message.

In FORSAKES, option (2) causes the destination session to reject, and option (3) prevents the gen-
eration of the session key at the destination session. Therefore, the adversary is left with option (1).
However, if she delivers messages faithfully, and targets a fresh session using the Test query, she will
receive a random and independent value key, regardless of the internal coin toss of Test. Therefore,
the advantage of A in guessing the value of the coin is 0. �

The following corollary is immediate by combining Theorem 2 with Theorem 1.

Corollary 3. FORSAKES is a secure AKE protocol, regardless of the number of parties in the system.

6 FORSAKES in Practice

6.1 Replacing the Random Oracle

One of the most important issues regarding FORSAKES is its use of the random oracle model. As
in [35], we note that the random oracle was merely a tool used in the proofs, and it can be replaced
with pseudorandom functions [31]. This is because we did not use any of the random oracle facilities,
such as the ability to intercept the queries or program the response.

There are efficient pseudorandom functions such as [32], which can be used in practice if provable
security is desired. However, if even faster implementations are necessary, we suggest the use of
encryption functions such as AES, or hash functions such as SHA-1. See [35, Section 6] for more
information. It is also possible to use algorithms such as PBKDF2 (Password-Based Key Derivation
Function 2), proposed by RFC 2898.

30

Secure storage

(permanent)

Host machine Tamper-proof module

1

23

6

in

out

Real-time

clock

Signal R
A

M

C
P

U

4

5

Figure 1. A FORSAKES TPM consists of input/output ports, a CPU, an RTC, a RAM, and a permanent storage.
Its main task is to securely host the LTKs, and compute the session and integrity keys, based on the information
provided by the host machine. The TPM CPU reads information from the input port (1), addresses the permanent
storage (2), retrieves the relevant key (3), communicates with the RAM (4 & 5), and writes information to the
output port (6). The real-time clock signals the CPU every τ seconds, upon which the CPU updates every key
in the permanent storage.

Remark 4. While attacks such as the length-extension attack against keyed hash functions do not
seem applicable to our protocol (due to the fixed length of the input), it is wise to use constructions
such as HMAC [56] instead of keyed hash functions. C

6.2 Implementation on a Constraint Device

FORSAKES is quite efficient, and as described above, can be implemented using hash functions only.
Therefore, it is ideal for implementation on constraint devices, such as security tokens and smart
cards. The device, also called a tamper-proof module (TPM), must be equipped with a real-time clock
(RTC), and a secure storage for long-term keys. Figure 1 shows the internals of the TPM. Externally,
it can be made similar to a SecurIDr.

6.3 Implementation Subtleties

We suggest using an in-memory database to store session and key information. This approach has
several advantages:

• Each session can be stored as a row of a sessions table. The table is indexed based in the session
ID, which helps in fast retrieval of the session information corresponding to an incoming message.
Furthermore, the SQL queries support the like keyword, which is ideal for matching with wildcards
(a requirement in FORSAKES).

• Databases support the concept of transactions. Consider the case where the LTKs should be
updated in the middle of the computation of a MAC, or some session key. Using transactions,
one can be sure that concurrent accesses to the database are isolated properly. That said, the
implementor may need to incorporate proper concurrency controls (such as locks or semaphores)
in their code.

• In-memory database have the ability to occasionally save information to some non-volatile memory,
to increase the reliability and to perform recovery from a crash. However, notice that it is important
to securely wipe the information which is no longer needed.

31

7 Conclusion and Future Work

In this paper, we formalized a model and definition for authenticated key exchange (AKE) protocols,
whose long-term keys update regularly. The security definition required forward security , meaning
that the revelation of long-term keys in later time stages should not compromise the security of
previous session keys. We also proposed an AKE protocol called FORSAKES, and rigorously proved
its security.

To improve this work, one can consider models where the adversary has the ability to desynchronize
the long-term keys between any pair of parties. This attack models the practical scenario when
the clocks of either party is skewed. The protocol should then detect the desynchronization, and
resynchronize the keys. To this end, each pair of parties can share a non-updating LTK, which is only
used for resynchronization, and has no purpose in the actual key exchange.

Another line of work is the analysis of side-channel attacks on the TPM implementations of FOR-
SAKES, and propose improvements which foil such attacks.

References

[1] Roger M. Needham and Michael D. Schroeder. Using Encryption for Authentication in Large Networks
of Computers. Communications of the ACM, 21(12):993–999, December 1978.

[2] Dorothy E. Denning and Giovanni Maria Sacco. Timestamps in Key Distribution Protocols. Communi-
cations of the ACM, 24(8):533–536, August 1981.

[3] Dave Otway and Owen Rees. Efficient and Timely Mutual Authentication. ACM SIGOPS Operating
Systems Review, 21(1):8–10, January 1987.

[4] Colin Boyd. Hidden Assumptions in Cryptographic Protocols. IEE Proceedings of Computers and Digital
Techniques, 137(6):433–436, November 1990.

[5] John Clark and Jeremy Jacob. On the Security of Recent Protocols. Information Processing Letters
(IPL), 56(3):151–155, 1995.

[6] Ray Bird, Inder Gopal, Amir Herzberg, Phil Janson, Shay Kutten, Refik Molva, and Moti Yung. System-
atic Design of Two-Party Authentication Protocols. In Advances in Cryptology—CRYPTO ’91, pages
44–61, Santa Barbara, California, USA, 1992. Springer.

[7] David Basin, Cas Cremers, and Simon Meier. Provably Repairing the ISO/IEC 9798 Standard for Entity
Authentication. In Principles of Security and Trust, pages 129–148. Springer, 2012.

[8] John Clark and Jeremy Jacob. A Survey of Authentication Protocol Literature: Version 1.0, November
1997. Available from http://www.cs.york.ac.uk/~jac/PublishedPapers/reviewV1_1997.pdf.

[9] Colin Boyd and Anish Mathuria. Protocols for Authentication and Key Establishment. Springer, 2003.

[10] Mihir Bellare and Phillip Rogaway. The Exact Security of Digital Signatures—How to Sign with RSA
and Rabin. In Advances in Cryptology—EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer
Science, pages 399–416. Springer Berlin / Heidelberg, 1996.

[11] Hugo Krawczyk. HMQV: A High-Performance Secure Diffie-Hellman Protocol (Extended Abstract). In
Advances in Cryptology—CRYPTO’05, pages 546–566, Santa Barbara, California, 2005. Springer. Full
version is available at http://eprint.iacr.org/2005/176.

[12] Alfred Menezes, Minghua Qu, and Scott Vanstone. Some New Key Agreement Protocols Providing
Implicit Authentication. In Presented at the Workshop on Selected Areas in Cryptography (SAC ’95),
pages 22–32, 1995.

[13] Laurie Law, Alfred Menezes, Minghua Qu, Jerry Solinas, and Scott Vanstone. An Efficient Protocol for
Authenticated Key Agreement. Designs, Codes and Cryptography, 28(2):119–134, 2003.

[14] Alfred Menezes. Another Look at HMQV. Journal of Mathematical Cryptology, 1(1):47–64, January
2007. Available from http://eprint.iacr.org/2005/205.

32

http://www.cs.york.ac.uk/~jac/PublishedPapers/reviewV1_1997.pdf
http://eprint.iacr.org/2005/176
http://eprint.iacr.org/2005/205

[15] Christoph G. Günther. An Identity-Based Key-Exchange Protocol. In Advances in Cryptology—
EUROCRYPT ’89, pages 29–37, Houthalen, Belgium, 1989. Springer.

[16] Whitfield Diffie, Paul C. Oorschot, and Michael J. Wiener. Authentication and Authenticated Key
Exchanges. Designs, Codes and Cryptography, 2(2):107–125, 1992.

[17] Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key Agreement Protocols and Their Security
Analysis. In Proceedings of the 6th IMA International Conference on Cryptography and Coding (IMACC
’97), pages 30–45, Cirencester, UK, 1997. Springer.

[18] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated Key Exchange Secure against
Dictionary Attacks. In Advances in Cryptology—EUROCRYPT ’00, pages 139–155, Bruges, Belgium,
2000. Springer.

[19] Ran Canetti and Hugo Krawczyk. Analysis of Key-Exchange Protocols and Their Use for Building
Secure Channels. In Advances in Cryptology—EUROCRYPT ’01, pages 453–474, Innsbruck, Austria,
2001. Springer. Full version is available at http://eprint.iacr.org/2001/040.

[20] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography. IEEE Transactions on Infor-
mation Theory, IT-22(6):644–654, 1976.

[21] Hung-Yu Chien. SASI: A New Ultralightweight RFID Authentication Protocol Providing Strong Authen-
tication and Strong Integrity. IEEE Transactions on Dependable and Secure Computing, 4(4):337–340,
2007.

[22] Tianjie Cao, Elisa Bertino, and Hong Lei. Security Analysis of the SASI Protocol. IEEE Transactions
on Dependable and Secure Computing, 6(1):73–77, 2009.

[23] Raphael C.-W. Phan. Cryptanalysis of a New Ultralightweight RFID Authentication Protocol—SASI.
IEEE Transactions on Dependable and Secure Computing, 6(4):316–320, 2009.

[24] Hung-Min Sun, Wei-Chih Ting, and King-Hang Wang. On the Security of Chien’s Ultralightweight RFID
Authentication Protocol. IEEE Transactions on Dependable and Secure Computing, 8(2):315–317, 2011.

[25] I.C. Wiener. Sample SecurID Token Emulator with Token Secret Import, December 2000. Available from
http://archives.neohapsis.com/archives/bugtraq/2000-12/0428.html.

[26] Alex Biryukov, Joseph Lano, and Bart Preneel. Cryptanalysis of the Alleged SecurID Hash Function. In
Selected Areas in Cryptography (SAC 2003), pages 130–144, Windsor, Ontario, Canada, 2004. Springer.
Extended version available from http://eprint.iacr.org/2003/162.

[27] Scott Contini and Yiqun Lisa Yin. Fast Software-Based Attacks on SecurID. In Fast Software Encryption
(FSE 2004), pages 454–471, Delhi, India, 2004. Springer.

[28] Alex Biryukov, Joseph Lano, and Bart Preneel. Recent Attacks on Alleged SecurID and Their Practical
Implications. Computers & Security, 24(5):364–370, 2005.

[29] Ran Canetti, Shai Halevi, and Jonathan Katz. A Forward-Secure Public-Key Encryption Scheme. Journal
of Cryptology, 20(3):265–294, 2007. See [57] for the conference version.

[30] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger Security of Authenticated Key Ex-
change. In Proceedings of the 1st International Conference on Provable Security (ProvSec ’07), pages
1–16, Wollongong, Australia, 2007. Springer.

[31] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to Construct Random Functions. Journal of
the ACM (JACM), 33(4):792–807, 1986.

[32] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom Functions and Lattices. In Advances
in Cryptology—EUROCRYPT 2012, pages 719–737. Springer, 2012.

[33] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-Knowledge Proofs of Identity. Journal of Cryptology,
1(2):77–94, 1988.

[34] Mohammad Sadeq Dousti and Rasool Jalili. Efficient Statistical Zero-Knowledge Authentication Protocols
for Smart Cards Secure Against Active & Concurrent Quantum Attacks, 2013. Submitted to Wiley
Security and Communication Networks. Available from http://eprint.iacr.org/2013/709.

[35] Mihir Bellare and Phillip Rogaway. Entity Authentication and Key Distribution. In Advances in
Cryptology—CRYPTO ’93, pages 232–249, Santa Barbara, California, USA, 1993. Springer.

33

http://eprint.iacr.org/2001/040
http://archives.neohapsis.com/archives/bugtraq/2000-12/0428.html
http://eprint.iacr.org/2003/162
http://eprint.iacr.org/2013/709

[36] Simon Blake-Wilson and Alfred Menezes. Entity Authentication and Authenticated Key Transport Pro-
tocols: Employing Asymmetric Techniques. In Proceedings of the 5th International Workshop on Security
Protocols (SPW ’97), pages 137–158, Paris, France, 1998. Springer.

[37] Mihir Bellare and Phillip Rogaway. Provably Secure Session Key Distribution: The Three Party Case.
In Proceedings of the 27th Annual ACM Symposium on Theory of Computing (STOC ’95), pages 57–66,
Las Vegas, Nevada, USA, 1995. ACM.

[38] Kim-Kwang Raymond Choo, Colin Boyd, Yvonne Hitchcock, and Greg Maitland. On Session Identifiers
in Provably Secure Protocols: The Bellare–Rogaway Three-Party Key Distribution Protocol Revisited.
In Security in Communication Networks (SCN 2004), pages 351–366, Amalfi, Italy, 2005. Springer.

[39] Victor Shoup and Avi Rubin. Session Key Distribution Using Smart Cards. In Advances in Cryptology—
EUROCRYPT ’96, pages 321–331, Saragossa, Spain, 1996. Springer.

[40] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A Modular Approach to the Design and Analysis of
Authentication and Key Exchange Protocols (Extended Abstract). In Proceedings of the 30th Annual
ACM Symposium on Theory of Computing (STOC ’98), pages 419–428, Dallas, Texas, USA, 1998. ACM.

[41] Victor Shoup. On Formal Models for Secure Key Exchange. Technical report, IBM Zurich Research Lab,
1999. Version 4 is available at http://eprint.iacr.org/1999/012.

[42] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C Williams. Composability of Bellare-
Rogaway Key Exchange Protocols. In Proceedings of the 18th ACM Conference on Computer and Com-
munications Security (CCS 2011), pages 51–62, Chicago, Illinois, USA, 2011. ACM.

[43] Christina Brzuska, Marc Fischlin, Nigel P Smart, Bogdan Warinschi, and Stephen C Williams. Less is
More: Relaxed yet Composable Security Notions for Key Exchange. International Journal of Information
Security, 12(4):267–297, 2013.

[44] Ran Canetti and Hugo Krawczyk. Universally Composable Notions of Key Exchange and Secure Channels
(Extended Abstract). In Advances in Cryptology—EUROCRYPT ’02, pages 337–351, Amsterdam, The
Netherlands, 2002. Springer. Full version is available at http://eprint.iacr.org/2002/059.

[45] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols (Extended
Abstract). In Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’01), page 136, Washington, DC, USA, 2001. IEEE Computer Society. See [58] for the full version.

[46] Dennis Hofheinz, Jörn Müller-Quade, and Rainer Steinwandt. Initiator-Resilient Universally Compos-
able Key Exchange. In Proceedings of the 8th European Symposium on Research in Computer Security
(ESORICS 2003), pages 61–84, Gjøvik, Norway, 2003. Springer.

[47] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Phil MacKenzie. Universally Composable
Password-Based Key Exchange. In Advances in Cryptology—EUROCRYPT 2005, pages 404–421, Aarhus,
Denmark, 2005. Springer. Full version is available from http://eprint.iacr.org/2005/196.

[48] Jan Camenisch, Anna Lysyanskaya, and Gregory Neven. Practical Yet Universally Composable Two-
Server Password-Authenticated Secret Sharing. In Proceedings of the 19th ACM Conference on Computer
and Communications Security (CCS 2012), pages 525–536, Raleigh, NC, USA, 2012. ACM.

[49] Cas J. Cremers. Session-state Reveal Is Stronger Than Ephemeral Key Reveal: Attacking the NAXOS Au-
thenticated Key Exchange Protocol. In Proceedings of the 7th International Conference on Applied Cryp-
tography and Network Security (ACNS ’09), pages 20–33, Paris-Rocquencourt, France, 2009. Springer.

[50] Augustin P. Sarr, Philippe Elbaz-Vincent, and Jean-Claude Bajard. A New Security Model for Authenti-
cated Key Agreement. In Proceedings of the 7th International Conference on Security and Cryptography
for Networks (SCN ’10), pages 219–234, Amalfi, Italy, 2010. Springer.

[51] Kazuki Yoneyama and Yunlei Zhao. Taxonomical Security Consideration of Authenticated Key Exchange
Resilient to Intermediate Computation Leakage. In Proceedings of the 5th International Conference on
Provable Security (ProvSec 2011), pages 348–365, Xi’an, China, 2011. Springer.

[52] Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock. Examining Indistinguishability-Based
Proof Models for Key Establishment Protocols. In Advances in Cryptology—ASIACRYPT ’05, pages
585–604, Chennai, India, 2005. Springer.

34

http://eprint.iacr.org/1999/012
http://eprint.iacr.org/2002/059
http://eprint.iacr.org/2005/196

[53] Kim-Kwang Raymond Choo. Secure Key Establishment. Springer, 2008.

[54] Cas Cremers. Examining Indistinguishability-Based Security Models for Key Exchange Protocols: The
Case of CK, CK-HMQV, and eCK. In Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security (ASIACCS ’11), pages 80–91, Hong Kong, China, 2011. ACM.

[55] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm for Designing Efficient
Protocols. In Proceedings of the 1st Annual ACM Conference on Computer and Communications Security,
pages 62–73. ACM, 1993.

[56] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions for Message Authentication.
In Advances in Cryptology—CRYPTO ’96, pages 1–15, Santa Barbara, California, USA, 1996. Springer.

[57] Ran Canetti, Shai Halevi, and Jonathan Katz. A Forward-Secure Public-Key Encryption Scheme. In
Advances in Cryptology—Eurocrypt 2003, pages 255–271. Springer, 2003. See [29] for the journal version.

[58] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. Cryptol-
ogy ePrint Archive, Report 2000/067, 2005. Available from http://eprint.iacr.org/2000/067. See [45]
for the conference version.

[59] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography: Principles and Protocols.
Chapman & Hall/CRC, 1st edition, 2007.

A Constructing a Secure MAC Using a Random Oracle

In this appendix, we show how to construct a message authentication code (MAC) from a random
oracle, and prove its security. A MAC is a tag which, in conjunction with a message, proves its
authenticity. More formally, a MAC is a triple of efficient algorithms (Gen,MAC,Verif), which satisfy
the following [59, Section 4.3]:

1. The key generation algorithm Gen, which takes 1n as input, and outputs a key K with |K| ≥ n.

2. The tag-generation algorithm MAC, which takes the key K and a message m ∈ {0, 1}∗ as input,
and outputs a tag t.

3. The tag-verification algorithm Verif, which takes the key K, a message m ∈ {0, 1}∗, and a tag t,
and outputs a single bit. It outputs 1 if and only if verification succeeds.

The syntactic requirement is that for any key K generated by Gen and any message m ∈ {0, 1}∗, we
have Verif(K,m,MAC(K,m)) = 1. Informally, the security requirement is that no efficient adversary
F can forge a valid tag, even if she can obtain valid tags on messages of her choice. This definition is
formalized through the following experiment (called MAC-Forge):

1. Generate a key K by running Gen on the security parameter 1n.

2. Run the adversary F on the security parameter 1n, and give her oracle access to MAC(K, ·). That
is, the adversary can query the oracle on messages of her choice, and receive the corresponding tag.
Let Q be the list of queries made by F to the oracle.

3. Eventually, F outputs a pair (m, t). She wins this experiment if m /∈ Q and Verif(K,m, t) = 1.
Otherwise, she loses the game.4

In a secure MAC, it is required that the probability that any efficient A wins the experiment is
negligible in n.

It is possible to construct a secure MAC from a random oracle, and a pre-shared key. One such
attempt, called RO-MAC , is described in Construction 1.

4If the adversary does not output anything, or does not output a pair, she clearly loses. Let us assume, with no loss
of generality, that this does not happen.

35

http://eprint.iacr.org/2000/067

Construction 1 (RO-MAC). Let a
def
= a(n) and b

def
= b(n) be two polynomials, and O : {0, 1}∗ →

{0, 1}a be a random oracle. The RO-MAC is obtained from O as follows: Gen(1n) picks a random key
K from {0, 1}b. The tag of a message m is O(K ||m). Finally, Verif(K,m, t) outputs 1 if and only if
t = O(K ||m). C

It is easy to show that RO-MAC is a secure MAC, but we do not prove this fact here. This
is because the security of our protocol (FORSAKES) does not depend on the security of RO-MAC.
Rather, FORSAKES depends on a more elaborate MAC, which we will construct and prove its security
next.

The new construction is called RO-Multi-MAC. In this construction, there is a single pre-shared
key K, which is used to generate MAC keys used to form MACs. Construction 2 provides a more
formal description of RO-Multi-MAC.

Construction 2 (RO-Multi-MAC). Let a, b, and O be as in Construction 1. The RO-Multi-MAC
is obtained from O as follows: Gen(1n) picks a random key K from {0, 1}b. The tags are not obtained
from K directly. Rather, any party who knows K can query O(K || ·) at points of his choice (x’s), to
obtain one or more MAC keys (kx’s). The tag of a message m under a valid MAC key kx is a pair
(x, t = O(kx ||m)).

Finally, Verif(K,m, x, t) outputs 1 if and only if t = O(O(K ||x) ||m). C

Below, we will prove that RO-Multi-MAC is strongly secure. That is, we give the adversary abilities
beyond what is required in a MAC-Forge experiment, and show that RO-Multi-MAC is secure even
against such strong adversaries.

In a normal MAC-Forge experiment, the adversary obtains tags on messages of her choice. We
would like to extend her abilities, and allow her to reveal any number of MAC keys (k’s). She wins
the experiment if and only if the tag is a valid MAC under any of the unrevealed k’s, and she has not
previously obtained a tag for the message. Further more, the adversary is given access to a VOK oracle,
and she can check for the validity of a tag for messages of her choice.

An experiment designed to capture the security of RO-Multi-MAC. Let use formalize
the security of RO-Multi-MAC, by designing a new experiment called Multi-MAC-Forge. In this
experiment, the adversary F is given access to four oracles:

1. The random oracle O: An ordinary random oracle O : {0, 1}∗ → {0, 1}a.

2. The reveal oracle ROK : On input x, reveals the MAC key kx = O(K ||x). This oracle also adds
x to the set rev. The set is used when the experiment wants to verify the output of the adversary:
She is not allowed to output the tag for a message under a revealed key.

3. The tag-generation oracle T OK : On input (m,x), returns the MAC t of m under kx, by comput-
ing kx ← O(K ||x) and t← O(kx ||m). This oracle also adds the pair (m,x) to the set Asked. The
set is used when the experiment wants to verify the output of the adversary: She is not allowed to
output the tag for a message for which she has already obtained a tag.

4. The verification oracle VOK : On input (m,x, t), computes the valid tag for m under the key
kx ← O(K ||x), and returns true if and only if the tag equals t.

Remark 5. We will assume, without loss of generality, that F never makes the same query twice to
any of her oracles. Moreover, if she obtains a tag for some message, she will not verify the tag. C

36

Algorithm 17. The MULTI-MAC-FORGE experiment for F against RO-Multi-MAC.

1: Expmmf
F,RO-Multi-MAC(n)

2: K ←R {0, 1}b;
3: (m,x, t)← FO,RO

K ,T
O
K ,VO

K (1n);
4: if

(
x /∈ rev and (m,x) /∈ Asked and VOK(m,x, t)

)
5: output 1 and abort;

6: output 0;

The Multi-MAC-Forge experiment is described by Algorithm 17. The experiment starts by
picking a random long-term key K, and then allowing the adversary to interact with the four oracles
described above. When the adversary outputs (m,x, t), this output is verified for validity. The output
is considered valid if the key at point x (denoted kx) is not revealed, a tag for m under kx is not
requested, and t is a valid tag for m under kx.

Bounding the number of adversarial queries. To prove the security of RO-Multi-MAC, we
require a bound on the number of queries the adversary can make. Assume that F makes at most
qo, qr, qt and qv queries at O, ROK , T OK , and VOK , respectively. In general, qo, qr, qt, and qv can be

functions of the security parameter n. Define q
def
= qo + qr + 2qt + 2qv + 2.

Casting the experiment in a different way. Algorithm 17 is rather difficult to analyze. To ease
the security analysis, we rewrite Algorithm 17 as Algorithm 18, using a technique called early sampling.
In this technique, a number of random points are selected prior to the start of the experiment.
When the random oracle is queried at some point, one of the random points are returned (with
some adjustments). The alternative technique—which we do not use here—is called lazy sampling ,
where the answers of the random oracle are not pre-selected. Rather, they are picked randomly and
on-the-fly.

Theorem 3. For any n ∈ N and any (qo, qr, qt, qv)–adversary F against RO-Multi-MAC (Algo-
rithm 18), the probability that F wins the Multi-MAC-forge experiment is at most (q2 + 1)2−a +
q2−d + 2−b, where d = min{a, b}.

Proof. First, let us count the total number of queries atO: The adversary asks qo queries directly, plus
qr queries viaROK , plus 2qt queries via T OK , plus 2qv queries via VOK . Furthermore, the challenger asks a
verification query, which requires 2 addition queries atO. Totally, there will be qo+qr+2qt+2qv+2 = q
queries from O.

Now consider the following events:

• E1: Not all oi’s are distinct.

• E2: The key K has a common prefix of length d = min{a, b} with some oi.

• E3: The adversary queries O on a value whose prefix is K.

The first two events do not depend on the adversary at all, and:

Pr[E1] ≤
(
q
2

)
2−a ≤ q22−a ,

Pr[E2] = q2−d .

Furthermore,

Pr[E3 | E1 ∧ E2] = 2−b .

37

Algorithm 18. The Expmmf
F,RO-Multi-MAC(n) experiment (Algorithm 17) with early sampling.

Initialization.

1: oi ←R {0, 1}a for i ∈ [q];
2: K ←R {0, 1}b;
3: O, rev,Asked← ∅ and i← 0;

Query-response. Respond to F ’s query’s as fol-
lows:

4: O(x)
5: i← i+ 1;
6: if

(
x ∈ dom(O)

)
7: oi ← O(x);

8: O ← O ∪ {(x, oi)};
9: return oi;

10: ROK(x)
11: rev ← rev ∪ {x};
12: k ← O(K ||x);
13: return k;

14: T OK (m,x)
15: Asked← Asked∪{(m,x)};
16: kx ← O(K ||x);
17: return O(kx ||m);

18: VOK(m,x, t)
19: kx ← O(K ||x);
20: if (t = O(kx ||m))
21: return 1;

22: return 0;

Finalization. A outputs her guess.

23: (m,x, t)← FO,RO
K ,T

O
K ,VO

K (1n);
24: if

(
x /∈ rev and (m,x) /∈ Asked and VOK(m,x,

t)
)

25: output 1 and abort;

26: output 0;

Let us assume with no loss of generality that the adversary asks each query only once, and she
never verifies a tag she receives from T OK . Conditioned on E = E1 ∧ E2 ∧ E3, all responses from the
adversary receives from O are independent from K, and one can remove lines 6–8 from the algorithm.
Therefore, conditioned on E, the the probability that the adversary guesses the correct tag is exactly
2−a. Using a union bound, the theorem follows. �

38

	1 Introduction
	1.1 Contributions
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	3 The FORSAKES Protocol
	4 Security Model & Definition
	4.1 A Model for Key Exchange Protocols
	4.1.1 Adversarial & Communication Model

	4.2 Session Partnership and Freshness
	4.3 AKE Security Definition

	5 Proving the AKE Security of FORSAKES
	5.1 Reducing a Multi-Party Setting to a Two-Party Setting
	5.2 FORSAKES in a Multi-Party Setting
	5.3 Proof of AKE-Security of FORSAKES in a Two-Party Setting

	6 FORSAKES in Practice
	6.1 Replacing the Random Oracle
	6.2 Implementation on a Constraint Device
	6.3 Implementation Subtleties

	7 Conclusion and Future Work
	A Constructing a Secure MAC Using a Random Oracle

