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Abstract. An important problem in secure multi-party computation is the design of protocols that can tolerate
adversaries that are capable of corrupting parties dynamically and learning their internal states. In this paper, we
make significant progress in this area in the context of password-authenticated key exchange (PAKE) and oblivious
transfer (OT) protocols. More precisely, we first revisit the notion of projective hash proofs and introduce a new
feature that allows us to explain any message sent by the simulator in case of corruption, hence the notion of
Explainable Projective Hashing. Next, we demonstrate that this new tool generically leads to efficient PAKE and
OT protocols that are secure against semi-adaptive adversaries without erasures in the Universal Composability
(UC) framework. We then show how to make these protocols secure even against adaptive adversaries, using non-
committing encryption, in a much more efficient way than generic conversions from semi-adaptive to adaptive
security. Finally, we provide concrete instantiations of explainable projective hash functions that lead to the most
efficient PAKE and OT protocols known so far, with UC-security against adaptive adversaries, with or without
erasures, in the single global CRS setting.
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1 Introduction

1.1 Motivation

One of the most difficult problems in secure multi-party computation is the design of protocols that
can tolerate adaptive adversaries. These are adversaries which can corrupt parties dynamically and
learn their internal states. As stated in the seminal work of Canetti et al. [CFGN96], this problem
is even more difficult when uncorrupted parties may deviate from the protocol and keep record
of past configurations, instead of erasing them. To deal with this problem, they introduced the
concept of non-committing encryption (NCE) and showed how to use it to build general multi-party
computation protocols that remained secure even in the presence of such adversaries. Unfortunately,
the gain in security came at the cost of a significant loss in efficiency. Though these results were
later improved (e.g, [Bea97b,DN00]), obtaining efficient constructions with adaptive security without
assuming reliable erasures remains a difficult task.

To address the efficiency issue with previous solutions, Garay et al. [GWZ09] introduced two
new notions. The first one was the notion of semi-adaptive security in which an adversary is not
allowed to corrupt a party if all the parties are honest at the beginning of the protocol. The main
advantage of the new notion is that it is only slightly more difficult to achieve than static security
but significantly easier than fully adaptive security. The second new notion was the the concept
somewhat non-committing encryption. Unlike standard NCE schemes, somewhat non-committing
encryption only allows the sender of a ciphertext to open it in a limited number of ways, according
to an equivocality parameter `.

In addition to being able to build very efficient somewhat non-committing encryption schemes for
small values of `, Garay et al. [GWZ09] also showed how to build a generic compiler with the help of
such schemes that converts any semi-adaptively secure cryptographic scheme into a fully adaptively
secure one. Since the equivocality parameter ` needed by their compiler is proportional to the input
and output domains of the functionality being achieved, they were able to obtain very efficient
constructions for functionalities with small domains, such as 1-out-of-2 oblivious transfers (OT).
In particular, their results do not assume reliable erasures and hold in the universal composability
(UC) framework [Can01,Can00].

Building on the results of Garay et al. [GWZ09], Canetti et al. [CDVW12] showed how to use
1-out-of-2 OT protocols to build reasonably efficient password-based authenticated key exchange
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(PAKE) protocols in the UC framework against adaptive corruptions without erasures. The number
of OT instances used in their protocol is proportional to the number of bits of the password.

Even though both works provide efficient constructions of UC-secure OT and PAKE schemes
with adaptive security without erasures, the efficiency gap between these protocols and those which
assume reliable erasures (e.g., [CKWZ13, ABB+13]) remains significant. In this work, we aim to
reduce this gap.

1.2 Our Approach

In order to build more efficient OT and PAKE schemes with adaptive security without erasures, we
first revisit the OT and PAKE constructions of [ABB+13] and show how to make them UC-secure
against semi-adaptive adversaries, without erasures. Towards this goal, we make two important
modifications.

First, we develop a new feature for smooth projective hash functions (SPHFs) [CS02,GL03], that
we call explainability. Informally speaking, an SPHF is explainable if there exists a trapdoor which
allows us to recover a hashing key hk that is compatible with the view of the adversary. Second, we
modify the underlying commitment scheme so that the latter remains adaptively secure even without
assuming reliable erasures. As we will see later, these two ingredients are sufficient to obtain OT
and PAKE constructions that are UC-secure against semi-adaptive adversaries.

Finally, we show how to efficiently enhance these protocols with non-committing encryption
(NCE) in order to achieve adaptive security without erasures. Here, we remark that our use of NCE
for migrating from semi-adaptive to adaptive security is specific to our protocols and is more efficient
that the generic conversion of Garay et al. [GWZ09]. In particular, it makes use of a quasi-optimal
number of bits sent via the NCE.

1.3 Basic Tools

The general technique from [ABB+13] was, as in [CHK+05], to use an extractable commitment and
a SPHF on the language of valid commitments on a specific word (the password for PAKE and the
index-query for OT). However, in order to achieve UC-security in one round, the commitment must
also be equivocable. In this case, the language may be trivial since equivocability means that a
commitment can be opened in any way. Specific properties on such equivocable and extractable (E2)
commitments have been defined, and namely a robustness property makes them compatible with
SPHFs, hence the name of SPHF-friendly commitments.

Equivocable and Extractable Commitments. A commitment is a classical primitive that allows
a sender to commit on a value x in such a way that the receiver has no idea about the committed
value x (the hiding property), whereas the sender can only later open on x (the binding property).
Equivocability means that a trapdoor allows to open a commitment in any way, and thus implies
the perfectly hiding property. While extractability means that a trapdoor allows to extract the
committed value from any commitment, which thus implies the perfectly binding property.

The main tool for our purpose is a non-interactive commitment scheme that is simultaneously
equivocable and extractable, but still hiding and binding even with access to the above oracles for
equivocability and extractability. The first candidate is the Canetti and Fischlin [CF01] construction
that is unfortunately linear in the bit-length of the committed message, since the bits are essentially
individually committed by a perfectly hiding (and equivocable) commitment, while the associated
opening values are then committed by a perfectly binding (and extractable) commitment. A much
more efficient construction [FLM11] has been recently proposed, that is in constant size. The Ab-
dalla et al. construction [ABB+13] improves on the Canetti and Fischlin’s one, but remains a linear
E2-commitment.
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SPHF-Friendly Commitments. As SPHF is defined for a language L ⊆ X. The first property of
an SPHF is that, for a word C in L, the hash value can be computed using either a secret hashing
key hk or a public projected key hp together a witness w to the fact that C is indeed in L. However,
for a word C not in L, the hash value computed with hk is perfectly random, even knowing hp. The
latter property is the so-called smoothness property.

A classical language is the language of the valid commitments of a value x. As remarked above,
in order to be compatible with an SPHF, and namely to allow the smoothness property, such an
E2-commitment must be robust, as defined in [ABB+13]: while the simulator is able to generate
equivocable commitments, that it will be able to later open in any way, the adversary should not
be able to generate commitments that are not perfectly binding. Indeed, when one knows that an
adversarially-generated commitment C is perfectly binding, and extracts to x′ or ⊥, then one knows
that C does not belong to the language L of the valid commitments of x, and then one can apply the
smoothness property. Therefore, this is enough to reveal random keys (for PAKE) to the adversary,
for the commitments it generated in a wrong way, since the hash values look random, as produced
by the ideal functionality. However, it is not possible to explain where the random key produced
by the ideal functionality comes from, even if it is indistinguishable from the random hash value.
Hence, in case of corruption, hk cannot be revealed, and thus has to be securely erased.

As a consequence, to achieve security without requiring reliable erasures, one should be able to
explain any random value as the hash value of a word C not in the language. For that, since hp is
already published, one has to find an hk that is compatible with both hp and the hash value.

1.4 Our Contributions

The main contributions of this paper are the following. First, in Section 3, we introduce our new
notion of explainable projective hash functions (EPHFs), which gives us the capability to generate
hash keys that are compatible with the view of the adversary in case of corruption. In addition to
defining it, we also propose a generic way of building these primitives.

Second, we propose new constructions of semi-adaptive OT and PAKE schemes without era-
sures in Section 4. Our new protocols are very similar to the adaptively UC-secure constructions
in [ABB+13], except that the underlying commitment schemes are adaptively without erasures and
the corresponding SPHF is explainable.

Third, we propose in Section 5 a new SPHF-friendly commitment, that is significantly more
efficient than the one by Abdalla et al. [ABB+13]. This immediately leads to the most efficient
one-round PAKE and OT protocols, secure in the UC framework, with erasures, but under the plain
DDH assumption (and thus without any pairings, contrarily to [ABB+13]).

Finally, in Section 6, we show how to efficiently enhance these protocols with non-committing
encryption (NCE) in order to achieve adaptive security. In particular, we propose several adap-
tive versions of our semi-adaptive OT and PAKE protocols, yielding different trade-offs in terms
of communication complexity and number of rounds. In each case, at least one of our new proto-
cols outperforms existing ones. Due to space restrictions, complete proofs and some details were
postponed to the appendix.

1.5 Related Work

Hash proof systems were introduced by Cramer and Shoup [CS98, CS02] as a means to de-
sign chosen-ciphertext-secure public-key encryption schemes. Variants of smooth projective hash
functions (SPHFs) have thereafter been proposed in [GL03, KV11, BBC+13b] to build more effi-
cient password-authenticated key-exchange (PAKE) protocols both in the standard model and in
the UC framework (please refer to [BBC+13b,BBC+13a] for a more precise characterization of these
variants). More recently, Abdalla et al. [ABB+13] further improved these results by providing new
constructions of SPHFs and commitment schemes and used them to build quite efficient PAKE and
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OT protocols with adaptive security in the UC framework, but under the assumption of reliable
erasures. Removing the need for reliable erasures is the main goal of this work.

Our notion of explainable projective hash functions (EPHFs) is close to the notion of dual pro-
jective hashing (DPH) [Wee12]: the latter also provides a trapdoor that allows us to compute the
hashing key that leads to any hash value for a word outside the language. But EPHFs can be seen
as the dual of DPH:
– In DPH, the word outside the language is honestly generated, but not hp;
– In EPHFs, hp is honestly generated, but not the word outside the language.

In both cases, a trapdoor allows the recovery of an hk that is compatible with hp and H, for any H.

Password-Authenticated Key Exchange (PAKE) protocols were first proposed by Bellovin
and Merritt [BM92] as key exchange protocols where the authentication is done using a simple
password, subject to exhaustive search. Since then, several PAKE protocols have been proposed
in the random-oracle model (e.g., [BPR00, BMP00, AP05]), in the standard model (e.g, [KOY01,
GL03,KV11, BBC+13b]), and in the plain model (e.g., [GL01,GJO10]). Among those not relying
on ideal models, the most efficient constructions are those based on the Gennaro-Lindell (GL)
framework [GL03], which itself is a generalization of the PAKE construction by Katz, Ostrovsky,
and Yung (KOY) [KOY01] based on the Cramer-Shoup encryption scheme [CS98].

The first ideal functionality for PAKE was proposed by Canetti et al. [CHK+05], together with an
efficient protocol based on the GL/KOY methodology [GL03]. Their construction, however, was not
known to be secure against adaptive adversaries. Besides the generic but inefficient construction of
Barak et al. [BCL+05], the first reasonably practical adaptively secure PAKE scheme was proposed
by Abdalla et al. [ACP09]. As the Canetti et al. [CHK+05] PAKE scheme, it also followed the
GL/KOY methodology, but used a different commitment scheme, the one by Canetti and Fischlin
in [CF01]. Their scheme has been recently improved by Abdalla et al. [ABB+13], using a more
efficient commitment scheme and an appropriate SPHF. In particular, the latter protocol is one-
round, which means that the two players can independently send their flows.

Oblivious Transfer (OT) was introduced in 1981 by Rabin [Rab81] as a way to allow a receiver to
get exactly one out of k messages sent by another party, the sender. In these schemes, the receiver
should be oblivious to the other values, and the sender should be oblivious to which value was
received. Several concrete constructions have been proposed in the UC framework [NP01,CLOS02],
some of which being quite efficient [HK07, PVW08, CKWZ13, ABB+13]. Among those that are
secure against adaptive corruptions in the global single CRS model, the scheme by Abdalla et al.
in [ABB+13] seems to be the most efficient. However, it requires reliable erasures.

2 Definitions

2.1 Notations

As usual, all the players and the algorithms will be possibly probabilistic and stateful. Namely,
adversaries can keep a state st during the different phases, and we denote $← the outcome of a
probabilistic algorithm or the sampling from a uniform distribution. For example, A(x; r) will denote
the execution of A with input x and random tape r. For the sake of clarity, sometimes, the latter
random tape will be dropped, with the notation A(x).

2.2 Smooth Projective Hash Functions

Projective hashing was first introduced by Cramer and Shoup [CS02]. Here we use the formalization
of SPHF from [BBC+13b]: Let X be the domain of the hash functions and let L be a certain subset
of this domain (a language). A key property is that, for a word C in L, the hash value can be
computed by using either a secret hashing key hk or a public projection key hp but with a witness
w of the fact that C is indeed in L:
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– HashKG(L) generates a hashing key hk for the language L;
– ProjKG(hk,L, C) derives the projection key hp, possibly depending on the word C;
– Hash(hk,L, C) outputs the hash value from the hashing key, for any word C ∈ X ;
– ProjHash(hp,L, C, w) outputs the hash value from the projection key hp, and the witness w, for

a word C ∈ L.
The set of hash values is called the range of the SPHF and is denoted Π.

On the one hand, the correctness of the SPHF assures that if C ∈ L with w a witness of this fact,
then Hash(hk,L, C) = ProjHash(hp,L, C, w). On the other hand, the security is defined through the
smoothness, which guarantees that, if C 6∈ L, Hash(hk,L, C) is statistically indistinguishable from a
random element, even knowing hp.

As in [BBC+13b], we focus on SPHFs for languages of commitments, whose corresponding plain-
texts verify some relations, and even more specifically here equal to some value aux. The languages
are denoted Lfull-aux, where full-aux = (crs, aux), and crs is the common reference string of the com-
mitment. For some applications, such as PAKE, hk and hp have to be independent of aux, since aux
is a secret (the password in case of PAKE). For the sake of simplicity, since we can efficiently achieve
it, we restrict HashKG and ProjKG not to use the parameter aux, but just crs (instead of full-aux).
But note that this is a stronger restriction than required for our purpose, since one can use aux
without leaking any information about it; and some of our applications such as OT do not require
aux to be private at all. But, this is not an issue, since none of our SPHFs uses aux.

If HashKG and ProjKG do not depend on C and verify a slightly stronger smoothness property
(called adaptive smoothness, which holds even if C is chosen after hp), we say the SPHF is a KV-SPHF.
Otherwise, it is said to be a GL-SPHF. See [BBC+13b] for details on GL-SPHF and KV-SPHF and
language definitions.

2.3 SPHF-Friendly Commitment Schemes

In this section, we briefly sketch the definition of SPHF-friendly commitment schemes we will use
in this paper (more details are given in Appendix A.3). This is a slightly stronger variant of the
one in [ABB+13], since it requires an additional polynomial-time algorithm C.IsBinding. But the
construction in [ABB+13] still satisfies it. This is a commitment scheme that is both equivocable and
extractable. It is defined by the following algorithms: C.Setup(1K) generates the global parameters,
passed through the global CRS crs to all other algorithms, while C.SetupT(1K) is an alternative that
additionally outputs a trapdoor τ ; C.Com`(M ) outputs a pair (C, δ), where C is the commitment of
the messageM for the label `, and δ is the corresponding opening data, used by C.Ver`(C,M , δ) to
check the correct opening for C,M and `. It always outputs 0 (false) onM = ⊥. The trapdoor τ can
be used by C.Sim`(τ) to output a pair (C, eqk), where C is a commitment and eqk an equivocation key
that is later used by C.Open`(eqk, C,M) to open C on any messageM with an appropriate opening
data δ. The trapdoor τ can also be used by C.Ext`(τ, C) to output the committed message M in
C, or ⊥ if the commitment is invalid. Eventually, the trapdoor τ also allows C.IsBinding`(τ, C,M )
to check whether the commitment C is binding to the message M or not: if there exists M ′ 6=M
and δ′, such that C.Ver`(C,M ′, δ′) = 1, then it outputs 0.

All these algorithms should satisfy some correctness properties: all honestly generated commit-
ments open and verify correctly, can be extracted and are binding to the committed value, while
the simulated commitments can be opened on any message.

Then, some security guarantees should be satisfied as well, when one denotes the generation
of fake commitments (C, δ)

$← C.SCom`(τ,M ), computed as (C, eqk)
$← C.Sim`(τ) and then δ ←

C.Open`(eqk, C,M ):
– Setup Indistinguishability : one cannot distinguish the CRS generated by C.Setup from the one

generated by C.SetupT;
– Strong Simulation Indistinguishability : one cannot distinguish a real commitment (which is gen-

erated by C.Com) from a fake commitment (generated by C.SCom), even with oracle access to
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the extraction oracle (C.Ext), the binding test oracle (C.IsBinding), and to fake commitments
(using C.SCom);

– Robustness : one cannot produce a commitment and a label that extracts toM (possiblyM = ⊥)
such that C.IsBinding`(τ, C,M) = 0, even with oracle access to the extraction oracle (C.Ext),
the binding test oracle (C.IsBinding), and to fake commitments (using C.SCom).

Note that, for excluding trivial attacks, on fake commitments, the extraction oracle outputs the
C.SCom-input message and the binding test oracle accepts for the C.SCom-input message too. Finally,
an SPHF-friendly commmitment scheme has to admit an SPHF for the following language: Lfull-aux =
{(`, C) | ∃δ, C.Ver`(C,M , δ) = 1}, where full-aux = (crs, aux) and M = aux.

Basically, compared to the original definition in [ABB+13], the main difference is that it is
possible to check in polynomial time (using C.IsBinding) whether a commitment is perfectly binding
or not, i.e., does not belong to any L(crs,M ′) forM ′ 6=M , whereM is the value extracted from the
commitment via C.Ext. In addition, in the games for the strong simulation indistinguishability and
the robustness, the adversary has access to this oracle C.IsBinding.

Finally, for our PAKE protocols, as in [ABB+13], we need another property called strong pseudo-
randomness. This property is a strong version of the pseudo-randomness property. However, while
the latter is automatically verified by any SPHF-friendly commitment scheme, the former may not,
because of an additional information provided to the adversary. But, it is verified by the SPHF-
friendly commitment scheme in [ABB+13] and by our new commitment scheme introduced in Sec-
tion 5, which is the most efficient known so far, based on the plain DDH.

2.4 SPHF-Friendly Commitment Schemes without Erasures

We will say that an SPHF-friendly commitment scheme is without erasures if this is an SPHF-friendly
commitment scheme where δ (and thus the witness) just consists of the random coins used by the
algorithm C.Com. Then, an SPHF-friendly commitment scheme without erasures yields directly a
commitment scheme that achieves UC-security without erasures.

We remark that slight variants of the constructions in [ACP09, ABB+13] are actually without
erasures, as long as it is possible to sample obliviously an element from a cyclic group. To make these
schemes without erasures, it is indeed sufficient to change the commitment algorithm C.Com to gen-
erate random ciphertexts (with elements obliviously sampled from the corresponding cyclic groups)
instead of ciphertexts of 0, for the unused ciphertexts (i.e., the ciphertexts bi,�Mi

, for [ABB+13], using
the notations in that paper). This does not change anything else, since these ciphertexts are not
used in the verification algorithm C.Ver.

In the sequel, all SPHF-friendly commitment schemes are assumed to be without erasures. Vari-
ants of [ACP09,ABB+13] are possible instantiations, but also our quite efficient constructions pre-
sented in Section 5 and Appendix C.

3 Explainable Projective Hashing

3.1 Definition

Let us first suppose there exists an algorithm Setup which takes as input the security parameter
K and outputs a CRS crs together with a trapdoor τ . In our case Setup will be C.SetupT, and the
trapdoor τ will be the commitment trapdoor, which may need to be slightly modified, as we will see
in our constructions. This modification generally roughly consists in adding the discrete logarithms
of all used elements and is possible with most concrete commitment schemes.

An explainable projective hashing (EPH) is a projective hashing with the following additional
property: it is possible to generate a random-looking projection key hp, and then receive some hash
value H, some value aux and some word C /∈ Lfull-aux, and eventually generate a valid hashing key hk
which corresponds to hp and H, as long as we know τ . In other words, it is possible to generate hp
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and then “explain” any hash H for a word outside the language Lfull-aux, by giving the appropriate
hk.

Whereas DPH [Wee12] implies a weak version of smoothness, our notion of EPH implies the usual
notion of smoothness, and is thus stronger than SPHF. Then, an EPHF can be either a KV-EPHF or
a GL-EPHF, depending on whether the word C is known when hp is generated.

An Explainable Projective Hash Function (EPHF) is defined by the following algorithms:
– Setup(1K) takes as input the security parameter K and outputs the global parameters, passed

through the global CRS crs or full-aux to all the other algorithms, plus a trapdoor τ ;
– HashKG, ProjKG, Hash, and ProjHash behave as for a classical SPHF;
– SimKG(crs, τ, C) outputs a projection key hp together with an explainability key expk;
– Explain(hp, full-aux, C,H, expk) outputs an hashing key hk corresponding to hp, full-aux, C, and
H.

It must verify the following properties, for any (crs, τ)
$← Setup(1K):

– Explainability Correctness. For any aux, any C /∈ Lfull-aux and any hash value H, if (hp, expk) $←
SimKG(crs, τ, C) and hk

$← Explain(hp, full-aux, C,H, expk), then hp = ProjKG(hk, crs, C) and
H = Hash(hk, full-aux, C);

– Indistinguishability. As for smoothness, we consider two types of indistinguishability:
• GL-indistinguishability: a GL-EPHF is ε-indistinguishable, if for any aux and any C /∈ Lfull-aux,

the two following distributions are ε-close:

{(hk, hp) | H $← Π; (hp, expk)
$← SimKG(crs, τ, C); hk

$← Explain(hp, full-aux, C,H, expk)}
{(hk, hp) | hk $← HashKG(crs); hp← ProjKG(hk, crs, C)}.

• KV-indistinguishability: a KV-EPHF is ε-indistinguishable, if for any aux and any function f
from the set of projection keys to X \ Lfull-aux, the two following distributions are ε-close:

{(hk, hp) | H $← Π; (hp, expk)
$← SimKG(crs, τ,⊥); hk $← Explain(hp, full-aux, f(hp), H, expk)}

{(hk, hp) | hk $← HashKG(crs); hp← ProjKG(hk, crs,⊥)}.

Explainable Projective Hashing with Hint. An EPHF with hint is similar to an EPHF except
the algorithm Explain takes an additional argument hint, an hint that verifies some implicit relation
with H. For example, hint can be the discrete logarithm of H. The indistinguishability property is
similar except it only has to hold when hint is a valid hint for H.

In the following, we will provide a generic construction of EPHF from any SPHF, and in Ap-
pendix E, we propose a more involved construction of EPHF with hint. This weaker version is
enough for OT protocols.

3.2 Generic Construction

Generic Construction of GL-EPHF. Let us consider a GL-SPHF for which:
1. for any hashing key hk and associated projection key hp, it is possible to draw random hk′

corresponding to hp, such that the hash value of a word C /∈ Lfull-aux under hk′ is uniform. More
precisely, we suppose there exists a randomized algorithm InvProjKG, which takes as input τ ,
a hashing key hk, crs, and possibly a word C /∈ Lfull-aux, and outputs a random hashing key
hk′, verifying ProjKG(hk′, crs, C) = hp. For any (crs, τ)

$← Setup(1K), for any aux, for any C /∈
Lfull-aux, with overwhelming probability over hk $← HashKG(crs), the two following distributions
are supposed to be identical (or ε-close, with ε negligeable in K):

{H | hk′ $← InvProjKG(τ, hk, crs, C);H ← Hash(hk′, full-aux, C)} {H | H $← Π}.

This property can be seen as a strong version of smoothness.
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2. there exists a parameter ν polynomial in logK and a randomness extractor Extract with range
{0, 1}ν , such that the two following distributions are ε-close (with ε negligeable in K):

{Extract(H) | H $← Π} {H | H $← {0, 1}ν}.

Details on the randomness extractor can be found in Appendix A.2. But either a determinis-
tic extractor exists for Π, which is possible for many cyclic groups [CFPZ09], or one uses a
probabilistic extractor with an independent random string in the CRS.
Then, if the hash values H computed by Hash or ProjHash are replaced by Extract(H), the

resulting SPHF is a GL-EPHF. Indeed, if SimKG(crs, τ, C) just generates hk
$← HashKG(crs) and

hp ← ProjKG(hk, crs, C), and outputs hp and expk = (τ, hk). Then, Explain(hp, full-aux, C,H, expk)
just runs hk′ $← InvProjKG(τ, hk, crs, C)many times until it finds hk′ such that Hash(hk′, full-aux, C) =
H. Thanks to the above properties, it should find a valid hk′ after about 2ν runs. Since ν is polynomial
in logK, the resulting algorithm Explain is polynomial in K.

Actually, ν will determine the tightness of the proof. In all comparisons in this article, we will
use ν = 1, which hinders performances of our scheme; but our schemes are still very efficient. In
practice, to gain constant factors, it would be advisable to use a greater ν, and thus larger blocks.
Finally, the range of the EPHF can be easily extended just by using multiple copies of the EPHF:
for a range of ν ′, hk becomes a tuple of dν ′/νe original hashing keys, the same for hp and H.

Application to SPHFs Built Using the Generic Framework of [BBC+13b]. Although the
first property may seem really restrictive, most (if not all) current SPHFs verify it if τ is chosen
correctly. In particular, SPHFs built using the generic framework of [BBC+13b] verify it, basically
as long as τ contains the discrete logarithms of all elements.

Generic Construction for KV-EPHF. In the previous generic construction, we get a KV-EPHF,
if the security property related to InvProjKG holds even if C can depend on hp. More precisely, we
want the following property: For any (crs, τ)

$← Setup(1K), for any aux, for any function f from the
set of projection keys to X \ Lfull-aux, with overwhelming probability over hk $← HashKG(crs), with
hp ← ProjHash(hk, crs,⊥), the two following distributions are supposed to be identical (or ε-close,
with ε negligeable in K):

{H | hk′ $← InvProjKG(τ, hk, crs,⊥);H ← Hash(hk′, full-aux, f(hp))} {H | H $← Π}.

4 Semi-Adaptive OT and PAKE without Erasures

In this section, we propose two new OT and PAKE protocols that are UC-secure against semi-
adaptive adversaries, but without requiring reliable erasures. The security proofs can be found in
Appendix B. Actually, these protocols are very similar to the UC-secure constructions in [ABB+13],
except that the SPHF-friendly commitment scheme has to be without erasures and the SPHF has to
be explainable. However, the proof is more complicated.

4.1 Semi-Adaptivity

The semi-adaptive setting has been introduced in [GWZ09], for two-party protocols when channels
are authenticated: the adversary is not allowed to corrupt any player if the two players were honest
at the beginning of the protocol. When channels are not authenticated, as for PAKE, we restrict the
adversary not to corrupt a player Pi if an honest flow has been sent on its behalf, and it has been
received by Pj, without being altered. In addition to those restrictions on the adversary, there are
also some restrictions on the simulator, which we do not recall here due to lack of space.
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4.2 Oblivious Transfer

The ideal functionality of an Oblivious Transfer (OT) protocol is depicted in Appendix A.4. It is
inspired from [CKWZ13]. In Figure 1, we describe a 2-round 1-out-of-k OT for νm-bit messages, that
is UC-secure against semi-adaptive adversaries. It can be built from any SPHF-friendly commitment
scheme, admitting a GL-EPHF, with range Π = {0, 1}νm , for the language: Lfull-aux = {(`, C) |
∃δ, C.Ver`(C,M , δ)} = 1, where full-aux = (crs, aux) and M = aux.

In case of corruption of the database (sender) after it has sent its flow, since we are in the
semi-adaptive setting, the receiver was already corrupted and thus the index s was known to the
simulator. The latter can thus generate “explainable” hpt for all t 6= s, so that when the simulator
later learns the messagesmt, it can explain hpt with appropriate hkt. Erasures are no longer required,
contrarily to [ABB+13].

CRS: crs $← C.Setup(1K).
Index query on s:
1. Pj computes (C, δ) $← C.Com`(s) with ` = (sid, ssid, Pi, Pj)
2. Pj sends C to Pi

Database input (m1, . . . ,mk):
1. Pi computes hkt $← HashKG(crs), hpt ← ProjKG(hkt, crs, (`, C)),

Kt ← Hash(hkt, (crs, t), (`, C)), and Mt ← Kt xormt, for t = 1, . . . , k
2. Pi sends (hpt,Mt)t=1,...,k

Data recovery:
Upon receiving (hpt,Mt)t=1,...,k, Pj computes Ks ← ProjHash(hps, (crs, s), (`, C), δ) and gets ms ← Ks xorMs.

Fig. 1. UC-Secure 1-out-of-k OT from an SPHF-Friendly Commitment for Semi-Adaptive Adversaries

The restriction that Π has to be of the form {0, 1}νm is implicit in [ABB+13]. Any SPHF can be
transformed to an SPHF with range Π of the form {0, 1}νm , using a randomness extractor, as long
as the initial range is large enough. However, this is not the case for EPHF, since the extractor may
not be reversible. That is why we need to make this assumption on Π explicit.

4.3 Password-Authenticated Key Exchange

The ideal functionality of a Password-Authenticated Key Exchange (PAKE) proposed in [CHK+05]
is depicted in Appendix A.4. In Figure 2, we describe a one-round PAKE that is UC-secure against
semi-adaptive adversaries. It can be built from any SPHF-friendly commitment scheme, admitting
a KV-EPHF with strong pseudo-randomness, with range Π = {0, 1}K.

Again, thanks to the explainability property, it is possible to generate the hashing key that
explains the session key provided by the ideal functionality, when the second player gets corrupted:
since a first player was already corrupted, the simulator has already extracted the tentative password.
In case of good guess by the adversary, the simulator can choose the key, that is thus easy to
explain. However, in case of a bad guess by the adversary, the session key is randomly chosen by
the functionality. But the simulator knows that the commitment is not in the right language, and
so the projection key can be made explainable.

5 New SPHF-Friendly Commitment Scheme

In this section, we present our new efficient SPHF-friendly commitment scheme under the plain
DDH. Due to lack of space, we only give an overview of the scheme and a comparison with previous
SPHF-friendly commitment schemes. Details are left to Appendix C.
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CRS: crs $← C.Setup(1K). Only protocol execution by Pi is described. The one by Pj is symmetrical.
Protocol execution by Pi with πi:
1. Pi generates hki $← HashKG(L), hpi ← ProjKG(hki, crs,⊥)
2. Pi computes (Ci, δi) $← C.Com`i(πi) with `i = (sid, Pi, Pj , hpi)
3. Pi sends hpi, Ci to Pj

Key computation: Upon receiving hpj , Cj from Pj
1. Pi computes H ′i ← ProjHash(hpj , (crs, πi), (`i, Ci), δi)

and Hj ← Hash(hki, (crs, πi), (`j , Cj)) with `j = (sid, Pj , Pi, hpj)
2. Pi computes SKi ← H ′i xorHj .

Fig. 2. One-Round UC-Secure PAKE from an SPHF-Friendly Commitment for Semi-Adaptive Adversaries

5.1 Scheme

Basic Idea of Previous Schemes. The basic idea of our scheme is similar to the one in [CF01,
CLOS02,ACP09,ABB+13]: to commit to some bit b, a user essentially generates some element P
and two words C0 and C1 such that Cb ∈ LP,b, where LP,0 and LP,1 are two languages1. To open the
commitment, the user just gives the random coins used to generate Cb, which proves that Cb ∈ LP,b.

The two words also have to be related, in such a way that an adversary cannot generate P and
two words C0 and C1 such that C0 ∈ LP,0 and C1 ∈ LP,1. However, when in possession of a given
trapdoor, we can compute such words, which enables us to generate simulated commitments which
can later be opened to the bit of our choice. This property is crucial for robustness, since it ensures
that a commitment produced by an adversary is necessarily perfectly binding.

In addition, using another trapdoor, it is possible to check whether Cb ∈ LP,b or not (without
knowing the random coins used to generate Cb. This makes the commitment extractable.

For all the previous constructions, to ensure these properties, P was an equivocable commitment
of the bit b to be committed, such as the Pedersen commitment [Ped91] in [ACP09] or the Haralam-
biev commitment [Har11] in [ABB+13], and LP,0 and LP,1 were the languages of ciphertexts (for an
IND-CCA encryption scheme such as Cramer-Shoup [CS98]) of a valid opening of P for 0 and 1
respectively. The binding property of the commitment P was used to prove an adversary could not
generate P together with two words C0 ∈ LP,0 and C1 ∈ LP,1.

Unfortunately, the most efficient instantiation to date of this idea, namely the commitment of
Abdalla et al. [ABB+13], requires an asymmetric bilinear group (G1,G2,GT , p, e), due to the use of
the Haralambiev commitment, and 8m elements in G1 (for the two Cramer-Shoup ciphertexts) and
1 element in G2 (for the Haralambiev commitment), for each bit.

Our New Scheme. Here, we improve on this construction in the following way: C0 and C1 are now
similar to Cramer-Shoup ciphertexts but without the part depending on the plaintext. To ensure
that no adversary can generate two words C0 ∈ LP,0 and C1 ∈ LP,1, we just ensure that the product
of the first elements (denoted ui,0 and ui,1 for the i-th bit) of C0 and C1 be some fixed element T . An
additional “randomization” using some elements denoted ei,Mi

is necessary to prevent the user from
distinguishing simulated commitments from normal ones. The last parts of C0 and C1 are adapted
consequently.

But even with this randomization, since we do not need the part of the Cramer-Shoup ciphertext
with the plaintext element nor a Pedersen-like commitment, our scheme is much more efficient, as
shown in Section 5.2.

More precisely, C.SetupT(1K) generates a cyclic group G of order p, three generators g, h, ĥ,
a tuple (α, β, γ, α′, β′, γ′) ← Z6

p, and H is a random collision-resistant hash function from some
family H. It then computes the tuple (c = gαĥγ, d = gβhγ, c′ = gα

′
ĥγ
′
, d′ = gβ

′
hγ
′
). It also generates

a random scalar t $← Zp and sets T = gt. The CRS crs is set as (g, h, ĥ, H, c, d, c′, d′, T ) and the
trapdoor τ is the decryption key (α, α′, β, β′, γ, γ′) (a.k.a., extraction trapdoor) together with t
(a.k.a., equivocation trapdoor).
1 These languages have nothing to do with the languages of SPHF, that is why the notation is different
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Table 1. Comparison with existing non-interactive UC-secure commitments with a single global CRS (m = bit-length of the
committed value, K = security parameter)

SPHF W/o C δ hp size
Friendly Erasure size size KV / GL Assumption

[CF01] no yes 9m×G 2m× Zp – Plain DDH
[ACP09] yes yes (m+ 16mK)×G 2mK× Zp – / (3m+ 2)×G+ (Zp)a Plain DDH
[FLM11], 1 no no 5×G 16×G – DLin
[FLM11], 2 no no 37×G 3×G – DLin
[ABB+13] yes yes 8m×G1 + m×G2 m× Zp 2m×G1 / G1 + (Zp)a SXDH
this paper yes yes 7m×G 2m× Zp 4m×G / 2×G+ (Zp)a Plain DDH
a this Zp element may only be K-bit long and is useless when m = 1.

Then, the commitment of a message M = (Mi)i ∈ {0, 1}m under a label `, works as follows,
where �Mi denotes 1−Mi: For i = 1, . . . ,m, it chooses two random scalars ri,Mi

, si,Mi

$← Zp and sets:

ei,Mi
= gri,Mi ui,Mi

= gsi,Mi vi,Mi
= ĥri,Mihsi,Mi wi,Mi

= (cri,Mi · dsi,Mi ) · (c′rid′si,Mi )ξ

ei,�Mi

$← G ui,�Mi
= T/ui,Mi

vi,�Mi

$← G wi,�Mi

$← Zp,

with ξ = H(`, (ei,b, ui,b, vi,b)i,b). The commitment is C = (ei,b, ui,b, vi,b, wi,b)i,b ∈ G8m, while the
opening information is the 2m-tuple δ = (ri,Mi

, si,Mi
)i ∈ Z2m

p .
For each i, (ei,b, ui,b, vi,b, wi,b) corresponds to the word Cb. The language Lb is just the set of such

tuples as generated for b =Mi in the commitment procedure, described above. The binding property
comes from the fact that ui,0 · ui,1 has to be equal to T . By knowing t, the discrete logarithm of T
in base g, it is therefore easy to generate an equivocable commitment.

It remains to show how to extract a commitment. For that, we can roughly show that with high
probability, (ei,b, ui,b, vi,b, wi,b) is generated as in the commitment procedure, if and only if:

wi,b = eα+ξα
′

i,b · uβ+ξβ
′

i,b · vγb+ξγ
′
b

i,b .

This check is similar to the one used to check the validity of Cramer-Shoup ciphertexts.
For the reader acquainted with 2-universal hash proof systems [CS02], another way to look at this

test (and at our commitment scheme in general) is the following: wi,Mi
is the hash value of the tuple

(g, ei,Mi
, ui,Mi

, vi,Mi
) under a 2-universal SPHF with hashing key (α, β, γ, α′, β′, γ′) and projection

key (c, d, c′, d′). This hash value enables us to “prove” that vi,b = ĥlogg ei,bhlogg ui,b . To construct a
KV-SPHF and a GL-SPHF for this commitment, we can use the generic framework in [BBC+13b].
Details can be found in C.2.

5.2 Complexity and Comparison

In our new scheme, we remark that ui,1 can be computed from ui,0 as ui,1 = T/ui,0. So, in the sequel,
we suppose that ui,1 is not a part of the commitment, when we analyze our commitment complexity.
However, for the sake of simplicity, we keep ui,1 in the commitments in our proofs.

Table 1 compares our new schemes with existing non-interactive UC-secure commitments with a
single global CRS. Our scheme is the most efficient SPHF-friendly scheme regarding the commitment
and decommitment size. In addition, it is secure under plain DDH. Its projection key is slightly longer
than the projection key in [ABB+13], and in cases were numerous projection keys are required and if
SXDH is deemed acceptable, using the commitment scheme in [ABB+13] may lead to more efficient
schemes. Details on the comparison can be found in Appendix C.7.

6 Adaptive OT and PAKE

As explained in [GWZ09], one can transform any semi-adaptive protocols into adaptive ones by
sending all the flows through secure channels. Such secure channels can be constructed using non-
committing encryption (NCE) [CFGN96,DN00,Bea97a,CDMW09]. However, even the most efficient
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instantiation of NCE [CDMW09] requires 8νNCEK group elements to send νNCE bits securely, with
ElGamal encryption scheme as (trapdoor) simulatable encryption scheme. If νNCE is Ω(K), this can
be reduced to about 320νNCE group elements.

In this section, we propose several adaptive versions of our semi-adaptive OT and PAKE protocols.
Some are optimized for the number of rounds, while others are optimized for the communication
complexity. In each case, at least one of our new protocols performs better than existing protocols.

6.1 Oblivious Transfer

First Scheme. A first efficient way to construct a bit (i.e., νm = 1) 1-out-of-2 OT secure against
adaptive adversary consists in applying the generic transformation of Garay et al. [GWZ09] to our
semi-adaptive OT.

This transformation uses the notion of `-somewhat non-committing encryption scheme. This
scheme enables to send securely long messages, but which restricts the non-committing property
to the following: it is only possible to produce random coins corresponding to ` different messages.
Then, to get an adaptive OT from a semi-adaptive OT, it is sufficient to execute the protocol in a
8-somewhat non-committing channel. Indeed, the simulator can send via this channel 8 versions of
the transcript of the protocol: depending on which user gets corrupted first and on which were their
inputs and outputs. There are two choices of inputs for the sender (the two index queries) and two
outputs (the message ms), hence four choices in total; and there are four choices of inputs for the
receiver (the two messages m0 and m1). Hence the need for 8 versions.

In [GWZ09], the authors also show how to extend their bit OT based on the DDH version of the
static OT of Peikert et al. [PVW08] to string OT by repeating the protocol in parallel and adding an
equivocable commitment to the index and a zero-knowledge proof to ensure that the sender always
uses the same index s. Actually, for both of our instantiations and for the one in [GWZ09], we can do
better, just by using the same commitment C to s (in our case) or the same CRS (the one obtained
by coin tossing) and the same public key of the dual encryption system (in their case). This enables
us to get rid off the additional zero-knowledge proof and can also be applied to the QR instantiation
in [GWZ09]. In addition, the commitment C to s (in our case) or the CRS and the public key (in
their case) only needs to be sent in the first somewhat non-committing channel.

Finally, if the original semi-adaptive OT is a 1-out-of-k OT (with k = 2νk), then we just need
to use a 2k+1-somewhat NCE instead of a 8-somewhat NCE encrypt (because there are 2k possible
inputs for the sender, and k possible inputs and 2 possible outputs for the receiver, so 2k+2k ≤ 2k+1

possible versions for the transcript).

Second Scheme. Our second scheme can be significantly more efficient than our first one, for
several parameter choices. Essentially, it consists in using NCE channels to send km random bits to
mask the messages (in case the sender is corrupted first) and 2νk random bits to enable the simulator
to make the commitment binding to the index s (in case the receiver gets corrupted first). Methods
used for this second part are specific to our new SPHF-friendly commitment scheme, but can also
be applied to the commitment scheme in [ABB+13].

This protocol can be made a little more efficient by using a greater ν in the EPHFs (see Sec-
tion 3.2), at the cost of a less tight reduction. Furthermore, if we accept to rely on SXDH, using
the commitment in [ABB+13] (whose projection key size is slightly smaller) can further improve the
efficiency. However, the bottleneck remains the km + 2νk bits to be sent via NCE. Details can be
found in Appendix D.2.

Comparison. In Appendix D.3, we compare our schemes with the DDH-based OT in [GWZ09].
We see that, for every parameters νm and k, at least one of our two schemes (if not both) is the
most efficient scheme regarding both the number of rounds and the communication complexity.

The exact communication complexity cost depends on the exact instantiation of NCE. But in
all cases, at least one of our schemes outperforms existing schemes both in terms of number of bits
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sent via a NCE channel, and in terms of auxiliary elements (elements which are not directly used
by the NCE scheme). In addition, our second scheme always uses the smallest number of auxiliary
elements; and it requires km + 2νk bits to be sent via a NCE channel, which is not worse than the
(k + 1)m bits required by our first scheme, as long as m ≥ 2νk.

6.2 Password Authenticated Key Exchange

Optimized for Round Complexity. If we apply a slight variant2 of the transformation of Garay et
al. to our efficient semi-adaptive PAKE, we get a 3-round PAKE UC-secure against adaptive adversary,
without erasures. It requires the use of a NCE channel for approximatively the number of bits sent in
the original semi-adaptive PAKE, to mask the complete transcript to ensure the simulator can deal
with any corruption. Therefore, this construction is highly inefficient regarding the communication
complexity, though maybe not as inefficient as the generic construction of PAKE in [BCL+05].

Optimized for Communication Complexity. We then propose a second construction, much
more efficient regarding the communication complexity. This construction is actually generic and
can transform any PAKE (for 1-bit passwords) UC-secure against semi-adaptive adversaries into a
UC-secure PAKE (for m-bit passwords) UC-secure against adaptive adversaries. The scheme just
requires to send 2m + K bits, via a non-committing encryption scheme, of which 2m are used to
create m 4-somewhat non-committing encryption schemes used to deal with inputs. The remaining
K bits are used to mask the final shared key. The scheme is constant-round, if the associated semi-
adaptive PAKE is constant-round, and the communication complexity is roughly 4m times the one
of the semi-adaptive PAKE, plus the cost of the non-committing encryption scheme.

This is much more efficient than the construction of Canetti et al. [CDVW12], which requires
2m adaptively-secure OT for νm = K bits. Indeed, each such OT could be used as a non-committing
channel of K bits3, and so their construction requires to send at least 2mK bits via a non-committing
channel.
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A Notations

We first recall the classical definitions on distances of distribution, and the notions of success and
advantage. We then review the basic cryptographic tools we use along this paper, with the corre-
sponding security notions.

A.1 Distances, Advantage and Success

Statistical Distance. Let D0 and D1 be two probability distributions over a finite set S and let
X0 and X1 be two random variables with these two respective distributions. The statistical distance
between D0 and D1 is also the statistical distance between X0 and X1:

Dist(D0,D1) = Dist(X0, X1) =
∑
x∈S

|Pr [X0 = x ]− Pr [X1 = x ]| .

If the statistical distance between D0 and D1 is less than or equal to ε, we say that D0 and D1 are
ε-close or are ε-statistically indistinguishable. If the D0 and D1 are 0-close, we say that D0 and D1

are perfectly indistinguishable.

Success/Advantage. When one considers an experiment ExpsecA (K) in which adversary A plays
a security game SEC, we denote Succsec(A,K) = Pr [ExpsecA (K) = 1 ] the success probability of this
adversary. We additionally denote Succsec(t) = maxA≤t{Succsec(A,K)}, the maximal success any
adversary running within time t can get.

When one considers a pair of experiments Expsec-bA (K), for b = 0, 1, in which adversary A plays
a security game SEC, we denote Advsec(A,K) = Pr

[
Expsec−0A (K) = 1

]
− Pr

[
Expsec−1A (K) = 1

]
the

advantage of this adversary. We additionally denote Advsec(t) = maxA≤t{Advsec(A,K)}, the maximal
advantage any adversary running within time t can get.

Computational Distance. Let D0 and D1 be two probability distributions over a finite set S
and let X0 and X1 be two random variables with these two respective distributions. The compu-
tational distance between D0 and D1 is the best advantage an adversary can get in distinguish-
ing X0 from X1: AdvD0,D1(A,K) = Pr [A(X0) = 1 ] − Pr [A(X1) = 1 ], and thus AdvD0,D1(t) =
maxA≤t{AdvD0,D1(A,K)}. When the advantage AdvD0,D1(t) ≤ ε, we say that D0 and D1 are (t, ε)-
computationally indistinguishable.

We can note that for two distributions D0 and D1 that are ε-close, for any t and ε, D0 and D1

are (t, ε)-computationally indistinguishable.

A.2 Formal Definitions of the Basic Primitives

Hash Function Family. A hash function family H is a family of functions Hk from {0, 1}∗ to a
fixed-length output, either {0, 1}K or Zp. Such a family is said collision-resistant if for any adversary
A on a random function H $← H, it is hard to find a collision. More precisely, we denote

SucccollH (A,K) = Pr
[
H

$← H, (m0,m1)← A(H) : H(m0) = H(m1)
]
.

It is well-known that under the discrete logarithm problem, and thus under the DDH assumption,
such collision-resistant hash functions can be built.
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Randomness Extractor. A randomness extractor allows to extract uniform bit-strings from high-
entropy bit-string sources. The most famous method is provided by the Leftover Hash Lemma [HILL99],
which requires the use of universal hash function families. From an additional independent random
source to select the hash function, one can extract a bit-string that is almost uniform.

More precisely, by randomly selecting a random function h, from a universal hash function family,
in the CRS, from a random variable X with min-entropy m, one can extract k-bit strings that are
2e-close to uniform by computing h(X),if k ≤ m− 2e+ 2.

In the particular case of cyclic groups, in well-chosen finite fields or elliptic curves, some efficient
deterministic extractors, such as the truncation, can be used [CFPZ09].

Signature Schemes and One-Time Signature Schemes. A signature scheme is defined by
three algorithms:
– Sig.KG(1K) generates a verification key vk together with a signing key sk;
– Sig.Sign(sk,M) generates a signatures σ of M ;
– Sig.Verify(vk, σ,M) returns 1 if σ is a valid signature of M ; and 0 otherwise.

The basic security notion for signatures is existential unforgeability under chosen-message attacks
(defined in [GMR88]), where no adversary should be able to forge a valid message-signature pair,
even with access to the signing oracle, for a new message.

A one-time signature is defined by the same algorithms OT.KG, OT.Sign, and OT.Verify, but just
requires this security level, after at most one signing query.

A.3 SPHF-Friendly Commitment Schemes

In this section, we provide a more formal definition of SPHF-friendly commitment schemes, slightly
improving on [ABB+13].

SPHF-Friendly Commitment Schemes. Such an SPHF-friendly commitment is defined by the
following algorithms:
– C.Setup(1K) takes as input the security parameter K and outputs the global parameters, passed

through the global CRS crs to all other algorithms;
– C.SetupT(1K) is an alternative to C.Setup(1K) that additionally outputs a trapdoor τ ;
– C.Com`(M ) takes as input a label ` and a messageM , and outputs a pair (C, δ), where C is the

commitment ofM for the label `, and δ is the corresponding opening data (a.k.a., decommitment
information);

– C.Ver`(C,M , δ) takes as input a commitment C, a label `, a messageM , and the opening data
δ and outputs 1 (true) if δ is a valid opening data for C, M and `. It always outputs 0 (false)
on M = ⊥;

– C.Sim`(τ) takes as input the trapdoor τ and a label ` and outputs a pair (C, eqk), where C is a
commitment and eqk an equivocation key;

– C.Open`(eqk, C,M ) takes as input a commitment C, a label `, a messageM , and an equivocation
key eqk for this commitment, and outputs an opening data δ for C and ` on M .

– C.Ext`(τ, C) takes as input the trapdoor τ , a commitment C, and a label `, and outputs the
committed message M , or ⊥ if the commitment is invalid;

– C.IsBinding`(τ, C,M) takes as input the trapdoor τ , a commitment C, a messageM and a label
`, and outputs 0 if the commitment is not perfectly binding toM , i.e., if there existsM ′ 6=M
and δ, such that C.Ver`(C,M ′, δ) = 1.

Correctness. An SPHF-friendly commitment first has to verify the following properties:
– for all correctly generated CRS crs, all commitments and opening data honestly generated pass

the verification test: ∀`∀M , (C, δ)
$← C.Com`(M)⇒ C.Ver`(C,M , δ) = 1;

– all simulated commitments can be opened on any message:
∀`∀M , ((C, eqk)

$← C.Sim`(τ) ∧ δ ← C.Open`(eqk, C,M ))⇒ C.Ver`(C,M , δ) = 1;
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– all commitments honestly generated can be correctly extracted:
∀`∀M , (C, δ)

$← C.Com`(M )⇒ C.Ext`(τ, C) =M ;
– all commitments honestly generated are considered binding by C.IsBinding, with overwhelming

probability:
∀`∀M , (C, δ)

$← C.Com`(M)⇒ C.IsBinding`(τ, C,M ) = 1;
– all commitments C under some label ` for which C.IsBinding`(τ, C,M) = 1 are such that for all
M ′ 6=M and δ, C.Ver`(C,M ′, δ) = 0.

Of course, to be SPHF-friendly, the commmitment scheme has to admit an SPHF for the following
language:

Lfull-aux = {(`, C) | ∃δ, C.Ver`(C,M , δ) = 1},

where full-aux = (crs, aux) and M = aux.
We now list the additional security properties that these algorithms have to satisfy.

Setup Indistinguishability. One should not be able to distinguish the CRS generated by C.Setup
from the one generated by C.SetupT. The commitment scheme is said (t, ε)-setup-indistinguishable if
the two distributions for CRSs are (t, ε)-computationally indistinguishable. We denote Advsetup-ind(t)
the distance between the two distributions.

Strong Simulation Indistinguishability. Let us denote C.SCom the algorithm that takes as
input the trapdoor τ , a label ` and a message M and which outputs (C, δ)

$← C.SCom`(τ,M),
computed as (C, eqk) $← C.Sim`(τ) and δ ← C.Open`(eqk, C,M ).

One should not be able to distinguish a real commitment (generated by C.Com) from a fake
commitment (generated by C.SCom), even with oracle access to the extraction oracle (C.Ext), the
binding test oracle (C.IsBinding), and to fake commitments (using C.SCom). The commitment scheme
is said (t, ε)-strongly-simulation-indistinguishable if Advs-sim-ind(t) ≤ ε, according to Exps-sim-indA (K)
in Figure 3.

Remark 1. In this experiment, as in the following ones, the oracle C.SCom is supposed to store each
query/answer (`,M , C) in a list Λ and C.Ext-queries on such an C.SCom-output (`, C) are answered
by M (as it would be when using C.Com instead of C.SCom). The same way, C.IsBinding returns 1
on such commitments (although it is not the case). This is just to exclude trivial attacks.

Robustness. One should not be able to produce a commitment and a label that extracts to M
(possibly M = ⊥) such that C.IsBinding`(τ, C,M ) = 0, even with oracle access to the extraction
oracle (C.Ext), the binding test oracle (C.IsBinding), and to fake commitments (using C.SCom). The
commitment scheme is said (t, ε)-robust if Succrobust(t) ≤ ε, according to the experiment ExprobustA (K)
in Figure 3.

Exps-sim-ind-bA (K)

(crs, τ)
$← C.SetupT(1K);

(`,M , st)
$← AC.SCom·(τ,·),C.Ext·(τ,·),C.IsBinding·(τ,·,·)(crs)

if b = 0 then (C, δ)
$← C.Com`(M)

else (C, δ)
$← C.SCom`(τ,M)

return AC.SCom·(τ,·),C.Ext·(τ,·),C.IsBinding·(τ,·,·)(st, C, δ)

ExprobustA (K)

(crs, τ)
$← C.SetupT(1K)

(C, `)
$← AC.SCom·(τ,·),C.Ext·(τ,·),C.IsBinding·(τ,·,·)(crs)

M ← C.Ext`(τ, C)
if (`,M , C) ∈ Λ then return 0

if C.IsBinding`(τ, C,M) = 1 then return 0

return 1

Fig. 3. Strong Simulation Indistinguishability and Strong Binding Extractability (Λ is defined in Remark 1)
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Pseudo-Randomness vs. Strong Pseudo-Randomness. As in [ABB+13], from the smooth-
ness of the SPHF on L(crs,aux), one can derive the pseudo-randomness property on SPHF-friendly
commitments, modeled by the experiment Expc-ps-randA in Figure 4.

If the adversary A is given a commitment C by C.Sim with label ` (adversary-chosen), even with
access to the oracles C.SCom, C.Ext, and C.IsBinding, then for anyM , it cannot distinguish the hash
value of (`, C) on language L(crs,M) from a random value, while being given hp, since C could have
been generated as C.Com`(M ′′) for some M ′′ 6=M , which excludes it to belong to L(crs,M), under
the robustness. In the experiment Expc-ps-randA , we let the adversary choose (`,M), and we have:
Advc-ps-rand(t) ≤ Advs-sim-ind(t) + Succrobust(t) + Advsmooth.

Note that when hk and hp do not depend onM nor on C, and when the smoothness holds even if
the adversary can choose C after having seen hp (i.e., the SPHF is actually a KV-SPHF [BBC+13b]),
they can be generated from the beginning of the game, with hp given to the adversary much earlier.

Expc-ps-rand-bA (K)

(crs, τ)
$← C.SetupT(1K)

(`,M , st)
$← AC.SCom·(τ,·),C.Ext·(τ,·),C.IsBinding·(τ,·,·)(crs)

(C, eqk)
$← C.Sim`(τ)

hk
$← HashKG(crs)

hp← ProjKG(hk, (crs,M), (`, C))
if b = 0 then

H ← Hash(hk, (crs,M), (`, C))
else

H
$← Π

b
$← AC.SCom·(τ,·),C.Ext·(τ,·),C.IsBinding·(τ,·,·)(st, C, hp, H)

return b

Expc-s-ps-rand-bA (K)

(crs, τ)
$← C.SetupT(1K)

(`,M , st)
$← AC.SCom·(τ,·),C.Ext·(τ,·),C.IsBinding·(τ,·,·)(crs)

(C, eqk)
$← C.Sim`(τ)

hk
$← HashKG(crs)

hp← ProjKG(hk, (crs,M),⊥)
if b = 0 then

H ← Hash(hk, (crs,M), (`, C))
else

H
$← Π

(`′, C′, st)
$← A

C.SCom·(τ,·),C.Ext·(τ,·),
C.IsBinding·(τ,·,·) (st, C, hp, H)

if (`′, ?, C′) ∈ Λ then
H ′ ←⊥

else
H ′ ← Hash(hk, (crs,M), (`′, C′))

return AC.SCom·(τ,·),C.Ext·(τ,·),C.IsBinding·(τ,·,·)(st, H ′)

Fig. 4. Pseudo-Randomness and Strong Pseudo-Randomness (Λ is defined in Remark 1)

However, for our PAKE protocols, as for those in [ABB+13], one needs a stronger property called
strong pseudo-randomness. It is modelled by the experiment Expc-s-ps-randA depicted in Figure 4. This
property is only defined for SPHF-friendly commitment with a KV-SPHF.

It is similar to the pseudo-randomness game except the adversary can also ask a hash value of a
commitment C ′ under a label `′ (under the restriction that (`′, C ′) was not generated by C.SCom)
under the hashing key hk.

Generically, a property like the 2-universality of [CS02] may be needed for the SPHF. However,
for our new commitment scheme and the one in [ABB+13], this property holds directly, while the
used SPHF is not 2-universal (and so may be more efficient).

A.4 Ideal Functionalities

UC-Secure Oblivious Transfer. The ideal functionality of an Oblivious Transfer (OT) protocol
is depicted in Figure 5. It is inspired from [CKWZ13].

UC-Secure Password-Authenticated Key Exchange. We present the PAKE ideal functionality
FpwKE on Figure 6). It was described in [CHK+05]. The main idea behind this functionality is as
follows: If neither party is corrupted and the adversary does not attempt any password guess, then
the two players both end up with either the same uniformly-distributed session key if the passwords
are the same, or uniformly-distributed independent session keys if the passwords are distinct. In
addition, the adversary does not know whether this is a success or not. However, if one party is
corrupted, or if the adversary successfully guessed the player’s password (the session is then marked
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The functionality F(1,k)-OT is parameterized by a security parameter K. It interacts with an adver-
sary S and a set of parties P1,. . . ,Pn via the following queries:
– Upon receiving an input (Send, sid, ssid, Pi, Pj, (m1, . . . ,mk)) from party Pi, with mi ∈
{0, 1}K: record the tuple (sid, ssid, Pi, Pj , (m1, . . . ,mk)) and reveal (Send, sid, ssid, Pi, Pj) to the
adversary S. Ignore further Send-message with the same ssid from Pi.

– Upon receiving an input (Receive, sid, ssid, Pi, Pj, s) from party Pj, with s ∈ {1, . . . , k}:
record the tuple (sid, ssid, Pi, Pj , s), and reveal (Receive, sid, ssid, Pi, Pj) to the adversary S. Ig-
nore further Receive-message with the same ssid from Pj .

– Upon receiving a message (Sent, sid, ssid, Pi, Pj) from the adversary S: ignore the
message if (sid, ssid, Pi, Pj , (m1, . . . ,mk)) or (sid, ssid, Pi, Pj , s) is not recorded; otherwise send
(Sent, sid, ssid, Pi, Pj) to Pi and ignore further Sent-message with the same ssid from the adver-
sary.

– Upon receiving a message (Received, sid, ssid, Pi, Pj) from the adversary S: ignore the
message if (sid, ssid, Pi, Pj , (m1, . . . ,mk)) or (sid, ssid, Pi, Pj , s) is not recorded; otherwise send
(Received, sid, ssid, Pi, Pj ,ms) to Pj and ignore further Received-message with the same ssid
from the adversary.

Fig. 5. Ideal Functionality for 1-out-of-k Oblivious Transfer F(1,k)-OT

The functionality FpwKE is parameterized by a security parameter k. It interacts with an adversary S
and a set of parties P1,. . . ,Pn via the following queries:
– Upon receiving a query (NewSession, sid, ssid, Pi, Pj, π) from party Pi:

Send (NewSession, sid, ssid, Pi, Pj) to S. If this is the first NewSession query, or if this is the second
NewSession query and there is a record (sid, ssid, Pj , Pi, π

′), then record (sid, ssid, Pi, Pj , π) and
mark this record fresh.

– Upon receiving a query (TestPwd, sid, ssid, Pi, π
′) from the adversary S:

If there is a record of the form (Pi, Pj , π) which is fresh, then do: If π = π′, mark the record
compromised and reply to S with “correct guess”. If π 6= π′, mark the record interrupted and
reply with “wrong guess”.

– Upon receiving a query (NewKey, sid, ssid, Pi, SK) from the adversary S:
If there is a record of the form (sid, ssid, Pi, Pj , π), and this is the first NewKey query for Pi, then:
• If this record is compromised, or either Pi or Pj is corrupted, then output (sid, ssid, SK) to

player Pi.
• If this record is fresh, and there is a record (Pj , Pi, π

′) with π′ = π, and a key SK′ was sent
to Pj , and (Pj , Pi, π) was fresh at the time, then output (sid, ssid, SK′) to Pi.

• In any other case, pick a new random key SK′ of length K and send (sid, ssid, sk′) to Pi.
Either way, mark the record (sid, ssid, Pi, Pj , π) as completed.

Fig. 6. Ideal Functionality for PAKE FpwKE

as compromised), the adversary is granted the right to fully determine its session key. There is in
fact nothing lost by allowing it to determine the key. In case of wrong guess (the session is then
marked as interrupted), the two players are given independently-chosen random keys. A session
that is nor compromised nor interrupted is called fresh, which is its initial status.

Finally notice that the functionality is not in charge of providing the password(s) to the par-
ticipants. The passwords are chosen by the environment which then hands them to the parties as
inputs. This guarantees security even in the case where two honest players execute the protocol with
two different passwords: This models, for instance, the case where a user mistypes its password. It
also implies that the security is preserved for all password distributions (not necessarily the uniform
one) and in all situations where the password, are related passwords, are used in different protocols.
Also note that allowing the environment to choose the passwords guarantees forward secrecy.

In case of corruption, the adversary learns the password of the corrupted player, after the NewKey-
query, it additionally learns the session key.

B Semi-Adaptive OT and PAKE

In this appendix, we provide the complete proofs for the security of the OT and PAKE protocols from
Section 4: security holds in the UC-framework, against semi-adaptive adversaries, without requiring
reliable erasures.
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B.1 Proof Security of our OT Scheme

To prove the security of our OT protocol (see Section 4.2), in the UC-framework, against semi-
adaptive adversaries but without erasures, we exhibit a sequence of games. The sequence starts
from the real game, where the adversary A interacts with real players and ends with the ideal game,
where we have built a simulator S that makes the interface between the ideal functionality F and
the adversary A. Essentially, we do the following:
1. we make the setup algorithm additionally output the trapdoor (setup-indistinguishability);
2. we then replace all the commitment queries by simulated (fake) commitments (simulation-in-

distinguishability);
3. when simulating a sub-session between two honest receivers, the simulator commits to an arbi-

trary value s (e.g., s = 0 — hiding property of the commitment) and uses arbitrary messages
(e.g., mt = 0 for all t — pseudo-randomness of the SPHF on robust commitment).

Recall that no corruption is authorized in this case. We now just need to deal with sub-session where
either the sender or the receiver is corrupted:
4. when simulating a honest receiver, when the (corrupted) sender submits the values (hpt,Mt)t

and the simulator can extract all the messages thanks to the trapdoor (simulatability of the
commitment). This allows to simulate the Send-query to the ideal functionality;

5. when simulating a honest sender, the simulator extracts the committed value s from the com-
mitment C of the (corrupted) receiver. This allows to simulate the Receive-query to the ideal
functionality, which gives back the message ms that should be received. We can then use this
value ms instead of the one provided by the environment.

6. still when simulating a honest sender, the simulator simulate (SimKG) projection keys and use
random messages mt for t 6= s (smoothness of the SPHF on robust commitment and GL-indis-
tinguishability of the EPHF). In case of corruption, we get the correct messages mt for t 6= s (ms

being already known), that we can explain using Explain.
On one hand, if the adversary corrupts a sender with input s and plays honestly the protocol with

s, the simulator will extract correctly s from the commitment C of the sender (trapdoor correctness of
extractable commitments) and do a Send-query with the same s. On the other hand, if the adversary
corrupts a receiver with inputs (Mt)t and plays honestly the protocol with (Mt)t, the simulator will
compute correctly the hash values Ht and so extract correctly (Mt)t and do a Receive-query with
the same messages (Mt)t. This means that in both cases, the extracted value is the one used by the
adversary, which property is called input-preserving, as required by the definition of semi-adaptivity
of Garay et al. [GWZ09]. Another property required by their definition is the so-called setup-adaptive
simulation, which says that the CRS or any setup is generated independent of which party will be
corrupted. This is clearly the case of our simulation. So the protocol is semi-adaptive.

Let us now go into more details:

Game G0: This is the real game.
Game G1: In this game, the simulator generates correctly every flow on behalf of the honest

players, as they would do themselves, knowing the inputs (m1, . . . ,mk) and s sent by the envi-
ronment to the sender and the receiver. In all the subsequent games, the players use the label
` = (sid, ssid, Pi, Pj). In case of corruption, the simulator can give the internal data generated
on behalf of the honest players.

Game G2: In this game, we just replace the setup algorithm C.Setup by C.SetupT that additionally
outputs the trapdoor (crs, τ)

$← C.SetupT(1K), but nothing else changes, which does not alter
much the view of the environment under setup indistinguishability. Corruptions are handled the
same way.

Game G3: We first deal with honest receivers Pj: we replace all the commitments (C, δ)
$←

C.Com`(s) with ` = (sid, ssid, Pi, Pj) in Step 1 of the index query phase of honest receivers
by simulated commitments (C, δ)

$← C.SCom`(τ, s), which means (C, eqk)
$← C.Sim`(τ) and

δ ← C.Open`(eqk, C, s). We then store (`, s, C, δ) in Λ.
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With an hybrid proof, applying the Expsim-ind security game for each session, in which C.SCom
is used as an atomic operation in which the simulator does not see the intermediate values, and
in particular the equivocation key, one can show the indistinguishability of the two games. In
case of corruption of the receiver, we just learn the already known value s.

Game G4: We now deal with sub-sessions between an honest sender Pi and an honest receiver
Pj: on behalf of the receiver, the simulator computes Kt as the sender does, i.e., using hkt instead
of hpt and δ (for all t): Kt = Hash(hkt, (crs, t), (`, C)). Notice that hkt is known since it has also
been generated by the simulator on behalf of the sender.
This game is indistinguishable from the previous one, thanks to the correctness of the SPHF.

Game G5: Still in this case, we replace Kt by a random value (both for the sender and the receiver
and for all t). This game is indistinguishable from the previous one, thanks to the pseudo-
randomness of the SPHF. The basic pseudo-randomness game can be used since the sender and
the receiver cannot be corrupted in this case (because the adversary is semi-adaptive) and so,
neither C nor any hkt never have to be revealed later.

Game G6: Still in this case, instead of using the messages (m1, . . . ,mt) provided by the environ-
ment, we use (m′1, . . . ,m

′
k) = (0, . . . , 0). Since the masks Kt (for all t) are random, this game is

perfectly indistinguishable form the previous one.
When simulating sub-sessions between two honest players, we do not use the inputs provided
by the environment (except s to compute the opening information δ, but δ actually is not used,
and so s could be chosen arbitrarily).
From now on, we only consider sub-sessions where at least one player is corrupted.

Game G7: We now deal with honest senders Pi: when receiving a commitment C (from a
corrupted receiver Pj), the simulator extracts the committed value s and aborts if it is not
binding, i.e., if C.IsBinding`(τ, C, s) = 0.
With an hybrid proof, applying the robustness property of the commitment scheme, for every
honest sender, this game is indistinguishable from the previous one, since it is hard for an
adversary to generate non-binding commitments. Notice that labels are important here and
enables the simulator to extract C (for label `) and call C.IsBinding on it, because even if C is
replayed, it cannot be replayed with the same label.

Game G8: Still in this case, when receiving a commitment C (from a corrupted receiver Pj),
the simulator extracts the committed value s. For t 6= s, instead of generating hkt and hpt
honestly using HashKG and ProjKG, it generates (hp, expk)

$← SimKG(crs, τ, C), chooses Kt
$←

Π = {0, 1}νm and sets hk $← Explain(hp, (crs, t), (`, C), Kt, expk).
With an hybrid proof, applying the GL-indistinguishability of EPHF for every honest sender,
on every index t 6= s, since C is not in L(crs,t) because C.IsBinding`(τ, C, s) = 1, this game is
indistinguishable from the previous one.

Game G9: We do not use anymore the knowledge of (mt)t6=s when simulating an honest sender
Pi: when receiving a commitment C, the simulator extracts the committed value s. For all
t 6= s, instead of choosing a random Kt, and setting hkt

$← Explain(hp, (crs, t), (`, C), H, expk)
and Mt ← Kt xormt, the simulator chooses a random Mt ∈ Π, and does not generate hkt, since
it has to be given to the adversary only in case of corruption. In case of corruption, the simulator
learns mt and can set Kt ←Mt xormt, and hkt

$← Explain(hp, (crs, t), (`, C), H, expk).
The distributions ofMt andKt are left unchanged sinceKt was random (andmt was independent
of Kt). Therefore, this game is perfectly indistinguishable from the previous one.

Game G10: We do not use anymore the knowledge of s when simulating an honest receiver Pj:
the simulator generates (C, eqk)

$← C.Sim`(τ), with ` = (sid, ssid, Pi, Pj), to send C during the
index query phase of honest receivers. It then stores (`,⊥, C, eqk) in Λ. We essentially break
the atomic C.SCom in the two separated processes C.Sim and C.Open. This does not change
anything from the previous game since δ is never revealed. Λ is first filled with (`,⊥, C, eqk), it
can be updated with correct values in case of corruption of the receiver.
When it thereafter receives (Send, sid, ssid, Pi, Pj, (hp1,M1, . . . , hpk,Mk)) from the adversary, the
simulator computes, for t = 1, . . . , k, opening values δt ← C.Open`(eqk, C, t), the masks Kt ←
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ProjHash(hpt, (crs, t), (`, C), δt) and mt = Kt xorMt. This provides the database submitted by
the sender.

Game G11: We can now make use of the ideal functionality, without knowing the inputs from the
environment.

B.2 Proof Security of our PAKE Scheme

To prove the security of our PAKE protocol (see Section 4.3), in the UC-framework, against semi-
adaptive adversaries but without erasures, we exhibit a sequence of games. The sequence starts
from the real game, where the adversary A interacts with real players and ends with the ideal game,
where we have built a simulator S that makes the interface between the ideal functionality F and
the adversary A.

We say that a flow is oracle-generated if the pair (hp, C) was sent by an honest player (or
the simulator) and received without any alteration by the expected receiver. It is said non-oracle-
generated otherwise.

The steps in the proof are similar to the previous proof. Here are detailed games:

Game G0: This is the real game.
Game G1: First, in this game, the simulator generates correctly every flow on behalf of the honest

players, as they would do themselves, knowing the inputs πi and πj sent by the environment to
the players. In case of corruption, the simulator can give the internal data generated on behalf
of the honest players.

Game G2: We now replace the setup algorithm C.Setup by C.SetupT that additionally outputs the
trapdoor (crs, τ) $← C.SetupT(1K), but nothing else changes, which does not alter much the view
of the environment under setup indistinguishability. Corruptions are handled the same way.

Game G3: We now deal with honest players Pi receiving an oracle-generated flow (hpj, Cj) from
Pj, with a different password: πj 6= πi. In this case, Pi and Pj are honest at the beginning
and so a semi-adaptive adversary cannot corrupt any of them. So, we can replace the hash value
Hi = Hash(hki, (crs, πi), (`j, Cj)) by a random value. This game is indistinguishable from the
previous one thanks to the smoothness of the SPHF.

Game G4: Still in this case, we replace SKi = Hi xorH
′
j by a random value. This game is perfectly

indistinguishable from the previous one.
Game G5: We now deal with all honest players. We replace all the commitments (C, δ)

$←
C.Com`(π) (π = πi or πj) with ` = `i or `j by simulated commitments (C, δ) $← C.SCom`(τ, π),
which means (C, eqk) $← C.Sim`(τ) and δ ← C.Open`(eqk, C, s). We then store (`, π, C, δ) in Λ.
With an hybrid proof, applying the Expsim-ind security game for each session, in which C.SCom
is used as an atomic operation in which the simulator does not see the intermediate values, and
in particular the equivocation key, one can show the indistinguishability of the two games.

Game G6: We now deal with honest players Pi receiving an oracle-generated flow (hpj, Cj)
from Pj, with the same password as Pi: πj = πi. We remark that the hash value H ′i =
ProjHash(hpj, (crs, πi), (`i, Ci), δi) computed by the player Pi using δi is equal to the hash value
Hi = Hash(hkj, (crs, πj), (`i, Ci)) that Pj would compute if he gets the oracle-generated generated
flow (hpi, Ci) sent by Pi. So the first time we need to compute one of this values (Hi or H ′i), we
compute it as Hash(hkj, (crs, πj), (`i, Ci)), and if the other value needs to be computed, we just
sets it equal to the first one.
Therefore, in this case, δi is no more used, since a semi-adaptive adversary is not allowed to
corrupt Pi.
This game is indistinguishable from the previous one due to the correctness of the SPHF.

Game G7: Still in this case, we replace H ′i (and Hi if Pj received the oracle-generated flow gener-
ated flow sent by Pi) by a random value.
To prove this game is indistinguishable from the previous one, we consider two cases:
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– Pj received the oracle-generated flow generated by Pi. In this case, hkj is only used to
compute Hi = H ′i, and since δi is no more used, we can apply the pseudo-randomness game
on Ci to prove that Hi = H ′i is indistinguishable from random;

– Pj received a non-oracle-generated flow (hp′i, C
′
i). In this case hkj is only used to compute

H ′i = Hash(hkj, (crs, πi), (`i, Ci)) and Hi = Hash(hkj, (crs, πi), (`i, C
′
i)). In this case, we can

apply the strong pseudo-randomness game to prove that H ′i still looks random.
Game G8: Still in this case, we replace SKi ← H ′i xorHj by a random value, and if Pj also

received the oracle-generated flow sent by Pi, then we set SKj = SKi. This game is perfectly
indistinguishable from the previous one.

Game G9: In this game, if Pi receives a non-oracle-generated flow (hpj, Cj), then we extract πj
from Cj. If πj 6= πi, then we check if C.IsBinding`i(τ, Cj, πj) = 1 and aborts if this is not
the case. With an hybrid proof, applying the robustness property, for every Pi, this game is
indistinguishable from the previous one.

Game G10: In this game, we deal with the case when Pi receives a non-oracle-generated flow such
that the extracted πj is not equal to πi. In this case, instead of generating hki and hpi honestly
using HashKG and ProjKG, we generate (hpi, expki)

$← SimKG(crs, τ,⊥) and choose Hj
$← Π

and sets hki
$← Explain(hpi, (crs, πi), (`j, Cj), Hj, expki). With an hybrid proof, applying the KV-

indistinguishability property of EPHF, for every Pi, this game is indistinguishable from the
previous one.

Game G11: Still in the same case, we choose SKi at random and sets Hj ← H ′i xor SKi. This game
is perfectly indistinguishable from the previous one.

Game G12: We can now make use of the ideal functionality, without knowing the inputs from the
environment.

C New SPHF-Friendly Commitment Scheme

In this appendix, we completely describe our new commitment scheme, with the description of the
associated SPHF. Security proofs are also provided.

C.1 The Commitment Scheme

We start by a complete description of the commitment scheme:
– C.SetupT(1K) generates a cyclic group G of order p, together with three generators g, h, ĥ, a

tuple (α, β, γ, α′, β′, γ′) ← Z6
p, and H is a random collision-resistant hash function from some

family H. It then computes the tuple (c = gαĥγ, d = gβhγ, c′ = gα
′
ĥγ
′
, d′ = gβ

′
hγ
′
). It also

generates a random scalar t $← Zp and sets T = gt. The CRS crs is set as (g, h, ĥ, H, c, d, c′, d′, T )
and the trapdoor τ is the decryption key (α, α′, β, β′, γ, γ′) (a.k.a., extraction trapdoor) together
with t (a.k.a., equivocation trapdoor).
For C.Setup(1K), the CRS is generated the same way, but forgetting the scalars, and thus without
any trapdoor;

– C.Com`(M ), for M = (Mi)i ∈ {0, 1}m and a label `, works as follows: For i = 1, . . . ,m, it
chooses two random scalars ri,Mi

, si,Mi

$← Zp and set:

ei,Mi
= gri,Mi ui,Mi

= gsi,Mi vi,Mi
= ĥri,Mihsi,Mi wi,Mi

= (cri,Mi · dsi,Mi ) · (c′ri,Mid′si,Mi )ξ

ei,�Mi

$← G ui,�Mi
= T/ui,Mi

vi,�Mi

$← G wi,�Mi

$← Zp,

with ξ = H(`, (ei,b, ui,b, vi,b)i,b). The commitment is C = (ei,b, ui,b, vi,b, wi,b)i,b ∈ G8m, while the
opening information is the 2m-tuple δ = (ri,Mi

, si,Mi
)i ∈ Z2m

p .
– C.Ver`(C,M , δ) just checks all the above equalities (=);
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– C.Sim`(τ) takes as input the equivocation trapdoor, namely the scalar t, and outputs the tuple
C = (ei,b, ui,b, vi,b, wi,b)i,b and eqk = ((ri,b)i, (si,b)i,b), where, for i = 1, . . . ,m, ri,0, ri,1, si,0

$← Zp,
si,1 = t− si,0:

ei,0 = gri,0 ui,0 = gsi,0 vi,0 = ĥri,0hsi,0 wi,0 = (cri,0 · dsi,0) · (c′ri,0 · d′si,0)ξ

ei,1 = gri,1 ui,1 = gsi,1 = T/ui,0,1 vi,1 = ĥri,0hsi,1 wi,1 = (cri,1 · dsi,1) · (c′ri,1 · d′si,1)ξ;

– C.Open`(eqk, C,M ) simply extracts the useful values from eqk = s to make the opening value
δ = (ri,Mi

, si,Mi
)i in order to open to M = (Mi)i.

– C.Ext`(τ, C) outputs ⊥ if ui,0 · ui,1 6= T . It also outputs ⊥ if for some i, for both b = 0 and b = 1
or for none of them:

wi,b = eα+ξα
′

i,b · uβ+ξβ
′

i,b · vγ+ξγ
′

i,b .

Otherwise, for each i, there is exactly one bit b verifying the above equality; and it sets Mi to
this bit b, and returns the resulting message M = (Mi)i.

– C.IsBinding`(τ, C,M) outputs 1 if and only if{
wi,�Mi

6= eα+ξα
′

i,�Mi
· uβ+ξβ

′

i,�Mi
· vγ+ξγ

′

i,�Mi
for all i = 1, . . . ,m, if M 6=⊥

wi,b 6= eα+ξα
′

i,b · uβ+ξβ
′

i,b · vγ+ξγ
′

i,b for some i, for b = 0, 1, if M =⊥

Since the requirement on C.IsBinding is just to accept honestly generated commitments but to re-
ject a commitment with any messageM if the verification algorithm could accept another message
M ′, several definitions could be acceptable. But the above one is enough for our purpose. Then,
correctness and setup indistinguishability are straightforward to prove. Strong simulation indistin-
guishability, robustness and strong pseudo-randomness are proven in the next sections. But before
that, let us just give the detailed construction of the associated SPHFs and a variant of this first
scheme, called the second scheme.

C.2 SPHF

To construct SPHFs for our commitment schemes, we use the framework from [BBC+13b].

KV-SPHF. Let us consider a commitment C = (ei,b, ui,b, vi,b, wi,b)i,b under some label `. From the
definition, this is a commitment of M if, for i = 1, . . . ,m, (ei,Mi

, eξi,Mi
, ui,Mi

, uξi,Mi
, vi,Mi

, wi,Mi
) is a

linear combination of the rows, with coefficients (ri,Mi
, ri,Mi

ξ, si,Mi
, si,Mi

ξ), of the following matrix:

Γ =


g 1 1 1 ĥ c
1 g 1 1 1 c′

1 1 g 1 h d
1 1 1 g 1 d′

 . (1)

Therefore, the hashing key is a random tuple hk = (ηi,j)i,j
$← Zm×6p , the projection key is

hp = (hpi,k)i,k ∈ Gm×4 with:

hpi,1 = gηi,1 · ĥηi,5 · cηi,6

hpi,2 = gηi,2 · c′ηi,6

hpi,3 = gηi,3 · hηi,5 · cηi,6

hpi,4 = gηi,4 · d′ηi,6
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and the hash value is:

Hash(hk, (crs,M ), (`, C)) :=
m∏
i=1

(
e
ηi,1+ξηi,2
i,Mi

· uηi,3+ξηi,4i,Mi
· vηi,5i,Mi

· wηi,6i,Mi

)
=

m∏
i=1

(
hp

ri,Mi
i,1 · hpξri,Mii,2 · hpsi,Mii,3 · hpsi,Mii,4

)
=: ProjHash(hp, (crs,M ), (`, C), δ).

GL-SPHF. For a GL-SPHF, ξ is known in advance. So we can use a simpler matrix Γ . In addition,
we can re-use the same hp for all bits of the commitment by using a scalar ε of at least K bits (for
the sake of simplicity, we suppose that ε $← Zp). Also notice that ε is not required when m = 1.

More precisely, C is a commitment ofM , if, for i = 1, . . . ,m, (ei,Mi
, ui,Mi

, vi,Mi
, wi,Mi

) is a linear
combination of the rows, with coefficients (ri,Mi

, si,Mi
), of the following matrix:

Γ =

(
g 1 ĥ c · c′ξ
1 g h d · d′ξ

)
Therefore the hashing key is a random tuple hk = (η1, η2, η3, η4, ε)

$← Z5
p, the projection key is

hp = (hp1, hp2, ε) ∈ G2 × Zp with:

hp1 = gη1 · ĥη3 · (c · c′ξ)η4

hp2 = gη2 · hη3 · (d · d′ξ)η4

and the hash value is:

Hash(hk, (crs,M ), (`, C)) :=
m∏
i=1

(
eη1i,Mi

· uη2i,Mi
· vη3i,Mi

· wη4i,Mi

)εi
=

m∏
i=1

(
hp

ri,Mi
1 · hpsi,Mi2

)εi
=: ProjHash(hp, (crs,M ), (`, C), δ).

C.3 Preliminaries: w-Pseudo-Randomness

To prove that our commitment scheme is SPHF-friendly, we will first prove an intermediate property
we call w-pseudo-randomness, which is defined by the experiments Expw-ps-rand-b in Figure 7, where
the Remark 1 from the definitions in Appendix A.3 still applies. It roughly says that simulating
commitments with valid wi,�Mi

is indistinguishable from generating them with random wi,�Mi
. This

can be seen as a pseudo-randomness property for the implicit underlying 2-universal hash proof
system.

The proof is close (though slightly different) from the proof of vector-indistinguishability with
partial opening under chosen-ciphertexts attacks in [ABB+13]. More precisely, the proof first consists
in aborting as soon as the value ξ of a commitment queried to C.Ext or C.IsBinding is equal to
the value ξ in our experiment. Thanks to the collision resistance of the hashing function, this is
computationally indistinguishable. Then it consists in the following sequence of hybrid games: in
the hybrid game i (i = 0, . . . ,m),{

wj,�Mj

$← G for j = 1, . . . , i

wj,�Mj
← (c

rj,�Mj · dsj,�Mj ) · (c′rj,�Mj · d′sj,�Mj )ξ for j = i+ 1, . . . ,m

so that the hybrid game 0 is Expw-ps-rand-0A while the hybrid game m is Expw-ps-rand-1A . It remains to
prove that the hybrid game k is indistinguishable from the hybrid game k + 1. This is done by the
following sequence of subgames:
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Expw-ps-rand-b
A (K)

(crs, τ)
$← C.SetupT(1K)

(`,M , st)
$← AC.SCom·(τ,·),C.Ext·(τ,·),C.IsBinding·(τ,·,·)(crs)

for i = 1, . . . ,m do
ri,0, ri,1, si,0

$← Zp; si,1 ← t− si,0
ei,0 ← gri,0 ;ui,0 ← gsi,0 ; vi,0 = ĥri,0hsi,0

ei,1 ← gri,1 ;ui,1 ← gsi,1 ; vi,1 = ĥri,1hsi,1

ξ = H(`, (ei,b, ui,b, vi,b)i,b)
for i = 1, . . . ,m do

wi,Mi ← (cri,Mi · dsi,Mi ) · (c′ri,Mi · d′si,Mi )ξ
if b = 0 then

wi,�Mi ← (c
ri,�Mi · dsi,�Mi ) · (c′ri,�Mi · d′si,�Mi )ξ

else
wi,�Mi

$← G
C ← (ei,b, ui,b, vi,b, wi,b)i,b
δ ← (ri,Mi , si,Mi)i
return AC.SCom·(τ,·),C.Ext·(τ,·),C.IsBinding·(τ,·,·)(st, C, δ)

Fig. 7. w-pseudo-randomness

Game G0: This is the hybrid game i− 1. And then for all the indices j ≤ i− 1, wj,�Mj

$← G, while
for the indices j ≥ i, wj,�Mj

← (c
rj,�Mj · dsj,�Mj ) · (crj,�Mj · dsj,�Mj )ξ.

Game G1: In this game, we compute wi,�Mi
as:

wi,�Mi
= eα+ξα

′

i,�Mi
· uβ+ξβ

′

i,�Mi
· vγ+ξγ

′

i,�Mi

instead of
wi,�Mi

= (cri,�Mi · dsi,�Mi ) · (c′ri,�Mi · d′si,�Mi )ξ.
This modification is purely syntactical, and this game is perfectly indistinguishable from the
previous one.

Game G2: In this game, we pick vi,�Mi
at random, instead of computing it as vi,�Mi

= ĥri,�Mihsi,�Mi .
This game is indistinguishable from the previous one, under the DDH assumption. Indeed, given
a tuple (g, ĥ, ei,�Mi

, v′), we can set vi,�Mi
= v′ · hsi,�Mi ; and if this tuple is a DDH tuple, vi,�Mi

is
computed as in the previous game, and otherwise, it is computed as in this game. Notice that
the discrete logarithm ri,�Mi

of ei,�Mi
is not used, which enables to use the DDH assumption.

Game G3: In this game, we generate h as h ← ga, ĥ ← gâ, with a, â $← Zp. This modification is
purely syntactical and this game is perfectly indistinguishable from the previous one.

Game G4: Then, for all commitments C ′ = (e′j,b, u
′
j,b, v

′
j,b, w

′
j,b)j,b with label `′ queried to the oracle

C.Ext or C.IsBinding, each time we need to perform a test of the form:

wj′,b′
?= e′α+ξ

′α′

j′,b′ · u′β+ξ
′β′

j′,b′ · v′γ+ξγ
′

j′,b′ , (2)

where ξ′ = H(`′, (e′j,b, u′j,b, v′j,b)j,b), we reject the test as soon as: v′j′,b′ 6= u′aj′,b′ · e′âj′,b′ .
This game is statistically indistinguishable from the previous one. To prove it, we use a sequence
of hybrid games to add one by one this new test: for each commitment (in order of the queries
to C.Ext and C.IsBinding) and then each pair (j′, b′) (e.g., in lexicographical order). We remark
that the newly added test for some C ′, j′ and b′, the only information (from an information
theory point of view) the adversary has about α, α′, β, β′, γ, γ′ is at most:
– log c = α+ γâ and log c′ = α′ + γ′â from the definition of c and c′ (where log is the discrete

logarithm in base g)
– log d = β + γa and log d′ = β′ + γ′a from the definition of d and d′
– logwi,�Mi

= (α+ ξα′) log ei,�Mi
+(β+ ξβ′) log ui,�Mi

+(γ+ ξγ′) log vi,�Mi
, from the value of wi,�Mi

– and values of the form e′′α+ξ
′′α′

j,b ·u′′β+ξ
′β′

j,b · v′′γ+ξγ
′

j,b for commitments C ′′ = (e′′j,b, u
′′
j,b, v

′′
j,b, w

′′
j,b)j,b

with label `′′, queried before C ′. But in this case, necessarily, v′′j,b = u′′aj,b · e′′âj,b, since otherwise
this value would not have been computed. And so, this value can be computed by linear
combinations of the previous equations (which can be seen easily on the matrix below).
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Finally, we get that, from the adversary point of view, α, α′, β, β′, γ, γ′ are random values veri-
fying the following system of equations:


log c
log c′

log d
log d′

logwi,�Mi

 =


1 0 0 0 â 0
0 1 0 0 0 â
0 0 1 0 a 0
0 0 0 1 0 a

log ei,�Mi
ξ log ei,�Mi

log ui,�Mi
ξ log ui,�Mi

log vi,�Mi
ξ log vi,�Mi

 ·

α
α′

β
β′

γ
γ′

 .

Since ξ′ 6= ξ, if v′j′,b′ 6= u′aj′,b′ · e′âj′,b′ , then(
log e′j′,b′ ξ′ log e′j′,b′ log u′j′,b′ ξ′ log u′j′,b′ log v′j′,b′ ξ′ log v′j′,b′

)
is linearly independent of the rows of the above rectangular matrix, and so e′α+ξ

′α′

j′,b′ ·u′β+ξ
′β′

j′,b′ ·v′γ+ξγ
′

j′,b′

is completely random, from the adversary point of view. Therefore, with probability 1/p, wj′,b′ 6=
e′α+ξ

′α′

j′,b′ ·u′β+ξ
′β′

j′,b′ ·v′γ+ξγ
′

j′,b′ , and the test in Equation Equation (2) would also have failed. And adding
this new test is statistically indistinguishable.

Game G5: In this game, we remark that, from the adversary point of view, before wi,�Mi
is com-

puted, α, α′, β, β′, γ, γ′ are random values verifying the following system of equations:


log c
log c′

log d
log d′

 =


1 0 0 0 â 0
0 1 0 0 0 â
0 0 1 0 a 0
0 0 0 1 0 a

 ·

α
α′

β
β′

γ
γ′

 .

Since, with high probability, vi,�Mi
6= u′a

i,�Mi
· e′â

i,�Mi
(vi,�Mi

being chosen at random), then(
log ei,�Mi

ξ′ log e′
i,�Mi

log u′
i,�Mi

ξ′ log u′
i,�Mi

log v′
i,�Mi

ξ′ log v′
i,�Mi

)
is linearly independent of the rows of the above rectangular matrix, and so wi,�Mi

= e′α+ξ
′α′

i,�Mi
·

u′β+ξ
′β′

i,�Mi
· v′γ+ξγ

′

i,�Mi
is completely random, from the adversary point of view.

So, in this game, we replace wi,�Mi
by a random value in G, and this is statistically indistinguish-

able from the previous game.
Game G6: In this game, we now remove the extra tests introduced inG4. This game is statistically

indistinguishable from the previous one, using a proof similar to the one in G4 (except this time,
it is even easier, since wi,�Mi

gives no information on α, α′, β, β′, γ, γ′ to the adversary.
Game G7: In this game, we compute again vi,�Mi

as vi,�Mi
= ĥri,�Mihsi,�Mi , instead of picking it at

random. This game is computationally indistinguishable from the previous one under the DDH.
The proof is similar to the one for G1.
Finally, we remark that this game is exactly the hybrid game i.

As a consequence, each hybrid step just involves the DDH assumption.

C.4 Strong Simulation Indistinguishability

The strong simulation indistinguishability can be proven using the following sequence of games:

Game G0: This is the game Exps-sim-ind-1A (K) for strong simulation indistinguishability (for b = 1)
recalled in Figure 3.
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Game G1: In this game, for all queries C.SCom`(τ,M), we pick the values wi,�Mi
at random (for

all i = 1, . . . ,m). With an hybrid proof, applying the w-pseudo-randomness to all simulated
commitments, this game is indistinguishable from the previous one.

Game G2: In this game, for all queries C.SCom`(τ,M ), we pick vi,�Mi
at random, instead of com-

puting it as vi,�Mi
= ĥri,�Mihsi,�Mi . This game is indistinguishable from the previous one, under the

DDH assumption. Indeed, given a tuple (g, ĥ, ei,�Mi
, v′), we can set vi,�Mi

= v′ · hsi,�Mi ; and if this
tuple is a DDH tuple, vi,�Mi

is computed as in the previous game, and otherwise, it is computed
as in this game. Notice that the discrete logarithm ri,�Mi

of ei,�Mi
is not used, which enables to

use the DDH assumption.
This last game is actually exactly the game Exps-sim-ind-0A (K) for strong simulation indistinguisha-
bility (for b = 0) recalled in Figure 3.

C.5 Robustness

The robustness can be proven using the following sequence of games:

Game G0: This is the game ExprobustA (K) for robustness recalled in Figure 3.
Game G1: In this game, we answer all queries C.SCom`(τ,M) by C.Com`(M ). In other words,

we replace all simulated commitments by normal ones. This game is indistinguishable from the
previous one thanks to the strong simulation indistinguishability.

Game G2: In this game, we generate h as h← ga and ĥ← gâ, with a, â $← Zp. This modification
is purely syntactical and this game is perfectly indistinguishable from the previous one.

Game G3: In this game, we remark that if C.IsBinding`(τ, C,M ) returns 0, and ifM $← C.Ext`(τ, C),
then there exists i = i∗ such that:

wi∗,b = eα+ξα
′

i∗,b · uβ+ξβ
′

i∗,b · vγ+ξγ
′

i∗,b for b = 0, 1.

And so, we abort the game if vi∗,b 6= uai∗,b · eâi∗,b for b = 0 or b = 1. This game is statistically
indistinguishable from the previous one. The proof is similar to the one for G4 in the proof for
w-pseudo-randomness in Section C.3.
In this last game, we finally remark that vi∗,0 · vi∗,1/(eâi∗,0 · eâi∗,1) = uai∗,0 · uai∗,1 = ht. So if an
adversary breaks this last game, we can break the CDH for the tuple (g, h, T ), by not doing
this last check vi∗,b 6= uai∗,b · eâi∗,b (and so not knowing the discrete logarithm a of h) and simply
returning vi∗,0 · vi∗,1/(eâi∗,0 · eâi∗,0) as a candidate CDH value (recall that the discrete logarithm t
of T is no more used, while the discrete logarithm a of h is just used to abort the game).

C.6 Strong Pseudo-Randomness

To prove the strong pseudo-randomness, we use the following sequence of games:

Game G0: This game is the experiment Expc-s-ps-rand-0A .
Game G1: In this game, before computing H ′, we compute M ′ ← C.Ext`

′
(τ, C ′) and we abort if

C.IsBinding`
′
(τ, C ′,M ′) = 0.

This game is indistinguishable from the previous one thanks to the robustness.
Game G2: In this game, if M ′ 6=M , we replace H ′ by a random value.

This game is indistinguishable from the previous one thanks to the smoothness of the SPHF,
the fact that if M ′ 6=M and C.IsBinding`

′
(τ, C ′,M ′) = 1, then (`′, C ′) /∈ L(crs,M), and the fact

that H could have been computed as follows: δ ← C.Open`(eqk, C,M ) and H ← ProjHash(hp,
(crs,M ), (`, C), δ).

Game G3: In this game, we replace (C, eqk) $← C.Sim`(τ) by C $← C.Com`(M ′′) for some arbitrary
M ′′ 6=M . This game is indistinguishable thanks to strong simulation indistinguishability (since
eqk is not used, C.Sim could have been replaced by C.SCom with a M ′′ as message).
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Game G4: In this game, when M ′ 6=M , we replace H by a random value.
This game is indistinguishable from the previous one thanks to the smoothness of the SPHF,
and the fact thatM ′′ 6=M , C.IsBinding`(τ, C,M ′′) = 1 (since C is a real commitment toM ′′)
and so, that (`, C) /∈ L(crs,M).
Notice that we could not have done this if M ′ =M , since, in this case, we still need to use hk
to compute the hash value H ′ of C ′. We are handling this (tricky) case in the following games.

Game G5: Let C = (ei,b, ui,b, vi,b, wi,b)i,b. In this game, we compute vi,�M ′′i as vi,�M ′′i = ĥ
r
i,�M′′

i h
s
i,�M′′

i

instead of picking it at random in G, for all i. This game is indistinguishable from the previous
one, under the DDH assumption. Indeed, given a tuple (g, ĥ, ei,�M ′′i , v

′), we can set vi,�M ′′i =

v′ · hsi,�M′′i ; and if this tuple is a DDH tuple, vi,�M ′′i is computed as in this game, and otherwise,
it is computed as in the previous game. Notice that the discrete logarithm ri,�M ′′i of ei,�M ′′i is not
used, which enables to use the DDH assumption.

Game G6: In this game, we replace H by a random value, in the case M ′ =M . So now H will
be completely random, in all cases (since it was already the case when M ′ 6=M ).
Let C = (ei,b, ui,b, vi,b, wi,b)i,b and C ′ = (e′i,b, u

′
i,b, v

′
i,b, w

′
i,b)i,b. And let ξ = H(`, (ei,b, ui,b, vi,b)i,b)

and ξ′ = H(`′, (e′i,b, u′i,b, v′i,b)i,b). Finally, we write r′i,b = log e′i,b and s′i,b = log u′i,b for all i, b, log
being the discrete logarithm in base g. There are two cases:
1. for all i, v′i,Mi

= ĥr
′
i,Mi · hs

′
i,Mi . In this case, since C ′ extracts to M , this means that

w′i,Mi
= (e′α+ξ

′α′

i,Mi
· u′β+ξ

′β′

i,Mi
· v′γ+ξ

′γ′

i,Mi
),

and so from the definition of c and d, we have that:

w′i,Mi
= (cr

′
i,Mi · ds

′
i,Mi ) · (c′r

′
i,Mi · d′s

′
i,Mi )ξ.

This means that (`′, C ′) ∈ L(crs,M), and its hash value H ′ could be computed knowing only
hp, (r′i,Mi

)i and (s′i,Mi
)i. Therefore, the hash value H of C looks random by smoothness.

2. for some i, v′i,Mi
6= ĥr

′
i,Mi · hs

′
i,Mi . Then since vi,Mi

= ĥri,Mi · hsi,Mi , for the KV-SPHF (in
Section C.2) the rows of the matrix Γ in Equation 1 (page 24) and the two following vectors

(ei,Mi
, eξi,Mi

, ui,Mi
, uξi,Mi

, vi,Mi
, wi,Mi

)

(e′i,Mi
, e′ξ

′

i,Mi
, u′i,Mi

, u′ξ
′

i,Mi
, v′i,Mi

, w′i,Mi
)

are independent. Then, even given access to the hash value H ′ of C ′ and the projection key
hp, the hash value H of C looks perfectly random.

The following games are just undoing the modifications we have done, but keeping H picked at
random

Game G7: Let C = (ei,b, ui,b, vi,b, wi,b)i,b. In this game, we pick vi,�M ′′i at random, instead of com-
puting it as vi,�M ′′i = ĥ

r
i,�M′′

i h
s
i,�M′′

i , for all i. This game is indistinguishable from the previous one,
under the DDH assumption. Indeed, given a tuple (g, ĥ, ei,�M ′′i , v

′), we can set vi,�M ′′i = v′ · hsi,�M′′i ;
and if this tuple is a DDH tuple, vi,�M ′′i is computed as in the previous game, and otherwise, it
is computed as in this game. Notice that the discrete logarithm ri,�M ′′i of ei,�M ′′i is not used, which
enables to use the DDH assumption.

Game G8: In this game, we now compute C as originally using C.Sim. This game is indistinguish-
able thanks to strong simulation indistinguishability.

Game G9: In this game, if M ′ 6=M , we compute H ′ as originally (as the hash value of C ′).
This game is indistinguishable from the previous one thanks to the smoothness of the SPHF,
and the fact that if M ′ 6=M and C.IsBinding`

′
(τ, C ′,M ′) = 1, then (`′, C ′) /∈ L(crs,M).

Game G10: In this game, we do not extractM ′ from C ′ nor abort when C.IsBinding`(τ, C,M ′) = 0.
Thanks to the robustness, this game is indistinguishable from the previous one.
We remark that this game is exactly the experiment Expc-s-ps-rand-1A .
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C.7 Details on the Comparison in Section 5.2

For the Canetti-Fischlin commitment scheme [CF01], we use a Pedersen commitment as a chameleon
hash and multi-Cramer-Shoup ciphertexts to commit to multiple bits in a non-malleable way
(see [ABB+13] for a description of the multi-Cramer-Shoup encryption scheme). We do not know a
SPHF on such commitment, since the opening information of a Pedersen commitment is a scalar.

For the complexity of [ACP09], we consider a slight variant without one-time signtaure but using
labels and multi-Cramer-Shoup ciphertexts, as in the scheme in [ABB+13]. The size of the projection
key is computed using the most efficient methods in [ABB+13].

Commitments in [CF01, ACP09, ABB+13] were not described as without erasures, but slight
variants of them are, as explained in Section 2.4.

Finally, we always suppose there exists a family of efficient collision-resistant hash functions (for
efficiency reason, since DDH implies the existence of such families).

D Adaptive OT and PAKE

In this appendix, we describe our OT and PAKE protocols, with the complete security proofs: security
holds in the UC-framework, against adaptive adversaries, without requiring reliable erasures. They
make use of non-committing encryption.

D.1 Non-Committing Encryption Scheme

A νNCE-bit non-committing encryption scheme is defined by six algorithms:
– NCE.Setup(1K) generates the parameters NCE.param for the scheme, which taken as argument

of the other algorithms (often implicitly);
– NCE.KG(NCE.param) generates an encryption key ek together with a decryption key dk;
– NCE.Enc(ek, R) encrypts the plaintext R ∈ {0, 1}νNCE into the ciphertext χ;
– NCE.Dec(dk, χ) decrypts the ciphertext χ, and output the corresponding plaintext R;
– NCE.Sim(NCE.param) generates an encryption key ek, a ciphertext χ together with an equivo-

cation key eqkNCE;
– NCE.Open(eqkNCE, ek, χ, R) generates random coins rKG for NCE.KG and rEnc for NCE.Enc corre-

sponding to R.
It has to verify the following properties:
– Correctness. For any parameter NCE.param $← NCE.Setup(1K), any honestly generated key pair

(ek, dk)
$← NCE.KG(NCE.param), and any plaintext R ∈ {0, 1}νNCE , we have that: NCE.Dec(dk,

NCE.Enc(ek, R)) = R with overwhelming probability;
– Simulation indistinguishability. One cannot distinguish real keys (ek, dk) and ciphertexts χ (us-

ing NCE.KG and NCE.Enc) from simulated ones (using NCE.Sim and NCE.Open) even with
access to the associated random coins. A scheme is said (t, ε)-simulation-indistinguishable if
Advnc-sim-ind(t) ≤ ε (see the experiments Expnc-sim-ind-bA (K) in Figure 8).
This definition is a straightforward extension of the definition in [CDMW09] to multiple bits

messages. As in [CDMW09], the definition directly implies that the scheme is semantically secure.
A νNCE-bit non-committing encryption scheme can be constructed using any single-bit non com-

mitting encryption scheme (such as the one in [CDMW09]) νNCE times.

D.2 3-Round Oblivious Transfer

In this section, we present our 3-round OT, UC-secure against adaptive adversaries, without erasures.

Remark 2. Though the new protocol uses our new commitment scheme, it could alternatively use
the commitment scheme in [ABB+13], by just replacing wi,b by the last part of the Cramer-Shoup
ciphertexts in these schemes. The proof would be very similar. This replacement may yield a more
efficient scheme (under SXDH however) when νm is large, since the projection key in [ABB+13]
is shorter than for our scheme and multiple projection keys need to be sent due to the generic
transformation of SPHF to EPH.
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Expnc-sim-ind-bA (K)

NCE.param
$← NCE.Setup(1K)

(R, st)
$← A(NCE.param)

if b = 0 then
rKG, rEnc

$←
(ek, dk)← NCE.KG(NCE.param; rKG)
χ← NCE.Enc(ek, R; rEnc)

else
(ek, χ, eqkNCE)

$← NCE.Sim(NCE.param)

(rKG, rEnc)
$← NCE.Open(eqkNCE, ek, χ,R)

return A(st, ek, dk, χ, rKG, rEnc)

Fig. 8. Simulation Indistinguishability

Construction. The scheme is depicted in Figure 9. Our 1-out-of-k OT protocol uses a NCE channel
of νNCE = 2νk + kνm bits, where k = 2νk , for νm-bit strings . This channel is used to send a random
value R. The last kνm bits of R are k νm-bit values R1, . . . , Rk. These values are used to mask
the messages m1, . . . ,mk sent by the sender, to be able to reveal the correct messages, in case of
corruption of the sender (when both the sender and the receiver were honest at the beginning, and
so when m1, . . . ,mk were completely unknown to the simulator).

The first 2νk bits of R are used to make the commitment C (which is normally simulated when
the receiver is honest) perfectly binding to the revealed index s, in case of corruption of the receiver
(when both the sender and the receiver were honest at the beginning, and so when s was completely
unknown to the simulator). More precisely, they are used to partially hide the last component of
commitments: the wi,b; the bit R2i+b−1 indicates whether wi,b has to be inverted or not before use.

CRS: crs $← C.Setup(1K) and NCE.param
$← NCE.Setup(1K).

Pre-flow:
1. Pi generates (ek, dk) $← NCE.KG(NCE.param)
2. Pi sends ek to Pj

Index query on s:
1. Pj chooses a random R

$← {0, 1}νNCE and computes χ $← NCE.Enc(ek, R)

2. Pj computes (C = ((eI,b, uI,b, vI,b, wI,b)I,b), δ)
$← C.Com`(s) with ` = (sid, ssid, Pi, Pj)

3. Pj sets w′I,b = wI,b if R2I+b−1 = 0 and w′I,b = 1/wI,b otherwise, for I = 1, . . . , νk and b = 0, 1;
and sets C′ = ((eI,b, uI,b, vI,b, w

′
I,b)I,b)

4. Pj sends χ and C′ to Pi
Database input (m1, . . . ,mk):
1. Pi computes R $← NCE.Dec(dk, χ)
2. Pi sets wI,b = w′I,b if R2I+b−1 = 0 and wI,b = 1/w′I,b otherwise, for I = 1, . . . , νk and b = 0, 1;

and sets C = ((eI,b, uI,b, vI,b, wI,b)I,b)
3. Pi sets (Rt)t to the last kνm bits of R (Rt being a νm-bit variable)
4. Pi computes hkt $← HashKG(crs), hpt ← ProjKG(hkt, crs, (`, C)),

Kt ← Hash(hkt, (crs, t), (`, C)), and Mt ← Rt xorKt xormt, for t = 1, . . . , k
5. Pi sends (hpt,Mt)t=1,...,k

Data recovery:
Upon receiving (hpt,Mt)t=1,...,k, Pj computes Ks ← ProjHash(hps, (crs, s), (`, C), δ)
and gets ms ← Rs xorKs xorMs, with (Rt)t the last kνm bits of R.

Fig. 9. UC-Secure 1-out-of-k OT from our SPHF-Friendly Commitment for Adaptive Adversaries

Security Proof. The proof is similar to the semi-adaptive one in Section B.1, except with games
dealing with honest receivers talking to honest senders. More precisely, the game G5 is no more
indistinguishable from the previous one, and we replace it with the following sequence of games:

Game G0: When simulating an honest sender Pi, instead of honestly computing the keys
(ek, dk)

$← NCE.KG(NCE.param), we use the simulation: (ek, χ, eqkNCE)
$← NCE.Sim(NCE.param),

and (rKG, rEnc)
$← NCE.Open(eqkNCE, ek, χ, R) with some random R

$← {0, 1}νNCE . Finally, we set
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(ek, dk) to
NCE.KG(NCE.param; rKG), which should not change ek, otherwise the non-committing encryp-
tion scheme would not be simulation indistinguishable. Then, if Pj is not corrupted when he
received the pre-flow from Pi, we use the previously computed χ instead of computing a new
one.
This game is indistinguishable from the previous one thanks to simulation indistinguishability.
We remark that the computation of dk using rKG is actually only used when Pi receives a flow
from a corrupted receiver, in which case he needs to be able to decrypt the ciphertext χ sent by
the adversary. In all cases, dk and rKG only need to be computed in case of corruption of Pi and
Pj, and so R may be modified depending on the inputs learned by the corruption (inputs which
are already known in this game but will not be known at in the last game). Intuitively, the only
restriction is to ensure that R looks random to the adversary.

Game G1: We still deal with an honest sender Pi. If Pi receives an honest flow from Pj, we now
pick Mt at random, and then set Rt = Mt xorKt xormt (for all t). Recall that Rt is part of R
and only needs to be revealed in case of corruption of Pi and Pj.
This game is perfectly indistinguishable from the previous one.
We remark that, in this game, as long as Pi and Pj remains uncorrupted, all flows seen by the
adversary are completely independent of the messages mt and the hash values Kt.

Game G2: We now deal with the case where an honest receiver Pj gets corrupted while its
associated sender Pi is still honest. If the corruption is before Pi sent his flow, there is nothing
to do. Let us focus on the case where the corruption is after Pi sent his flow.
In this case, we learn the index query s (we already knew). We write s =M , and we flip the bits
R2I+�MI+1, in such a way this makes the resulting commitment binding toM . Indeed, wI,b = w′I,b
if R2I+b−1 = 0 and wI,b = 1/w′I,b otherwise; and so flipping this bits make wI,�MI

invalid, while
wI,MI

stays valid.
Then, we can just compute the state accordingly to this commitment, i.e., compute Kt as the
hash value of this commitment, then compute Rt = Mt xorKt xormt, and finally we can set
(rKG, rEnc)

$← NCE.Open(eqkNCE, ek, χ, R). We recall that Rt is a part of R, and that Pi being
still honest, we know all mt.
This game is indistinguishable from the previous one, thanks to the w-pseudo-randomness of
our commitment scheme (see Figure 7).

We then remark that after this game, when two honest users stay honest for the whole time, the
simulator does not need their inputs, since they are only required in case of corruption. In addition,
when one user P gets corrupted in a sub-session where both users were initially honest, then the
revealed internal state of P corresponds nearly to the one a real user following the protocol with
the real inputs would get. More precisely, if we omit the fact that ek and χ are simulated, this is
exactly the case for an honest sender Pi. For an honest Pj, there is only one difference: the values
vi,b of the commitments are all “valid” (i.e., vi,b = ĥlog ei,b · hlog ui,b) while for a real user vi,�Mi

would
be completely random. However, the resulting commitment is still perfectly binding, which is very
important to be able to explain hkt for t 6= s in case of later corruption of the sender Pi.

So, the original sequence of games for semi-adaptive adversaries (from G7 will also work with
minor modifications. Here are the modifications:
– in G7, we do not extract or call C.IsBinding on a commitment C generated by an honest receiver

(even if the receiver is now corrupted).
– in G8, we only apply the modifications in this game when at least one player is corrupted. The

modifications still makes this game indistinguishable from the previous one, even when C was
generated by an honest receiver, since such commitments are also perfectly binding (as recalled
above).
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Table 2. Comparison of 1-out-of-k OT UC-Secure against Adaptive Adversaries, without Erasures, with k = 2νk

Rounds Communication Complexity

[GWZ09] ≥8 (k + 1) ·m×NCE+ 3 · (2k + 2k) ·m×G+ (2k + 2k) ·
(
com(4×G) + 2νk ×G+ νk × ZK+ 4mνk ×G

)
1st 4 (k + 1) ·m×NCE+ 3 · (2k + 2k) ·m×G+ (2k + 2k) ·

(
7νk ×G+m · (2×G+ (Zp)b+ 2)

)
2nd 3 (km+ 2νk)×NCE+ 7νk ×G+m ·

(
2×G+ (Zp)b+ 2

)
a number of rounds
b this element in Zp is not required when νm = νk = 1
Legend:

– ZK: zero-knowledge proof used in [GWZ09].
– com(x): communication complexity of a UC-commitment scheme for x bits. This is used to generate the CRS for
the scheme in [PVW08]. If this commitment is interactive, this increases the number of required rounds.

– x×NCE: x bits sent by non-committing encryption scheme.

D.3 Comparison of Adaptive OT Schemes

In Table 2, we compare our OT schemes with the DDH-based OT in [GWZ09]. The QR-based one
in less efficient anyway. A summary of this table can be found in Section 6.1.

We suppose we use the non-committing encryption (NCE) scheme proposed in [CDMW09] (which
is 2-round) and the ElGamal encryption as simulation encryption scheme for the NCE scheme and
the somewhat NCE construction (which also requires a simulation encryption scheme). So all our
schemes are secure under DDH (plus existence of collision resistant hash functions and symmetric
key encryption, but only for efficiency, since DDH implies that also).

In the comparison, we extend the schemes in [GWZ09] to 1-out-of-k schemes using the method
explained in Section 6.1 and the 1-out-of-k version of the schemes of Peikert et al. [PVW08], which
consists in doing νk schemes in parallel and secret sharing the messages (where k = 2νk).

To understand the costs in the table, recall that a 2l-somewhat non-committing encryption
scheme works as follows: one player sends a l-bit value I using a full NCE scheme (2 rounds)
together with 2l public keys all samples obviously except the Ith one, and then the other player
sends 2l ciphertexts samples obliviously except the Ith one which contains a symmetric key K. Then
to send any message through this 2l-somewhat NCE channel, a player just sends 8 messages all
random except the Ith one which is an encryption of the actual message under K. This means that
if the original semi-adaptive protocol is x-round, then the protocol resulting from the transformation
of Garay et al., is (x + 2)-round; and this costs a total of 3 · 2l group elements, in addition of the
group elements for the l-bit non-committing encryption.

D.4 Password-Authenticated Key Exchange

In this section, we present two PAKE constructions UC-secure against adaptive adversaries: a (very)
inefficient 3-round PAKE and an efficient TODO-round PAKE Remark 2 (page 30) also applies.
Please notice that slightly more efficient variants can be constructed using more rounds, since if the
projection keys can be sent after the commitments, only GL-EPHFs are needed and GL-EPHFs are
much more efficient than KV-EPHFs. This remark also holds for our semi-adaptive PAKE.

Construction Optimized for Round Complexity. The scheme is depicted in Figure 10. It uses
a NCE channel with νNCE bits, where νNCE is the number of bits exchanged by the two players in the
semi-adaptive protocol (plus a one-time signature). The value R is divided in two parts R1 and R2:
the first one is used to mask the first flow, while the second one is used to mask the second flow.

The security proof is straightforward from the semi-adaptivity of the underlying PAKE.
The scheme can be improved by replacing the KV-EPHF to hash Cj by a GL-EPHF, which

is possible since Pi receives Cj before computing hpj. Even with this modification, this protocol
remains highly inefficient.
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CRS: crs $← C.Setup(1K).
Pre-flow (by Pi):
1. Pi generates (vk, sk) $← OT.KG(1K)

2. Pi generates (ek, dk) $← NCE.KG(NCE.param)
3. Pi sends vk and ek to Pj

First flow (by Pj with password πj):
1. Pj chooses a random R

$← {0, 1}νNCE and computes χ $← NCE.Enc(ek, R)
2. Pj sets R1 to the first part of R and R2 to the second part (see text)
3. Pj generates hkj $← HashKG(crs), hpj ← ProjKG(hkj , crs,⊥)
4. Pj computes Cj $← C.Com`j (πj) with `j = (sid, ssid, Pi, Pj , vk, ek, hpj)
5. Pj sends χ, Fj = (hpj , Cj) xorR1 to Pi

Second flow (by Pi with password πi):
1. Pi computes R← NCE.Dec(ek, χ)
2. Pi sets R1 to the first part of R and R2 to the second part (see text)
3. Pi computes (hpj , Cj)← Fj xorR1

4. Pi generates hki $← HashKG(crs), hpi ← ProjKG(hki, crs,⊥)
5. Pi computes Ci $← C.Com`i(πi) with `i = (sid, ssid, Pi, Pj , vk)

6. Pi computes σ $← OT.Sign(sk, (sid, ssid, Pi, Pj , ek, χ, hpj , Cj , hpi, Ci))
7. Pi sends Fi = (hpi, Ci, σ) xorR2 to Pj

Key computation for Pi:
1. Pi computes H ′i ← ProjHash(hpj , (crs, πi), (`i, Ci), δi)

and Hj ← Hash(hki, (crs, πi), (`j , Cj)) with `j = (sid, ssid, Pj , Pi, hpj , vk, ek, hpj)
2. Pi computes SKi = H ′i xorHj

Key computation for Pj:
1. Pj computes (hpi, Ci, σ)← Fi xorR2

2. Pi checks that OT.Verify(vk, σ, (sid, ssid, Pi, Pj , ek, χ, hpj , Cj , hpi, Ci)) = 1, and aborts if it is not the case
3. Pi performs a computation similar to the one of Pj to get SKj .

Fig. 10. UC-Secure PAKE from an SPHF-Friendly Commitment for Adaptive Adversaries

Construction Optimized for Communication Complexity. This construction is actually
generic and can transform any PAKE UC-secure against semi-adaptive adversaries into a UC-secure
PAKE UC-secure against adaptive adversaries.

Basically it works as follows. First, the two players exchanged verification keys vki and vkj for
a signature scheme. Then, as in [BCL+05], each player signs his flows together with the previous
flows, using his signature key. This provides a kind of weakly authenticated channel.

Then, the two players run m semi-adaptive PAKE, one for each bit π[k] of their password, each
PAKE being run inside a 4-somewhat non-committing encryption scheme. In addition, one player
will send a K-bit random value R using a fully non-committing encryption scheme. The final shared
key is the xor of all keys of all PAKE protocols and R.

If we ignore the problems of non-authenticated channels (solved using signatures), when m = 1
this protocol is an efficient variant of the Garay et al. [GWZ09] transformation, where we only use
the somewhat non-committing encryption channels to deal with the inputs. Remark that the original
transformation would have required a 2K+2-somewhat non-committing encryption scheme, which is
impossible to realize.

The security proof is very similar to the one for the transformation of Garay et al. [GWZ09].
Basically, when both parties are hones, in each 4-somewhat non-committing encryption channel, the
simulator puts 4 versions of the protocol: depending which party gets corrupted first and which was
its password bit π[k]. In case of corruption, it reveals the correct version of the protocol and chooses
R to match the revealed shared key.

E A Construction of EPHF with Hint and Application to OT

In this section, we propose an efficient GL-EPHF with hint from any SPHF constructed using the
generic framework of [BBC+13b] in some cyclic group G, as long as τ enables to compute the discrete
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logarithms (in some base g) of the matrix Γ (in the framework). We then use this new construction
to propose a variant of our semi-adaptive OT.

In the sequel, we use the same notations as in [BBC+13b].
We suppose that we have a symmetric bilinear group (p,G, g,GT , e), where e is a bilinear map

from G × G to GT . Notice that we cannot directly use our SPHF-friendly commitment or the one
in [ABB+13], since in such a group the DDH assumption does not hold. But we can easily adapt
this SPHF-friendly commitments to symmetric groups.

E.1 Recall of the Generic Framework

In the generic framework of [BBC+13b], an SPHF is defined by a full-rank matrix Γ ∈ Gk×n
1 (which

depends on crs for KV-SPHF, and on crs and the word C for GL-SPHF), a function Θ : X → G1×n

(which depends on full-aux and in case of GL-SPHF, also possibly on an additionnal value ε which
is a part of hp and hk4). We have the following property, for any aux and any C ∈ X , with high
probability over ε (if ε is used):

C ∈ Lfull-aux ⇐⇒ ∃λ ∈ Zkp, Θ(C) = λ� Γ,

where ⊕ and � are the natural operations on the field Zp and the groups G and GT (details can be
found in [BBC+13b]). In addition λ can efficiently be computed from the witness of C in Lfull-aux.

The hashing key hk of the SPHF is a random vector α ∈ Zn
p (or hk = (α, ε) when 6= is used),

while the projection key hp is the vector Γ �α (or hp = (γ, ε) when 6= is used). And the hash value
is:

Hash(hk, full-aux, C) := Θ(C)�α = λ� γ =: ProjHash(hp, full-aux, C, w).

In the sequel, we ignore ε for the sake of simplicity.

E.2 GL-EPHF with Hint

In this section, we describe our GL-EPHF with Hint.
Basically, we want to be able to choose hp = γ, given C, such that given any hash value H, we

can find α such that:

Γ �α = γ

Θ(C)�α = H.

Recall that the second one is much harder, because C is generated by the adversary and we have
no way to know its discrete logarithm.

To solve this issue, instead of choosing α at random in Znp , we choose it in Gn. Now, the operation
� above corresponds to the pairing operation, and H and γ are in Gk

T .
Let us suppose that Γ is a full-rank matrix of k = n− 1 rows and n columns. If Γ has less than

n− 1 rows, we can always add “fake” random rows to Γ , and Θ(C) will still be linearly independent
of the rows of Γ .

Let us write Γ̂ the matrix containing the discrete logarithm of the coefficients of Γ . Let M be

the following square matrix: M =

(
Γ̂

Θ(C)

)
. All its entries are in Zp except in the last row.

Let M̃ be the comatrix of M and detM be the determinant of M . We remark that detM ∈ G
and the entries of M̃ are all in G except its last column. In addition M̃ and detM can be computed
efficiently if we know Γ̂ . Finally, we have M � M̃ = (detM)I where I is the identity matrix.

Then SimKG chooses a random vector γ̂ ∈ Zkp and sets:

hp = γ := γ̂ � (detM) H ′ := detM expk := (γ̂, H ′, M̃).

4 This ε can be used to do efficient conjunctions of SPHF as in Section C.2. It is not present in the original framework, but
can easily be added to it.
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We can compute the hashing key hk = α for a value H ∈ GT with discrete logarithm hint in base
H ′ = detM (i.e., H = H ′ � hint), as:

α = M̃ �
(
γ̂
hint

)
∈ Gn.

Indeed, we have:

M �α = H ′ �
(
γ̂
hint

)
=

(
γ
H

)
.

E.3 Application to OT

In OT, if we slightly change the protocol in Section 4.2, we use our previous construction of GL-EPHF
with hint. Essentially, what we need is to be able to compute the discrete logarithm hint of all the
hash values which need to explain.

Therefore, instead of computingMt = Kt xormt, we just compute:Mt = Kmt
t , assuming messages

mt are small (for decryption) and non-zero. To decrypt, the receiver needs to find the discrete
logarithm of Mt in base Kt. For that purpose, he can use the variant of the Pollard’s kangaroo
method in [MT09]. The decryption complexity is therefore O(2νm/2). As for the generic version, we
can use longer messages (than the one which could be decrypted using Pollard’s algorithm) by using
multiple projection keys and multiple Mt and Kt.

For the security proof, we can generate Mt as H ′rt with rt random, and when we need to explain
it for mt, we remark that:

Mt = (H ′rt/mt)mt ,

and so we can use the explainability property of the GL-EPHF with H = H ′rt/mt and hint = rt/mt.
Recall that the generic version in Section 4.2 requires the simulator to do a brute force of 2ν

operations, where ν is the size of hash value. Here, the receiver needs to do O(2ν/2) operations. This
saves a factor 2 and the proof is now tighter in some way. But unfortunately, the fact that the DDH
assumption does not hold and that we need to use DLin variants of our protocols makes this protocol
only roughly as efficient as the original one.

Designing a more efficient GL-EPHF with hint based, e.g., on SXDH is an open problem.
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