
Selecting Elliptic Curves for Cryptography:
An Efficiency and Security Analysis

Joppe W. Bos, Craig Costello, Patrick Longa and Michael Naehrig

Microsoft Research, USA

Abstract. We select a set of elliptic curves for cryptography and analyze our selection from a
performance and security perspective. This analysis complements recent curve proposals that
suggest (twisted) Edwards curves by also considering the Weierstrass model. Working with
both Montgomery-friendly and pseudo-Mersenne primes allows us to consider more possibili-
ties which improves the overall efficiency of base field arithmetic. Our Weierstrass curves are
backwards compatible with current implementations of prime order NIST curves, while pro-
viding improved efficiency and stronger security properties. We choose algorithms and explicit
formulas to demonstrate that our curves support constant-time, exception-free scalar multiplica-
tions, thereby offering high practical security in cryptographic applications. Our implementation
shows that variable-base scalar multiplication on the new Weierstrass curves at the 128-bit secu-
rity level is about 1.4 times faster than the recent implementation record on the corresponding
NIST curve. For practitioners who are willing to use a different curve model and sacrifice a
few bits of security, we present a collection of twisted Edwards curves with particularly efficient
arithmetic that are up to 1.37, 1.27 and 1.25 times faster than the new Weierstrass curves at the
128-, 192- and 256-bit security levels, respectively. Finally, we discuss how these curves behave
in a real world protocol by considering different scalar multiplication scenarios in the transport
layer security (TLS) protocol.

1 Introduction

The first release of a cryptographic standard specifying elliptic curves for use in practice dates
back to 2000 [19]. Nowadays, roughly one out of ten systems on the publicly observable internet
offers cipher suites in the Secure Shell (SSH) and Transport Layer Security (TLS) protocols
that contain elliptic curve based cryptographic algorithms [14]. Most elliptic curve standards
recommend curves for different perceived security levels. These curves are either defined over
prime fields or binary extension fields; on the internet, however, the deployed elliptic curves
are mostly defined over prime fields [14]. This can be partially explained by the increasing
skepticism towards the security of elliptic curves defined over binary extension fields (justified
by recent progress on solving the discrete logarithm problem on such curves [23]). Therefore,
in this work, we only consider elliptic curves defined over prime fields.

Recently, part of the cryptographic community has been looking for alternatives to the cur-
rently deployed elliptic curves that may offer better performance and provide stronger overall
security (see for example an evaluation of recent curve candidates in [10]). The urge to change
curves has been fueled by the recently leaked NSA documents, which suggest the existence of
a back door in the Dual Elliptic Curve Deterministic Random Bit Generator [52]. Although
cryptographers have suspected this at least as early as in 2007 [49], these recent revelations
have fueled a controversy on whether the widely deployed NIST curves [54] should be replaced
by curves with a verifiably deterministic generation. Besides such security concerns, there has
been significant progress related to both efficiency and security since the initial standardiza-
tion of elliptic curve cryptography. Notable examples are algorithms protected against certain
side-channel attacks, different “special” prime shapes which allow faster modular arithmetic,

2 Joppe W. Bos, Craig Costello, Patrick Longa and Michael Naehrig

and a larger set of curve models from which to choose. For example, in 2007, Edwards [22]
discovered an interesting normal form for elliptic curves, now called the Edwards model, which
was introduced to cryptographic applications by Bernstein and Lange [9]. A generalization of
this curve model, known as the twisted Edwards model [6], facilitates the most efficient curve
arithmetic [32]. Such (twisted) Edwards curves also have other attractive properties: they
may be selected to support a complete addition law and are compatible with the Montgomery
model, which supports efficient Montgomery ladder computations [44]. However, twisted Ed-
wards curves cannot have a prime number of rational points over the base field, and they
are therefore incompatible with the prime-order Weierstrass curves used in all of the current
cryptographic standards [19, 45, 54].

Related Work. The NIST curves [54] have been included in numerous standards (e.g. [19, 45])
and are deployed in many security protocols. The most recent speed record on the NIST curve
which aims to provide 128-bit security is due to Gueron and Krasnov [28]. Alternatives to the
NIST curves have been suggested by the German working group Brainpool [21]; their curve
choices followed additional security requirements, one of which demands verifiably pseudo-
random curve generation. Another alternative curve has been proposed by Bernstein [4]; this
is a Montgomery curve, called Curve25519, which allows efficient computation of ECDH using
the Montgomery ladder at the 128-bit security level. It was later shown by Bernstein et al. [7]
that a twisted Edwards curve, birationally equivalent to Curve25519, can be used for efficient
elliptic curve signature generation and verification. Recently, Bernstein and Lange started a
project to select and analyze secure elliptic curves for use in cryptography: see [10] for a list
of the security assessments the project performs and the requirements it imposes. A range
of curves, targeting different security levels, is also presented in [10], mostly analogous to
Curve25519. Following this, several new curves satisfying the requirements from [10], which
facilitate both the twisted Edwards and Montgomery form, were proposed by Aranha et al. [2].

Motivation and Rationale. The new curves presented in [10, 2] are all efficient and secure
elliptic curves ready to be used in cryptography. This prompts the question as to why we should
perform an efficiency and security analysis for a set of new curves. It is our opinion that not
all options for prime fields and elliptic curve models have been considered in the recent curve
proposal projects (either because they are overlooked or do not fit the requirements set by the
project). Our goal is to rigorously analyze all of these different aspects from both a security
and efficiency perspective, in hope that this paper helps practitioners better understand (and
correctly implement) the choices that lie in front of them. Abandoning a set of standard
curves demands a judicious selection of new curves, since this cannot be done too frequently
if widespread adoption is desired. In that light, it is our opinion that one should consider
all of the options available. For example, in contrast to [10, 2], our selection includes prime
order Weierstrass curves. Just as the almost-prime order twisted Edwards curves have their
practical advantages, we argue that there are also benefits to choosing prime order Weierstrass
curves: the absence of small torsion simplifies the point/input validation process, and (over a
prime field of fixed length) does not sacrifice any bits of security with respect to attacks on
the underlying elliptic curve discrete logarithm problem (ECDLP). In addition, such curves
are backwards compatible with current implementations, and could be integrated into existing
implementations by simply changing the curve constant and (in some cases) field arithmetic.

We investigate the selection of prime moduli that allow efficient modular arithmetic. As
in [4, 32, 39, 13, 10, 2], we study pseudo-Mersenne primes of the form 2α−γ, but also primes of
the form 2α(2β−γ)−1 that can be used to accelerate Montgomery arithmetic [43] as used in [29,

Selecting Elliptic Curves for Cryptography: An Efficiency and Security Analysis 3

13]. Following the deterministic selection requirement from [10], we pick two primes of each
shape for a given targeted security level: one prime is selected to be slightly smaller than the
other, which sacrifices a small amount of ECDLP security in favor of enhanced performance.
Note that, as explained in Section 2, for practical considerations we require all primes to be
congruent to 3 modulo 4. These primes are used to construct cryptographically suitable curves
focusing on (arguably) the two most relevant curve models: short Weierstrass curves with the
curve parameter a set to −3 and twisted Edwards curves with the curve parameter a set to
−1. The prime order Weierstrass curves give full ECDLP security over prime fields of a fixed
bitlength, while offering good practical performance. On the other hand, the twisted Edwards
curves sacrifice a small amount of ECDLP security but facilitate the fastest realization of curve
arithmetic [32]. Both types of curves are selected in a deterministic fashion (see Section 3 for
the full details) and offer twist-security [4], a property which is useful in certain scenarios.

An important requirement for implementations of modern cryptographic algorithms is
a constant run-time when the algorithm computes on secret data to guard against timing
attacks [36]. In particular, this potential threat exists for two basic elliptic curve operations:
variable-base and fixed-base scalar multiplication. One solution is to use a complete addition
law. However, a complete addition law is typically less efficient compared to the dedicated
formulas which can fail for certain inputs. In Section 4 we outline another solution to this
problem for the variable-base case. We show that our algorithms which compute on secret
data, can never run into any exceptional cases (i. e. produce incorrect results) while using the
faster dedicated formulas and ensuring a constant runtime (with the exception of the very last
addition; see Section 4.1 for the details). Hence, this solution results in faster implementations
compared to the complete solution. In the fixed-base case the situation is more complicated:
most efficient algorithms in the literature may potentially run into exceptions. While the use of
a complete addition formula suffices to solve the problem on twisted Edwards curves, the high
cost of complete additions on Weierstrass curves would degrade performance significantly [16]
(see Appendix C.1). To solve this problem, we propose a new formula that works for all
possible inputs by exploiting masking techniques. This “complete” addition requires the same
number of multiplications and squarings as the unprotected dedicated addition formula and
drastically reduces the overhead of protecting scalar multiplication. We comment that the
formula is also useful in the context of secure, exception-free multi-scalar multiplications. The
reader is referred to Appendix C.1 for more details on the new formula.

We do not claim full security against other attacks such as simple power analysis (SPA);
this is left for future work. Nevertheless, we remark that all the selected algorithms have a
regular structure as required when implementing countermeasures against certain simple side-
channel attacks. Our performance results are outlined in Section 5. In Section 6 we estimate
how the different choices for curve models translate to real world scenarios: we discuss the
application to the transport layer security (TLS) protocol in detail.

Proposed Curves. Tables 1 and 2 show the curves that we have chosen deterministically
according to our security and efficiency criteria. The tables show the target security level,
which gives a rough estimate for the desired security in each case. Curve names indicate the
curve model (w for the Weierstrass model and ed for the (twisted) Edwards model), the bit
length of the underlying base field prime and the type of prime (mont for Montgomery-friendly
and mers for pseudo-Mersenne primes). In Appendix D, we provide the trace of Frobenius t
for each curve, so the number of Fp-rational points for the curve E and its quadratic twist E′

4 Joppe W. Bos, Craig Costello, Patrick Longa and Michael Naehrig

Table 1. Summary of our chosen Weierstrass curves of the form Eb/Fp : y2 = x3 − 3x + b defined over Fp

with quadratic twist E′b/Fp : y2 = x3 − 3x − b and target security level λ. The group orders r = #Eb(Fp)
and r′ = #E′b(Fp) are both prime. The value under ρ complexity is an estimate for the actual security of the
ECDLP against Pollard’s ρ method, it is log2(

√
π/4 ·

√
r) rounded to one decimal.

target security λ curve name p b ρ complexity

128

w-256-mont 2240(216 − 88)− 1 85610 127.8
w-254-mont 2240(214 − 127)− 1 12146 126.8
w-256-mers 2256 − 189 152961 127.8
w-255-mers 2255 − 765 20925 127.3

192

w-384-mont 2376(28 − 79)− 1 27798 191.5
w-382-mont 2368(214 − 5)− 1 133746 190.8
w-384-mers 2384 − 317 34568 191.8
w-383-mers 2383 − 421 97724 191.3

256

w-512-mont 2496(216 − 491)− 1 99821 255.8
w-510-mont 2496(214 − 290)− 1 39053 254.8
w-512-mers 2512 − 569 121243 255.8
w-511-mers 2511 − 481 555482 255.3
w-521-mers 2521 − 1 167884 260.3

Table 2. Summary of our chosen twisted Edwards curves of the form Ed/Fp : −x2 + y2 = 1 + dx2y2 defined
over Fp, where d = −(A − 2)/(A + 2), and the target security level is λ. A model for the quadratic twist
is E ′d/Fp : −x2 + y2 = 1 + (1/d)x2y2. The curve Ed is birationally equivalent to the Montgomery curve
EA/Fp : y2 = x3 + Ax2 + x with quadratic twist E−A/Fp : y2 = x3 − Ax2 + x. The group orders are
#Ed(Fp) = 4r and #E ′d(Fp) = 4r′, where r and r′ are both prime. The ρ complexity is an estimate for the
actual security of the ECDLP against Pollard’s ρ method, it is log2(

√
π/4 ·

√
r) rounded to one decimal.

target security curve name p A ρ complexity

128

ed-256-mont 2240(216 − 88)− 1 54314 126.8
ed-254-mont 2240(214 − 127)− 1 55790 125.8
ed-256-mers 2256 − 189 61370 126.8
ed-255-mers 2255 − 765 240222 126.3

192

ed-384-mont 2376(28 − 79)− 1 113758 190.5
ed-382-mont 2368(214 − 5)− 1 1400058 189.8
ed-384-mers 2384 − 317 46226 190.8
ed-383-mers 2383 − 421 2095962 190.3

256

ed-512-mont 2496(216 − 491)− 1 305778 254.8
ed-510-mont 2496(214 − 290)− 1 2320506 253.8
ed-512-mers 2512 − 569 313186 254.8
ed-511-mers 2511 − 481 4390390 254.3
ed-521-mers 2521 − 1 1504058 259.3

can be computed as #E(Fp) = p+ 1− t and #E′(Fp) = p+ 1+ t. More details on the curve
choices and their properties are given in Section 3.

2 Modular Arithmetic - Choosing Primes

Over a prime field Fp (with p > 3 prime), the computation of the elliptic curve group opera-
tion boils down to numerous computations modulo p. In this section we outline the types of
primes that we prefer for efficiency and security considerations, and discuss how the primes
are uniquely determined from a fixed security level.

Selecting Elliptic Curves for Cryptography: An Efficiency and Security Analysis 5

Primes of the form 2α − γ. Selecting primes of a special form to enhance the performance
of the modular reduction is not new. The primes standardized in the digital signature stan-
dard [54] have a special form allowing fast reduction based on the work by Solinas [50]. Even
faster modular reduction can be achieved by selecting primes of the form p = 2α − γ, known
as pseudo-Mersenne primes. In this case, the value α is determined by the security param-
eter and is typically a multiple of 64 (or slightly smaller). The integer γ is chosen to be a
small positive integer, i.e. significantly smaller than 232. Given two integers x and y such that
0 ≤ x, y < 2α − γ, one can compute x · y mod (2α − γ) by first computing the product and
writing this in a radix-2α system as x · y = zh · 2α + z`. A first reduction step, based on the
shape of the modulus, is zh · 2α+ z` ≡ z`+ zh · γ (mod 2α− γ) = z, where 0 ≤ z < (γ +1)2α.
If this step is repeated, the result is such that 0 ≤ z < 2α + γ2, which can finally be brought
into the desired range by applying an additional correction modulo p using subtractions. A
standard way of enhancing the performance is to use a redundant representation: instead of
reducing z to the range [0, 2α−γ), one can often more efficiently reduce z to the range [0, 2α),
or to the range [0, 22s) if α is a few bits smaller than 2s (at a target security level of s bits).
The latter case can be optimized further by computing exclusively in such a redundant form
and performing a sole correction at the end of the scalar multiplication.

Given a security level of s bits, we consider the parameter α ∈ {2s, 2s− 1}. Taking α = 2s
makes the prime as large as possible, matching one of the requirements to achieve maximal
ECDLP security at the s-bit security level. Taking α = 2s− 1 sacrifices half a bit of ECDLP
security in favor of potential enhancements in efficiency, as described above. Thus, fixing s
results in two possible values for α and subsequently two primes of the form 2α−γ: for a fixed
α, we choose the smallest γ such that 2α − γ is both prime and congruent to 3 modulo 4 (the
rational behind this congruence condition is discussed below). Following our curve selection
criteria, the values γ for the curves under analysis are always smaller than 210, which makes
them attractive for efficient implementation on 16, 32 and 64-bit platforms.

Primes of the form 2α(2β − γ) − 1. Another approach to select primes is inspired by
Montgomery arithmetic [43]. The idea behind Montgomery multiplication is to replace the
relatively expensive divisions by computationally inexpensive logical shifts when computing
the modular reduction. Some computations (and storage) can be avoided when primes of the
form p = 2α(2β − γ)− 1 are used for positive integers α, β and γ (cf. [37, 35, 1, 29, 13]). When
the prime p is two bits short of a multiple of the word size w (i.e. w | α+β+2), one can avoid
a conditional subtraction in every multiplication [55].

There are different ways to construct Montgomery-friendly primes: for example, [29] prefers
γ to be a power of two, while [13] sets β = 64 and γ as small as possible to specifically target
64-bit platforms. We make choices of α, β and γ such that the modular arithmetic can be
implemented efficiently on a wide range of platforms. Given a security level of s bits, we
consider α ∈ {2s − β, 2s − 2 − β} and β = 8δ, and choose γ and δ as the smallest positive
integers such that p = 2α(2β − γ) − 1 is prime and dlog2(p)e = 2s (resp. dlog2(p)e = 2s − 2)
in the setting of α = 2s− β (resp. α = 2s− 2− β). We start with δ = 1 and increment it by
1 (if necessary) until γ is found. For instance, for s = 192 and α = 2s − β, we observe that
(δ, γ) = (1, 79) results in a prime which can be written as

2376(28 − 79)− 1 = 2352(232 − 224 · 79)− 1 = 2320(264 − 256 · 79)− 1,

for usage on 8-, 32- and 64-bit platforms, respectively. This has the advantage that the re-
duction step, which has to be computed at every iteration inside the interleaved Montgomery

6 Joppe W. Bos, Craig Costello, Patrick Longa and Michael Naehrig

algorithm, can be computed using only a multiply-and-add and an addition instruction. Note
that, by construction, primes of this form are always congruent to 3 modulo 4.

Constant-time modular arithmetic. One of the measures to guard software implementa-
tions against various types of side-channel analysis such as timing attacks [36] is to ensure
a constant running time. In practice, this often means writing code which does not contain
branches depending on secret data. For instance, the interleaved Montgomery multiplication
algorithm requires a conditional subtraction at the end. To remove this, we always compute
the subtractions and select (mask) the correct value depending on the conditional flag. In the
setting of primes of the shape 2α − γ, one must always compute the worst-case number of
reduction rounds in order to ensure constant runtime.

Besides the “standard” modular operations, there is also the need for constant-time meth-
ods to compute the modular inversion and the modular square roots. In order to compute the
inversion modulo a prime p, one can use Fermat’s little theorem: i.e. compute ap−2 ≡ a−1

(mod p). Since our chosen primes all have a special shape, finding efficient addition chains for
this exponentiation is not difficult. For the n-bit primes considered in this work, we found that
we can always compute the modular inversion using at most 1.11dlog2(p)e modular multipli-
cations and modular squarings. If p ≡ 3 (mod 4), then one can compute a modular square
root x (if it exists) of an element a using x ≡ a

p+1
4 (mod p). Since this can be performed

efficiently, and in constant-time, we require all of our primes to be congruent to 3 modulo 4.

3 Curve Selection

In this section we explain how the curves in Tables 1 and 2 were chosen based on the selection
of primes that is outlined in Section 2. In addition to the four primes chosen to target each
security level, we also include the Mersenne prime p = 2521 − 1 to target the 256-bit security
level, since Mersenne primes might have a performance benefit. For each chosen prime p ≡ 3
(mod 4), we provide two curves: one is a prime order short Weierstrass curve, while the other
is an almost-prime order twisted Edwards curve.

Curve selection for Weierstrass curves. For a fixed prime p, a specific curve Eb : y2 =
x3 − 3x + b is uniquely determined by the curve parameter b ∈ Fp\{±2, 0}. Note that, since
p ≡ 3 mod 4, its non-trivial quadratic twist E′b has the curve equation E′b : y

2 = x3 − 3x− b.
In order to guarantee twist-security [4], we require the group orders r = #Eb(Fp) and r′ =
#E′b(Fp) to be prime. To leave no room for manipulating the curve choice, we select all curve
parameters deterministically, namely by choosing the smallest positive integer b that yields
a curve with the above properties. Based on these considerations, the selection process is
completely explained in accordance with the rigidity condition of [10]. Specifically, we search
for a suitable coefficient b by starting with b = 1 and incrementing b by one until both r
and r′ are prime. For each value of b, we use the Schoof-Elkies-Atkin (SEA) point counting
algorithm [48] in Magma [15] to compute the trace t of Eb, such that r = p + 1 − t and
r′ = p+1+t. We use the implementation’s ‘early abort’ feature that abandons the computation
when small factors are found either in the curve’s or the twist’s group order. Because of the
curve model for E′b, we only need to consider positive values of b. The resulting curves are
summarized in Table 1.

Curve selection for twisted Edwards (and Montgomery) curves. For a fixed prime
p, a specific twisted Edwards curve Ed/Fp : −x2 + y2 = 1 + dx2y2 is uniquely determined by

Selecting Elliptic Curves for Cryptography: An Efficiency and Security Analysis 7

the curve parameter d ∈ Fp\{0,−1}. Let A = 21−d
d+1 , and B = −(A + 2). Theorem 3.2 of [6]

shows that the twisted Edwards curve E and the Montgomery curve By2 = x3 + Ax2 + x
are birationally equivalent. If B is a square in Fp (which it is for all our curves), then Ed is
birationally equivalent to EA/Fp : y2 = x3 + Ax2 + x. The curve Ed is a special case of the
twisted Edwards model which facilitates the fast arithmetic in [32]; note that these formulas
do not use the constant d. But the fastest formulas on the Montgomery model [44] do use the
constant (A + 2)/4. Thus, we choose to minimize the parameter A and search for curves in
a deterministic fashion such that the curve selection is completely explained – this is again
in accordance with the rigidity condition of [10]. For each fixed p, we start with A = 6 and
incrementally search for A ∈ 2+4Z (to minimize the size of (A+2)/4 in Fp) until #EA = 4r
and #E′A = 4r′, where r and r′ are both prime, and where E′A : y2 = x3−Ax2 + x is a model
for the non-trivial quadratic twist of EA. Again, for each A, we use the SEA algorithm [48] in
Magma [15] to compute the trace t of E, which determines#EA = p+1−t and#E′A = p+1+t.
We additionally require thatA2−4 is non-square in Fp, which simplifies notions of completeness
on E (see [4]). Furthermore, we check that the curve satisfies all conditions posed by [10], if
one of them is not met1, we continue with the next value for A. We note that the cofactors
of 4 are optimal when insisting on an Fp-rational twisted Edwards and/or Montgomery form.
In a similar vein to the Weierstrass searches, imposing twist-security means that we only
need to search through positive values of A to minimize (A + 2)/4. The resulting curves are
summarized in Table 2. The constant d in the equation for Ed is computed from A as d = 2−A

A+2 .

Curve properties. In both families of curves, note that for primes of the form 2α − γ, the
bitlengths of r and r′ differ by 1, since |t| � γ in general; for primes of the form 2α(2β −
γ) − 1, the bitlengths of r and r′ are always equal when γ 6= 0. The curves in Table 2
can be used in different curve models: in the twisted Edwards model, in the Montgomery
model for implementing Montgomery ladders, and also in the original Edwards model allowing
complete addition formulas [9]. The latter can be seen as follows. Since p ≡ 3 (mod 4), EA
is birationally equivalent to an Edwards curve by [6, Theorem 3.4]. Using the maps discussed
in [6, Section 3], one can show that EA : y2 = x3 + Ax2 + x is birationally equivalent to
E−1/d : x2 + y2 = 1 − (1/d)x2y2. For all of our curves, d is a square in Fp, so −1/d is
not a square, which means that the addition law on E−1/d is complete. All of the curves in
Table 2 allow for an efficient map from a subset of their Fp-rational points to bit strings
of a certain length, such that they are indistinguishable from uniform random bitstrings of
the same length (see [8], which is based on [26]). However, note that curves defined over
pseudo-Mersenne primes are more suitable for achieving indistinguishability than those over
Montgomery-friendly primes because for the latter primes p, the value (p+1)/2 is further away
from a power of 2 (see [8, §2.6]). The prime-order Weierstrass curves presented in Table 1 are
similar in their basic properties to the NIST curves, as they have the same curve model, share
the parameter a = −3, and include prime fields of the same bit lengths as the ones for the
NIST curves [54]. However, we stress that the curves in Table 1 do not allow any room for
manipulations, which can be the case when the curve parameter b is allowed to be chosen
“randomly”. Our curves are twist-secure, do not allow transfers, and have large discriminants
(notions used to guard against certain attacks; e.g., see [10]). The work in [53] shows that

1 The only instance where the first twisted Edwards curve we found did not fulfill all of the safecurves
requirements was in the search for ed-383-mers: the constant A = 1629146 corresponds to a curve-twist
pair with #EA = 4r and E′A = 4r′, where r and r′ are both prime, but the embedding degree of EA with
respect to r is (r − 1)/188, which fails to meet the minimum requirement of (r − 1)/100 imposed in [10].

8 Joppe W. Bos, Craig Costello, Patrick Longa and Michael Naehrig

indistinguishability can also be achieved for our prime-order Weierstrass curves in Table 1,
however the resulting bit strings are twice as large as those that result from applying [8, 26]
to the twisted Edwards curves in Table 2.

4 Efficient, Constant-time, and Exceptionless Scalar Multiplications

To protect against certain types of side-channel attacks [36], it is essential that scalar multipli-
cations are computed in constant-time. This means that the running time of the algorithm for
computing a scalar multiplication kP must be independent of the scalar k and the point P .
Classical curve arithmetic formulas have exceptional cases, i.e. they do not work for all points.
Having conditional statements in the code that check for these cases means the algorithms
have a variable running time depending on different input cases, but simply leaving them
out might lead to exceptional point attacks that produce wrong results or cause other im-
plementation errors. In this section we outline how constant-time algorithms can be achieved
efficiently for our chosen Weierstrass and twisted Edwards curves in two different settings:
the variable- and fixed-base scenarios. The variable-base scenario refers to the case in which
the base point P can be different for each execution of the algorithm. In the fixed-base case,
multiples of a public constant point can be precomputed, which allows different optimization
possibilities. In Appendix A we present an algorithm for the double-scalar scenario, which
carries out a computation of the form k1P1+k2P2 (see Algorithm 9). This occurs for example
in the verification of ECDSA signatures. In this setting the verification algorithm operates
on public inputs only, and there is no need for protecting secret inputs against side-channels.
Since the implementation does not have to run in constant-time, one can profit from more
efficient variable-time algorithms.

We discuss the various cases for implementing scalar multiplication for the different curve
models and algorithm choices. We list all algorithms as pseudo-code in Appendix A (scalar
multiplication, point validation, precomputation and recoding) and in Appendix B (point
operations). The reader is referred to Appendix C for complete details on the selection of
explicit formulas. Note that several of these algorithms contain if-statements, which are marked
in the pseudo-code according to their nature. For example, some of these statements occur in
algorithms that are only run on public inputs and do not need to run in constant time; some
of them are implemented in constant time via masking techniques; and some of them are there
merely to allow us to represent several algorithms in one pseudo-code algorithm environment
and to re-use the different variants in different scenarios. As soon as a specific scenario is
chosen, these statements are always executed under the same condition. The remaining if-
statements are the ones that when implemented introduce data-dependent branches into the
algorithms. They occur only in algorithms for point doubling, point addition and merged point
doubling/addition, where they correspond to exceptions, i.e. the exceptional cases for which
the given formulas are not valid. But, whenever the implementation needs to be constant-
time, the conditions for entering these if-statements are always false such that they are never
executed (and can be removed in the code). Below, we argue that indeed no exceptional
cases occur and that the proposed algorithms can be implemented to run in constant time
(when used as described in the algorithms in Appendix A). Note that the neutral element on
Weierstrass curves is the point at infinity, i.e. the point (0 : 1 : 0) in projective coordinates,
while on twisted Edwards curves the neutral element is the rational point (0, 1), and in the
Montgomery ladder the neutral element is (X : Z) = (0: 0). In this paper, they are all denoted
by O.

Selecting Elliptic Curves for Cryptography: An Efficiency and Security Analysis 9

4.1 Weierstrass Scalar Multiplications

Let Eb/Fp be any of the Weierstrass curves in Table 1, with r = #Eb(Fp) prime. Let k
be an integer scalar and P = (x1, y1) ∈ Fp × Fp. We consider the computation of efficient,
constant-time and exception-free scalar multiplications in two scenarios.

The variable-base scenario. On input of the scalar k and variable point P = (x1, y1),
perform the following steps.

1. Validation: Validate that k ∈ [1, r) and that P = (x1, y1) ∈ Eb(Fp) \ {O} by checking
that y21 = x31 − 3x1 + b. Otherwise, return false (see Algorithm 2).

2. Precomputation: For a fixed window size 2 ≤ w < 10, compute the 2w−2 multiples
{P, 3P, . . . , (2w−1−1)P} of P , and store them in a lookup table. This precomputation can
be achieved using one point doubling and 2w−2 − 1 point additions2 (see Algorithm 4).

3. Scalar recoding: Convert the scalar k to odd (if even) and recode it into exactly dlog2(r)/(w−
1)e+ 1 odd, signed, non-zero digits in {±1,±3, . . . ,±(2w−1 − 1)} (see Algorithm 6).

4. Evaluation: Compute kP using a fixed window with the precomputed values from the pre-
vious step. This requires exactly (w−1)dlog2(r)/(w−1)e point doublings and dlog2(r)/(w−
1)e point additions, or (w− 2)dlog2(r)/(w− 1)e+1 point doublings, dlog2(r)/(w− 1)e− 1
point doubling-additions and one addition when w > 2. Note that every time an addition
is performed, we also negate the selected point in the look-up table, and choose the correct
one according to the sign of the digit in the recoded scalar. This is repeated until the last
iteration, when crucially, the final addition is performed via a “complete masked” addition
(see Appendix C.1). The final result is negated if the original value of k was even.

This can be computed as outlined in Algorithm 1 in Appendix A.

Proposition 1. When computing variable-base scalar multiplications on any of the Weier-
strass curves in Table 1 using Algorithm 1 to implement the steps above, no exceptions occur.

Before proving the proposition, we fix notation to partition the non-zero points in a prime
order subgroup of the group Eb(Fp). For a fixed point P ∈ Eb(Fp) \ {O}, the map [1, r) →
Eb(Fp)\{O}, k 7→ kP is a bijection. It induces a partition of Eb(Fp)\{O} = Sodd∪Seven into
two equally sized sets, where Sodd = {kP | k ∈ [1, r) odd} and Seven = {kP | k ∈ [1, r) even}.
Let T = {P, 3P, . . . , (2w−1 − 1)P} ⊂ Sodd and T−1 = {(r − 1)P, (r − 3)P, . . . , (r − (2w−1 −
1))P} ⊂ Seven. The set T−1 contains the inverses of the points in the set T .

Proof. To exclude any exceptions in the course of Algorithm 1, we consider all of its dou-
bling, addition and merged doubling/addition operations. First of all, it is easy to see that all
doubling and addition steps for building the look-up table are exception-free. Note that the
look-up table consists exactly of the points in the set T defined above. The precomputation as
shown in Algorithm 4 starts by doubling P with Algorithm 10. The algorithm works for the
point at infinity O when defined as (0 : Y1 : 0) with Y1 6= 0, but the case P = O is excluded
by point validation, and it does not have any exceptions since there are no points of order 2 in
the group E(Fp). The points for the look-up table are then computed by adding 2P ∈ Seven
to points from T ⊂ Sodd only, i.e. the input points to the additions are always different and
do not include O. Also −2P = (r − 2)P is not among these points because 2w−1 − 1 < r − 2
(note 2 ≤ w < 10).

2 Except for when w = 2, where this comes for free.

10 Joppe W. Bos, Craig Costello, Patrick Longa and Michael Naehrig

The operations in the evaluation stage depend on the recoding of the scalar k, which at
this point in the algorithm satisfies 0 < k < r. Let t = dlog2(r)/(w − 1)e, then with notation
as in Algorithm 1, the scalar can be written as

k =
t∑
i=0

si|ki|2(w−1)i,

where si ∈ {−1, 1} and ki ∈ Z with 0 < |ki| < 2w−1. The recoding used here guarantees
kt > 0 such that st = 1 and |kt| = kt. Throughout the evaluation stage, the variable Q is used
to denote the running value during the algorithm. At any stage, there is some z ∈ [0, r) such
that Q = zP . Let z1 > 0 and z2 = 2w−1z1 ± z0 with z0 ∈ {1, 3, . . . , 2w−1 − 1}, then z2 ≥ z1.
If z1 > 1, we even have z2 > z1. This means that whenever a positive integer is doubled
w − 1 times and then an integer corresponding to one of the elements in the look-up table is
either added or subtracted, the result cannot be smaller than the original integer. Thus, in
the evaluation stage of Algorithm 1, after each sequence of w − 1 doublings and one addition
step, the value z of the running point Q cannot decrease.

The evaluation stage begins with choosing an element from the lookup table T and as-
signing it to Q. After the first assignment, we have z ∈ {1, 3, . . . , 2w−1 − 1}. All the doubling
operations in Lines 11, 14 and 18 of Algorithm 1 are done using Algorithm 10. Therefore, for
the same reasons as explained above there are no exceptions possible in these steps. The last
addition in Line 19 is done with a complete addition formula and hence also does not have any
exceptional cases. It now suffices to ensure that all remaining addition steps (i.e. in Lines 12
and 15) do not run into exceptions.

First, assume that an exceptional case occurs in one of the additions in Step 15, which
computes Q + R for R ∈ T ∪ T−1 using Algorithm 12. Note that none of the doubling steps
can ever output O because there are no points of order 2 and O is never input to any of them
since the running value Q always has 1 < z < r for all points input to doubling steps prior
to any of the additions in Step 15. Thus the only exceptional cases that could occur in this
algorithm, are the cases where Q = ±R. This means that either Q ∈ T or Q ∈ T−1. Since Q
is the output of a non-trivial doubling operation, we have Q ∈ Seven which excludes Q ∈ T
and means that Q ∈ T−1. Therefore, Q = zP with z ≥ r − (2w−1 − 1). After each addition
in Step 15 there are always w − 1 doublings that follow. Hence, the minimal value for z that
can occur after the exceptional addition and the following doublings is 2w−1(r− 2(2w−1− 1)).
The addition of a table element immediately after these doublings, can bring down this value
to the minimal zmin = 2w−1(r − 2(2w−1 − 1)) − (2w−1 − 1) = 2w−1r − (2w + 1)(2w−1 − 1).
This value is larger than r, because otherwise, it follows that r ≤ 2w + 1, which is not true
for any of our curves. Given the observation that a positive integer does not decrease after
any sequence of w − 1 doublings and a following addition of an integer corresponding to a
look-up table element, the scalar k cannot be reached any more as the final value for z after
the exceptional addition. This contradicts any exceptions in the additions of Step 15.

Next, assume that an exception occurs in one of the steps in Line 12 of Algorithm 1.
This step is a merged doubling and addition step and is computed via Algorithm 11. The
algorithm computes 2Q + R for R ∈ T ∪ T−1 as (Q + R) + Q. For the same reasons as
above, the input point Q cannot be equal to O. Since R ∈ T ∪ T−1, we have R 6= O. The
first addition Q + R could have the same exceptions as the additions in Step 15 treated in
the previous paragraph. This means that an exception can only be Q ∈ T−1 as above and
again we look at the minimal value zmin after carrying out the exceptional addition, the

Selecting Elliptic Curves for Cryptography: An Efficiency and Security Analysis 11

addition of Q and the following w − 1 doublings and subsequent addition (also the steps
including the merged doubling and addition algorithm can be treated as such). This value is
zmin ≥ 2w−1 · (2r−3(2w−1−1))− (2w−1−1) = 2wr− (3 ·2w−1+1)(2w−1−1). Again, this value
is larger than r, because otherwise we would have r ≤ 3 ·2w−1+1, which does not hold for our
curve parameters. As above this means that the scalar k < r cannot be reached as the final
value of z, contradicting any exception in the first addition in (Q+R)+Q. Finally, we assume
that there is an exception in the second addition. We have already excluded Q = O and
Q+R = O. Hence, the only two possibilities for an exception are Q+R = Q or Q+R = −Q.
The first condition means that R = O which is not possible since R ∈ T ∪ T−1. We are thus
left with the condition 2Q = −R and hence either 2Q ∈ T or 2Q ∈ T−1. Since 2Q ∈ Seven, it
cannot be in T , which leaves 2Q ∈ T−1. This means that 2z ≥ r − (2w−1 − 1). The minimal
value zmin after the computation (Q+R) +Q and the following w− 1 doublings and another
addition is zmin ≥ 2w−1(r−2(2w−1−1))−(2w−1−1) = 2w−1r−(2w+1)(2w−1−1). Again, this
value is larger than r, leaving no way to achieve the scalar k during the remaining computation.
This excludes all exceptions in Line 12 and therefore all exceptions in Algorithm 1. ut

Given that the recoding always produces a fixed length for the scalar, this means that after a
successful validation step, we do not execute any conditional statements.

The fixed-base scenario. In this setting, the point P is fixed (e.g., as a public parameter
of the system), so multiples of P can be precomputed offline and used to speedup the online
computation of kP . In terms of performance, it might be difficult to select the “optimal” size
of the precomputed table. A larger table with more multiples of P typically means a reduced
number of elliptic curve operations at runtime, but such tables might result in cache-misses
which can result in a performance penalty. Moreover, when one wants to extract elements
from this table in a cache-attack resistant manner, one should access every element and mask
out the correct value to avoid leaking access patterns. Hence, using a larger table implies an
increased access cost for every table-lookup.

This is not the only problem with large precomputed tables. As far as we know, one
cannot show (for all inputs) that a current active point in the fixed-base scalar multiplication
will not be the same (or have an opposite sign) as one of the many precomputed values.
Although this might happen only with extremely low probability, such that honest parties
may never encounter this by accident, active adversaries could manipulate such scalar/point
combinations to force exceptions. This means that, unlike the variable-base multiplication, the
implementation of the group law must cover exceptional cases. One solution is to use complete
formulas (which have no exceptional cases). Unfortunately, the complete Weierstrass formulas
from [16] (see Appendix C.1) are expensive compared to their incomplete counterparts, and
using these would incur a much larger relative penalty than the complete formulas on (twisted)
Edwards curves do. Another possible solution is to always compute two candidates for the
addition, C1 = 2P and C2 = P + L, and select (in a constant time manner) C1 if P = L,
O if P = −L, L if P = O, P if L = O, and C2 otherwise. At a first glance this approach
seemingly increases the cost of an addition to be at least that of computing both an addition
and an doubling. However, we present a solution which achieves this same behavior without
increasing the number of modular multiplications or squarings required in a dedicated point
addition (see Algorithm 18). The idea is to exploit the similarity in the doubling and addition
routines by masking out the correct operands first, and using these as inputs to the arithmetic
operations. This allows us to keep the total number of multiplications and squarings exactly
the same as when computing just the dedicated point addition. Hence, Algorithm 18 works

12 Joppe W. Bos, Craig Costello, Patrick Longa and Michael Naehrig

for any input points, does not have any exceptional cases and has roughly the same run-time
as a dedicated point addition.

For a scalar k and the fixed point P = (x1, y1), we make use of these formulas to perform
the following steps.

Offline computation.
1. Point validation: Validate that P = (x1, y1) ∈ Eb(Fp) \ {O} by checking that y21 =
x31 − 3x1 + b. Otherwise, return false (see Algorithm 2).

2. Precomputation: For a fixed window size 2 ≤ w < 10, compute v > 0 tables of 2w−1

points (each) for the mLSB-set comb method (see Line 2 of Algorithm 7). Convert all
points in the lookup table to affine form.
Online computation.

3. Scalar validation: Validate that the scalar k ∈ [1, r). Let the maximum bit-length of all
valid scalars be t = dlog2(r)e.

4. Recoding: Convert the scalar k to odd (if even) and recode it into the mLSB-set repre-
sentation (see Algorithm 8).

5. Evaluation: Using the precomputed values from the offline precomputation, compute kP
with exactly d t

w·v e−1 point doublings and vd t
w·v e−1 point additions3. All point additions

are computed using the “complete masked” approach in Algorithm 18 in Appendix C.1.
The final result is negated if the original value of k was even.

This approach is outlined in Algorithm 7 in Appendix A.

Proposition 2. When computing fixed-base scalar multiplications on any of the Weierstrass
curves in Table 1 using Algorithm 7 to implement the steps above, no exceptions occur.

Proof. Following the proof of Proposition 1, point doublings computed via Algorithm 10 do
not fail for any rational points in Eb(Fp) for any of the curves Eb in Table 1. Furthermore,
Algorithm 10 also correctly computes doublings at the point at infinity, O. Thus, no excep-
tions can arise in point doublings; and, since all online additions are implemented using the
“complete” masking technique described in Appendix C.1, it follows that no exceptions can
arise at any stage of the online computation (offline computations can also make use of this
technique if necessary). ut

4.2 Twisted Edwards Scalar Multiplications

Let Ed/Fp : − x2 + y2 = 1 + dx2y2 be any of the twisted Edwards curves in Table 2, with
#E(Fp) = 4r for r prime. In a similar vein to [31, 4], we avoid small subgroup attacks by
requiring all scalar multiplications to include a cofactor 4. Thus, let the integer k̂ be defined
as k̂ := 4k with k ∈ [1, r), and let P = (x1, y1) be in Fp × Fp.

The variable-base scenario. On input of k̂ and (variable) P = (x1, y1) ∈ Fp × Fp, we
perform the following steps.

1. Validation: Validate that k̂ ∈ [4 · 1, 4 · 2, . . . , 4(r − 1)]. Validate that P = (x1, y1) ∈
Ed(Fp) \ {O} by checking that −x21 + y21 = 1 + dx21y

2
1 and that P 6= (0, 1) = O (see

Algorithm 3). Otherwise, return false.
3 We note that this cost increases by a single point addition when wv | t, since an extra precomputed point
is needed in this case.

Selecting Elliptic Curves for Cryptography: An Efficiency and Security Analysis 13

2. Clear torsion: Compute Q← [4]P using two consecutive doublings (as in Algorithm 3).
3. Revalidation: Validate that (the projective point) Q 6= O. If not, reject.
4. Precomputation: Compute the 2w−2 odd, positive multiples {Q, 3Q, . . . , (2w−1 − 1)Q}

of Q, and store them in a lookup table. This precomputation can be achieved using one
point doubling and 2w−2 − 1 point additions4 (see Algorithm 4).

5. Scalar recoding: Using a window size of 2 ≤ w < 10, convert the updated scalar k :=
k̂/4 ∈ [1, r−1] to odd (if even) and recode it into exactly dlog2(r)/(w−1)e+1 odd, signed,
non-zero digits in {±1,±3, . . . ,±(2w−1 − 1)} (see Algorithm 6).

6. Evaluation: Compute k̂P as kQ, using exactly (w− 1)dlog2(r)/(w− 1)e point doublings
and dlog2(r)/(w − 1)e point additions. Note that every time an addition is performed, we
also negate the selected point in the look-up table, and choose the correct one according
to the sign of the digit in the recoded scalar. This is repeated until the last iteration, when
crucially, the final addition is performed using the unified formula in [32, Eq. (5)]. The
final result is negated if the original value of k was even.

This computation is given in Algorithm 1 in Appendix A.

Proposition 3. When computing variable-base scalar multiplications on any of the twisted
Edwards curves in Table 2 using Algorithm 1 to implement the steps above, no exceptions
occur.

Proof. The first 3 steps (validation, clear torsion, and revalidation) detailed in Section 4.2
ensure that the point Q has large prime order r. Furthermore, only elements of 〈Q〉 are
encountered after the revalidation stage, meaning that Corollary 1 from [32] can be invoked to
say that the additions in Algorithm 15 (from [32], but extended according to the representation
suggested in [29]) will never fail to add points P and Q of odd order, except when P = Q.
This corollary also tells us that the formulas for point doubling in Algorithm 14 never fail
for points of odd order. Similar to the addition formulas, these doubling formulas, which are
from [6], are extended according to [29]. Thus, the proof from this point is identical to the
proof of Proposition 1: we partition the elements in 〈Q〉\{O} into Sodd and Seven to categorize
the elements in the look-up table, and use this to show that the running value that is input
into point additions can never be equal to an element in the look-up table, except possibly in
the final addition, where we use the formula in [32, Eq. (5)], which is slightly slower, but is
exception-free in 〈Q〉. ut

The fixed-base scenario. Let P = (x1, y1) ∈ Fp ×Fp be a fixed point and let k̂ = 4k be an
integer scalar, which is a multiple of the cofactor 4. Then perform the following steps.

Offline computation.
1. Validation: Validate that k̂ ∈ [4 · 1, 4 · 2, . . . , 4(r − 1)]. Validate that P = (x1, y1) ∈
Ed(Fp) \ {O} by checking that −x21 + y21 = 1 + dx21y

2
1 and that P 6= (0, 1) = O (see

Algorithm 3). Otherwise, return false.
2. Clear torsion: Compute Q← [4]P using two consecutive doublings (see Algorithm 3).
3. Revalidation: Validate that Q 6= O. If not, reject.
4. Precomputation: For a fixed window size 2 ≤ w < 10, compute v > 0 tables of 2w−1

points (each) for the mLSB-set comb method (see Line 2 of Algorithm 7) – convert all
points in the lookup table to affine form.

4 Again, except for when w = 2, where this comes for free.

14 Joppe W. Bos, Craig Costello, Patrick Longa and Michael Naehrig

Online computation.
5. Recoding: Convert the updated scalar k := k̂/4 to odd (if even) and recode it into the

mLSB-set representation (see Algorithm 8).
6. Evaluation: Using the precomputed values from the offline precomputation, compute k̂P

as kQ with exactly d t
w·v e−1 point doublings and vd t

w·v e−1 point additions5. Every one of
these additions is computed using the unified formulas from [32, Eq. (5)]. The final result
is negated if the original value of k was even.

Algorithm 7 in Appendix A outlines this computation.

Proposition 4. When computing fixed-base scalar multiplications on any of the twisted Ed-
wards curves in Table 2 using Algorithm 7 to implement the steps above, no exceptions occur.

Proof. As in the proof of Proposition 3, we start by noting that the (updated) point Q has
odd order r, and that we only compute on elements in 〈Q〉. The only algorithm we use for
online additions corresponds to the formulas in [32, Eq. (5)], which do not fail for any pair of
inputs in 〈Q〉. Additionally, the only algorithm we use for doublings is Algorithm 14 (from [6]),
which is also exception-free on all inputs from 〈Q〉. ut

4.3 The Montgomery Ladder

Let EA/Fp : y2 = x3+Ax2+x be the Montgomery form of any of the curves in Table 2, with
#EA(Fp) = 4r, for r a large prime. Since the Montgomery ladder is not compatible with the
recoding techniques discussed in Section 4, we take the following route to guarantee a fixed
length scalar. For all k ∈ [1, r − 1], we use the updated scalar k̂ = 4(αr + k), where α is the
smallest positive integer such that αr+1 and (α+1)r−1 have the same bitlength; α is specific
to r, but for each of the curves in Table 2 we have α ∈ {1, 2, 3}. Note that scalar multiplication
by k̂ corresponds to scalar multiplication by 4k on EA, which thwarts small subgroup attacks
in the same vein as the twisted Edwards scalar multiplications in Section 4.2.

On input of k̂ and x1 ∈ Fp, we perform the following steps.

1. Scalar validation: First validate that k̂ ∈ 4Z, and then that the integer k̂/4 ∈ [αr +
1, (α+ 1)r − 1]. Otherwise, reject.

2. Evaluation: Process the scalar by inputting k̂ and (x1 : 1) into the standard (X : Z)-only
Montgomery ladder routine [44, §10], with constant (A+2)/4 in the addition formula. Since
k̂ = 4(αr + k), this can be done by inputting the fixed-length scalar k̂/4 = αr + k and
(x1 : 1) into the Montgomery ladder to give (X1 : Z1), before finishing with two repeated,
standalone Montgomery doublings of (X1 : Z1) to give (X̂ : Ẑ) = 4(X1 : Z1)

3. Normalize: If Ẑ = 0, return O, otherwise return x̂1 = X̂/Ẑ.

Notice that there is no validation of the input coordinate x1 ∈ Fp, i.e. that we do not check
whether x31 +Ax21 + x1 is a square in Fp, so that x1 corresponds to a point (or points) on EA.
Avoiding this check in the presence of twist-security is due to Bernstein (cf. [4]), since even if
x1 corresponds to a point on the quadratic twist E′A, the output of the Montgomery ladder
corresponds to a scalar multiplication on E′A, because scalar multiplications on both curves
use the same constant (A + 2)/4. In this case, multiplication by k̂ = 4(αr + k) on E′A no
longer corresponds to the scalar 4k, but rather to the scalar 4k′, where k′ ≡ (αr + k) mod r′

5 Again, we note that when wv | t, an extra precomputed point is needed.

Selecting Elliptic Curves for Cryptography: An Efficiency and Security Analysis 15

for #E′A(Fp) = 4r′. This is not a problem in practice since the cofactor of 4 still clears torsion
on the twist, and the twist-security ensures that the discrete logarithm problem has a similar
difficulty in E′A(Fp) as it does in EA(Fp). Following the arguments developed in [3] (see also [4,
App. A-B]), it could be possible to prove that no exceptions can occur in Montgomery ladder
implementations of the curves in Table 2 that follow Steps 1-3 above, subject to addressing
the issues below.

It should first be pointed out that the lack of validation means that there are some
scalar/point combinations which could produce exceptions. For example, suppose k is cho-
sen as the unique integer less than r′ such that k ≡ −αr mod r′. If k is also less than r, then
k̂ := 4(αr+k) is a valid scalar according to Step 1 above. But, if an unvalidated x-coordinate,
say x′1, corresponds to a point P ′1 on E′A, then k̂P1 = O, because (αr + k) ≡ 0 mod r′; note
that outputting O in Step 3 above could leak information to an attacker. Furthermore, in
practice these ladder implementations are often used in conjunction with non-ladder imple-
mentations on (most likely a twisted Edwards model of) the same curve – see Section 6. In
such a scenario, the refined forms of the scalars in this section do not match the forms of the
scalars in Section 4.2, so if the scalars above were to be used on the twisted Edwards form of
EA, then Proposition 3 and Proposition 4 no longer provide any guarantees. More specifically,
if an implementation synchronizes the inherently larger Montgomery ladder scalars above to
also be used on the twisted Edwards curve, then the argument of k̂ ∈ [4, 8, . . . , 4(r − 1)] that
was used in the proof of Proposition 3 no longer holds when α > 0. Roughly speaking, the
fact that k̂/4 is now outside the range [1, r − 1] means that the running multiple of an input
point can now reach the dangerous stage of a scalar multiplication (which we handle by using
complete additions) before the final addition.

In the Montgomery ladder implementation of Curve25519 [4], and in the complementary
Edwards “Ed25519” implementation [7], it seems that the above problems are overcome by
restricting the set of permissible scalars to be of a lesser cardinality than the prime subgroup
order. Namely, Curve25519 has r, r′ > 2252, with all scalars being of the form k̂ = 8 · (2251+k)
for k ∈ [0, 2251 − 1]. As well as guaranteeing that all of the possible scalars k̂ have the same
bitlength, this prevents the existence of a k̂ such that k̂ ≡ 0 mod r or k̂ ≡ 0 mod r′. On the
other hand, it also means that for a fixed base point P of order r on Ed25519, less than half
of the elements in 〈P 〉 are possible outputs when computing scalar multiplications of P .

As one potential alternative, we remark that a hybrid solution which uses both Montgomery
and twisted Edwards scalar multiplications could parse scalars differently: k ∈ [0, r− 1] could
be modified to k̂ := 4(αr + k) in the Montgomery implementation, but modified to k̂ := 4k
in the twisted Edwards implementation. If, in addition, all x-coordinates were validated in
Step 1 of the Montgomery ladder routine6, then this may well be enough to prove that all
scalar multiplications compute correctly and without exception: Proposition 3 would then
apply directly to the twisted Edwards part, while the techniques in [4, 3] could be used to
prove the Montgomery ladder part.

5 Implementation Results

To evaluate the performance of the selected curves, we developed a software library7 that
includes support for three scenarios: variable-based, fixed-based and double-scalar multiplica-
6 Validating that x1 ∈ Fp corresponds to EA would incur the small relative cost of an exponentiation and a
few multiplications: namely, we reject x1 if (x31 +Ax21 + x1)

(p−1)/2 = −1.
7 We intend to make the code used for this project available.

16 Joppe W. Bos, Craig Costello, Patrick Longa and Michael Naehrig

Table 3. Experimental results for variable-base, fixed-base and double-scalar multiplication. The results
(rounded to thousand cycles) are the average of 104 runs of the scalar multiplication including the final
modular inversion to convert the result to its affine form. These results have been obtained on a 3.4GHz Intel
Core i7-2600 Sandy Bridge processor with Intel’s Turbo Boost and Hyper-threading disabled. The library was
compiled with Visual Studio 2012 on Windows 7 OS.

security level curve name variable-base fixed-base double-base

128

w-256-mont 283, 000 114, 000 291, 000

w-256-mers 288, 000 118, 000 296, 000

ed-256-mont 239, 000 96, 000 243, 000

ed-254-mont 207, 000 84, 000 208, 000

ed-256-mers 239, 000 98, 000 242, 000

ed-255-mers 235, 000 97, 000 237, 000

m-254-mont 229, 000 N/A N/A
m-255-mers 268, 000 N/A N/A

192

w-384-mont 816, 000 289, 000 839, 000

w-384-mers 749, 000 275, 000 775, 000

ed-384-mont 673, 000 257, 000 687, 000

ed-382-mont 590, 000 229, 000 608, 000

ed-384-mers 623, 000 242, 000 636, 000

ed-383-mers 605, 000 235, 000 609, 000

m-382-mont 672, 000 N/A N/A
m-383-mers 677, 000 N/A N/A

256

w-512-mont 1, 896, 000 619, 000 1, 963, 00

w-512-mers 1, 713, 000 574, 000 1, 773, 000

w-521-mers 1, 887, 000 − −
ed-512-mont 1, 561, 000 555, 000 1, 600, 000

ed-510-mont 1, 420, 000 511, 000 1, 448, 000

ed-512-mers 1, 414, 000 507, 000 1, 442, 000

ed-511-mers 1, 372, 000 494, 000 1, 397, 000

ed-521-mers 1, 551, 000 − −
m-510-mont 1, 600, 000 N/A N/A
m-511-mers 1, 543, 000 N/A N/A
m-521-mers 1, 737, 000 − −

tion. The library can perform arithmetic on a = −1 twisted Edwards, a = −3 Weierstrass, and
Montgomery curves and supports all of the new curves from Section 3 (see Tables 1 and 2).
The implementation of the library is largely in the C-programming language with the modular
arithmetic implemented in x64 assembly. We plan to add support for other popular platforms
like the ARM architecture, and explore implementation options using vector instructions and
methods such as Karatsuba multiplication [34] for larger moduli sizes.

Table 3 shows the performance details of scalar multiplication in the three scenarios of
interest. Variable-base scalar multiplication is computed with the fixed-window method (see
Algorithm 1 in Appendix A) using window width w = 6, except for twisted Edwards at
the 256-bit security level which uses w = 7. Fixed-base scalar multiplication was computed
using the mLSB-set method (see Algorithm 7 in Appendix A) using parameters w = 6 and
v = 3 for the Weierstrass curves and w = 5 and v = 4 for the twisted Edwards curves.
These values correspond to precomputed tables of sizes: 6KB, 9KB and 12KB at the 128-,
192- and 256-bit security levels, respectively. Double-base scalar multiplication was computed
using the wNAF method with interleaving (see Algorithm 9 in Appendix A) using window

Selecting Elliptic Curves for Cryptography: An Efficiency and Security Analysis 17

width w1 = 6 for the variable base and w2 = 7 for the fixed base. The latter corresponds
to precomputed tables with sizes: 2KB, 3KB and 4KB for Weierstrass curves at the 128-,
192- and 256-bit security levels, respectively, and 3KB, 4.5KB and 6KB for twisted Edwards
curves at the 128-, 192- and 256-bit security levels, respectively. The results (expressed in
terms of computer cycles) were obtained by running and averaging 104 iterations of each
computation on an Intel Core i7-2600 (Sandy Bridge) processor with Intel’s turbo boost and
hyper-threading disabled. The variable- and fixed-base scalar multiplication routines have a
constant running time which guards against various types of timing attacks [36, 18], including
cache attacks [47] (e.g., see [17] in the asymmetric setting). This means that no conditional
branches on secret data or secret indexes for table lookups are allowed in the implementations.

Our results suggest that reducing the size of the pseudo-Mersenne primes does not have
a significant effect on the performance: below a factor 1.03 reduction of the running time at
the expense of roughly half a bit of ECDLP security. However, using slightly smaller moduli
in the setting of the Montgomery-friendly primes does pay off: a reduction of the running
time by a factor 1.15, 1.14, and 1.10 at the 128-, 192-, and 256-bit security level, respectively.
This performance difference between pseudo-Mersenne and Montgomery-friendly primes can
be explained by the fact that the final constant-time conditional subtraction in Montgomery
multiplication can be omitted when reducing the modulus size appropriately. The size-reduced
Montgomery-friendly primes are the best choice (with respect to performance) at the 128- and
192-bit security levels while the size-reduced pseudo-Mersenne prime is faster for the 256-bit
security level. For full-word length moduli, the usage of Montgomery-friendly primes is slightly
more efficient at the 128-bit security level, whereas full-word length pseudo-Mersenne moduli
are the best option for the 192- and 256-bit security levels. The better performance of pseudo-
Mersenne primes at high security levels can be explained by the inherent higher register
pressure in our Montgomery-friendly implementations which results in more load and store
operations for large moduli sizes. The faster arithmetic operations in the base field translate
directly to optimizations in the different scenarios for the scalar multiplication. For the sake
of comparison, we also include performance numbers for curves defined over the Mersenne
prime p = 2521 − 1 (at the 256-bit security level). The performance of w-521-mers and ed-
521-mers compared to our corresponding 512-bit Weierstrass and twisted Edwards curves at
the 256-bit security level (w-512-mers and ed-512-mers) degrades by a factor 1.10. This is
mainly due to the higher cost of modular multiplication, which performs computations over
elements containing one more computer word in comparison with the 512-bit prime options.

In the setting of the variable-base scalar multiplication our twisted Edwards implementa-
tion consistently outperforms the Montgomery ladder. This does not come as a surprise since
our twisted Edwards curves allow one to use the efficient curve arithmetic from [32] and the
efficient fixed-window method which exploits precomputations. Note that the state-of-the-art
Montgomery ladder implementation of Curve25519 [4] is 1.18 times faster than our ladder al-
gorithm at the 128-bit security level (when considering the benchmark machine “sandy” [11]).
This can largely be explained by the significant level of code optimization that went into the
implementation of [4] (e.g., fine-tuning of the full curve arithmetic at the assembly level). Al-
though the Montgomery ladder performance numbers from Curve25519 (194, 000 cycles) are
better than our numbers using twisted Edwards curves, they are clearly in the same ballpark
(207, 000 cycles), demonstrating the potential of a fully optimized assembly implementation.

The recent software records for the NIST P-256 curve [28] can compute a variable-base
scalar multiplication in 400 thousand cycles on a Sandy Bridge CPU. Our curve w-256-
mont offers better security properties and results in a 1.41 times reduction of the running

18 Joppe W. Bos, Craig Costello, Patrick Longa and Michael Naehrig

Table 4. Costs estimates for the TLS handshake using the ECDHE-ECDSA cipher suite for different security
levels where we consider the elliptic curve scalar multiplications. Costs in cycles are estimated using the
performance numbers from Table 3. Estimates for the total cost correspond to the full handshake ECDHE-
ECDSA involving authentication in both the server and client side. We assume the use of precomputed tables
with 96 and 64 points to accelerate fixed-base scalar multiplication on the Weierstrass and twisted Edwards
curves, respectively. Similarly, we assume the use of precomputed tables with 32 points to accelerate double-
base scalar multiplication (where one base is fixed). For comparison we state performance numbers for NIST
P-256 [28] which uses 150KB of storage, and signature performance numbers when using EdDSA [7] (obtained
from the benchmark machine “sandy” [11]). We consider that point transmission (T) in the key-exchange can
be performed in uncompressed (U) or compressed (C) form.

security curve names T estimated cost (in cycles)
level ECDHE ECDSA sign ECDSA ver total cost

128

w-256-mont U 397, 000
114, 000 291, 000

802, 000

C 414, 000 819, 000

ed-254-mont U 291, 000
84, 000 208, 000

583, 000

C 307, 000 599, 000

hybrid U
313, 000 84, 000 208, 000 605, 000

ed-254-mont + m-254-mont C
NIST P-256 [28] U 490, 000 90, 000 530, 000 1, 110, 000

EdDSA [7] C N/A 69, 000 225, 000 N/A

192

w-384-mers U 1, 024, 000
275, 000 775, 000

2, 074, 000

C 1, 080, 000 2, 130, 000

ed-382-mont U 819, 000
229, 000 608, 000

1, 656, 000

C 872, 000 1, 709, 000

hybrid U
901, 000 229, 000 608, 000 1, 738, 000

ed-382-mont + m-382-mont C

256

w-512-mers U 2, 287, 000
574, 000 1, 773, 000

4, 634, 000

C 2, 429, 000 4, 776, 000

ed-510-mers U 1, 866, 000
494, 000 1, 397, 000

3, 757, 000

C 2, 002, 000 3, 893, 000

hybrid U
2, 037, 000 494, 000 1, 397, 000 3, 928, 000

ed-510-mers + m-510-mers C

time compared to [28]. When switching from prime order Weierstrass curves using full size
moduli to composite order twisted Edwards curves with size-reduced moduli one can expect
a reduction in the running time by a factor between 1.25 and 1.37 at the price of a slight
decrease in ECDLP security.

6 Real-World Protocols

Although significant research has been devoted to optimize the most popular ECC operation
(the variable-base scalar multiplication), in real-world cryptographic solutions it is often not as
simple as computing just a single scalar multiplication with an unknown base. Cryptographic
protocols typically require a combination of different types of scalar multiplications including
fixed-, variable-base and multiple-scalar operations. In this section we study the TLS protocol,
more specifically the computation of the TLS handshake using the ECDHE-ECDSA cipher
suite. We outline the impact of using different curve and coordinate systems in practice.

TLS with perfect forward secrecy. Support for using elliptic curves in the TLS protocol
is specified in RFC 4492 [12]. The cipher suites specified in this RFC use the elliptic curve
Diffie-Hellman (ECDH) key exchange, whose keys may either be long-term or ephemeral. We

Selecting Elliptic Curves for Cryptography: An Efficiency and Security Analysis 19

focus our analysis on the latter case (denoted by ECDHE) since it offers perfect forward
secrecy. Besides the usage of elliptic curves in the DH key exchange, TLS certificates contain
a public key that the server uses to authenticate itself: this is an ECDSA public key for the
case of the ECDHE-ECDSA cipher suite. The TLS handshake, using the ECDHE-ECDSA
cipher suite, consists of three main components. The ECDSA signature generation (fixed-
base scalar multiplication), ECDSA signature verification (double-base scalar multiplication),
and ECDHE (one fixed- and one variable-base scalar multiplication). We consider Weierstrass
and twisted Edwards curves separately, with and without point compression. The cost of
decompressing a point in Weierstrass and twisted Edwards form is stated in Table 7 (where
we follow the approach described in [7] to decompress points on twisted Edwards curves).

When using Weierstrass curves the situation is not complicated: transmitting compressed
points costs a single conversion while no additional cost is needed when transmitting uncom-
pressed points. In the setting of twisted Edwards curves there are more possibilities. The
simplest approach is to only use the Montgomery form; however, this is expensive since the
Montgomery ladder cannot take advantage of the fixed-base setting. One might consider a
hybrid solution: computing the fixed-base scalar multiplication using the birationally equiva-
lent twisted Edwards curve while computing the variable-base scalar multiplication using the
Montgomery ladder. In such a hybrid solution the protocol should specify if the coordinates
are transmitted in (compressed) twisted Edwards or Montgomery coordinates (which are al-
ready in compressed form). When using such a hybrid solution in the setting of ECDHE,
transmitting the points in Montgomery form is best (see Table 7). The cost for the conversion
(between Montgomery and twisted Edwards) is roughly the same as when only using twisted
Edwards curves and transmitting compressed points. Our performance numbers suggest that
the approach using only twisted Edwards is slightly faster than such a hybrid approach using
the Montgomery ladder, while it avoids conversions between coordinate systems. Furthermore,
our Montgomery ladder implementations do not include the extra validation step discussed at
the end of Section 4.3; if incorporated, this would incur additional overhead.

Table 4 gives the cost estimates for the separate components and total cost of the TLS
handshake using the ECDHE-ECDSA cipher suite for different security levels. The results
show that the use of twisted Edwards for the ECDHE and full ECDHE-ECDSA computations
are approximately a factor 1.36, 1.25 and 1.23 faster in comparison to the Weierstrass curves
at the 128-, 192- and 256-bit security levels, respectively. We also include the results from [28]
when using NIST P-256. In [28] the fixed-base scalar multiplication is implemented using a
relatively large (slightly over 150KB) lookup table for the fixed-base scalar multiplication. It
is unclear if this implementation accesses the table-lookup elements in a cache-attack resistant
manner and if the dedicated addition formula used takes care of exceptions, and if so if this
is done in constant time. This might explain the faster implementation results. In order to
compare to the state-of-the-art software implementation of twisted Edwards curves we also
include the results from EdDSA [7] (obtained from the “sandy” benchmark machine” [11]).
Note that [7] only computes signatures; when computing ECDH one could use the approach
as described in [4] which uses the Montgomery ladder. In order to achieve perfect forward
secrecy (ECDHE), the implementation can compute the fixed-base scalar multiplication using
the Montgomery ladder (which is slow) or convert the point and compute the fixed-base scalar
multiplication using the corresponding twisted Edwards curve (using a hybrid approach).

20 Joppe W. Bos, Craig Costello, Patrick Longa and Michael Naehrig

7 Conclusions

In this paper we have presented new elliptic curves for cryptography targeting the 128-,
192-, and 256-bit security levels. By considering different choices for the base field arith-
metic, pseudo-Mersenne and Montgomery-friendly primes, we deterministically selected effi-
cient twisted Edwards curves as well as traditional Weierstrass curves. Instead of resorting
to the slower complete formulas, we show how to compute efficient scalar multiplications by
using constant-time, exceptionless, dedicated group operations. For the cases in which they
are not guaranteed to be exceptionless, we have proposed an efficient “complete” addition for-
mula based on masking techniques for Weierstrass curves. Our implementation of the scalar
multiplication in the three most-widely deployed scenarios show that our new backwards com-
patible Weierstrass curves offer enhanced security properties while improving the performance
compared to the standard NIST Weierstrass curves. At the expense of at most a few bits of
ECDLP security, our new twisted Edwards curves offer a performance increase of a factor 1.2
to 1.4 compared to our new Weierstrass curves. We demonstrated the potential cryptographic
impact by showing cost estimates for these curves inside the TLS handshake protocol.

References

1. T. Acar and D. Shumow. Modular reduction without pre-computation for special moduli. Technical report,
Microsoft Research, 2010.

2. D. F. Aranha, P. S. L. M. Barreto, G. C. C. F. Pereira, and J. E. Ricardini. A note on high-security general-
purpose elliptic curves. Cryptology ePrint Archive, Report 2013/647, 2013. http://eprint.iacr.org/.

3. D. J. Bernstein. Can we avoid tests for zero in fast elliptic-curve arithmetic?, 2006. http://cr.yp.to/
papers.html#curvezero.

4. D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In M. Yung, Y. Dodis, A. Kiayias, and
T. Malkin, editors, Public Key Cryptography – PKC 2006, volume 3958 of Lecture Notes in Computer
Science, pages 207–228. Springer, Heidelberg, 2006.

5. D. J. Bernstein. Counting points as a video game, 2010. Slides of a talk given at Counting Points: Theory,
Algorithms and Practice, April 19, University of Montreal: http://cr.yp.to/talks/2010.04.19/slides.
pdf.

6. D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. Twisted edwards curves. In S. Vaudenay,
editor, AFRICACRYPT, volume 5023 of Lecture Notes in Computer Science, pages 389–405. Springer,
2008.

7. D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-security signatures.
Journal of Cryptographic Engineering, 2(2):77–89, 2012.

8. D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange. Elligator: Elliptic-curve points indistinguishable
from uniform random strings. In ACM Conference on Computer and Communications Security, 2013.

9. D. J. Bernstein and T. Lange. Faster addition and doubling on elliptic curves. In K. Kurosawa, editor,
ASIACRYPT, volume 4833 of Lecture Notes in Computer Science, pages 29–50. Springer, 2007.

10. D. J. Bernstein and T. Lange. SafeCurves: choosing safe curves for elliptic-curve cryptography. http:
//safecurves.cr.yp.to, accessed 16 October 2013.

11. D. J. Bernstein and T. Lange (editors). eBACS: ECRYPT Benchmarking of Cryptographic Systems.
http://bench.cr.yp.to, accessed February 3rd 2014.

12. S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Moeller. Elliptic curve cryptography (ECC)
cipher suites for transport layer security (TLS). RFC 4492, 2006.

13. J. W. Bos, C. Costello, H. Hisil, and K. Lauter. Fast cryptography in genus 2. In T. Johansson and
P. Q. Nguyen, editors, EUROCRYPT, volume 7881 of Lecture Notes in Computer Science, pages 194–210.
Springer, 2013.

14. J. W. Bos, J. A. Halderman, N. Heninger, J. Moore, M. Naehrig, and E. Wustrow. Elliptic curve cryptog-
raphy in practice (to appear). In Financial Cryptography and Data Security, Lecture Notes in Computer
Science. Springer, 2014.

15. W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. J. Symbolic
Comput., 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993).

Selecting Elliptic Curves for Cryptography: An Efficiency and Security Analysis 21

16. W. Bosma and H. W. Lenstra. Complete systems of two addition laws for elliptic curves. Journal of
Number Theory, 53(2):229–240, 1995.

17. B. B. Brumley and R. M. Hakala. Cache-timing template attacks. In M. Matsui, editor, ASIACRYPT,
volume 5912 of LNCS, pages 667–684. Springer, 2009.

18. D. Brumley and D. Boneh. Remote timing attacks are practical. In S. Mangard and F.-X. Standaert, edi-
tors, Proceedings of the 12th USENIX Security Symposium, volume 6225 of LNCS, pages 80–94. Springer,
2003.

19. Certicom Research. Standards for efficient cryptography 2: Recommended elliptic curve domain parame-
ters. Standard SEC2, Certicom, 2000.

20. D. Chudnovsky and G. Chudnovsky. Sequences of numbers generated by addition in formal groups and
new primality and factorization tests. Advances in Applied Mathematics, 7(4):385–434, 1986.

21. ECC Brainpool. ECC Brainpool Standard Curves and Curve Generation. http://www.ecc-brainpool.
org/download/Domain-parameters.pdfl, 2005.

22. H. M. Edwards. A normal form for elliptic curves. Bulletin of the American Mathematical Society, 44:393–
422, July 2007.

23. J.-C. Faugère, L. Perret, C. Petit, and G. Renault. Improving the complexity of index calculus algorithms
in elliptic curves over binary fields. In D. Pointcheval and T. Johansson, editors, EUROCRYPT, volume
7237 of Lecture Notes in Computer Science, pages 27–44. Springer, 2012.

24. A. Faz-Hernández, P. Longa, and A. Sánchez. Efficient and secure algorithms for GLV-based scalar
multiplication and their implementation on GLV-GLS curves (extended version). In Cryptology ePrint
Archive, Report 2013/158, 2013. Available at: http://eprint.iacr.org/2013/158.

25. M. Feng, B. Zhu, M. Xu, and S. Li. Efficient comb elliptic curve multiplication methods resistant to power
analysis. In Cryptology ePrint Archive, Report 2005/222, 2005. Available at: http://eprint.iacr.org/
2005/222.

26. P.-A. Fouque, A. Joux, and M. Tibouchi. Injective encodings to elliptic curves. In C. Boyd and L. Simpson,
editors, ACISP, volume 7959 of Lecture Notes in Computer Science, pages 203–218. Springer, 2013.

27. R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Faster point multiplication on elliptic curves with efficient
endomorphisms. In J. Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages
190–200. Springer, 2001.

28. S. Gueron and V. Krasnov. Fast prime field elliptic curve cryptography with 256 bit primes. Cryptology
ePrint Archive, Report 2013/816, 2013. http://eprint.iacr.org/.

29. M. Hamburg. Fast and compact elliptic-curve cryptography. Cryptology ePrint Archive, Report 2012/309,
2012. http://eprint.iacr.org/.

30. M. Hamburg. Twisting edwards curves with isogenies. Cryptology ePrint Archive, Report 2014/027, 2014.
http://eprint.iacr.org/.

31. D. Hankerson, A. Menezes, and S. Vanstone. Guide to elliptic curve cryptography. Springer Verlag, 2004.
32. H. Hisil, K. K.-H. Wong, G. Carter, and E. Dawson. Twisted Edwards curves revisited. In J. Pieprzyk,

editor, Asiacrypt 2008, volume 5350 of Lecture Notes in Computer Science, pages 326–343. Springer,
Heidelberg, 2008.

33. M. Joye and M. Tunstall. Exponent recoding and regular exponentiation algorithms. In M. Joye, editor,
Proceedings of Africacrypt 2003, volume 5580 of LNCS, pages 334–349. Springer, 2009.

34. A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata. In Soviet physics doklady,
volume 7, page 595, 1963.

35. M. Knežević, F. Vercauteren, and I. Verbauwhede. Speeding up bipartite modular multiplication. In
M. Hasan and T. Helleseth, editors, Arithmetic of Finite Fields – WAIFI 2010, volume 6087 of Lecture
Notes in Computer Science, pages 166–179. Springer Berlin / Heidelberg, 2010.

36. P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems.
In N. Koblitz, editor, Crypto 1996, volume 1109 of Lecture Notes in Computer Science, pages 104–113.
Springer, Heidelberg, 1996.

37. A. K. Lenstra. Generating RSA moduli with a predetermined portion. In K. Ohta and D. Pei, editors,
Asiacrypt’98, volume 1514 of Lecture Notes in Computer Science, pages 1–10. Springer Berlin / Heidelberg,
1998.

38. C. H. Lim and P. J. Lee. More flexible exponentiation with precomputation. In Y. Desmedt, editor,
CRYPTO, volume 839 of Lecture Notes in Computer Science, pages 95–107. Springer, 1994.

39. P. Longa and C. Gebotys. Efficient techniques for high-speed elliptic curve cryptography. In S. Mangard
and F.-X. Standaert, editors, Proceedings of CHES 2010, volume 6225 of LNCS, pages 80–94. Springer,
2010.

22 Joppe W. Bos, Craig Costello, Patrick Longa and Michael Naehrig

40. P. Longa and A. Miri. New composite operations and precomputation scheme for elliptic curve cryptosys-
tems over prime fields. In R. Cramer, editor, Proceedings of PKC 2008, volume 4939 of LNCS, pages
229–247. Springer, 2008.

41. N. Meloni. New point addition formulae for ECC applications. In C. Carlet and B. Sunar, editors,
Workshop on Arithmetic of Finite Fields (WAIFI), volume 4547 of Lecture Notes in Computer Science,
pages 189–201. Springer, 2007.

42. B. Möller. Algorithms for multi-exponentiation. In S. Vaudenay and A. M. Youssef, editors, Selected Areas
in Cryptography, volume 2259 of Lecture Notes in Computer Science, pages 165–180. Springer, 2001.

43. P. L. Montgomery. Modular multiplication without trial division. Mathematics of Computation,
44(170):519–521, April 1985.

44. P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Mathematics of
Computation, 48(177):243–264, 1987.

45. National Security Agency. Fact sheet NSA Suite B Cryptography. http://www.nsa.gov/ia/programs/
suiteb_cryptography/index.shtml, 2009.

46. K. Okeya and T. Takagi. The width-w NAF method provides small memory and fast elliptic curve scalars
multiplications against side-channel attacks. In M. Joye, editor, Proceedings of CT-RSA 2003, volume
2612 of LNCS, pages 328–342. Springer, 2003.

47. D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures: The case of AES. In
D. Pointcheval, editor, CT-RSA, volume 3860 of LNCS, pages 1–20. Springer, 2006.

48. R. Schoof. Counting points on elliptic curves over finite fields. Journal de théorie des nombres de Bordeaux,
7(1):219–254, 1995.

49. D. Shumow and N. Ferguson. On the possibility of a back door in the NIST SP800-90 dual ec prng.
http://rump2007.cr.yp.to/15-shumow.pdf, 2007.

50. J. A. Solinas. Generalized Mersenne numbers. Technical Report CORR 99–39, Centre for Applied Cryp-
tographic Research, University of Waterloo, 1999.

51. J. A. Solinas. Efficient arithmetic on Koblitz curves. Designs, Codes and Cryptography, 19(195–249), 2000.
52. The New York Times. Government announces steps to restore confidence on encryption

standards. http://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-
confidence-on-encryption-standards, 2013.

53. M. Tibouchi. Elligator squared: Uniform points on elliptic curves of prime order as uniform random strings.
Cryptology ePrint Archive, Report 2014/043, 2014. http://eprint.iacr.org/.

54. U.S. Department of Commerce/National Institute of Standards and Technology. Digital Signature Stan-
dard (DSS). FIPS-186-4, 2013. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.

55. C. D. Walter. Montgomery exponentiation needs no final subtractions. Electronics Letters, 35(21):1831–
1832, 1999.

A Algorithms for Scalar Multiplication

Algorithms for variable-base scalar multiplication. Algorithm 1 computes scalar mul-
tiplication for the variable-base scenario using the fixed-window method from [46]. We refer
to Sections 4.1 and 4.2 for details on its usage with Weierstrass and twisted Edwards curves,
respectively. The computation of this operation mainly consists of four different stages: input
and point validation, precomputation, recoding and evaluation. Input and point validation are
computed at the very beginning of the execution using Algorithm 2 for Weierstrass curves and
Algorithm 3 for twisted Edwards curves. In particular, Algorithm 3 performs two doublings
over the input point in twisted Edwards to ensure that subsequent computations are performed
in the large prime order subgroup (avoiding small subgroup attacks). We remark that it is the
protocol implementer’s responsibility to ensure that timing differences during the detection
of errors do not leak sensitive information to an attacker. In the precomputation stage, the
implementer should first select a window width 2 ≤ w < 10 according to efficiency and/or
memory considerations. For example, selecting w = 6 for 256-, 384- and 512-bit scalar mul-
tiplication was found to achieve optimal performance in our implementations of Weierstrass
curves. Precomputation is then computed by successively executing P + 2P + 2P + . . .+ 2P

Selecting Elliptic Curves for Cryptography: An Efficiency and Security Analysis 23

with 2w−2− 1 point additions and storing the intermediate results. Explicit schemes are given
in Algorithms 4 and 5 for a = −3 Weierstrass and a = −1 twisted Edwards curves, respec-
tively. In the recoding stage, we use a variant of the regular recoding by [33] that ensures
fixed length (see Algorithm 6). Since Algorithm 6 only recodes odd integers, we include a
conversion step at Step 6 to deal with even values. The corresponding correction is performed
at Step 20. These computations should be executed in constant time to protect against timing
attacks. For example, a constant time execution of Step 6 could be implemented as follows (as-
suming a two’s complement representation in which −1 ≡ 0xFF. . .FF, and bitlength(odd) =
bitlength(k)):

odd = −(k AND 1) {If k is even then odd =0xFF. . .FF else odd = 0}
k′ = k − r
k = (odd AND (k XOR k′)) XOR k′ {If odd = 0 then k = k − r}

The main computation in the evaluation stage consists of t = dlog2(r)/(w− 1)e iterations
each computing (w− 1) doublings and one addition with a value from the precomputed table.
For a = −3 Weierstrass curves, the use of Jacobian coordinates is a popular choice for effi-
ciency reasons. If this is used, then Algorithm 1 can use an efficient merged doubling-addition
formula [40] when w > 2 by setting DBLADD = true. Other cases, including Weierstrass
curves with w = 2 or twisted Edwards curves, should use DBLADD = false. Note that the
evaluation of DBLADD is used to simplify the description of the algorithm. An implementa-
tion might choose for having separate functions for twisted Edwards and Weierstrass curves.
Following the recommendations from Section 4, the last addition should be performed with a
unified formula (denoted by ⊕) in order to avoid exceptions and it has been separated from
the main loop; see Steps 18 and 19. To achieve constant-time execution, the points from the
precomputed table should be extracted by doing a full pass over all the points in the lookup
table and masking the correct value with the index (|ki| − 1)/2. Finally, a suitable conversion
to affine coordinates may be computed at Step 21 (if required).

Algorithm 7 computes scalar multiplication for the fixed-base scenario using the modified
LSB-set method [24] (denoted by mLSB-set), which combines the comb method [38] and
LSB-set recoding [25]. Refer to Sections 4.1 and 4.2 for details on the use of the method with
Weierstrass and twisted Edwards curves, respectively. This operation consists of computations
executed offline, which involve point validation and precomputing multiples of the known
input point, and computations executed online, which involve scalar validation, recoding and
evaluation stages. As before, point validation for twisted Edwards using Algorithm 3 during the
offline phase performs two doublings over the input point to ensure that the computation takes
place in the large prime order subgroup. Again, it is the protocol implementer’s responsibility
to ensure that timing differences during the detection of errors do not leak sensitive information
to an attacker. The implementer should choose a window width 2 ≤ w < 10 and a table
parameter v ≥ 1 according to efficiency and/or memory constraints, taking into account that
the mLSB-set method requires v · 2w−1 precomputed points. For example, selecting w = 6
and v = 3 for 256-bit scalar multiplication was found to achieve optimal performance in our
implementations of Weierstrass curves when storage is constrained to 6KB. During the online
computation, the recoded scalar obtained from Algorithm 8 has a fixed length, which enables
a fully regular execution when the representation is set up as described at Step 7. Since
Algorithm 8 only recodes odd integers, we include a conversion step at Step 6 to deal with
even values. The corresponding correction is performed at Step 13. In the evaluation stage,

24 Joppe W. Bos, Craig Costello, Patrick Longa and Michael Naehrig

Algorithm 1 Variable-base scalar multiplication using the fixed-window method.
Input: Scalar k ∈ [0, r〉 and point P = (x, y) ∈ E(Fp), where #E(Fp) = h.r with co-factor h ∈ Z+ and r

prime.
Output: kP .
1. if k = 0 ∨ k ≥ r then return (“error: invalid scalar”) [if: validation]
2. Run point validation and compute T = 4P (for Ed) using Algorithm 2 for Eb and Algorithm 3 for Ed. If

“invalid” return (“error: invalid point”), else set P = T (for Ed). [if: validation]
Precomputation Stage:

3. Fix the window width 2 ≤ w < 10 ∈ Z+.
4. Compute P [i] = (2i+ 1)P for 0 ≤ i < 2w−2 using Algorithm 4 for Eb and Algorithm 5 for Ed.

Recoding Stage:
5. odd = k mod 2
6. if odd = 0 then k = r − k [if: masked constant time]
7. Recode k to (kt, . . . , k0) = (st · |kt|, . . . , s0 · |k0|) using Algorithm 6, where t = dlog2(r)/(w− 1)e and sj are

the signs of the recoded digits.
Evaluation Stage:

8. Q = stP [(|kt| − 1)/2]
9. for i = (t− 1) to 1
10. if DBLADD = true ∧ w 6= 2 then [if: algorithm variant]
11. Q = 2(w−2)Q (Use Alg.10)
12. Q = 2Q+ siP [(|ki| − 1)/2] (Use Alg.11)
13. else
14. Q = 2(w−1)Q (Use Alg.10 for Eb and Alg.14 for Ed)
15. Q = Q+ siP [(|ki| − 1)/2] (Use Alg.12 for Eb and Alg.15 for Ed)
16. end if
17. end for
18. Q = 2(w−1)Q (Use Alg.10 for Eb and Alg.14 for Ed)
19. Q = Q⊕ s0P [(|k0| − 1)/2] (Use Alg.19 for Eb and Alg.17 for Ed)
20. if odd = 0 then Q = −Q [if: masked constant time]
21. Convert Q to affine coordinates (x, y).
22. return Q.

Algorithm 2 Point validation for the Weierstrass curves Eb/Fp : y2 = x3− 3x+ b in Table 1.
Input: Point P = (x1, y1).
Output: “Valid” or “invalid” point.
1. if P = O then return (“invalid”) [if: validation]
2. if x1 /∈ [0, p− 1] ∨ y1 /∈ [0, p− 1] then return (“invalid”) [if: validation]
3. if y21 6= x31 − 3x1 + b (mod p) then return (“invalid”) [if: validation]
4. return (“valid”).

Algorithm 3 Combined point validation and torsion clearing for the twisted Edwards curves
Ed : − x2 + y2 = 1 + dx2y2 in Table 2.
Input: Point P = (x1, y1).
Output: “Invalid”, or “valid” and a point T of prime order r.
1. if x1 /∈ [0, p− 1] ∨ y1 /∈ [0, p− 1] then return (“invalid”) [if: validation]
2. if −x21 + y21 6= 1 + dx21y

2
1 (mod p) then return (“invalid”) [if: validation]

3. if (x1, y1) = (0, 1) then return (“invalid”) [if: validation]
4. Compute T = 4P
5. if T = O then return (“invalid”) [if: validation]
6. return (“valid”) and T .

the main computation consists of e− 1 = ddlog2(r)e/(wv)e − 1 iterations each computing one
doubling and v additions with a value from the precomputed table. Following Section 4, the

Selecting Elliptic Curves for Cryptography: An Efficiency and Security Analysis 25

Algorithm 4 Precomputation scheme for the Weierstrass curves Eb/Fp : y2 = x3 − 3x+ b in
Table 1.
Input: Point P = (x1, y1) ∈ Eb(Fp) \ {O} of prime order r and window width 2 ≤ w < 10.
Output: P [i] = (2i+ 1)P for 0 ≤ i < 2w−2, in Chudnovsky coordinates.
1. Given P = (x1, y1), compute Q = 2P in Jacobian coordinates (Q = (X2,Y2,Z2)) and convert P to

Chudnovsky coordinates (P = (X,Y, Z1, Z2, Z3)) such that the new P and Q have the same Z-coordinate
(read from left to right, top to bottom):
t2 = 1, t1 = x21, t1 = t1 − t2, t2 = t1/2, t1 = t1 + t2,
Z2 = y21 , X = x1 · Z2, Z3 = Z2 · y1, t2 = t21 t2 = t2 −X,
X2 = t2 −X, Z2 = y1, Z1 = y1, Y = Z2

2 , t2 = X −X2,
t3 = t1 · t2, Y2 = t3 − Y .

2. P [0] = P
3. for i = 1 to 2w−2 − 1 do
4. Given Q = (X1, Y1, Z) and P [i − 1] = (X2, Y2, Z, Z

2, Z3) compute P [i] = Q + P [i − 1] =
(X3, Y3, Z3,1, Z3,2, Z3,3) and update the representation of Q = (X,Y,Z) such that Z = Z3,1 (read
from left to right, top to bottom):
t1 = X2 −X1, Z3,1 = Z · t1, Z = Z3,1, t2 = t21, Z3,2 = Z2

3,1,
t3 = t1 · t2, X = X1 · t2, t1 = Y2 − Y1, X3 = t21, Z3,3 = Z3 · Z3,2,
X3 = X3 − t3, X3 = X3 −X, X3 = X3 −X, t2 = X−X3, t1 = t1 · t2,
Y = Y1 · t3, Y3 = t1 −Y.

5. return P [i] (= (2i+ 1)P for 0 ≤ i < 2w−2).

Algorithm 5 Precomputation scheme for twisted Edwards curves (Ed).
Input: Point P = (x1, y1) ∈ Ed(Fp) of prime order r and window width w ≥ 2 ∈ Z+.
Output: P [i] = (2i+ 1)P , for 0 ≤ i < 2w−2, in extended homogeneous coordinates (X + Y, Y −X, 2Z, 2T).
1. Given P = (x1, y1), compute Q = 2P = (X2, Y2, Z2, T2) (where Q is represented using (X+Y, Y −X,Z, T)),

and update P = (X,Y,Z,T) in the representation (X + Y, Y −X, 2Z, 2T) (read from left to right, top to
bottom):
X = x21, t1 = y21 , t2 = X+ t1, t1 = t1 −X, Y = x1 · y1,
t3 = Y +Y, Y2 = t1 · t2, T2 = t2 · t3, t2 = 2, t2 = t2 − t1,
Z2 = t1 · t2, t1 = t2 · t3, Z = x1, T = x1 ·Y, X2 = t1 + Y2,
Y2 = Y2 − t1, t1 = X+Y, Y = Y −X, X = t1, Z = Z+ Z,
T = T+T.

2. P [0] = P
3. for i = 1 to 2(w−2) − 1 do
4. Given P [i − 1] = (X2, Y2, Z2, T2) (represented using (X + Y, Y −X, 2Z, 2T)) and Q = (X1, Y1, Z1, T1)

(represented using (X + Y, Y −X,Z, T)) compute P [i] = Q+ P [i− 1], where P [i] = (X3, Y3, Z3, T3) is
represented as (X + Y, Y −X, 2Z, 2T) (read from left to right, top to bottom):
t1 = T2 · Z1, t2 = T1 · Z2, t3 = t2 − t1, t1 = t1 + t2, t2 = t1 · t3,
T3 = t2 + t2, t2 = X1 · Y2, X3 = Y1 ·X2, Y3 = t2 −X3, t2 = X3 + t2,
X3 = Y3 · t1, Z3 = Y3 · t2, t1 = t3 · t2, Y3 = t1 −X3, X3 = X3 + t1,
Z3 = Z3 + Z3.

5. return P [i] (= (2i+ 1)P for 0 ≤ i < 2w−2).

additions should be performed with a unified formula (denoted by ⊕) to avoid exceptions.
Note that, as described in the variable-base case, all the conditional computations using “if”
statements as well as the extraction of points from the precomputed table should be executed
in constant time in order to protect against timing attacks (with the exception of Step 3,
which depends on public parameters; any potential leak through the detection of errors at
Step 4 should be assessed by the protocol’s implementer). Finally, a suitable conversion to
affine coordinates may be computed at Step 14 (if required).

26 Joppe W. Bos, Craig Costello, Patrick Longa and Michael Naehrig

Algorithm 6 Protected odd-only recoding algorithm for the fixed-window representation.
Input: odd integer k ∈ [1, r〉 and window width w ≥ 2, where r is the prime order of the targeted elliptic

curve (sub)group.
Output: (kt, . . . , k0), where ki ∈ {±1,±3, · · · ,±(2w−1 − 1)} and t = dlog2(r)/(w − 1)e.
1. t = dlog2(r)/(w − 1)e
2. for i = 0 to (t− 1) do
3. ki = (k mod 2w)− 2w−1

4. k = (k − ki)/2w−1

5. kt = k
6. return (kt, . . . , k0).

Algorithm 7 Protected fixed-base scalar multiplication using the modified LSB-set comb
method.
Input: A point P = (x, y) ∈ E(Fp), where #E = h.r with co-factor h ∈ Z+ and r prime, a scalar k =

(kt−1, . . . , k0)2 ∈ [0, r〉, where t = dlog2(r)e, window width w ≥ 2, and table parameter v ≥ 1, such that
e = dt/(wv)e, d = ev and ` = dw.

Output: kP .
Offline computation:
Precomputation stage:

1. Run point validation and compute T = 4P (for Ed) using Algorithm 2 for Eb and Algorithm 3 for Ed. If
“invalid” return (“error: invalid point”), else set P = T (for Ed). [if: validation]

2. Compute P [i][j] = 2ej(1 + i02
d + . . . + iw−22

(w−1)d)P for all 0 ≤ i < 2w−1 and 0 ≤ j < v, where
i = (iw−2, . . . , i0)2.

3. if wv | t then compute 2wdP . [if: algorithm variant]
Online computation:

4. if k = 0 ∨ k ≥ r then return (“error: invalid scalar”) [if: validation]
Recoding stage:

5. odd = k mod 2
6. if odd = 0 then k = r − k [if: masked constant time]
7. Pad k with dw − t zeros to the left and convert it to the mLSB-set representation using Algorithm 8

such that k = (c, bl−1, . . . , b0)mLSB-set. Set the digit columns Ti,j = |
∑w−2

m=0 b(m+1)d+ei+j2
m| with signs

si,j = bei+j for all 0 ≤ i < v and 0 ≤ j < e.
Evaluation stage:

8. Q =
∑v−1

i=0 si,e−1P [Ti,e−1][i]
9. for i = e− 2 to 0 do
10. Q = 2Q (Use Alg.10 for Eb and Alg.14 for Ed)
11. Q = Q⊕

∑v−1
j=0 sj,iP [Tj,i][j] (Use Alg.18 for Eb and Alg.17 for Ed)

12. if wv | t ∧ c = 1 then Q = Q+ 2wdP [if: masked constant time]
13. if odd = 0 then Q = −Q [if: masked constant time]
14. Convert Q to affine coordinates (x, y).
15. return Q

Algorithm 9 computes double-scalar multiplication, which is typically found in signature
verification schemes, and uses the width-w non-adjacent form [51] with interleaving [27, 42].
We assume that one of the input points is known in advance (P2) whereas the other one is a
variable base (P1). Hence, we distinguish two phases: offline, which involves validation of P2

and a precomputation stage using the value w2; and online, which involves scalar validation,
point validation of P1 and precomputation (using w1), recoding and evaluation stages. Again,
point validation for twisted Edwards curves with Algorithm 3 performs two doublings over the
input points to ensure computation in the large prime order subgroup. The precomputation
for both input points are performed as in the variable-base scenario using Algorithms 4 and
5 for a = −3 Weierstrass and a = −1 twisted Edwards curves, respectively. However, the

Selecting Elliptic Curves for Cryptography: An Efficiency and Security Analysis 27

Algorithm 8 Protected odd-only recoding algorithm for the modified LSB-set representation.
Input: An odd `-bit integer k = (k`−1, . . . , k0)2 ∈ [1, r〉, window width w ≥ 2 and table parameter v ≥ 1,

where r is the prime order of the targeted elliptic curve group such that e = dt/(wv)e, d = ev and ` = dw,
where t = dlog2(r)e.

Output: (c, b`−1, . . . , b0)mLSB-set, where
{
bi ∈ {1,−1} if 0 ≤ i < d
bi ∈ {0, bi mod d} if d ≤ i < `.

If wv | t then c ∈ {0, 1}, otherwise,

c = 0.
1. bd−1 = 1
2. for i = 0 to (d− 2) do
3. bi = 2ki+1 − 1
4. c = bk/2dc
5. for i = d to (`− 1) do
6. bi = bi mod d · c0
7. c = bc/2c − bbi/2c
8. return (c, bl−1, . . . , b0)mLSB-set.

implementer has additional freedom in the selection of w2 since the precomputation for the
fixed-base is done offline. For example, we found that using w1 = 6 and w2 = 7 results in
optimal performance in our implementations of Weierstrass curves when storage was restricted
to 2KB, 3KB and 4KB for 128-, 192- and 256-bit security levels. In the online computation,
recoding of the scalars is performed using [31, Algorithm 3.35]. Accordingly, the evaluation
stage consists of dlog2(r)e + 1 iterations, each consisting of one doubling and at most two
additions (one per precomputed table). As in the variable-base case, for a = −3 Weierstrass
curves using Jacobian coordinates one may use the merged doubling-addition formula [40] by
setting DBLADD = true. A suitable conversion to affine coordinates may be computed at
Step 39 (if required).

28 Joppe W. Bos, Craig Costello, Patrick Longa and Michael Naehrig

Algorithm 9 Double-scalar multiplication using the width-w NAF with interleaving.
(If-statements are not marked because this algorithm is not assumed to be constant-time.)
Input: Scalars k1 and k2 ∈ [0, r〉 and points P1 and P2 ∈ E(Fp), where #E = h.r with co-factor h ∈ Z+ and

r prime.
Output: k1P1 + k2P2.

Offline computation:
Precomputation stage:

1. Run point validation over P2 and compute T = 4P2 (for Ed) using Algorithm 2 for Eb and Algorithm 3 for
Ed. If “invalid” return (“error: invalid point”), else set P2 = T (for Ed).

2. Fix the window width w2 ≥ 2 ∈ Z+.
3. Compute P2[i] = (2i+ 1)P2 for 0 ≤ i < 2w2−2 using Algorithm 4 for Eb and Algorithm 5 for Ed.

Online computation:
4. if (k1 = 0 ∨ k1 ≥ r) ∨ (k2 = 0 ∨ k2 ≥ r) then return (“error: invalid scalar”)
5. Run point validation over P1 and compute T = 4P1 (for Ed) using Algorithm 2 for Eb and Algorithm 3 for
Ed. If “invalid” return (“error: invalid point”), else set P1 = T (for Ed).
Precomputation Stage:

6. Fix the window width w1 ≥ 2 ∈ Z+.
7. Compute P1[i] = (2i+ 1)P1 for 0 ≤ i < 2w1−2 using Algorithm 4 for Eb and Algorithm 5 for Ed.

Recoding Stage:
8. Recode k1 to (k1,i−1, k1,i−2, . . . , k1,0)wNAF using [31, Algorithm 3.35] and pad it with dlog2(r)e− i+1 zeros

to the left.
9. Recode k2 to (k2,j−1, k2,j−2, . . . , k2,0)wNAF using [31, Algorithm 3.35] and pad it with dlog2(r)e − j + 1

zeros to the left.
Evaluation Stage:

10. for i = dlog2(r)e to 0
11. if DBLADD = true then
12. if k1,i = 0 then
13. Q = 2Q (Use Algorithm 10)
14. else if k1,i > 0 then
15. Q = 2Q+ P1[k1,i/2] (Use Algorithm 11)
16. else if k1,i < 0 then
17. Q = 2Q− P1[(−k1,i)/2] (Use Algorithm 11)
18. end if
19. if k2,i > 0 then
20. Q = Q+ P2[k2,i/2] (Use Algorithm 13)
21. else if k2,i < 0 then
22. Q = Q− P2[(−k2,i)/2] (Use Algorithm 13)
23. end if
24. else
25. Q = 2Q (Use Algorithm 14)
26. else if k1,i > 0 then
27. Q = Q+ P1[k1,i/2] (Use Algorithm 15)
28. else if k1,i < 0 then
29. Q = Q− P1[(−k1,i)/2] (Use Algorithm 15)
30. end if
31. if k2,i > 0 then
32. Q = Q+ P2[k2,i/2] (Use Algorithm 16)
33. else if k2,i < 0 then
34. Q = Q− P2[(−k2,i)/2] (Use Algorithm 16)
35. end if
36. end if
37. end for
38. Convert Q to affine coordinates (x, y).
39. return Q.

Selecting Elliptic Curves for Cryptography: An Efficiency and Security Analysis 29

B Algorithms for Point Operations

Algorithm 10 Point doubling using Jacobian coordinates on Weierstrass curves (Eb).
Input: P = (X1, Y1, Z1) ∈ Eb(Fp) in Jacobian coordinates.
Output: 2P = (X2, Y2, Z2) ∈ Eb(Fp) in Jacobian coordinates.
1. t1 = Z2

1

2. t2 = X1 + t1
3. t1 = X1 − t1
4. t1 = t1 × t2
5. t2 = t1/2
6. t1 = t1 + t2
7. t2 = Y 2

1

8. t3 = X1 × t2
9. t4 = t21

10. t4 = t4 − t3
11. X2 = t4 − t3
12. Z2 = Y1 × Z1

13. t2 = t22
14. t4 = t3 −X2

15. t1 = t1 × t4
16. Y2 = t1 − t2
17. return 2P = (X2, Y2, Z2).

Algorithm 11 Merged point doubling-addition using Jacobian/Chudnosvky coordinates on
Weierstrass curves (Eb).
Input: P,Q ∈ Eb(Fp) such that P = (X1, Y1, Z1) is in Jacobian coordinates and Q = (X2, Y2, Z2, Z

2
2 , Z

3
2) is

in Chudnosvky coordinates.
Output: 2P +Q = (X4, Y4, Z4) ∈ Eb(Fp) in Jacobian coordinates.
1. if P = O then return Q [if: exception]
2. if Q = O then use Algorithm 10 to compute and

return 2P [if: exception]
3. t1 = Z2

1

4. t2 = Z1 × t1
5. t3 = Z3

2 × Y1

6. t2 = Y2 × t2
7. t2 = t2 − t3
8. t4 = Z2

2 ×X1

9. t1 = t1 ×X2

10. t1 = t1 − t4
11. if t1 = 0 then [if: exception]
12. if t2 = 0 then [if: exception]
13. Use Alg. 10 to compute R = 2P
14. Use Alg. 12 to compute and return R+Q
15. else return P
16. Z4 = Z1 × Z2

17. Z4 = t1 × Z4

18. t5 = t21
19. t1 = t1 × t5
20. X4 = t4 × t5
21. t4 = t22

22. t4 = t4 − t1
23. t4 = t4 −X4

24. t4 = t4 −X4

25. t4 = t4 −X4

26. if t4 = 0 then return (O) [if: exception]
27. Y4 = t1 × t3
28. t1 = t2 × t4
29. t1 = t1 + Y4

30. t1 = t1 + Y4

31. Z4 = Z4 × t4
32. t2 = t24
33. t4 = t2 × t4
34. t2 = t2 ×X4

35. t3 = t21
36. t3 = t3 − t4
37. t3 = t3 − t2
38. X4 = t3 − t2
39. t3 = X4 − t2
40. t4 = t4 × Y4

41. t1 = t1 × t3
42. Y4 = t1 − t4
43. return 2P +Q = (X4, Y4, Z4).

30 Joppe W. Bos, Craig Costello, Patrick Longa and Michael Naehrig

Algorithm 12 Point addition using Jacobian/Chudnovsky coordinates on Weierstrass curves
(Eb).
Input: P,Q ∈ Eb(Fp) such that P = (X1, Y1, Z1) is in Jacobian coordinates and Q = (X2, Y2, Z2, Z

2
2 , Z

3
2) is

in Chudnosvky coordinates.
Output: P +Q = (X3, Y3, Z3) ∈ Eb(Fp) in Jacobian coordinates.
1. if P = O then return Q [if: exception]
2. if Q = O then return P [if: exception]
3. t1 = Z2

1

4. t2 = Z1 × t1
5. t3 = Z3

2 × Y1

6. t2 = Y2 × t2
7. t2 = t2 − t3
8. t4 = Z2

2 ×X1

9. t1 = t1 ×X2

10. t1 = t1 − t4
11. if t1 = 0 then [if: exception]
12. if t2 = 0 then [if: exception]
13. Use Alg. 10 to compute and return 2P .
14. else return (O)

15. Z3 = Z1 × Z2

16. Z3 = t1 × Z3

17. t5 = t21
18. t1 = t1 × t5
19. t4 = t4 × t5
20. t5 = t22
21. t5 = t5 − t1
22. t5 = t5 − t4
23. X3 = t5 − t4
24. t4 = t4 −X3

25. t4 = t2 × t4
26. t1 = t1 × t3
27. Y3 = t4 − t1
28. return P +Q = (X3, Y3, Z3).

Algorithm 13 Point addition using Jacobian/affine coordinates on Weierstrass curves (Eb).
Input: P,Q ∈ Eb(Fp) such that P = (X1, Y1, Z1) is in Jacobian coordinates and Q = (x2, y2) is in affine

coordinates.
Output: P +Q = (X3, Y3, Z3) ∈ Eb(Fp) in Jacobian coordinates.
1. if P = O then return Q [if: exception]
2. if Q = O then return P [if: exception]
3. t1 = Z2

1

4. t2 = Z1 × t1
5. t1 = t1 × x2
6. t2 = t2 × y2
7. t1 = t1 −X1

8. t2 = t2 − Y1

9. if t1 = 0 then [if: exception]
10. if t2 = 0 then [if: exception]
11. Use Alg. 10 to compute and return 2P .
12. else return (O)
13. Z3 = Z1 × t1

14. t3 = t21
15. t4 = t1 × t3
16. t3 = X1 × t3
17. t1 = t3 + t3
18. X3 = t22
19. X3 = X3 − t1
20. X3 = X3 − t4
21. t3 = t3 −X3

22. t3 = t2 × t3
23. t4 = t4 × Y1

24. Y3 = t3 − t4
25. return P +Q = (X3, Y3, Z3).

Algorithm 14 Point doubling using homogeneous/extended homogeneous coordinates on
Edwards curves (Ed).
Input: P = (X1, Y1, Z1) ∈ Ed(Fp).
Output: 2P = (X2, Y2, Z2, T2,a, T2,b) ∈ Ed(Fp).
1. if P = O then return (O) [if: exception]
2. t1 = X2

1

3. t2 = Y 2
1

4. T2,b = t1 + t2
5. t1 = t2 − t1
6. t2 = Y1 + Y1

7. T2,a = X1 × t2

8. Y2 = t1 × T2,b

9. t2 = Z2
1

10. t2 = t2 + t2
11. t2 = t2 − t1
12. Z2 = t1 × t2
13. X2 = t2 × T2,a

14. return 2P = (X2, Y2, Z2, T2,a, T2,b).

Selecting Elliptic Curves for Cryptography: An Efficiency and Security Analysis 31

Algorithm 15 Point addition using extended homogeneous coordinates on Edwards curves
(Ed).
Input: P,Q ∈ Ed(Fp) such that P = (X1, Y1, Z1, T1,a, T1,b) and Q = (X2 + Y2, Y2 −X2, 2Z2, 2T2).
Output: P +Q = (X3, Y3, Z3, T3,a, T3,b) ∈ Ed(Fp).
1. if Q = O then return P [if: exception]
2. if P = O then [if: exception]
3. t1 = (X2 + Y2)− (Y2 −X2)
4. t1 = t1/2
5. Y3 = (Y2 −X2) + t1
6. X3 = t1
7. Z3 = (2Z2)/2
8. T3,a = (2T2)/2
9. T3,b = 1
10. T3,a = T1,a × T1,b

11. t1 = (2T2)× Z1

12. t2 = T3,a × (2Z2)

13. T3,a = t2 − t1
14. T3,b = t1 + t2
15. t2 = X1 + Y1

16. t1 = (Y2 −X2)× t2
17. t2 = Y1 −X1

18. t2 = (X2 + Y2)× t2
19. Z3 = t1 − t2
20. t1 = t1 + t2
21. X3 = T3,b × Z3

22. Z3 = Z3 × t1
23. Y3 = T3,a × t1
24. return P +Q = (X3, Y3, Z3, T3,a, T3,b).

Algorithm 16 Point addition using extended homogeneous/extended affine coordinates on
Edwards curves (Ed).
Input: P,Q ∈ Ed(Fp) such that P = (X1, Y1, Z1, T1,a, T1,b) and Q = (x2 + y2, y2 − x2, 2t2).
Output: P +Q = (X3, Y3, Z3, T3,a, T3,b) ∈ Ed(Fp).
1. if Q = O then return P [if: exception]
2. if P = O then [if: exception]
3. t1 = (x2 + y2)− (y2 − x2)
4. t1 = t1/2
5. Y3 = (y2 − x2) + t1
6. X3 = t1
7. Z3 = 1
8. T3,a = (2t2)/2
9. T3,b = 1
10. T3,a = T1,a × T1,b

11. t1 = (2T2)× Z1

12. t2 = T3,a + T3,a

13. T3,a = t2 − t1
14. T3,b = t1 + t2
15. t2 = X1 + Y1

16. t1 = (Y2 −X2)× t2
17. t2 = Y1 −X1

18. t2 = (X2 + Y2)× t2
19. Z3 = t1 − t2
20. t1 = t1 + t2
21. X3 = T3,b × Z3

22. Z3 = Z3 × t1
23. Y3 = T3,a × t1
24. return P +Q = (X3, Y3, Z3, T3,a, T3,b).

Algorithm 17 Unified point addition using extended homogeneous coordinates on Edwards
curves (Ed).
Input: P,Q ∈ Ed(Fp) such that P = (X1, Y1, Z1, T1,a, T1,b) and Q = (X2 + Y2, Y2 −X2, 2Z2, 2T2).
Output: P +Q = (X3, Y3, Z3, T3,a, T3,b) ∈ Ed(Fp).
1. T3,a = T1,a × T1,b

2. if 2Z2 = 2 then [if: exception]
3. t1 = Z1 +Z1 {Q is in affine coordinates}
4. else
5. t1 = (2Z2)× Z1

6. t2 = T3,a × (2T2)
7. T3,a = t2 × d
8. t3 = t1 − T3,a

9. t1 = t1 + T3,a

10. t2 = X1 + Y1

11. T3,a = (X2 + Y2)× t2
12. t2 = Y1 −X1

13. X3 = (Y2 −X2)× t2
14. T3,b = T3,a −X3

15. T3,a = T3,a +X3

16. X3 = T3,b × t3
17. Z3 = t3 × t1
18. Y3 = T3,a × t1
19. return P +Q = (X3, Y3, Z3, T3,a, T3,b).

32 Joppe W. Bos, Craig Costello, Patrick Longa and Michael Naehrig

C Implementing the Group Law

Weierstrass curves. It is standard to represent points on Eb : y2 = x3−3x+b using Jacobian
coordinates [19, 45, 54]: for non-zero Z ∈ Fp, the tuple (X : Y : Z) is used to represent the
affine point (X/Z2, Y/Z3) on Eb. There are many different variants of the Jacobian formulas
originally proposed in [20]. In our implementation we use the doubling formula from [39] (see
Algorithm 10). Point additions are usually performed between a running point and a point from
a (precomputed) ‘look-up’ table. Typically, it is advantageous to leave the precomputed points
in projective form for variable-base computations, and to convert them (offline) to their affine
form for fixed-base computations. When elements in the table are stored in affine coordinates,
point addition is performed using mixed Jacobian/affine coordinates using, for example, the
formula presented in [31] (see Algorithm 13). There are cases in which exceptions in the
formulas might arise. This is the case, for example, for fixed-base scalar multiplication. To
achieve constant-time execution, we devised a complete formula based on masking that works
for point addition, doubling, inverses and the point at infinity (see Algorithm 18). If points from
the precomputed table are stored in projective coordinates, we use Chudnovsky coordinates to
represent the affine point (X/Z2, Y/Z3) ∈ Eb by the projective tuple (X : Y : Z : Z2 : Z3). The
corresponding addition formula is given as Algorithm 12. More efficiently, whenever a doubling
is followed by an addition (as in the main loop of the variable-base scalar multiplication; see
Algorithm 1) one can use a merged doubling-addition formula [40] that is based on the special
addition with the same Z-coordinate from [41] (see Algorithm 11). The different costs of the
point formulas used in our implementation can be found in Table 5. Finally, the exact routine
to perform the precomputation for the variable-base scenario is outlined in Algorithm 4. The
scheme uses a straightforward variant of the general formulas, including the special addition
from [41].

Twisted Edwards curves. Hisil et al. [32] derive efficient formulas for additions on (special)
twisted Edwards curves [6] by representing affine points (X/Z, Y/Z) on Ed : − x2 + y2 =
1 + dx2y2 by the projective tuple (X : Y : Z : T), where T = XY/Z. Hamburg [29] proposes
to represent such a projective point using five elements: (X : Y : Z : T1 : T2), where T = T1T2.
This has the advantage of avoiding a required look-ahead when computing the elliptic curve
scalar multiplication using the techniques from [32]. If the addition formulas are “dedicated”
they do not work for doubling but are usually more efficient. The details of the dedicated
additions used in our implementation are outlined in Algorithm 15 and 16. For settings that
might trigger exceptions in the formulas (e.g., fixed-based scalar multiplication), one can use
the unified addition formula proposed by [32] (see Algorithm 17). The algorithm for point
doubling on Ed is given in Algorithm 14: this extends the formula from [6] by using the five
element representation as suggested in [29].

When storing precomputed points, we follow the caching techniques described in [32]: we
store affine points as (x+ y, y − x, 2t) with t = xy, or projective points as (X + Y : Y −X :
2Z : 2T) with T = XY/Z, both of which can speed up the scalar multiplication computation.
Just as in the case of the Weierstrass curves above, it is usually advantageous to leave the
precomputed points in projective form for variable-base computations, and to convert them
(offline) to their affine form for fixed-base computations. The explicit routine that performs
the precomputation for the variable-base scenario is outlined in Algorithm 5. The costs of the
different formulas used in our implementation are displayed in Table 5.

Selecting Elliptic Curves for Cryptography: An Efficiency and Security Analysis 33

Table 5. An overview of the number of modular operations required to implement the group law for a =
−3 Weierstrass, a = −1 twisted Edwards and Montgomery curves using different coordinate systems. The
Weierstrass point doubling works on Jacobian coordinates while the point addition formula takes as input
one Jacobian (Jac) coordinate and the other in either affine (aff) or (projective) Chudnovsky coordinates. We
also show a merged double-and-add approach which computes R = 2P + Q where R and P are in Jacobian
and Q in Chudnovsky coordinates. The complete addition formulas also include the number of table look-
ups (denoted by #lut) that are required for their realization. The Edwards doubling uses the five-element
projective coordinates (X : Y : Z : T1 : T2). The Edwards addition adds a five-element projective coordinate
(X : Y : Z : T1 : T2) to a four-element projective coordinate (X + Y : Y − X : 2Z : 2T) (proj.) or a three-
element extended affine coordinate (x + y, y − x, 2t) (aff.) resulting in a five-element coordinate as a result.
The performance of a single step of the Montgomery ladder (which computes a doubling and a differential
addition) is stated as well.

ref #mul #sqr #mulc #add #sub #div2 #lut see
Weierstrass double [39] 4 4 0 2 5 1 0 Algorithm 10
Weierstrass add:
Jac+ Chud→ Jac [20] 11 3 0 0 7 0 0 Algorithm 12
Jac+ aff.→ Jac [31] 8 3 0 1 6 0 0 Algorithm 13
Weierstrass dbl-add [40] 16 5 0 2 11 0 0 Algorithm 11
(Complete) Jac+ aff→ Jac This work 8 3 0 2 8 1 1 Algorithm 18
(Complete) Jac+ Jac→ Jac This work 12 4 0 2 8 1 1 Algorithm 19
Edwards doubling [6] 4 3 0 3 2 0 0 Algorithm 14
Edwards addition proj. [32] 8 0 0 3 3 0 0 Algorithm 15
Edwards addition aff. [32] 7 0 0 4 3 0 0 Algorithm 15
(Unified) Edwards addition proj. [32] 9 0 0 3 3 0 0 Algorithm 17
(Unified) Edwards addition aff. [32] 8 0 0 4 3 0 0 Algorithm 17
Montgomery ladder step [44] 5 4 1 4 4 0 0double-and-add

C.1 Complete Addition Laws

An elliptic curve addition law is said to be complete if it correctly computes the group operation
regardless of the two input points. Although employing such an addition law on its own can
simplify the task of the implementer, it usually incurs a performance penalty. This is because
the fastest formulas available for a particular curve model, which work fine for most input
pairs, tend to fail on certain inputs. However, it is often the case that implementers can
safely exploit the speed of such incomplete formulas by correctly dealing with all possible
exceptions, or by designing the scalar multiplication routine such that exceptions can never
arise. All of the twisted Edwards curves presented in this paper can make use of the complete
addition law in [9] by working on the birationally equivalent Edwards model E−1/d : x2+ y2 =
1− (1/d)x2y2. However, the complete formulas are slower compared to the fastest formulas on
the twisted Edwards curve [32]. But even when working on an Edwards curve with complete
formulas, an implementation of the scalar multiplication could still be sped up by mapping
to a different curve, while remaining with the complete formulas for all other operations. One
could for example follow the approach suggested in [30], and use an isogeny to the twisted
Edwards curve E−1/d−1 : x2 + y2 = 1 − (1/d + 1)x2y2; or use the birational equivalence to
E : −x2 + y2 = 1 + dx2y2.

The situation for the prime order Weierstrass curves in this paper is more complicated.
As pointed out by Bosma and Lenstra [16], the best that we can do for general elliptic curves
is as follows: on input of two points P1 and P2, we must compute two candidate sums, P3

and P ′3, for which we can only be guaranteed that at least one of them is a correct projective
representation for P1 + P2. In the case that precisely one of P3 and P ′3 correctly corresponds

34 Joppe W. Bos, Craig Costello, Patrick Longa and Michael Naehrig

to P1 + P2, the other candidate has all of its coordinates as zero; although this makes it
straightforward to write a constant-time routine for complete additions, it also means that
computing complete additions in this way is much more costly than computing incomplete
additions.

For the sake of comparison, we present the simplified version of the complete formulas8
from [16], which are specialized to short Weierstrass curves of the form E : y2 = x3 + ax+ b.
For two input points P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2) in homogeneous projective
space, the two candidate sums P3 = (X3 : Y3 : Z3) and P ′3 = (X ′3 : Y

′
3 : Z

′
3) are computed as

X3 = (X1Y2 −X2Y1)(Y1Z2 + Y2Z1)− (X1Z2 −X2Z1)(a(X1Z2 +X2Z1) + 3bZ1Z2 − Y1Y2);
Y3 = −(3X1X2 + aZ1Z2)(X1Y2 −X2Y1) + (Y1Z2 − Y2Z1)(a(X1Z2 +X2Z1) + 3bZ1Z2 − Y1Y2);
Z3 = (3X1X2 + aZ1Z2)(X1Z2 −X2Z1)− (Y1Z2 + Y2Z1)(Y1Z2 − Y2Z1);

X′3 = −(X1Y2 +X2Y1)(a(X1Z2 +X2Z1) + 3bZ1Z2 − Y1Y2)− (Y1Z2 + Y2Z1)(3b(X1Z2 +X2Z1) + a(X1X2 − aZ1Z2));

Y ′3 = Y 2
1 Y

2
2 + 3aX2

1X
2
2 − 2a2X1X2Z1Z2 − (a3 + 9b2)Z1Z

2
2 + (X1Z2 +X2Z1)(3b(3X1X2 − aZ1Z2)− a2(X2Z1 +X1Z2));

Z′3 = (3X1X2 + aZ1Z2)(X1Y2 +X2Y1) + (Y1Z2 + Y2Z1)(Y1Y2 + 3bZ1Z2 + a(X1Z2 +X2Z1)). (1)

In the case of a = −3 short Weierstrass curves, like the prime order curves in this paper,
we found that the computations in (1) require at most9 22 multiplications, 3 multiplications
by b, and one multiplication by b2 − 3. The adaptation of the formulas to points in Jacobian
coordinates can be achieved in the obvious way at an additional cost of 6 multiplications
and 3 squarings: preceding (1), we can transform from Jacobian coordinates to homogeneous
coordinates by taking Xi ← Xi · Zi and then Zi ← Z3

i for i = 1, 2; and, following the
correct choosing of P3 = (X3 : Y3 : Z3), we can move back to Jacobian coordinates by taking
X3 ← X3 · Z3 and then Y3 ← Y3 · Z2

3 .
Although the formulas in (1) are mathematically satisfactory, their computation costs

around twice as much as an incomplete addition (see Table 5), which renders them far from
satisfactory in cryptographic applications. On the other hand, the work-around we present in
Algorithm 19 and Algorithm 18, while perhaps not as mathematically elegant, is equivalent
for all practical purposes and incurs a much smaller overhead over the incomplete formulas.
In particular, there are no additional multiplications or squarings (on top of those incurred
during an incomplete addition) required when performing a complete addition via this masking
approach.

As briefly discussed in Section 4.1, the idea is to exploit the similarity between the se-
quences of operations computed in a doubling and an addition. On input of P and Q, one
would ordinarily compute the doubling 2P and the (non-unified) addition P + Q and mask
out the correct result at the end, depending on whether P = Q. However, the detection of
P = Q (or not) can be achieved much earlier in projective space using only a few operations
that are common to both doublings and non-unified additions – see Line 17 (resp. Line 12)
in Algorithm 19 (resp. Algorithm 18). After this detection, the required operation (doubling
or addition) is achieved by masking the correct inputs and outputs through a sequence of
subsequent computations, those which overlap in the explicit formulas for point doublings and
additions. Of course, in the case that one or both of P or Q is O, or that P = −Q, these
superfluous computations are still computed in constant-time such that the correct result is
masked out in a cache-attack resistant manner.

8 We also corrected some typos in [16] that were pointed out in [5].
9 We did not optimize (1) agressively; we simply grouped common subexpressions and employed obvious
operation scheduling – it is likely that there are faster routes.

Selecting Elliptic Curves for Cryptography: An Efficiency and Security Analysis 35

Algorithm 18 Complete (mixed) addition using masking and Jacobian/affine coordinates on
prime-order Weierstrass curves Eb.
Input: P,Q ∈ Eb(Fp) such that P = (X1, Y1, Z1) is in Jacobian coordinates and Q = (x2, y2) is in affine

coordinates.
Output: R = P +Q ∈ Eb(Fp) in Jacobian coordinates. Computations marked with [*] are implemented in

constant time using masking.
1. T [0] = O {T [i] = (X̃i, Ỹi, Z̃i) for i ≤ 0 < 4}
2. T [1] = Q
3. t2 = Z2

1

4. t3 = Z1 × t2
5. t1 = x2 × t2
6. t4 = y2 × t3
7. t1 = t1 −X1

8. t4 = t4 − Y1

9. index = 3
10. if t1 = 0 then [*]
11. index = 0 {R = O}
12. if t4 = 0 then index = 2 {R = 2P} [*]
13. if P = O then index = 1 {R = Q} [*]
14. mask = 0
15. if index = 3 then mask = 1 [*]

{case P +Q, else any other case}
16. t3 = X1 + t2
17. t6 = X1 − t2
18. if mask = 0 then t2 = Y1 else t2 = t1 [*]
19. t5 = t22
20. if mask = 0 then t7 = X1 [*]
21. t1 = t5 × t7

22. Z̃2 = Z1 × t2
23. Z̃3 = Z̃2

24. if mask 6= 0 then t3 = t2 [*]
25. if mask 6= 0 then t6 = t5 [*]
26. t2 = t3 × t6
27. t3 = t2/2
28. t3 = t2 + t3
29. if mask 6= 0 then t3 = t4 [*]
30. t4 = t23
31. t4 = t4 − t1
32. X̃2 = t4 − t1
33. X̃3 = X̃2 − t2
34. if mask = 0 then t4 = X̃2 else t4 = X̃3 [*]
35. t1 = t1 − t4
36. t4 = t3 × t1
37. if mask = 0 then t1 = t5 else t1 = Y1 [*]
38. if mask = 0 then t2 = t5 [*]
39. t3 = t1 × t2
40. Ỹ2 = t4 − t3
41. Ỹ3 = Ỹ2

42. R = P [index] (= (X̃index, Ỹindex, Z̃index)) [*]
43. return R

36 Joppe W. Bos, Craig Costello, Patrick Longa and Michael Naehrig

Algorithm 19 Complete (projective) addition using masking and Jacobian coordinates on
prime-order Weierstrass curves Eb.
Input: P,Q ∈ Eb(Fp) such that P = (X1, Y1, Z1) and Q = (X2, Y2, Z2) are in Jacobian coordinates.
Output: R = P +Q ∈ Eb(Fp) in Jacobian coordinates. Computations marked with [*] are implemented in

constant time using masking.
1. T [0] = O {T [i] = (X̃i, Ỹi, Z̃i) for i ≤ 0 < 5}
2. T [1] = Q
3. T [4] = P
4. t2 = Z2

1

5. t3 = Z1 × t2
6. t1 = X2 × t2
7. t4 = Y2 × t3
8. t3 = Z2

2

9. t5 = Z2 × t3
10. t7 = X1 × t3
11. t8 = Y1 × t5
12. t1 = t1 − t7
13. t4 = t4 − t8
14. index = 3
15. if t1 = 0 then [*]
16. index = 0 {R = O}
17. if t4 = 0 then index = 2 {R = 2P} [*]
18. if P = O then index = 1 {R = Q} [*]
19. if Q = O then index = 4 {R = P} [*]
20. mask = 0
21. if index = 3 then mask = 1

{case P +Q, else any other case} [*]
22. t3 = X1 + t2
23. t6 = X1 − t2
24. if mask = 0 then t2 = Y1 else t2 = t1 [*]

25. t5 = t22
26. if mask = 0 then t7 = X1 [*]
27. t1 = t5 × t7
28. Z̃2 = Z1 × t2
29. Z̃3 = Z2 × Z̃2

30. if mask 6= 0 then t3 = t2 [*]
31. if mask 6= 0 then t6 = t5 [*]
32. t2 = t3 × t6
33. t3 = t2/2
34. t3 = t2 + t3
35. if mask 6= 0 then t3 = t4 [*]
36. t4 = t23
37. t4 = t4 − t1
38. X̃2 = t4 − t1
39. X̃3 = X̃2 − t2
40. if mask = 0 then t4 = X̃2 else t4 = X̃3 [*]
41. t1 = t1 − t4
42. t4 = t3 × t1
43. if mask = 0 then t1 = t5 else t1 = t8 [*]
44. if mask = 0 then t2 = t5 [*]
45. t3 = t1 × t2
46. Ỹ2 = t4 − t3
47. Ỹ3 = Ỹ2

48. R = T [index] (= (X̃index, Ỹindex, Z̃index)) [*]
49. return R

Selecting Elliptic Curves for Cryptography: An Efficiency and Security Analysis 37

D Traces of Frobenius

Table 6. The traces of Frobenius t for the curves in Tables 1 and 2. Compute group orders as#E(Fp) = p+1−t
and #E′(Fp) = p+ 1− t for E ∈ {Eb, Ed}.

curve Eb trace
w-256-mont 0x3AE8AEC191AF8B462EF3A1E5867A815
w-254-mont -0x147E7415F25C8A3F905BE63B507207C1
w-256-mers 0x1BC37D8A15D9A39FDF54DFD6B8AE571F
w-255-mers -0x79B5C7D7C52D4C2054705367C3A6B219
w-384-mont 0x456480EB358AEDAC85B1232C7583BE25D641B76B4D671145
w-382-mont -0x5914E300B421DEB28C4CDE002717D32E9F54797FC144CFE3
w-384-mers -0x29E150E114A2977E412562C2B3C81D859FB27E0984F19D0B
w-383-mers 0x563507EB575EE952604F4BFCABE8550CE6D6803F4485BABD
w-512-mont 0x14DD547AFE5226E4B8227694A6C886D1197C91D7CC5192CA04E771EECFA3E2BAF
w-510-mont 0x46EB93321EAF10CC8B854D62E19A8C272DD216A1CDDCFC0C5FF4DFF6790565D3
w-512-mers 0x9C757286D118AFD67F9B550F47B6719E20C2C66AF9B128C46C69D70E81670237
w-511-mers 0x724105C0A12627C65D2B01900AE91780572C19A95F06605E0FEFA08C4C462C81
w-521-mers 0xEC68BAF7857C1B89CA8C6EEA5B33425078F28632FC263E5626E091FCE826B47F7

curve Ed trace
ed-256- mont -0x13AAD11411E6330DA649B44849C4E1154
ed-254- mont -0x51AB3E4DD0A7413C5430B004EE459CE4
ed-256-mers -0x106556A94BD650E6C691EC643BB752C90
ed-255-mers -0x8C3961E84965F3454ED8B84BEF244F30
ed-384- mont -0x2A4BE076C762D8C9825225944DFC2407E406C7167336DD94
ed-382- mont 0xD3FE14DB47335D5E57F7EB8BB0C8CBDDC688ABB9D55E87F4
ed-384-mers 0x76E3978D2E5078C2786EAA955328DE1B7D188CEC6571D8D0
ed-383-mers -0x3BBDA3EC630981110CAA5E0D854D777E40050C4F9160DDE8
ed-512- mont -0xCCC0A98C8F32E3CBBF3E7EBB024842CB2099437935363F81733ADE04D1C927EC
ed-510- mont -0xA0C4BB860F4395023A482F564F6E7DFD280CF7DBA06996F4DE9F78C8324AB93C
ed-512-mers 0x12C3E724B40C1B91587009CDA3D25E42B56E7EA1E48404C0262E5CC2B9044AC14
ed-511-mers -0x560F2F9F46F87459155B3C6E1CEDD9236AF63E504E83379AC20F45C1CBAF41DC
ed-521-mers 0xBA924E6E2E40DE823251D428604EB03EC109CEEA595C382EAFC576F282B9FCA54

38 Joppe W. Bos, Craig Costello, Patrick Longa and Michael Naehrig

E Costs of Point Conversion

Table 7. The cost of converting points when using the curves from Tables 1 and 2. This is used for point
decompressing and converting between twisted Edwards and Montgomery (and vice versa). The cost is ex-
pressed in the number of exponentiations (exp), multiplications (mul), multiplication by constants (mulc) and
squarings (squ). Let EA/Fp : v2 = u3 + Au2 + u and Ed/Fp : −x2 + y2 = 1 + dx2y2 with B = −(A + 2) a
square in Fp and d = −(A − 2)/(A + 2). Let (X : Y : Z) be the projective coordinates for E . We follow the
approach described in [7] to decompress twisted Edwards points.

Edwards to Montgomery
conversion formula cost
(x, y) to (u) u = (1 + y)(1− y)p−2 1 exp, 1 mul
(y) to (u) u = (1 + y)(1− y)p−2 1 exp, 1 mul
(X : Y : Z) to (u) u = (Z + Y)(Z − Y)p−2 1 exp, 1 mul

Edwards to Edwards
conversion formula cost
(y) to (x, y) a = y2 − 1 1 exp, 3 mul, 2 squ

b = dy2 + 1

x = ab(ab3)(p−3)/4

Montgomery to Edwards
conversion formula cost
(u) to (y) y = (u− 1)(u+ 1)p−2 1 exp, 1 mul
(u) to (x, y) x = u

√
B(u3 +Au2 + u)(3p−5)/4 2 exp, 2 mul, 1 mulc, 1 squ

y = (u− 1)(u+ 1)p−2

Weierstrass to Weierstrass
conversion formula cost
(x) to (x, y) y = (x3 − 3x+ b)p−2 1 exp, 1 mul, 1 squ

