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Abstract

Security models for two-party authenticated key exchange (AKE) protocols have developed over time
to prove the security of AKE protocols even when the adversary learns certain secret values. In this work,
we address more granular leakage: partial leakage of long-term secrets of protocol principals, even after the
session key is established. We introduce a generic key exchange security model, which can be instantiated
allowing bounded or continuous leakage, even when the adversary learns certain ephemeral secrets or
session keys. Our model is the strongest known partial-leakage-based security model for key exchange
protocols. We propose a generic construction of a two-pass leakage-resilient key exchange protocol that
is secure in the proposed model, by introducing a new concept: the leakage-resilient NAXOS trick. We
identify a special property for public-key cryptosystems: pair generation indistinguishability, and show
how to obtain the leakage-resilient NAXOS trick from a pair generation indistinguishable leakage-resilient
public-key cryptosystem.
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1 Introduction

In order to capture leakage (side-channel) attacks in cryptography, the notion of leakage resilience has
been developed. Examples of information which may leak and so allow side-channel attacks include timing
information [5, 9, 24], electromagnetic radiation [20], and power consumption [28]. Leakage may reveal
partial information about the secret parameters which have been used for computations in cryptosystems. To
abstractly model leakage attacks, cryptographers have proposed the notion of leakage-resilient cryptography
[1, 3, 8, 17, 18, 22, 21, 27], where the information that leaks is not fixed, but instead chosen adversarially. As
key exchange protocols are among the most widely used cryptographic protocols, it is important to analyze
their leakage resilience.

Earlier key exchange security models, such as the Bellare–Rogaway [4], Canetti–Krawczyk [10], and
extended Canetti–Krawczyk (eCK) [26] models, aim to capture security against an adversary who can fully
compromise some, but not all, secret values. This is not a very granular form of leakage, and thus is not
suitable for modelling side-channel attacks enabled by partial leakage of secret keys. This motivates the
development of leakage-resilient key exchange security models [3, 13, 30, 33].

Previous key exchange models including leakage have been limited in one or more ways. In most of the
proposed models [3, 13, 30] the total amount of leakage allowed is bounded, which is troublesome because a
protocol may reveal a limited amount of leakage each time it runs, and hence reveal “continuous” leakage.
In addition, the adversary cannot obtain any leakage information after the session key is established for
the session which the adversary targets for its attack. This is problematic because it does not address the
security of one session, even if some leakage happens in subsequent sessions. A recent paper [33] uses a
different leakage model with allows auxiliary input [14] but this cannot be directly compared with other
leakage models. Although this model allows the adversary to make leakage queries on the complete secret,
the values returned to the adversary are limited to those which are hard to invert and therefore are of limited
use to the adversary. Our aim is to accommodate all the common leakage resistance models. We do not
consider the auxiliary input model here.

In this paper, we construct a generic leakage-security model for key exchange protocols, which can be
instantiated as a bounded leakage variant as well as a continuous leakage variant. In the bounded leakage
variant, the total amount of leakage is bounded, whereas in the continuous leakage variant, a protocol
execution may reveal a small amount of leakage each time. Further, the adversary is allowed to obtain the
leakage even after the session key is established for the session, in which the adversary tries to distinguish the
real session key from a random session key. We emphasize that the leakage functions are arbitrary polynomial
time functions. Thus, our approach allows after-the-fact leakage in bounded or continuous leakage model. We
now review the various approaches to modelling leakage, and then describe our contributions.

1.1 Leakage Models

Inspired by “cold boot” attacks, Akavia, Goldwasser and Vaikuntanathan [1] constructed a general framework
to model memory attacks for public-key cryptosystems. With the knowledge of the public key, the adversary
can choose an efficiently computable arbitrary leakage function, f and send it to the leakage oracle. The
leakage oracle returns f(sk) to the adversary where sk is the secret key. The only restriction here is that the
sum of output length of all the leakage functions that an adversary can obtain is bounded by some parameter
λ which is smaller than the size of sk.

In the work of Micali and Reyzin [29], a general framework was introduced to model the leakage that occurs
during computation with secret parameters. This framework relies on the assumption that only computation
leaks information. They mentioned that leakage only occurs from the secret memory portions which are
actively involved in a computation. The adversary is allowed to obtain leakage from many computations,
therefore the overall leakage amount is unbounded and in particular it can be larger than the size of the
secret-key. Zvika et al. [8] proposed a continual memory leakage model in which it is not assumed that the
information is only leaked from the secret memory portions involved in computations. Instead it is assumed
that leakage happens from the entire secret memory but the amount of leakage is bounded per occurrence.
This model allows the adversary to obtain arbitrarily large amounts of leakage information.
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Security Model Monolithic Leakage Queries Partial Leakage Queries
Session Key Long-term Key Ephemeral Key Leakage Model After-the-fact

eCK [26] Yes Yes Yes None No
MO [30] Yes Yes Yes Bounded No
BAFL-eCK (Section 3.3) Yes Yes Yes Bounded Yes
CAFL-eCK (Section 3.4) Yes Yes Yes Continuous Yes

Table 1: Key exchange security models with reveal queries and leakage allowed

1.2 After-the-fact Leakage

Leakage which happens after the challenge is given to the adversary is considered as after-the-fact leakage. In
security experiments for public-key cryptosystems, the challenge to the adversary is to distinguish the real
plaintext corresponding to a particular ciphertext from a random plaintext. In key exchange security models,
the challenge to the adversary is to identify the real session key of a chosen session from a random session
key [4, 10, 26]. In leakage models for public-key cryptosystems, after-the-fact leakage is the leakage which
happens after the challenge ciphertext is given whereas in leakage-resilient key exchange security models,
after-the-fact leakage is the leakage which happens after the session key is established.

For leakage-resilient public-key encryption there are three properties which may be important differentiators
for the different models. One is whether the model allows access to decryption of chosen ciphertexts before
(CCA1) and after (CCA2) the challenge is known. The second is whether the leakage allowed to the adversary
is continuous or bounded. The third is whether the leakage is allowed only before the challenge ciphertext is
known or also after the fact. In earlier models, such as that of Naor and Segev [31], it was expected that
although the adversary is given access to the decryption oracle (CCA2), the adversary cannot be allowed to
obtain leakage after the challenge ciphertext is given. This is because the adversary can encode the decryption
algorithm and challenge ciphertext with the leakage function and by revealing a few bits of the decrypted
value of the challenge ciphertext trivially win the challenge. Subsequently, Halevi et al. [19] introduced
after-the-fact leakage-resilient semantic security (CPLA2) on public-key cryptosystems. In their security
experiment, the adversary is not allowed to access the decryption oracle. Dziembowski et al. [16] defined
an adaptively chosen ciphertext after-the-fact leakage (CCLA2) in which the adversary is allowed to access
the decryption oracle adaptively and obtain leakage information even after the challenge ciphertext is given.
Furthermore, they allow continuous leakage, so the total leakage amount is unbounded.

Recall that in key exchange security models, the challenge to the adversary is to distinguish the real
session key of a chosen session from a random session key. In the previous leakage-resilient key exchange
security models [30, 3], the adversary is not allowed to obtain leakage after the session key is established,
because if the adversary gets the ephemeral secret key of the owner by ephemeral key reveal query, the
adversary can encode the specification of the key derivation function with the ephemeral secret key and
other public keys into the leakage function. This reveals some information about the session key allowing
the adversary to successfully answer the challenge. In the literature there are no key exchange protocols or
security models available that allow leakage after the session key is established.

1.3 Our Contribution

We propose a generic eCK-style security model, which additionally allows partial leakage of long-term secret
keys of protocol principals, even after the session key is established. We choose to build on the eCK model
because it is a widely used security model capturing a wide variety of possible attacks such as key compromise
impersonation attacks, weak forward secrecy, and unknown key share attacks. Our generic model can be
instantiated in two different ways. The instantiations of the generic model differ in the extent to which the
adversary can obtain the leakage of long-term keys in a bounded amount or obtain continuous leakage such
that a protocol execution may reveal a small amount of leakage each time, and still expect security. Thus, we
begin by presenting the after-the-fact leakage eCK model ((·)AFL-eCK model), where leakage is modelled
using the output of a tuple leakage function f such that f = (f1, f2, . . . , fn). Introducing a tuple leakage
function allows us to address the leakage of different protocol constructions, such as protocols constructed

4



Protocol Initiator Cost Responder Cost Security Model Partial Leakage Resilience
Leakage Model After-the-fact

NAXOS [26] 4 Exp 4 Exp eCK None None
MO [30] 8 Exp 8 Exp MO Bounded No

π 12 Exp 12 Exp BAFL-eCK Bounded Yes

Table 2: Security and efficiency comparison of key exchange protocols

using stateful cryptographic primitives, or using more than one cryptographic primitive, or both. Table 1
shows a clear picture of our contribution.

We introduce a new property for public-key cryptosystems, which states that any randomly chosen cipher-
text should be decrypted without rejection. The new property is named pair generation indistinguishability
(PG-IND) and is defined in Definition 4.1. We demonstrate the use of PG-IND property in leakage-resilient
NAXOS trick computation, which we introduce as the key idea of constructing (·)AFL-eCK-secure key
exchange protocols. We then construct a generic protocol π which can be proven secure in the generic
(·)AFL-eCK model. The protocol π is a key-agreement-style protocol which relies on two primitives: (1) a
public-key cryptosystem that is PG-IND and after-the-fact leakage-resilient semantically secure (CPLA2); and
(2) an unforgeable signature scheme against chosen message leakage attacks (UFCMLA). Whenever both of
these two primitives are proven secure in either the bounded leakage model or the continuous leakage model,
the instantiation of the protocol π is secure in the BAFL-eCK model or CAFL-eCK model respectively.

In Table 2, we compare an instantiation of the proposed generic protocol, π, with the NAXOS [26]
and the Moriyama-Okamoto (MO) [30] protocols. The protocol π is instantiated using the CPLA2-secure,
0-PG-IND public-key cryptosystem of Halevi et al. [19], and UFCMLA-secure signature scheme of Katz et al.
[21], in the bounded leakage model. The instantiation of the generic protocol π is BAFL-eCK-secure, and
provides significant leakage resilience for practically achievable computation costs. We could not instantiate a
CAFL-eCK-secure protocol π, because we do not have a CPLA2-secure, PG-IND public-key cryptosystem in
the continuous leakage model. Halevi et al.[19] emphasized that adjusting their scheme to be CPLA2-secure
in the continuous leakage model is an open problem. There are UFCMLA-secure signature schemes in the
continuous leakage model [27, 13, 8]. So once CPLA2-secure, PG-IND public-key cryptosystem is available
in the continuous leakage model, CAFL-eCK-secure π can be instantiated. Thus, the generic protocol π
is a viable framework for (·)AFL-eCK-secure protocols, and can achieve the leakage tolerance which the
underlying schemes provide in the bounded or the continuous leakage model.

2 Preliminaries

We review the formal security definitions we will use to construct the generic protocol π.

2.1 CPLA2-Secure Public-Key Cryptosystems

We review the definition of CPLA2 security in the split-states-model, where the secret key s is split into
arbitrarily n parts such that s = (s1, . . . , sn). The tuple leakage function f = (f1, . . . , fn) is an adversary
chosen efficiently computable adaptive tuple leakage function, which consists of n arbitrary leakage functions.
Each leakage function fi leaks fi(si) from each si split of the secret key individually. Following we consider
bounded leakage from each split.

Definition 2.1. (After-the-fact Leakage-resilient Semantic Security (CPLA2)). Let k ∈ N be the security
parameter and λ = (λpre,λpost) be a tuple of two vectors, where λpre = (λpre1 , . . . , λpren) is the leakage
bound vector before the challenge ciphertext is issued, and λpost = (λpost1 , . . . , λpostn) is the leakage bound
vector after the challenge ciphertext is issued. Let PKE = (KG,Enc,Dec) be a public-key cryptosystem, we
define AdvCPLA2

PKE (D) as the advantage of any probabilistic polynomial time (PPT) adversary D, winning the
following game:

1. (s, p)
$←− KeyGen(1k).
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2. (m0,m1)← DLeak(f)(p)
∣∣|m0| = |m1|, for i = 1, . . . , n, Leak(f) returns fi(si) if Σ|fi(si)| ≤ λprei .

3. b
$←− {0, 1}.

4. C
$←− Enc(pk,mb).

5. b′ ← DLeak(f)(p, C) for i = 1 to i = n, Leak(f) returns fi(si) if Σ|fi(si)| ≤ λposti .
6. D wins if b′ = b.

PKE is CPLA2-secure, if AdvCPLA2
PKE (D) is negligible in k.

Halevi et al. [19] constructed a generic CPLA2-secure public-key cryptosystem which is secure against
bounded leakage in the split-state model. It can be instantiated with the DDH-based leakage-resilient
public-key cryptosystem of Naor et al. [31] with decryption cost of 4 Exponentiations.

2.2 UFCMLA-Secure Signature Schemes

We review the definition of UFCMLA security in the split-states-model, where the signing key sk is split into
arbitrarily n parts such that sk = (sk1, . . . , skn). The tuple leakage function f = (f1, . . . , fn) is an adversary
chosen efficiently computable adaptive tuple leakage function, which consists of n arbitrary number of leakage
functions. Each leakage function fi leaks fi(ski) from each ski split of the secret key individually. Following
we consider bounded leakage from each split.

Definition 2.2. (Unforgeability Against Chosen Message Leakage Attacks (UFCMLA)). Let k ∈ N be the
security parameter and λ be a vector of n elements. Let SIG = (KG,Sign,Vfy) be a signature scheme, we
define AdvUFCMLA

SIG (E) as the advantage of any PPT adversary E , winning the following game:

1. (sk, vk)
$←− KG(1k)

2. (m∗, σ∗)← EOUFCMLA(·)(vk)

3. If Vfy(vk,m∗, σ∗) = “true” and m∗ is not been
previously signed, then E wins.

OUFCMLA(m, f)

• σ $←− (sk,m)

• for i = 1, . . . , n, γi ← fi(ski)

• If Σ|γi| ≤ λi, then append γi to γ

• Return (σ, γ)

SIG is UFCMLA if AdvUFCMLA
SIG (E) is negligible in k.

Katz et al. [21] constructed an UFCMLA-secure signature scheme in bounded leakage model in which
n = 1. It contains signing and verification operations based on NIZK proofs, where signature can be generated
with cost of 2 Exponentiations, and verified with cost of 4 Exponentiations (with a simple NIZK proof).

Remark 1. Both Definition 2.1 and 2.2 can be easily adjusted into their continuous leakage versions.

2.3 Decision Diffie-Hellman (DDH) Problem

The decision Diffie-Hellman (DDH) problem is a computational hardness assumption based on discrete
logarithms in a cyclic group [6]. Consider a cyclic group G of prime order q, with a generator g. For
a, b, c ∈ Zq, the DDH problem is to distinguish the triple (ga, gb, gab) from the triple (ga, gb, gc).

2.4 Key Derivation Functions

We review the definitions of key derivation functions proposed by Krawczyk [25].

Definition 2.3. (Key Derivation Function). A key derivation function KDF is an efficient algorithm that
accepts as input four arguments: a value σ sampled from a source of keying material Σ, a length value k and
two additional arguments, a salt value r defined over a set of possible salt values and a context variable c,
both which are optional i.e., can be set to a null. The KDF output is a string of k bits.
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Definition 2.4. (Source of Key Material). A source of keying material Σ is a two-valued (σ, κ) probability
distribution generated by an efficient probabilistic algorithm.

Definition 2.5. (Security of key derivation function with respect to a source of key material). Let KDF
be a key derivation function, we define AdvKDF(B) as the advantage of any PPT adversary E , winning the
following game:

1. (σ, κ)← Σ. (Both the probability distribution as well as the generating algorithm have been referred
by Σ)

2. A salt value r is chosen at random from the set of possible salt values defined by KDF (r may be set to
a constant or a null value if so defined by KDF).

3. The attacker B is provided with κ and r.

4. B chooses arbitrary value k and c.

5. A bit b
$←− {0, 1} is chosen at random. If b = 0, attacker B is provided with the output of KDF(σ, r, k, c)

else B is given a random string of k bits.

6. B outputs a bit b′ ← {0, 1}. B wins if b′ = b.

KDF is secure with respect to the source of key material, if AdvKDF(B) is negligible in k.

3 The Generic After-the-fact Leakage-eCK ((·)AFL-eCK) Model

The generic after-the-fact leakage eCK ((·)AFL-eCK) model can be instantiated in two different ways which
leads to two security models. Namely, bounded after-the-fact leakage eCK (BAFL-eCK) model and continuous
after-the-fact leakage eCK (CAFL-eCK) model. The BAFL-eCK model allows the adversary to obtain a
bounded amount of leakage of the long-term secret keys of the protocol principals, as well as reveal session
keys, long-term secret keys and ephemeral keys. Differently, the CAFL-eCK model allows the adversary to
continuously obtain arbitrarily large amount of leakage of the long-term secret keys of the protocol principals,
enforcing the restriction that the amount of leakage per observation is bounded.

In both instantiations of the generic (·)AFL-eCK model the partnering definition and the adversarial
powers are same. The freshness conditions differ by means of the leakage allowed. So we can define the
partnering and adversarial powers in the generic (·)AFL-eCK model and define the freshness separately in
each BAFL-eCK and CAFL-eCK models.

Let U = {U1, ..., UNP
} be a set of n parties. We use the term principal to identify a party involved in a

protocol instance. Each party Ui where i ∈ [1, NP ] has a pair of long-term public and secret-keys, (pkUi
, skUi

).
The term session is used to identify a protocol instance at a principal. Each principal may have multiple
sessions and they may run concurrently. The oracle Πs

U,V represents the sth session at the owner principal U ,
with intended partner principal V . The principal which sends the first protocol message of a session is the
initiator of the session, and the principal which responds to the first protocol message is the responder of the
session.

Definition 3.1. (Partner sessions in generic (·)AFL-eCK model). Two oracles Πs
U,V and Πs′

U ′,V ′ are said to
be partners if all of the following hold:

1. both Πs
U,V and Πs′

U ′,V ′ have computed session keys;

2. messages sent from Πs
U,V and messages received by Πs′

U ′,V ′ are identical;

3. messages sent from Πs′

U ′,V ′ and messages received by Πs
U,V are identical;

4. U ′ = V and V ′ = U ;

5. Exactly one of U and V is the initiator and the other is the responder.

The protocol is said to be correct if two partner oracles compute identical session keys.
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3.1 Modelling Leakage

Considering side-channel attacks which can be mounted against key exchange protocols, the most realistic
way is to obtain the leakage information of secret keys from the protocol computations which use secret keys
for computations. Following the premise “only computation leaks information”, we have modeled the leakage
in a place where a computation takes place on secret keys. After issuing a Send query, the adversary will
get a protocol message which is computed according to the normal protocol computations. So sending an
adversary-chosen adaptive leakage function with the Send query reflects the premise “only computation leaks
information”.

We introduce a tuple of n adaptively chosen efficiently computable leakage functions f = (f1, f2, . . . , fn);
the size n of the tuple is protocol-specific. A key exchange protocol may use more than one cryptographic
primitive and each primitive uses a distinct secret key. Hence, we need to address the leakage of secret keys
from each of those primitives. Otherwise, some cryptographic primitives which have been used to construct a
key exchange protocol may be stateful cryptographic primitives. The execution of a stateful cryptographic
primitive is split into a number of sequential stages and each of these stages use one part of the secret key.

3.2 Adversarial Powers

The adversary A is a probabilistic polynomial time (PPT) algorithm that controls the whole network. A
interacts with a set of oracles which represent protocol instances. The following query allows the adversary A
to run the protocol.

• Send(U, V, s,m, f) query: The oracle Πs
U,V , computes the next protocol message according to the

protocol specification and sends it to the adversary A, along with the leakage f(skU ). A can also use
this query to activate a new protocol instance as an initiator with blank m and f .

The following set of queries allow the adversary A to compromise certain session specific ephemeral secrets
and long-term secrets from the protocol principals.

• SessionKeyReveal(U, V, s) query: A is given the session key of the oracle Πs
U,V .

• EphemeralKeyReveal(U, V, s) query: A is given the ephemeral keys (per-session randomness) of the
oracle Πs

U,V .

• Corrupt(U) query: A is given the long-term secrets of the principal U . This query does not reveal any
session keys or ephemeral keys to A.

Once the oracle Πs
U,V has accepted a session key, asking the following query the adversary A attempt to

distinguish it from a random session key. The Test query is used to formalize the notion of the semantic
security of a key exchange protocol.

• Test(U, s) query: When A asks the Test query, the challenger first chooses a random bit b
$←− {0, 1}

and if b = 1 then the actual session key is returned to A, otherwise a random string chosen from the
same session key space is returned to A. This query is only allowed to be asked once across all sessions.

Remark 2. (Corrupt query vs Leakage queries). By issuing a Corrupt query, the adversary gets the party’s
entire long-term secret key. Separately, by issuing leakage queries (using a tuple leakage function f embedded
with the Send query) the adversary gets λ-bounded leakage information about the long-term secret key(s). It
may seem paradoxical to consider Corrupt and Leakage queries at the same time. But there is a good reason
to consider both.

The eCK model addresses KCI attacks, because the adversary is allowed to corrupt the owner of the test
session before the activation of the test session. In the generic (·)AFL-eCK model, we allow the adversary to
obtain bounded amount of leakage from the partner of the test session, in addition to allowing the adversary
to corrupt the owner of the test session.

Hence, the generic (·)AFL-eCK model allows the adversary to obtain more information than eCK model.
Moreover, none of the existing security models such as BR, CK, CKHMQV, eCK allow a Send query with
a tuple leakage function f . Hence, we can see that (·)AFL-eCK allows the adversary to obtain leakage
information which none of the existing security models allow. Further, we emphasize that the technique of
sending a tuple leakage function f with the Send query can be applied to any of the existing key exchange
security models to obtain their leakage versions.
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3.3 The Bounded After-the-fact Leakage-eCK (BAFL-eCK) Model

In the BAFL-eCK model the total amount of leakage of each secret key of the underlying cryptographic
primitives or each split of the secret key of the underlying stateful cryptographic primitives are bounded by
leakage parameters. The leakage parameters are primitive-specific.

If the total leakage bound of the ith cryptographic primitive (or the total leakage bound of the ith state of
the stateful cryptographic primitive) is λi and the leakage function fi outputs leakage bits of the secret key
of the ith cryptographic primitive (or leakage bits of the ith split of the secret key), then for leakage resilience
of ith cryptographic primitive (or the stateful cryptographic primitive), we need that

∑
|fi(ski)| ≤ λi.

Definition 3.2. (λ-BAFL-eCK-freshness). Let λ = (λ1, . . . , λn) be a vector of n elements (same size as f
in Send query). An oracle Πs

U,V is said to be λ-BAFL-eCK-fresh if and only if:

1. The oracle Πs
U,V or its partner, Πs′

V,U (if it exists) has not been asked a SessionKeyReveal.

2. If the partner Πs′

V,U exists, none of the following combinations have been asked:

(a) Corrupt(U) and EphemeralKeyReveal(U, V, s).

(b) Corrupt(V ) and EphemeralKeyReveal(V,U, s′).

3. If the partner Πs′

V,U does not exist, none of the following combinations have been asked:

(a) Corrupt(V ).

(b) Corrupt(U) and EphemeralKeyReveal(U, V, s).

4. For all Send(·, U, ·, ·, f) queries,
∑
|fi(skU i)| ≤ λi.

5. For all Send(·, V, ·, ·, f) queries,
∑
|fi(skV i)| ≤ λi.

3.4 The Continuous After-the-fact Leakage-eCK (CAFL-eCK) Model

In the CAFL-eCK model, continuous leakage of each secret key of the underlying cryptographic primitives or
each split of the secret key of the underlying stateful cryptographic primitives is allowed. The only restriction
is, the amount of leakage per occurrence is bounded by leakage parameters. The leakage parameters are
primitive-specific.

If the leakage bound of the ith cryptographic primitive is λi per leakage occurrence and the leakage
function fi outputs leakage bits of the secret key of the ith cryptographic primitive, then for leakage resilience
of ith cryptographic primitive we need that fi(ski) ≤ λi, per leakage occurrence. If the leakage bound of
the ith state of the stateful cryptographic primitive is λi per leakage occurrence and the leakage function fi
outputs leakage bits of the ith split of the secret key, then for leakage resilience of the stateful cryptographic
primitive we need that fi(ski) ≤ λi, per leakage occurrence.

Definition 3.3. (λ-CAFL-eCK-freshness). Let λ = (λ1, . . . , λn) be a vector of n elements (same size as f in
Send query). An oracle Πs

U,V is said to be λ-CAFL-eCK-fresh if and only if: Conditions (1)-(4) of Definition
3.2 hold, and

5. For each Send(·, U, ·, ·, f) query, size of the output of fi(skU i) ≤ λi.
6. For each Send(·, V, ·, ·, f) queries, size of the output of fi(skV i) ≤ λi.

3.5 Security Game and Security Definition

We introduce the security game of the generic (·)AFL-eCK model. If we consider λ-BAFL-eCK-freshness,
the security game is BAFL-eCK, otherwise if we consider λ-CAFL-eCK-freshness, it is CAFL-eCK security
game.

Definition 3.4. ((·)AFL-eCK security game). Security of a key exchange protocol in the generic (·)AFL-eCK
model is defined using the following security game, which is played by PPT adversary A against the protocol
challenger.
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• Stage 1: A may ask any of Send, SessionKeyReveal, EphemeralKeyReveal and Corrupt queries to
any oracle at will.

• Stage 2: A chooses a λ-(·)AFL-eCK-fresh oracle and asks a Test query. The challenger chooses a

random bit b
$←− {0, 1}, and if b = 1 then the actual session key is returned to A, otherwise a random

string chosen from the same session key space is returned to A.

• Stage 3: A may continue asking Send, SessionKeyReveal, EphemeralKeyReveal and Corrupt queries.
A may not ask a query that violates the λ-(·)AFL-eCK-freshness of the test session.

• Stage 4: At some point A outputs the bit b′ ← {0, 1} which is its guess of the value b on the test
session. A wins if b′ = b.

SuccA is the event that the adversary A wins the security game in Definition 3.4.

Definition 3.5. ((·)AFL-eCK-security). A protocol π is said to be (·)AFL-eCK-secure if there is no PPT
algorithm A that can win the (·)AFL-eCK security game with non-negligible advantage. The advantage of

an adversary A is defined as Adv(·)AFL-eCK
π (A) = |2 Pr(SuccA)− 1|.

3.6 Practical Interpretation of Security of the Generic (·)AFL-eCK Model

We review the relationship between the generic (·)AFL-eCK model and real world attack scenarios.
Active adversarial capabilities: Send queries address the powers of an active adversary who can

control the message flow over the network.
Side-channel attacks: Leakage functions are embedded with the Send query. Thus, a wide variety

of side-channel attacks based on leakage of long-term secrets are addressed, assuming that the leakage
happens when computations take place in protocol principals. BAFL-eCK model addresses the situation
where the adversary is only allowed to obtain a bounded amount of total leakage. CAFL-eCK model addresses
a stronger situation, where the adversary is allowed to obtain continuous leakage, but the amount of leakage
per invocation is bounded.

Cold-boot attacks: Corrupt queries address situations which reveal the long-term secret keys of protocol
principals like in cold-boot attacks.

Malware attacks: EphemeralKeyReveal queries cover the malware attacks which steal stored ephemeral
keys, given that the long-term keys may be securely stored separately from the ephemeral keys in places such
as smart cards or hardware security modules. Separately, Corrupt queries address malware attacks which
steal the long-term secret keys of protocol principals.

Weak random number generators: After knowing a previous set of randomly generated ephemeral
values the adversary may be able to identify the statistical pattern of the random number generator and
hence correctly guess the next value with a high probability. EphemeralKeyReveal query addresses situations
where the adversary can get the ephemeral secrets.

Known key attacks: SessionKeyReveal query covers the attacks which can be mounted by knowing
past session keys.

Key compromise impersonation attacks: In the generic (·)AFL-eCK model, freshness conditions
allow the adversary to corrupt the owner of the test session before the activation of the test session. Hence,
the generic (·)AFL-eCK model security protects against the key compromise impersonation attacks.

Weak forward secrecy: In the generic (·)AFL-eCK model, freshness conditions allow the adversary to
corrupt both of the protocol principals, after the test session is activated. Hence, the generic (·)AFL-eCK
model addresses weak forward secrecy.

eCK security: The generic (·)AFL-eCK model is a leakage-resilient version of the eCK model [26], hence,
the generic (·)AFL-eCK model captures all possible attacks from ephemeral and long-term key compromises.
More precisely, in sessions where the adversary does not modify the communication between parties (passive
sessions), the adversary is allowed to reveal both ephemeral secrets, both long-term secrets, or one of each
from two different parties, whereas in sessions where the adversary may forge the communication of one of the
parties (active sessions), the adversary is allowed to reveal the long-term or ephemeral key of the other party.

The main reason to introduce a generic security model, (·)AFL-eCK model, and then propose two
instantiations (BAFL-eCK model and CAFL-eCK model) is to offer more flexibility to construct leakage-
resilient key exchange protocols. The generic (·)AFL-eCK model gives a reasonable security framework for
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key exchange protocols capturing wide range of practical attacks including side-channel attacks. The only
difference between the two instantiations is the leakage allowance (bounded or continuous). If we need to
implement a key exchange protocol which captures all the properties mentioned in Section 3.6 in the bounded
leakage model, we use the BAFL-eCK model as the security framework, whereas if we need security in the
continuous leakage model, we use the CAFL-eCK model as the security framework.

4 Constructing (·)AFL-eCK-secure Key Exchange Protocols

We investigate how to construct (·)AFL-eCK-secure key exchange protocols. The motivation of LaMacchia et
al. [26] in designing the eCK model was that an adversary should have to compromise both the long-term
and ephemeral secret keys of a party in order to recover the session key. In their NAXOS protocol, the main

way this is accomplished is using what is now called the “NAXOS trick”: a “psuedo” ephemeral key ẽsk

is computed as the hash of the long-term key lsk and the actual ephemeral key esk: ẽsk ← H(esk, lsk).

The value ẽsk is never stored, and thus in the eCK model the adversary must learn both esk and lsk in

order to be able to compute ẽsk. Note however, that in the NAXOS protocol, the initiator must compute

ẽsk = H(esk, lsk) twice: once when sending its Diffie–Hellman ephemeral public key gẽsk, and once when
computing the Diffie–Hellman shared secrets from the received values. This is to avoid storing a single value
that, when compromised, can be used to compute the session key.

4.1 Leakage-Resilient NAXOS Trick

Moving to the leakage-resilient setting requires rethinking the NAXOS trick. In the model “only computation
leaks information”, we must consider leakage at any place the long-term secret key is used. Thus, we need some
kind of leakage-resilient NAXOS trick. As noted above, the initiator must not store the pseudo-ephemeral

value, ẽsk, and instead must apply the NAXOS trick twice for each session. We replace the hash function H
with a new leakage-resilient NAXOS trick to compute the pseudo-ephemeral value. The requirement is, given
the long-term secret key and a particular ephemeral key, the NAXOS trick should always compute the same
pseudo-ephemeral value, such that without knowing both the long-term and ephemeral keys the adversary is
unable to compute the pseudo-ephemeral value. Moreover, the NAXOS trick computation should be resilient
to the leakage of the long-term secret key, which happens even after the test session is activated.

A leakage-resilient NAXOS trick can be achieved by using the decryption function of a CPLA2-secure
public-key cryptosystem [19]. Since decryption is deterministic, given the long-term secret key and a randomly
chosen ciphertext, it will output the corresponding plaintext. So one can randomly choose an ephemeral key
and use it as the ciphertext to the decryption function, and obtain the corresponding plaintext (output of the
decryption function) as the pseudo-ephemeral value. Without knowing both the long-term and ephemeral
keys, it is infeasible to compute the pesudo-ephemeral value. Thus, a leakage-resilient NAXOS trick can be
achieved and the pseudo-ephemeral value can be computed. Further, bounded or continuous leakage-resilient
key exchange protocol can be constructed, if the underlying public-key cryptosystem is bounded or continuous
leakage-resilient.

4.2 Pair Generation Indistinguishability

Using a decryption algorithm of a CPLA2-secure public-key cryptosystem does not work for our requirement
unless the public-key cryptosystem has a special property: any randomly chosen ciphertext should be
decrypted without rejection. A randomly chosen ciphertext can be rejected with a significant probability if
NIZK proofs have been used for CPLA2-secure public-key cryptosystems. In NIZK proofs, the party which
creates a ciphertext should provide a proof of knowledge of the plaintext, and the party which decrypts the
ciphertext first verifies the proof, then only if the proof is correct it decrypts the ciphertext, otherwise rejects.
Use of a CPLA2-secure public-key cryptosystem without the special property would allow the adversary to
break the protocol with a significant probability, whenever a randomly chosen ciphertext is rejected. We
formally define the special property as pair generation indistinguishability.
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Definition 4.1. (Pair Generation Indistinguishability). Let PKE = (KeyGen,Enc,Dec) be a public-key

cryptosystem. For (p, s)
$←− KeyGen(1k), let D

(p,s)
1 , D

(p,s)
2 be two distributions such that D

(p,s)
1 = {(m, c) :

m
$←−M, c

$←− Enc(p,m)} and D
(p,s)
2 = {(m, c) : c

$←− C,m← Dec(s, c)} where M is the message space and C
is the ciphertext space. For ε ≥ 0, the public-key cryptosystem PKE is ε-pair-generation-indistinguishable

(ε-PG-IND) if for all (p, s)
$←− KeyGen(1k), SD(D

(p,s)
1 , D

(p,s)
2 ) ≤ ε.

Recall that the statistical distance, SD, between two distributions X and Y over a domain U is defined as
SD(X,Y ) = 1

2

∑
u∈U

∣∣Pr[X = u]− Pr[Y = u]
∣∣.

Now we show a 0-PG-IND public-key cryptosystem available in the literature. Naor et al. [31] described
the framework of a hash proof system [11] as a key-encapsulation mechanism using the notion of Kiltz et al.
[23]. Let K be the symmetric key space, C be the ciphertext space and M be the message space. Both K
and C are the same size and elements of M are µ-bit strings. The leakage-resilient public-key cryptosystem

of Naor et al. encrypts an arbitrary message m
$←− M as (Ψ, c, seed), where c

$←− C with the corresponding

witness ω, seed
$←− {0, 1}t is a random seed and Ψ = Ext(Pub(p, c, ω), seed)⊕m. Ext : K×{0, 1}t → {0, 1}m

is a public average-case strong extractor function [15], p is the public key and Pub is the deterministic public
evaluation function of the underlying key-encapsulation mechanism. So whenever a random (Ψ, c, seed)
is sampled, the decryption, m ← Ψ ⊕ Ext(Privs(c), seed) corresponds to a random m ∈ M. Priv is a
private evaluation algorithm of the underlying key-encapsulation mechanism, which is parametrized by the
secret key s. Thus, the leakage-resilient public-key cryptosystem of Naor et al. is 0-PG-IND. The generic
CPLA2-secure public-key cryptosystem of Halevi et al. [19] can be instantiated using the leakage-resilient
public-key cryptosystem of Naor et al. Hence, the instantiation of the generic CPLA2-secure public-key
cryptosystem of Halevi et al. is also 0-PG-IND.

Remark 3. In Table 3, let Ĉ be the ciphertext space: in a setting like Naor et al. [31] the random r· values

are not just chosen from the C but from Ĉ which gives random r· in the form (Ψ, c, seed).

4.3 Authenticating Protocol Messages

In this section we review how to provide authentication to the protocol messages. After computing the
pseudo-ephemeral value by the NAXOS trick, a principal computes a Diffie-Hellman exponentiation and
sends it to the other protocol principal. If that value is sent alone, the protocol is not secure because there is
no authentication for the protocol messages, and hence an attacker can simply replace the original protocol
message with its own value. In order to prevent this, we need to provide authenticity to the protocol messages.
There are UFCMLA-secure signature schemes available in the literature [21, 18, 27, 8], which we can use
to sign the protocol messages and provide authenticity. Further, the key exchange protocol is bounded or
continuous leakage-resilient, if the underlying signature scheme is bounded or continuous leakage-resilient.

4.4 Protocol π

In Table 3, we show the construction of protocol π. KeyGen, Enc and Dec are the key generation, encryption
and decryption algorithms of the underlying CPLA2-secure, ε-PG-IND-public-key cryptosystem PKE respec-
tively. KG, Sign and Vfy are the key generation, signature generation and signature verification algorithms of
the underlying leakage-resilient signature scheme SIG respectively. KDF is a secure key derivation function
which generates the session key of length k. The protocol π is a Diffie-Hellman-type [12] key agreement
protocol where G is a group of prime order q and generator g. We require that q is the size of the message
space M. After exchanging the public values both principals compute a Diffie-Hellman-type shared secret
value, and then compute the session key using the key derivation function KDF, with inputs identities of
the two principals and the Diffie-Hellman-type shared secret. The computations which leak information are
underlined.

4.5 Security Proof of the Protocol π

We prove the security of the generic protocol π in the (·)AFL-eCK model. If the underlying primitives are
secure in bounded or continuous leakage model, the protocol π is BAFL-eCK-secure or CAFL-eCK-secure
respectively.
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A (Initiator) B (Responder)

Initial Setup

skA, vkA
$←− KG(1k) skB , vkB

$←− KG(1k)

sA, pA
$←− KeyGen(1k) sB , pB

$←− KeyGen(1k)

Protocol Execution

rA
$←− Ĉ If Vfy(vkA, XA, σA) = “true”

{
r̃A ← Dec(sA, rA) rB

$←− Ĉ

XA ← gr̃A r̃B ← Dec(sB , rB)

σA
$←− Sign(skA, (A,B,XA))

A,B,XA,σA−−−−−−−−→ XB ← gr̃B
B,A,XB ,σB←−−−−−−−− σB

$←− Sign(skB , (B,A,XB))

If Vfy(vkB , (B,A,XB), σB) = “true”
{

r̃A ← Dec(sA, rA)

KAB ←KDF(A,B,X r̃A
B ) KAB ←KDF(A,B,X r̃B

A )} }
Table 3: Protocol π. Underline denotes operations to which leakage functions apply.

Theorem 4.1. Let A be any PPT adversary against the protocol π. Then the advantage of A against

(·)AFL-eCK-security of protocol π, Adv
(·)AFL-eCK
π is:

Adv(·)AFL-eCK
π (A) ≤ max

[
NPAdv

UFCMLA
SIG (E), N2

PNs
2
(
εpg + 2AdvCPLA2

PKE (D) +AdvDDH
q,g (C) +AdvKDF(B)

)]
.

B, C,D, E are efficient algorithms constructed using the adversary A, against the underlying key derivation
function, KDF, DDH problem, public-key cryptosystem, PKE and the signature scheme, SIG, respectively,
where PKE is ε-PG-IND.

In order to formally prove the (·)AFL-eCK-security of the protocol π, we use the game hopping technique
[32]: define a sequence of games and relate the adversary’s advantage of distinguishing each game from
the previous game to the advantage of breaking one of the underlying cryptographic primitive. The proof
structure is similar to Boyd et al. [7]. The proof of Theorem 4.1 is available in Appendix A. The proof is
split into two main cases: when the partner to the test session exists, and when it does not.

5 Conclusion

We have proposed a generic security model and protocol that improves the amount and type of secret leakage
that can be tolerated in authenticated key exchange protocols. Our generic model allows the adversary to
fully compromise a variety of long-term and short-term ephemeral values, as well as obtain partial, adaptive,
either bounded or continuous, after-the-fact leakage of long-term secret keys. Previous key exchange security
models either do not consider partial leakage at all (BR, CK, eCK) or allow only leakage before the test
session is queried and none after. Our model captures a wide variety of practical attack scenarios, including
side channel attacks. Further, the model gives flexibility to choose either bounded or continuous leakage
setting according to the necessity and available underlying primitives, and it provides a security framework to
construct after-the-fact leakage-resilient key exchange protocols. We have given a generic protocol, secure in
our generic model, that relies on a CPLA2-secure ε-PG-IND-public-key cryptosystem and an UFCMLA-secure
signature scheme. Using such schemes from the literature, our protocol can be instantiated without much
more cost than previous schemes which tolerate leakage only before the test session is activated.

Instantiating a CAFL-eCK-secure protocol is an open problem at this stage. We cannot use existing after-
the-fact leakage-resilient public-key cryptosystems in the continuous leakage model for the leakage-resilient
NAXOS computation, because they do not satisfy pair generation indistinguishability. If we can construct a
CPLA2 or CCLA2-secure public-key cryptosystem which is ε-PG-IND, in the continuous leakage model, then
we can construct a CAFL-eCK-secure protocol, and achieve leakage tolerance provided by the underlying
public-key cryptosystem and the signature scheme.
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A Security Proof

Proof. The proof of Theorem 4.1 is split into two main cases: when the partner to the test session exists, and
when it does not.

A.1 A partner session to the test session exists.

In this case, the adversary is allowed to corrupt both principals or reveal ephemeral keys from both oracles.
We assume that the adversary A can win the (·)AFL-eCK challenge against the protocol π with non-negligible

advantage Adv(·)AFL-eCK
π (A). We split this case into four sub cases as follows:

1. Adversary corrupts both the owner and partner principals to the test session.

2. Adversary corrupts neither owner or nor partner principal to the test session.

3. Adversary corrupts the owner to the test session, but does not corrupt the partner to the test session.

4. Adversary corrupts the partner to the test session, but does not corrupt the owner to the test session.
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A.1.1 Adversary corrupts both the owner and partner principals to the test session.

Game 1: This game is the original game. When the Test query is asked, the Game 1 challenger chooses a

random bit b
$←− {0, 1}. If b = 1, the real session key is given to A, otherwise a random value chosen from the

same session key space is given.
Game 2: Same as Game 1 with the following exception: before A begins, two distinct random principals

U∗, V ∗
$←− {U1, ..., UNP

} are chosen and two random numbers s∗, t∗
$←− {1, ...Ns} are chosen, where NP is the

number of protocol principals and NS is the number of sessions on a principal. The oracle Πs∗

U∗,V ∗ is chosen

as the target session and the oracle Πt∗

V ∗,U∗ is chosen as the partner to the target session. If the test session

is not the oracle Πs∗

U∗,V ∗ or partner to the oracle is not Πt∗

V ∗,U∗ , the Game 2 challenger aborts the game.

Game 3: Same as Game 2 with the following exception: the Game 3 challenger randomly chooses z
$←− Z∗q

and computes KU∗V ∗ ← KDF(U∗, V ∗, gz). When the adversary asks the Test(U∗, V ∗, s∗) query, Game 3
challenger will answer with KU∗,V ∗ . Further, since a partner session to the test session exists, when the
adversary asks Test(V ∗, U∗, t∗) query, Game 3 challenger will answer with KU∗,V ∗ .

Game 4: Same as Game 3 with the following exception: the Game 4 challenger randomly chooses K
$←− {0, 1}k

and sends it to the adversary A as the answer to the Test(U∗, V ∗, s∗) query or Test(V ∗, U∗, t∗) query.

Differences between games: In this section the adversary’s advantage of distinguishing each game
from the previous game is investigated. SuccGame x(A) denotes the event that the adversary A wins Game x,
AdvGame x(A) denotes the advantage of the adversary A of winning Game x. Game 1 is the original game.
Hence,

AdvGame 1(A) = Adv(·)AFL-eCK
π (A). (1)

Game 1 and Game 2: The probability of Game 2 to be halted due to incorrect choice of the test session is
1− 1

N2
PN

2
s

. Unless the incorrect choice happens, Game 2 is identical to Game 1. Hence,

AdvGame 2(A) =
1

NP
2N2

s

AdvGame 1(A). (2)

Game 2 and Game 3: We construct an algorithm C against the DDH challenge, using the adversary A. The

DDH challenger sends values (gx, gy, gz) such that either z = xy or z
$←− Z∗q , as the inputs to the algorithm

C. If C’s input is a Diffie-Hellman triple, simulation constructed by C is identical to Game 2, otherwise it is
identical to Game 3. If A can distinguish whether gz = gxy or not, then C can answer the DDH challenge. Note
that EphemeralKeyReveal(U∗, V ∗, s∗) or EphemeralKeyReveal(V ∗, U∗, t∗) is prohibited since the adversary
is allowed to corrupt both the owner and the partner to the test session. Hence,

|AdvGame 2(A)−AdvGame 3(A)| ≤ AdvDDH
q,g (C). (3)

Game 3 and Game 4: We construct an algorithm B against the security of the key derivation function KDF,
using the adversary A. B receives K such that K is computed using the KDF or randomly chosen from the
session key space. If K is computed using the KDF, simulation constructed by B is identical to Game 3,
otherwise it is identical to Game 4. If A can distinguish between Game 3 and Game 4, then B can distinguish
whether the value K is computed using KDF or randomly chosen, and answer the security challenge on key
derivation function in Definition 2.5. Hence,

|AdvGame 3(A)−AdvGame 4(A)| ≤ AdvKDF(B). (4)

Semantic security of the session key in Game 4: Since the session key K of Πs∗

U∗,V ∗ is chosen randomly and
independently from all other values, A does not have any advantage in Game 4. Hence,

AdvGame 4(A) = 0 (5)

Using equations (1)–(5) we find,

Adv(·)AFL-eCK
π (A) ≤ N2

PNs
2
(
AdvDDH

q,g (C) +AdvKDF(B)
)
.
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A.1.2 Adversary corrupts neither owner or nor partner principal to the test session.

Game 1:Same as Game 1 in Case A.1.1.
Game 2: Same as Game 2 in Case A.1.1.
Game 3: Same as Game 2 with the following exception: the Game 3 challenger randomly chooses a

pseudo-ephemeral value r̃U∗
$←− Z∗q and computes the ephemeral key rU∗

$←− Enc(pU∗ , r̃U∗). Then computes

KU∗V ∗ ← KDF(U∗, V ∗, X r̃U∗
V ∗ ). When the adversary asks the Test(U∗, V ∗, s∗), Game 3 challenger will

answer with KU∗,V ∗ . Further, since a partner session to the test session exists, when the adversary asks
Test(V ∗, U∗, t∗), Game 3 challenger will answer with KU∗,V ∗ .
Game 4: Same as Game 3 with the following exception: the Game 4 challenger randomly chooses a pseudo-

ephemeral value r̃′U∗
$←− Z∗q . Then computes KU∗V ∗ ← KDF(U∗, V ∗, X

r̃′
U∗
V ∗ ) and sends it to the adversary A

as the answer to the Test(U∗, V ∗, s∗) query or Test(V ∗, U∗, t∗) query.
Game 5: Same as Game 4 with the following exception: the Game 5 challenger randomly chooses a pseudo-

ephemeral value r̃′V ∗
$←− Z∗q . Then computes KU∗V ∗ ← KDF(U∗, V ∗, X

r̃′
V ∗
U∗ ) and sends it to the adversary A

as the answer to the Test(U∗, V ∗, s∗) query or Test(V ∗, U∗, t∗) query.
Game 6: Same as Game 3 in Case A.1.1.
Game 7: Same as Game 4 in Case A.1.1.

Differences between games: Game 1 is the original game. Hence,

AdvGame 1(A) = Adv(·)AFL-eCK
π (A). (6)

Game 1 and Game 2: Same as Game 1 and Game 2 in Case A.1.1.

AdvGame 2(A) =
1

NP
2N2

s

AdvGame 1(A). (7)

Game 2 and Game 3: We introduce an algorithm F which is constructed using the adversary A. If A can
distinguish the difference between Game 2 and Game 3, then F can distinguish whether a message/cphertext
pair (m, c) belongs to the distribution D1 or D2. F receives a pair (rU∗ , r̃U∗) such that r̃U∗ = Dec(sU∗ , rU∗).
F uses rU∗ as the ephemeral key of U∗ and r̃U∗ as the pseudo-ephemeral key of U∗. If a random ephemeral

key rU∗
$←− Z∗p is chosen first and the pseudo-ephemeral value r̃U∗ ← Dec(sU∗ , rU∗) is computed, then the

simulation constructed by F is identical to Game 2. Otherwise if a random pseudo-ephemeral value r̃U∗
$←− Z∗p

is chosen first and the ephemeral key rU∗
$←− Enc(pU∗ , r̃U∗) is computed, then the simulation constructed

by F is identical to Game 3. If A can distinguish whether a message/cphertext pair (m, c) belongs to the
distribution D1 or D2. Hence,

|AdvGame 2(A)−AdvGame 3(A)| ≤ ε. (8)

Game 3 and Game 4: We introduce an algorithm D which is constructed using the adversary A. If A can
distinguish the difference between Game 3 and Game 4, then D can be used against a CPLA2 challenger. The
algorithm D uses the public-key of the CPLA2 challenger as the public key of the protocol principal U∗ and
generates public/secret key pairs for all other protocol principals. D generates signing/verification key pairs

for every protocol principal. D picks two random strings, r0, r1
$←− {0, 1}k and passes them to the CPLA2

challenger. From the CPLA2 challenger, D receives a challenge ciphertexts C1 such that C1
$←− Enc(pkU∗ , rθ)

where rθ = r0 or rθ = r1. The following describes the procedure of answering queries. (assuming that U∗ is
the initiator, otherwise session key is computed like KDF(V ∗, U∗, ·))

• Send(U, V, s,m, f) query: When U = U∗, V = V ∗ and s = t∗, D takes r1 as r̃′U∗ , computes gr̃
′
U∗ and

computes its signature. Then D creates the protocol message and sends it to A with the leakage

f(skU∗). For all other Send queries, D randomly picks a pseudo-ephemeral value r̃U
$←− {0, 1}k,

computes rU
$←− Enc(pkV , r̃U ) as the ephemeral key, and computes gr̃U (mod n). Then computes the

corresponding signature, creates the protocol message and sends it to A with the leakage f(skU ) which
obtained from the leakage oracle.
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• SessionKeyReveal(U, V, s) query: D will abort the game if SessionKeyReveal(U∗, V ∗, s∗) query or
SessionKeyReveal(V ∗, U∗, t∗) query is asked. For all other SessionKeyReveal queries D can compute
the answer using the corresponding psuedo-ephemeral keys and answer the queries.

• EphemeralKeyReveal(U, V, s) query: D uses C1 as the ephemeral key for EphemeralKeyReveal(U∗, V ∗, s∗).
For all other EphemeralKeyReveal queries D will answer with the corresponding ephemeral-key which
is computed by encrypting pseudo-ephemeral value with the secret key of corresponding principal.

• Corrupt(U) query: Except for U∗ and V ∗, algorithm D can answer all other Corrupt queries. In this
case we consider the situation in which the adversary corrupts neither owner or nor partner principal to
the test session.

• Test(U, s) query: The algorithm D will abort the game if the adversary issues a Test query other
than Test(U∗, s∗). To compute the answer to the Test(U∗, s∗) query, the algorithm D computes

KDF(U∗, V ∗, X
r̃′
U∗
V ∗ ) where r̃′U∗ = r1, and answers to the Test query.

If θ = 1, then r1 is the decryption of C1 and the simulation constructed by D is identical to Game 3 whereas
if θ = 0, then r0 is the decryption of C1 and the simulation constructed by D is identical to Game 4. Hence,

|AdvGame 3(A)−AdvGame 4(A)| ≤ AdvCPLA2
PKE (D). (9)

Game 4 and Game 5: We introduce an algorithm D which is constructed using the adversary A. If A can
distinguish the difference between Game 4 and Game 5, then D can be used against a CPLA2 challenger. The
algorithm D uses the public-key of the CPLA2 challenger as the public key of the protocol principal V ∗ and
generates public/secret key pairs for all other protocol principals. D generates signing/verification key pairs

for every protocol principal. D picks two random strings, r′0, r
′
1

$←− {0, 1}k and passes them to the CPLA2

challenger. From the CPLA2 challenger, D receives a challenge ciphertexts C2 such that C2
$←− Enc(pkV ∗ , r

′
θ)

where r′θ = r′0 or r′θ = r′1. D uses C2 as the ephemeral key for EphemeralKeyReveal(V ∗, U∗, t∗). Answering
the queries is similar to the Game 3 and Game 4, now we use the public key of the CPLA2 challenger as
the public key of the protocol principal V ∗. If θ = 1, then r′1 is the decryption of C2 and the simulation
constructed by D is identical to Game 4 whereas if θ = 0, then r′0 is the decryption of C2 and the simulation
constructed by D is identical to Game 5. Hence,

|AdvGame 4(A)−AdvGame 5(A)| ≤ AdvCPLA2
PKE (D). (10)

Game 5 and Game 6: Same as Game 2 and Game 3 in Case A.1.1.

|AdvGame 5(A)−AdvGame 6(A)| ≤ AdvDDH
q,g (C). (11)

Game 6 and Game 7: Same as Game 3 and Game 4 in Case A.1.1.

|AdvGame 6(A)−AdvGame 7(A)| ≤ AdvKDF(B). (12)

Semantic security of the session key in Game 7: Same as the semantic security in Game 4 in Case A.1.1.

AdvGame 7(A) = 0 (13)

Using equations (6)–(13) we find,

Adv(·)AFL-eCK
π (A) ≤ N2

PNs
2
(
ε+ 2AdvCPLA2

PKE (D) +AdvDDH
q,g (C) +AdvKDF(B)

)
.

A.1.3 Adversary corrupts the partner, but not the owner to the test session.

Game 1: Same as Game 1 in Case A.1.1.
Game 2: Same as Game 2 in Case A.1.1.
Game 3: Same as Game 3 in Case A.1.2.
Game 4: Same as Game 4 in Case A.1.2.
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Game 5: Same as Game 3 in Case A.1.1.
Game 6: Same as Game 4 in Case A.1.1.

Differences between games: Game 1 is the original game. Hence,

AdvGame 1(A) = Adv(·)AFL-eCK
π (A). (14)

Game 1 and Game 2: Same as Game 1 and Game 2 in Case A.1.1.

AdvGame 2(A) =
1

NP
2N2

s

AdvGame 1(A). (15)

Game 2 and Game 3: Same as Game 2 and Game 3 in Case A.1.2.

|AdvGame 2(A)−AdvGame 3(A)| ≤ ε. (16)

Game 3 and Game 4: Same as Game 3 and Game 4 in Case A.1.2.

|AdvGame 3(A)−AdvGame 4(A)| ≤ AdvCPLA2
PKE (D). (17)

Game 4 and Game 5: Same as Game 2 and Game 3 in Case A.1.1.

|AdvGame 4(A)−AdvGame 5(A)| ≤ AdvDDH
q,g (C). (18)

Game 5 and Game 6: Same as Game 3 and Game 4 in Case A.1.1.

|AdvGame 5(A)−AdvGame 6(A)| ≤ AdvKDF(B). (19)

Semantic security of the session key in Game 6: Same as the semantic security in Game 4 in Case A.1.1.

AdvGame 6(A) = 0 (20)

Using equations (14)–(20) we find,

Adv(·)AFL-eCK
π (A) ≤ N2

PNs
2
(
ε+AdvCPLA2

PKE (D) +AdvDDH
q,g (C) +AdvKDF(B)

)
.

A.1.4 Adversary corrupts the owner, but not the partner to the test session.

Game 1: Same as Game 1 in Case A.1.1.
Game 2: Same as Game 2 in Case A.1.1.
Game 3: Same as Game 3 in Case A.1.2.
Game 4: Same as Game 5 in Case A.1.2.
Game 5: Same as Game 3 in Case A.1.1.
Game 6: Same as Game 4 in Case A.1.1.

Differences between games: Game 1 is the original game. Hence,

AdvGame 1(A) = Adv(·)AFL-eCK
π (A). (21)

Game 1 and Game 2: Same as Game 1 and Game 2 in Case A.1.1.

AdvGame 2(A) =
1

NP
2N2

s

AdvGame 1(A). (22)

Game 2 and Game 3: Same as Game 2 and Game 3 in Case A.1.2.

|AdvGame 2(A)−AdvGame 3(A)| ≤ ε. (23)

Game 3 and Game 4: Same as Game 4 and Game 5 in Case A.1.2.

|AdvGame 3(A)−AdvGame 4(A)| ≤ AdvCPLA2
PKE (D). (24)
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Game 4 and Game 5: Same as Game 2 and Game 3 in Case A.1.1.

|AdvGame 4(A)−AdvGame 5(A)| ≤ AdvDDH
q,g (C). (25)

Game 5 and Game 6: Same as Game 3 and Game 4 in Case A.1.1.

|AdvGame 5(A)−AdvGame 6(A)| ≤ AdvKDF(B). (26)

Semantic security of the session key in Game 6: Same as the semantic security in Game 4 in Case A.1.1.

AdvGame 6(A) = 0 (27)

Using equations (21)–(27) we find,

Adv(·)AFL-eCK
π (A) ≤ N2

PNs
2
(
ε+AdvCPLA2

PKE (D) +AdvDDH
q,g (C) +AdvKDF(B)

)
.

From case A.1 we get,

Adv(·)AFL-eCK
π (A) ≤ N2

PNs
2
(
εpg + 2AdvCPLA2

PKE (D) +AdvDDH
q,g (C) +AdvKDF(B)

)
.

A.2 A partner session to the test session does not exist.

When the partner session does not exist, the owner of the test session shares the session key with the active
adversary. In this situation adversary is not allowed to corrupt the intended partner principal to the test
session. Assume that the adversary A asks a Send query to some fresh oracle, such that it accepts, but the
signature used in the query is not generated by a legitimate party.

Game 1: This game is the original game. The Game 1 challenger chooses a random bit b
$←− {0, 1}. If

b = 1, the real session key is given to A, otherwise a random value chosen from the same session key space is
given.

Game 2: Same as Game 1 with the following exception: before A begins, the Game 2 challenger guesses
the identity, V ∗, of the partner principal to the test session and if the guess in incorrect it aborts the game.

Differences between games: Game 1 is the original game. Hence,

AdvGame 1(A) = Adv(·)AFL-eCK
π (A). (28)

Game 1 and Game 2: The probability of Game 2 to be aborted due to incorrect guess of the partner principal
to the test session is 1− 1

N2
P

. Unless the incorrect guess happens, Game 2 is identical to Game1. Hence,

AdvGame 2(A) =
1

NP
AdvGame 1(A). (29)

The owner principal accepts the message coming from the intended partner, because the owner computes
Vfy(vkV ∗ , XV ∗ , σV ∗) is “true”. But the principal V ∗ is not corrupted and the message XV ∗ is not signed by
the principal V ∗, because of no partner. Hence,

AdvGame 2(A) = AdvUFCMLA
SIG (E). (30)

Using equations (28)–(30) we find,

Adv(·)AFL-eCK
π (A) = NPAdv

UFCMLA
SIG (E).

From case A.2 we get,

Adv(·)AFL-eCK
π (A) ≤ NPAdvUFCMLA

SIG (E).

Combine Case A.1 and A.2 to obtain the relationship in Theorem 4.1.

Adv(·)AFL-eCK
π (A) ≤ max

[
NPAdv

UFCMLA
SIG (E), N2

PNs
2
(
εpg + 2AdvCPLA2

PKE (D) +AdvDDH
q,g (C) +AdvKDF(B)

)]
.
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