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Abstract

Providing an efficient revocation mechanism for identity-based encryption (IBE) is very important
since a user’s credential (or private key) can be expired or revealed. Revocable IBE (RIBE) is an exten-
sion of IBE that provides an efficient revocation mechanism. Previous RIBE schemes essentially use the
complete subtree (CS) scheme for key revocation. In this paper, we present a new technique for RIBE
that uses the efficient subset difference (SD) scheme or the layered subset difference (LSD) scheme in-
stead of using the CS scheme to improve the size of update keys. Following our new technique, we
first propose an efficient RIBE scheme in prime-order bilinear groups by combining the IBE scheme of
Boneh and Boyen and the SD scheme and prove its selective security under the standard assumption.
Our RIBE scheme is the first RIBE scheme in bilinear groups that has O(r) number of group elements
in update keys. Next, we also propose another RIBE scheme in composite-order bilinear groups and
prove its full security under static assumptions. Our RIBE schemes also can be integrated with the LSD
scheme to reduce the size of private keys.
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1 Introduction

Identity-based encryption (IBE) is a new paradigm of public-key encryption (PKE) that uses the identity
string of a user for the public key of the user [5, 6, 38, 40]. IBE and its extensions like hierarchical IBE
(HIBE) [5, 12, 16], attribute-based encryption (ABE) [3, 14, 35], predicate encryption (PE) [8, 17, 21], and
functional encryption (FE) [7, 13] opened new applications of encryption systems such as the delegation of
decryption capability, access control in encrypted data, searches on encrypted data, and functional evaluation
on encrypted data. If an IBE scheme is used in real-world applications, an efficient revocation mechanism
for IBE that can handle dynamic credentials of users is needed since a user’s credential can be revealed or
expired. Revocable IBE (RIBE) is an extension of IBE that can handle the dynamic credentials of users by
providing an efficient revocation mechanism. An ideal revocation method in IBE is that a sender just creates
a ciphertext without worrying about the revocation of a receiver and only the receiver needs to check the
revocation of his credential to decrypt the ciphertext.

Boneh and Franklin [6] proposed the first RIBE scheme by representing an identity as ID‖T where ID
is the real identity and T is a current time, but it is inefficient and not scalable because of the requirement
of secure channels between the center and all users. A scalable RIBE scheme was introduced by Boldyreva,
Goyal, and Kumar [4]. They defined the first formal definition of RIBE and proposed a selectively secure
RIBE scheme by combining the fuzzy IBE (FIBE) scheme of Sahai and Waters [35] and the complete subtree
(CS) scheme of Naor et al. [28]. After that fully secure RIBE schemes were proposed [25, 37]. Recently,
the design technique of RIBE was successfully applied to achieve a revocable HIBE (RHIBE) scheme, a
revocable-storage ABE (RS-ABE) scheme, and a revocable-storage PE (RS-PE) scheme [18, 34, 36].

Although efficient RIBE schemes and their extended schemes were proposed, the main design principle
of these constructions essentially follows that of Boldyreva et al. [4] that uses the CS scheme of Naor et
al. [28] for key revocation. The CS scheme is one instance of the general subset cover framework of Naor
et al. and there are other efficient subset cover schemes like the subset difference (SD) scheme [28] and the
layered subset difference (LSD) scheme [15]. Therefore, we ask the following natural question in this paper.

“Can we build an efficient RIBE scheme by using the SD scheme (or the LSD scheme) instead
of using the CS scheme?”

If it is possible, then the size of update keys can be reduced from O(r log(Nmax/r)) to O(r) group elements
by slightly increasing the size of private keys where Nmax is the maximum number of users and r is the
number of revoked users.

1.1 Our Results

In this paper, we give the affirmative answer for the above question by presenting a new technique that
combines an IBE scheme and the SD scheme. The following is our results:

New Technique for RIBE. We first present a new technique for RIBE that combines an IBE scheme and
the SD scheme instead of using the CS scheme. The CS scheme was easily integrated with an IBE scheme
since an assigned key for a subset in the CS scheme is independent of each other [28]. However, it is unclear
how to integrate the SD scheme with an IBE scheme since an assigned key for a subset in the SD scheme is
dependent on another [28]. We use a random polynomial of degree one to solve the complex key assignment
problem in the SD scheme, and integrate the SD scheme with an IBE scheme by using the observation that
the SD scheme is related with a single member revocation scheme which can be implemented by a random
polynomial of degree one. However, this idea does not directly lead to a secure scheme because of collusion
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attacks. To provides the security against collusion attacks, we personalize the private key components with
an identity ID and constrain the usage of update key components by a time T .

RIBE with Selective Security. Following our new technique for RIBE, we construct an RIBE scheme in
prime-order bilinear groups by combining the IBE scheme of Boneh and Boyen [5] and the SD scheme of
Naor et al. [28], and then we prove its security in the selective revocation list model under the standard
assumption. In our RIBE scheme, the number of group elements in the public parameters, a private key, an
update key, and a ciphertext is O(1), O(log2 Nmax), O(r), and O(1) respectively where Nmax is the maximum
number of users and r is the number of revoked users. Compared with the previous RIBE schemes [4,25,37]
that have O(r log(Nmax/r)) group elements in an update key, our RIBE scheme just has O(r) group elements
in an update key. If the LSD scheme of Halevy and Shamir [15] is used instead of the SD scheme, then the
number of group elements in a private key is reduced from O(log2 Nmax) to O(log1.5 Nmax).

RIBE with Full Security. Next, we propose another RIBE scheme in composite-order bilinear groups by
combining the IBE scheme of Lewko and Waters [24] and the SD scheme, and the we prove its security in
the full model under static assumptions. To prove the security in the full model, we use the dual system
encryption technique of Waters [24, 41]. However, the original dual system encryption technique that was
used to prove the security of IBE and HIBE is not directly applicable to an RIBE scheme since the adversary
of RIBE can request a private key for a challenge identity ID∗ and an update key for a challenge time T ∗

that were not allowed in the security model of IBE. Additionally, the complex key assignment of the SD
scheme introduces another difficulty in the proof of using the dual system encryption technique. To solve
these problems, we carefully redesign the semi-functional types of each key and hybrid games for the dual
system encryption.

1.2 Our Techniques

The CS scheme can be easily integrated with an IBE scheme to construct an RIBE scheme since it assigns
a random independent key for each subset in CS [4]. In contrast, the SD scheme cannot be easily integrated
with an IBE scheme to construct an RIBE scheme since it assigns a dependent key for each subset in SD
by using a pseudo-random generator [28]. To overcome the complex and dependent key assignment of the
SD scheme, we use the observation that a subset Si, j in SD can be interpreted as single member revocation.
In the SD scheme, a subset Si, j that is associated with two nodes vi and v j of a binary tree is defined as
the set of leaf nodes that belong to Ti \ Tj where Ti is a subtree rooted at vi and Tj is a subtree rooted at
v j. If we define a group GL as the set of subsets Si, j such that vi is the same and the depth d j of v j is
also the same, then the subset Si, j can be interpreted as this subset Si, j is almost same as GL except that
one member node v j is excluded (or revoked). This observation was implicitly made by Lee et al. [20] and
they used this observation to construct a public-key trace and revoke scheme by combining the SD scheme
and a single-revocation encryption scheme in bilinear groups. To use this observation for RIBE, we use
the polynomial-based revocation scheme of Naor and Pinkas [30]. That is, a revocation scheme that uses a
random polynomial of degree one can be used to revoke a single user.

In the SD scheme, the collection S is defined as the set of subsets Si, j where vi and v j is a node in a tree
and v j is a descendant of vi. As mentioned before, the subsets Si, j can be categorized as groups and a one
group GL is defined as a set of subsets Si, j such that vi is the same and the depth d j of v j is the same. To use
the polynomial-based revocation scheme, we assign a random polynomial fGL(x) = aGLx+α once to each
group where aGL is a random value and α is a fixed value for all groups. In a group GL, each member Li

that is associated with a node v j has a share g fGL(L j) where Li is a identifier of the node v j. If one member L j′

is revoked, then his share g fGL(L j′ ) is revealed to all members, then any member in the group GL except the
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revoked member can reconstruct the secret gα by using the Lagrange interpolation method since two points
of a degree one polynomial are enough for reconstruction. However, this simple method is insecure against
collusion attacks since any two members can collude to reconstruct the secret α .

To provide the security against collusion attacks, the share of a member is personalized by using his
identity ID and the share of the revoked member is constrained by using a revoked time T . That is the
personalized private key for a member L j is defined as g fGL(L j)H(ID)r1 ,gr1 where H is a hash function and the
time-constrained update key for a revoked member L j′ is defined as g fGL(L′j)H(T )r2 ,g−r2 . Thus a non-revoked
member in the group can derive a decryption key as gαH(ID)r1H(T )r2 ,g−r1 ,g−r2 from his personalized
private key and the time-constrained update key. Note that if non-revoked two members collude, then they
only can derive gαH(ID)r1H(ID′)r2 ,g−r1 ,g−r2 that are not useful to decrypt a ciphertext. In the RIBE
scheme, a private key for a user consists of many subsets and an update key for a time also consists of many
subsets.

1.3 Related Work

Certificate Revocation in PKE. In PKE that uses public-key infrastructure (PKI), CRL and OCSP are
the traditional methods to revoke certificates of users. However, these methods are inefficient in terms of
transmission costs and computation costs since CRL includes all serial numbers of revoked certificates and
OCSP requires the generation of digital signature for each queries. Furthermore, they also require for each
client who uses a certificate to implement a path validation module to check the validity of a digital signature
in CRL or OCSP. A better solution named certificate revocation system (CRS) was proposed by Micali [27]
and it uses a hash-chain to check the validity of the certificate. This method was improved by Naor and
Nissim [29] and Aiello et al. [1]. Although CRS improves the previous CRL and OCSP, these methods still
require a sender to check the validity of a certificate through a heavy infrastructure and this problem is the
serious point of these methods. Gentry [11] solved this problem by introducing certificate-based encryption
(CBE) and proposed an efficient CBE scheme in bilinear groups.

Revocation in IBE. As mentioned, an ideal revocation method for IBE is that a sender can create a ciphertext
as the same as that of IBE without worrying about the revocation of a receiver and only the receiver checks
the revocation of his key to decrypt the ciphertext. Boneh and Franklin [6] proposed the first IBE scheme
that support the revocation capability, but their scheme is inefficient and not scalable since each user should
be connected to the center through a secure channel to receive an updated private key. A scalable and RIBE
scheme was proposed by Boldyreva et al. [4]. They constructed an RIBE scheme by combining the FIBE
scheme of Sahai and Waters [35] and the CS scheme and proved it selective security. After that, fully secure
RIBE schemes were proposed by Libert and Vergnaud [25] and Seo and Emura [37], and Seo and Emura
refined the security model of RIBE by considering the decryption key exposure attacks. Recently, Park et
al. [33] proposed an RIBE scheme with shorter private key and update key by using multilinear maps, but
the size of the public parameters is dependent to the number of users. The design technique of RIBE also
can be applicable to the extensions of IBE, like HIBE, ABE, and PE. Boldyreva et al. [4] already proposed
a revocable ABE (R-ABE) scheme. Seo and Emura [36] proposed an RHIBE scheme by using the HIBE
scheme of Boneh and Boyen. For cloud storage, Sahai et al. [34] proposed RS-ABE schemes that provide
the key revocation and ciphertext update functionalities, and Lee et al. [18] proposed improved RS-ABE
and RS-PE schemes by introducing self-updatable encryption.

Revocation Encryption. Revocation encryption (RE) is a special type of broadcast encryption (BE) [10]
such that a sender creates a ciphertext by specifying a set of revoked users R instead of a set of receivers S
and a receiver can decrypt a ciphertext if he is not included in the set of revoked users [23,28,30]. However,
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there is a crucial difference between the security model of RE and that of RIBE. In RE, the collusion of non-
revoked users is not allowed since an adversary cannot request private keys for non-revoked users [23], but
the collusion of non-revoked users is allowed in RIBE since an adversary can request private keys for non-
revoked users except the challenge user ID∗ [4]. Although RE alone does not directly solve the revocation
problem of IBE, RE can be combined with IBE or its extensions to directly revoke a set of revoked users by
specifying a receiver and a revoked set R in a ciphertext [2, 19, 31, 39]. This approach requires a sender to
take care of the revocation of users.

2 Preliminaries

In this section, we introduce the subset difference method and define the syntax and the security model of
revocable IBE.

2.1 Full Binary Tree

A full binary tree BT is a tree data structure where each node except the leaf nodes has two child nodes.
Let Nmax be the number of leaf nodes in BT . The number of all nodes in BT is 2Nmax− 1 and for any
1 ≤ i ≤ 2Nmax− 1 we denote by vi a node in BT . The depth di of a node vi is the length of the path from
the root node to the node. The root node is at depth zero. The depth of BT is the length of the path from
the root node to a leaf node. A level of BT is a set of all nodes at given depth. For any node vi ∈ BT , Ti is
defined as a subtree that is rooted at vi. For any two nodes vi,v j ∈ BT such that v j is a descendant of vi, Ti, j

is defined as a subtree Ti−Tj, that is, all nodes that are descendants of vi but not v j. For any node vi ∈ BT ,
Si is defined as the set of leaf nodes in Ti. Similarly, Si, j is defined as the set of leaf nodes in Ti, j, that is,
Si, j = Si \S j.

For any node vi ∈ BT , Li is defined as an identifier that is a fixed and unique string. The identifier of
each node in the tree is assigned as follows: Each edge in the tree is assigned with 0 or 1 depending on
whether the edge is connected to its left or right child node. The identifier Li of a node vi is defined as the
bitstring obtained by reading all the labels of edges in the path from the root node to the node vi. We define
L(vi) be a mapping from a node vi to an identifier Li. We also define L(Ti) be a mapping from a subtree Ti to
the identifier Li of the node vi and L(Ti, j) be a mapping from a subtree Ti, j to a tuple (Li,L j) of identifiers.
Similarly, we can define L(Si) = L(Ti) and L(Si, j) = L(Ti, j).

For a full binary tree BT and a subset R of leaf nodes, ST (BT ,R) is defined as the Steiner Tree induced
by the set R and the root node, that is, the minimal subtree of BT that connects all the leaf nodes in R and
the root node. we simply denote ST (BT ,R) by ST (R).

2.2 Subset Difference Method

The subset difference (SD) method is a special instance of the subset cover framework of Naor, Naor, and
Lotspiech [28] that is a general methodology for revocation schemes. The well-known complete subtree
(CS) scheme is also one instance of the subset cover framework. The original subset cover framework
consists of a subset assignment part and a key assignment part. In this paper, we define the subset cover
framework by using the subset assignment part only. The formal definition is given as follows:

Definition 2.1 (Subset Cover). A subset cover scheme for the setN = {1, . . . ,Nmax} of users consists of four
PPT algorithms Setup, Assign, Cover, and Match, which are defined as follows:
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Setup(Nmax). The setup algorithm takes as input the maximum number Nmax of users and outputs a collec-
tion S of subsets S1, . . . ,Sw where Si ⊆N .

Assign(S,u). The assigning algorithm takes as input the collection S and a user u ∈ N , and outputs a
private set PVu = {S j1 , . . . ,S jn} that is associated with the user u.

Cover(S,R). The covering algorithm takes as the collection S and a revoked set R ⊂ N of users, and
outputs a covering set CVR = {Si1 . . . ,Sim} that is a partition of the non-revoked users N \R into
disjoint subsets Si1 , . . . ,Sim such that S \R =

⋃m
k=1 Sik .

Match(CVR,PVu). The matching algorithm takes as input a covering set CVR = {Si1 , . . . ,Sim} and a private
set PVu = {S j1 , . . . ,S jn} of a user u. It outputs (Sik ,S jk′ ) such that Sik ∈CVR, u ∈ Sik , and S jk′ ∈ PVu,
or it outputs ⊥.

The correctness of subset cover is defined as follows: For all S generated by Setup, all PVu generated by
Assign, and any R, it is required that:

• If u /∈ R, then Match(Cover(S,R),PVu) = (Sik ,S jk′ ) such that Sik ∈CVR and S jk′ ∈ PVu.

• If u ∈ R, then Match(Cover(S,R),PVu) =⊥.

Note that the exact conditions of the subsets outputted by the matching algorithm is defined by the specific
instance of the SC scheme.

As mentioned, the SD scheme is one instance of the SC scheme and it was proposed by Naor et al. [28]
as an improvement on the CS scheme. The SD scheme is described as follows:

SD.Setup(Nmax): This algorithm takes as input the maximum number Nmax of users. Let Nmax = 2n for
simplicity. It first sets a full binary tree BT of depth n. Each user is assigned to a different leaf node
in BT . The collection S of SD is the set of all subsets {Si, j} where vi,v j ∈ BT and v j is a descendant
of vi. It outputs the full binary tree BT .

SD.Assign(BT ,u): This algorithm takes as input the tree BT and a user u ∈ N . Let vu be the leaf node of
BT that is assigned to the user u. Let (vk0 ,vk1 , . . . ,vkn) be the path from the root node vk0 to the leaf
node vkn = vu. It first sets a private set PVu as an empty one. For all i, j ∈ {k0,k1, . . . ,kn} such that
v j is a descendant of vi, it adds the subset Si, j defined by two nodes vi and v j in the path into PVu. It
outputs the private set PVu = {Si, j}.

SD.Cover(BT ,R): This algorithm takes as input the tree BT and a revoked set R of users. It first sets a
subtree T as ST (R), and then it builds a covering set CVR iteratively by removing nodes from T until
T consists of just a single node as follows:

1. It finds two leaf nodes vi and v j in T such that the least-common-ancestor v of vi and v j does not
contain any other leaf nodes of T in its subtree. Let vl and vk be the two child nodes of v such
that vi is a descendant of vl and v j is a descendant of vk. If there is only one leaf node left, it
makes vi = v j to the leaf node, v to be the root of T and vl = vk = v.

2. If vl 6= vi, then it adds the subset Sl,i to CVR; likewise, if vk 6= v j, it adds the subset Sk, j to CVR.

3. It removes from T all the descendants of v and makes v a leaf node.

It outputs the covering set CVR = {Si, j}.
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SD.Match(CVR,PVu): This algorithm takes input as a covering set CVR = {Si, j} and a private set PVu =
{S′i, j}. It finds two subsets Si, j and S′i′, j′ such that Si, j ∈CVR, S′i′, j′ ∈ PVu, and (i = i′)∧(d j = d j′)∧( j 6=
j′) where d j is the depth of v j. If it found two subsets, then it outputs (Si, j,S′i′, j′). Otherwise, it outputs
⊥.

Lemma 2.2 ( [28]). Let Nmax be the number of leaf nodes in a full binary tree and r be the size of a revoked
set. In the SD scheme, the size of a private set is O(log2 Nmax) and the size of a covering set is at most 2r−1.

Remark 2.3. The covering algorithm of the SD scheme is only defined for r ≥ 1. One simple way to handle
the case r = 0 is to use a dummy user that is always revoked. In the SD scheme, the size of the covering
set is at most 2r− 1, but it is rough worst-case analysis and the size is always smaller than that of the CS
scheme since a subset in the CS scheme is defined by a subset in the SD scheme [28]. The better analysis of
this covering set size is given by Martin et al. [26].

The layered subset difference (LSD) scheme was proposed by Halevy and Shamir [15] to reduce the size
of a private set in the SD scheme. The SD scheme in a cryptosystem generally can be replaced by the LSD
scheme since the LSD scheme is a special case of the SD scheme.

Lemma 2.4 ( [15]). Let Nmax be the number of leaf nodes in a full binary tree and r be the size of a revoked
set. In the LSD scheme, the size of a private set is O(log1.5 Nmax) and the size of a covering set is at most
4r−2.

2.3 Revocable Identity-Based Encryption

Revocable IBE (RIBE) is an extension of IBE that can revoke a users if his credential is expired or revealed
[4]. In RIBE, a sender creates a ciphertext for a receiver identity ID and a time T . A user first obtains
a (long-term) private key SKID for his identity ID from a center, and the center periodically broadcasts an
update key UKT,R for a time T and a revoked identity set R. If a user ID is not revoked in R of the update
key, then he can derive a (short-term) decryption key DKID,T for his identity ID and the time T from SKID

and UKT,R and he can use this decryption key to decrypt the ciphertext. Note that the center does not encrypt
an update key for broadcasting. The syntax of RIBE is formally defined as follows:

Definition 2.5 (Revocable IBE). A revocable IBE (RIBE) scheme that is associated with the identity space
I, the time space T , and the message spaceM, consists of seven algorithms Setup, GenKey, UpdateKey,
DeriveKey, Encrypt, Decrypt, and Revoke, which are defined as follows:

Setup(1λ ,Nmax): The setup algorithm takes as input a security parameter 1λ and the maximum number
of users Nmax. It outputs a master key MK, an (empty) revocation list RL, a state ST , and public
parameters PP.

GenKey(ID,MK,ST,PP): The private key generation algorithm takes as input an identity ID ∈ I, the
master key MK, the state ST , and public parameters PP. It outputs a private key SKID for ID and an
updated state ST .

UpdateKey(T,RL,MK,ST,PP): The update key generation algorithm takes as input an update time T ∈ T ,
the revocation list RL, the master key MK, the state ST , and the public parameters PP. It outputs an
update key UKT,R for T and R where R is a revoked identity set on the time T .

DeriveKey(SKID,UKT,R,PP): The decryption key derivation algorithm takes as input a private key SKID,
an update key UKT,R, and the public parameters PP. It outputs a decryption key DKID,T or ⊥.
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Encrypt(ID,T,M,PP): The encryption algorithm takes as input an identity ID ∈ I, a time T , a message
M ∈M, and the public parameters PP. It outputs a ciphertext CTID,T for ID and T .

Decrypt(CTID,T ,DKID′,T ′ ,PP): The decryption algorithm takes as input a ciphertext CTID,T , a decryption
key DKID′,T ′ , and the public parameters PP. It outputs an encrypted message M or ⊥.

Revoke(ID,T,RL,ST ): The revocation algorithm takes as input an identity ID to be revoked and a revoca-
tion time T , a revocation list RL, and a state ST . It outputs an updated revocation list RL.

The correctness of RIBE is defined as follows: For all MK, RL, ST , and PP generated by Setup(1λ ,Nmax),
SKID generated by GenKey(ID,MK,ST,PP) for any ID, UKT,R generated by UpdateKey(T,RL,MK,ST,PP)
for any T and RL, CTIDc,Tc generated by Encrypt(IDc,Tc,M,PP) for any IDc, Tc, and M, it is required that

• If (ID /∈ R), then DeriveKey(SKID,UKT,R,PP) = DKID,T .

• If (ID ∈ R), then DeriveKey(SKID,UKT,R,PP) =⊥ with all but negligible probability.

• If (IDc = ID)∧ (Tc = T ), then Decrypt(CTIDc,Tc ,DKID,T ,PP) = M.

• If (IDc 6= ID)∨ (Tc 6= T ), then Decrypt(CTID,T ,DKID,T ,PP) =⊥ with all but negligible probability.

The security model of RIBE was introduced by Boldyreva et al. [4] and it was refined by Seo and
Emura [37] by considering the decryption key exposure attacks. In this paper, we follow the refined security
model of RIBE. In the security game of RIBE, an adversary adaptively request a private key for an identity
ID, an update key for a time T and a current revocation list RL, and a decryption key for an identity ID and
a time T . In the challenge step, the adversary submits a challenge identity ID∗, a challenge time T ∗, and
challenge messages M∗0 ,M

∗
1 with additional restrictions and he receives a challenge ciphertext CT ∗ that is

an encryption of a message M∗µ for a random bit µ . After that, the adversary may request additional private
key, update key, and decryption key queries, and finally he outputs a guess µ ′. If his guess is correct, then
he wins the game. The security of RIBE is formally defined as follows:

Definition 2.6 (Security). The security of RIBE under chosen plaintext attacks is defined in terms of the
following experiment between a challenger C and a PPT adversary A:

1. Setup: C generates a master key MK, a revocation list RL, a state ST , and public parameters PP by
running Setup(1λ ,Nmax). It keeps MK,RL,ST to itself and gives PP to A.

2. Phase 1: A adaptively request a polynomial number of queries. These queries are processed as
follows:

• If this is a private key query for an identity ID, then it gives the corresponding private key SKID

to A by running GenKey(ID,MK,ST,PP).

• If this is an update key query for a time T , then it gives the corresponding update key UKT,R to
A by running UpdateKey(T,RL,MK,ST,PP).

• If this is a decryption key query for an identity ID and a time T , then it gives the corresponding
decryption key DKID,T to A by running DeriveKey(SKID,UKT,R,PP).

• If this is a revocation query for an identity ID and a revocation time T , then it updates the
revocation list RL by running Revoke(ID,T,RL,ST ) with the restriction: The revocation query
for a time T cannot be queried if the update key query for the time T was already requested.
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Note that we assume that the update key queries and the revocation queries are requested in non-
decreasing order of time.

3. Challenge: A submits a challenge identity ID∗, a challenge time T ∗, and two challenge messages
M∗0 ,M

∗
1 with equal length with the following restrictions:

• If a private key query for an identity ID such that ID = ID∗ was requested, then the identity ID∗

should be revoked at some time T such that T ≤ T ∗.

• The decryption key query for ID∗ and T ∗ was not requested.

C flips a random coin µ ∈ {0,1} and gives the challenge ciphertext CT ∗ toA by running Encrypt(ID∗,
T ∗,M∗µ ,PP).

4. Phase 2: A may continue to request a polynomial number of additional queries subject to the same
restrictions as before.

5. Guess: Finally, A outputs a guess µ ′ ∈ {0,1}, and wins the game if µ = µ ′.

The advantage of A is defined as AdvIND-CPA
RIBE,A (λ ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all
the randomness of the experiment. An RIBE scheme is (fully) secure in the selective revocation list model
under chosen plaintext attacks if for all PPT adversary A, the advantage of A in the above experiment is
negligible in the security parameter λ .

We can also define the selective revocation list model that is weaker than the previous security model
of RIBE. In the selective revocation list model, an adversary should submits a challenge identity ID∗, a
challenge time T ∗, and revocation identity set R∗ at the time T ∗ before he receives the public parameters.
This model was introduced by Boldyreva et al. [4] to prove their revocable ABE scheme.

Definition 2.7 (Selective Revocation List Security). The selective revocation list security of RIBE under
chosen plaintext attacks is similar to the above security except that the adversary A submits a challenge
identity ID∗, a challenge time T ∗, and a revoked identity set R∗ on the time T ∗ before receiving the public
parameters. The advantage of A is defined as AdvIND-sRL-CPA

RIBE,A (λ ) =
∣∣Pr[µ = µ ′]− 1

2

∣∣ where the probability
is taken over all the randomness of the experiment. An RIBE scheme is secure in the selective revocation list
model under chosen plaintext attacks if for all PPT adversaryA, the advantage ofA in the above experiment
is negligible in the security parameter λ .

3 Revocable IBE with Selective Security

In this section, we propose an RIBE scheme in prime-order bilinear groups and prove its security in the
selective revocation list model under the standard assumption.

3.1 Bilinear Groups of Prime Order

Let G and GT be two multiplicative cyclic groups of same prime order p and g be a generator of G. The
bilinear map e : G×G→GT has the following properties:

1. Bilinearity: ∀u,v ∈G and ∀a,b ∈ Zp, e(ua,vb) = e(u,v)ab.

2. Non-degeneracy: ∃g such that e(g,g) has order p, that is, e(g,g) is a generator of GT .
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We say that G is a bilinear group if the group operations in G and GT as well as the bilinear map e are all
efficiently computable. Furthermore, we assume that the description of G and GT includes generators of G
and GT respectively.

3.2 Complexity Assumptions

Assumption 3.1 (Decisional Bilinear Diffie-Hellman, DBDH). Let (p,G,GT ,e) be a description of the
bilinear group of prime order p. Let g be generators of subgroups G. The DBDH assumption is that if the
challenge tuple

D = ((p,G,GT ,e),g,ga,gb,gc) and Z,

are given, no PPT algorithmA can distinguish Z = Z0 = e(g,g)abc from Z = Z1 = e(g,g)d with more than a
negligible advantage. The advantage of A is defined as AdvDBDH

A (λ ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) =

0]
∣∣ where the probability is taken over random choices of a,b,c,d ∈ Zp.

3.3 Construction

Let ∆i,I be a Lagrange coefficient which is defined as ∆i,I(x) = ∏ j∈I, j 6=i
x− j
i− j for an index i ∈ Zp and a set of

indexes I in Zp. Our RIBE scheme is described as follows:

RIBE.Setup(1λ ,Nmax): This algorithm takes as input a security parameter 1λ and the maximum number
Nmax of users.

1. It first generates bilinear groups G,GT of prime order p of bit size Θ(λ ). Let g be a random
generator of G. It selects a random exponent α ∈ Zp and random elements u1,h1,u2,h2 ∈G. It
sets a user list UL that contains a tuple (ID,u) as an empty one, and also sets a function list FL
that contains a tuple (GL, fGL(x)) for a group label GL as an empty one.

2. It obtains BT by running SD.Setup(Nmax). Let S be the collection of all subsets Si, j of BT . For
each Si, j ∈ S, it sets GL = Li‖d j and performs the following: If (GL,∗) 6∈ FL, then it selects a
random polynomial fGL(x) of degree 1 such that fGL(0) = α and saves (GL, fGL(x)) to FL.

3. It outputs a master key MK = (α,FL), an empty revocation list RL, a state ST = (BT ,UL), and
public parameters PP =

(
(p,G,GT ,e),g,u1,h1,u2,h2,Ω = e(g,g)α

)
.

RIBE.GenKey(ID,MK,ST,PP): This algorithm takes as input an identity ID ∈ I, the master key MK, the
state ST = (BT ,UL), and public parameters PP.

1. It assigns the identity ID to a leaf node vu in BT that is not yet assigned where u ∈ N is an
index that is assigned to ID. It saves (ID,u) to UL. Next, it obtains PVu = {Si, j} by running
SD.Assign(BT ,u).

2. For each Si, j ∈PVu, it performs the following steps: It sets GL= Li‖d j and retrieves (GL, fGL(x))
from FL. Next, it selects a random exponent r1 ∈ Zp and creates a personalized private key as

PSKID,Si, j =
(

K0 = g fGL(L j)(uID
1 h1)

r1 , K1 = g−r1
)
.

3. Finally, it outputs the updated state ST and a private key SKID =
(
PVu,

{
PSKID,Si, j

}
Si, j∈PVu

)
.

RIBE.UpdateKey(T,RL,MK,ST,PP): This algorithm takes as input a time T , the revocation list RL, the
master key MK, the state ST = (BT ,UL), and public parameters PP.
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1. It first defines the revoked set R of user identities on the time T from RL. That is, if there exists
(ID′,T ′) such that (ID′,T ′) ∈ RL for any T ′ ≤ T , then ID′ ∈ R. It also defines the revoked index
set RI ⊆N of the revoked identity set R by using UL. Next, it obtains CVRI = {Si, j} by running
SD.Cover(BT ,RI).

2. For each Si, j ∈CVR, it performs the following steps: It sets GL= Li‖d j and retrieves (GL, fGL(x))
from FL. Next, it selects a random exponent r2 ∈ Zp and creates a time-constrained update key
as

TUKT,Si, j =
(

U0 = g fGL(L j)(uT
2 h2)

r2 , U1 = g−r2
)
.

3. Finally, it outputs the updated state ST and an update key UKT,R =
(
CVRI,

{
TUKT,Si, j

}
Si, j∈CVRI

)
.

RIBE.DeriveKey(SKID,UKT,R,PP): This algorithm takes as input a private key SKID =(PVu,{PSKID,Si, j}),
an update key UKT,R = (CVRI,{TUKT,Si, j}), and the public parameters PP.

1. If ID 6∈ R, then it obtains (Si, j,Si′, j′) by running SD.Match(CVRI,PVu) such that Si, j ∈ CVR,
Si′, j′ ∈ PVu, and i = i′∧d j = d j′ ∧ j 6= j′. Otherwise, it outputs ⊥.

2. It retrieves TUKT,Si, j = (U0,U1) from UKT,R and PSKID,Si′, j′ = (K0,K1) from SKID. Note that
TUKT,Si, j and PSKID,S′i′, j′

share the same fGL(x) for GL = Li‖d j since i = i′∧ d j = d j′ . Next, it
sets I = {L j,L j′} and calculates two Lagrange coefficients ∆L j,I(0) and ∆L j′ ,I(0) by using the
fact L j 6= L j′ . It chooses random exponents r′1,r

′
2 ∈ Zp and creates decryption key components

as

D0 = (K0)
∆L j′ ,I

(0)
(U0)

∆L j ,I(0) · (uID
1 h1)

r′1(uT
2 h2)

r′2 ,

D1 = (K1)
∆L j′ ,I

(0) ·g−r′1 , D2 = (U1)
∆L j ,I(0) ·g−r′2 .

3. Finally, it outputs a decryption key DKID,T =
(
D0,D1,D2

)
. Note that the components are formed

as D0 = gα(uID
1 h1)

r′′1 (uT
2 h2)

r′′2 ,D1 = g−r′′1 ,D2 = g−r′′2 since fGL(0) =α where r′′1 = r1∆L j′ ,I(0)+r′1
and r′′2 = r2∆L j,I(0)+ r′2.

RIBE.Encrypt(ID,T,M,PP): This algorithm takes as input an identity ID, a time T , a message M, and the
public parameters PP. It first chooses a random exponent s∈Zp and outputs a ciphertext by implicitly
including ID and T as

CTID,T =
(

C = Ω
s ·M, C0 = gs, C1 = (uID

1 h1)
s, C2 = (uT

2 h2)
s
)
.

RIBE.Decrypt(CTID,T ,DKID′,T ′ ,PP): This algorithm takes as input a ciphertext CTID,T = (C,C0,C1,C2), a
decryption key DKID′,T ′ = (D0,D1,D2), and the public parameters PP. If (ID = ID′)∧ (T = T ′), then
it outputs the encrypted message M as M =C ·

(
∏

2
i=0 e(Ci,Di)

)−1
. Otherwise, it outputs ⊥.

RIBE.Revoke(ID,T,RL,ST ): This algorithm takes as input an identity ID, a revocation time T , the revo-
cation list RL, and the state ST = (BT ,UL,FL). If (ID,∗) /∈UL, then it outputs ⊥ since the private
key of ID was not generated. Otherwise, it adds (ID,T ) to RL. It outputs the updated revocation list
RL.
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3.4 Correctness

Let SKID be a private key for an identity ID, and UKT,R be an update key for a time T and a revoked identity
set R. If ID /∈ R, then two subsets (Si, j,Si′, j′) such that Si, j ∈CVRI , Si′, j′ ∈ PVu, and i = i′∧d j = d j′ ∧ j 6= j′

can be obtained from the correctness of the SD scheme and a decryption key for ID and T can be derived
from PSKID,Si′, j′ = (K0,K1) and TUKT,Si, j = (U0,U1) as

D0 = (K0)
∆L j′ ,I

(0)
(U0)

∆L j ,I(0)(uID
1 h1)

r′1(uT
2 h2)

r′2

=
(
g fGL(L j′ )(uID

1 h1)
r1
)∆L j′ ,I

(0)(
g fGL(L j)(uT

2 h2)
r2
)∆L j ,I(0)(uID

1 h1)
r′1(uT

2 h2)
r′2

= g fGL(0)(uID
1 h1)

r1∆L j′ ,I
(0)+r′1(uT

2 h2)
r2∆L j ,I(0)+r′2 = gα(uID

1 h1)
r′′1 (uT

2 h2)
r′′2 ,

D1 = (K1)
∆L j′ ,I

(0)
g−r′1 = g

−r1∆L j′ ,I
(0)−r′1 = g−r′′1 ,

D2 = (U1)
∆L j ,I(0)g−r′2 = g−r2∆L j ,I(0)−r′2 = g−r′′2

since PSKID,Si′, j′ and TUKT,Si, j share the same polynomial fGL(x) and L j 6= L j′ where r′′1 = r1∆L j′ ,I(0)+ r′1
and r′′2 = r2∆L j,I(0)+ r′2. If ID ∈ R, then there are no subsets (Si, j,Si′, j′) such that Si, j ∈CVRI , Si′, j′ ∈ PVu,
and i = i′∧d j = d j′ ∧ j 6= j′ from the correctness of the SD scheme.

Let CTID,T be a ciphertext for an identity ID and a time T , and DKID′,T ′ be a decryption key for an
identity ID′ and a time T ′. If (ID = ID′)∧ (T = T ′), then the decryption algorithm correctly computes a
session key by the following equation as

2

∏
i=0

e1,2(Ci,Di) = e(gs,gα(uID
1 h1)

r′′1 (uT
2 h2)

r′′2 ) · e((uID
1 h1)

s,g−r′′1 ) · e((uT
2 h2)

s,g−r′′2 )

= e(g,g)αs = Ω
s.

3.5 Security Analysis

To prove the security of our RIBE scheme in the selective revocation list model, we use the partitioning
method that was widely used for the security proof of other IBE schemes [5, 6, 40]. However, the direct use
of the partitioning method does not work in RIBE since an adversary can request a private key query for a
challenge identity ID∗ and an update key query for a challenge time T ∗ that were not allowed in the security
model of IBE. That is, the simulator that uses the partitioning method of IBE cannot handle the private key
query for ID∗ and the update key query for T ∗.

To overcome this difficulty of using the partitioning method, we use the fact that a random polynomial
f (x) of degree one such that f (0) = α can be determined by one fixed point (0,α) and another random point
(x̂, ŷ). That is, if the adversary requests a private key for ID∗ or an update key for T ∗, then the simulator
directly uses the values ŷ of the random point (x̂, ŷ) by implicitly defining f (x̂) = ŷ instead of using the
Lagrange interpolation method to calculate f (x′) for some x′ since the simulator cannot obtain an element
for f (0) = α by using the partitioning method. To generate a private key for ID∗, the simulator assigns a
random leaf node vu∗ to the identity ID∗ and creates each personalized private key for a subset Si, j in PVu∗ by
using a random point (x̂, ŷ) that implicitly defines a random polynomial fGL(x) for the group GL. To generate
an update key for T ∗, the simulator obtains CVRI∗ from the given revocation identity set R∗ and creates each
time-constrained update key for a subset Si, j in CVRI∗ by using a random point (x̂, ŷ) that implicitly defines
a random polynomial fGL(x) for the group GL. Note that the simulation is only possible in the selective
revocation list model since R∗ is needed to generate the update key for T ∗.
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However, the above proof idea is not enough to assure us the soundness of the proof. For the assurance,
we should show that a subset Si, j of the private key query for ID∗ and a subset Si, j′ of the update key query
for T ∗ should be the same member ML in a group GL if they belong to the same group GL to use the above
simulation technique that uses a random point (x̂, ŷ). At first, we have that each subset in the private set PVu∗

for ID∗ belongs to different groups since PVu∗ is associated with a path, and each subset in the covering set
CVRI∗ for T ∗ also belongs to different groups since CVRI∗ is a partition. If a subset Si, j of PVu∗ and a subset
Si, j′ of CVRI∗ belong to the same group GL, then j = j′ by the correctness of the SD scheme since ID∗ ∈ R∗.
Thus, two subsets Si, j and Si, j′ should be the same member ML in the group GL.

Theorem 3.2. The above RIBE scheme is secure in the selective revocation list model under chosen plaintext
attacks if the DBDH assumption holds. That is, for any PPT adversaryA, we have that AdvIND-sRL-CPA

RIBE,A (λ )≤
AdvDBDH

B (λ ).

Proof. Suppose there exists an adversary A that attacks the above RIBE scheme with a non-negligible
advantage. A simulator B that solves the DBDH assumption using A is given: a challenge tuple D =
((p,G,GT ,e),g,ga,gb,gc) and Z where Z = Z0 = e(g,g)abc or Z = Z1 ∈R GT . Then B that interacts with A
is described as follows:

Init: A initially submits a challenge identity ID∗, a challenge time T ∗, and a revoked identity set R∗ on the
time T ∗.
Setup: B implicitly sets α = ab and proceeds as follows:

1. It first obtains BT by running SD.Setup(Nmax). It sets UL and FL as an empty one respectively. It
assigns ID∗ to a random index u∗ and saves (ID∗,u∗) to UL. For each ID ∈ R∗ \ {ID∗}, it assigns
ID to a random index u such that (∗,u) /∈UL and saves (ID,u) to UL. From R∗, it also defines the
revoked index set RI∗ by using UL.

2. It obtains PVu∗ and CVRI∗ by running SD.Assign(BT ,u∗) and SD.Cover(BT ,RI∗) respectively. If
ID∗ ∈R∗, then it sets FixedSubset(ID∗,R∗)=PVu∗∪CVRI∗ . Otherwise, it sets FixedSubset(ID∗,R∗)=
CVRI∗ . It sets the function list FL as follows:

(a) For each Si, j ∈FixedSubset(ID∗,R∗), it selects a random value ŷ∈Zp and saves (GL=Li‖d j,(x̂=
L j, ŷ)) to FL.

(b) For each Si, j ∈ S \FixedSubset(ID∗,R∗), it selects random values x̂, ŷ ∈ Zp and saves (GL =
Li‖d j,(x̂, ŷ)) to FL if (GL = Li‖d j,∗) /∈ FL.

Note that fGL(x) is implicitly defined by two points (0,α) and (x̂, ŷ) by using the Lagrange interpola-
tion method.

3. It sets RL as an empty one and sets ST = (BT ,UL). It selects random exponents h′0,h
′
1 ∈ Zp and

publishes public parameters PP as

g, u1 = gagu′1 ,h1 = (ga)−ID∗gh′1 , u2 = gagu′2 ,h2 = (ga)−T ∗gh′2 , Ω = e(ga,gb).

Phase 1: A adaptively requests a polynomial number of private key, update key, and decryption key queries.
If this is a private key query for an identity ID, then B proceeds as follows:

• Case ID 6= ID∗: It performs the following steps:
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1. It first selects a random exponent r′1 ∈ Zp and builds temporal private key components for the
point (0,α) as A0 = (gb)−(u

′
1ID+h′1)/(ID−ID∗)(uID

1 h1)
r′1 , A1 = (gb)1/(ID−ID∗)g−r′1 .

2. If (ID,∗) ∈ UL, then it loads (ID,u) from UL. Otherwise, it selects a random index u such
that (u 6= u∗)∧ ((∗,u) /∈UL) and saves (ID,u) to UL. Next, it obtains PVu = {Si, j} by running
SD.Assign(BT ,u).

3. For each Si, j ∈ PVu, it retrieves (GL = Li‖d j,(x̂, ŷ)) from FL and performs the following:

– Case Si, j ∈ FixedSubset(ID∗,R∗): Recall that x̂ = L j from the setup phase. It selects
a random exponent r1 ∈ Zp and builds a personalized private key by implicitly setting
fGL(L j) = ŷ as

PSKID,Si, j =
(

K0 = gŷ(uID
1 h1)

r1 , K1 = g−r1
)
.

– Case Si, j /∈ FixedSubset(ID∗,R∗): Recall that x̂ 6= L j since x̂ is a random value from the
setup phase. It sets I = {0, x̂} and calculates two Lagrange coefficients ∆0,I(L j) and ∆x̂,I(L j).
Next, it selects a random exponents r′′1 ∈ Zp and builds a personalized private key as

PSKID,Si, j =
(

K0 = (A0)
∆0,I(L j)(gŷ)∆x̂,I(L j) · (uID

1 h1)
r′′1 , K1 = (A1)

∆0,I(L j) ·g−r′′1
)
.

4. Finally, it creates a private key SKID =
(
PVu,

{
PSKID,Si, j

}
Si, j∈PVu

)
.

• Case ID = ID∗: In this case, we have ID∗ ∈ R∗. It performs the following steps:

1. It loads (ID∗,u∗) from UL where u∗ is the pre-assigned index for ID∗. Next, it obtains PVu∗ =
{Si, j} by running SD.Assign(BT ,u∗).

2. For each Si, j ∈ PVu∗ , it retrieves (GL = Li‖d j,(x̂, ŷ)) from FL and performs the following steps:
Recall that x̂ = L j from the setup phase. It selects a random exponent r1 ∈ Zp and builds a
personalized private key by implicitly setting fGL(L j) = ŷ as

PSKID∗,Si, j =
(

K0 = gŷ(uID
1 h1)

r1 , K1 = g−r1
)
.

3. Finally, it creates a private key SKID∗ =
(
PVu∗ ,

{
PSKID∗,Si, j

}
Si, j∈PVu∗

)
.

If this is an update key query for a time T , then B proceeds as follows:

• Case T 6= T ∗: It performs the following steps.

1. It first selects a random exponent r′2 ∈ Zp and builds temporal update key components for the
point (0,α) as B0 = (gb)−(u

′
2T+h′2)/(T−T ∗)(uT

2 h2)
r′2 , B1 = (gb)1/(T−T ∗)g−r′2 .

2. It defines the revoked identity set R on the time T and the revoked index set RI of R. Next, it
obtains CVRI = {Si, j} by running SD.Cover(BT ,RI).

3. For each Si, j ∈CVRI , it retrieves (GL = Li‖d j,(x̂, ŷ)) from FL and performs the following:

– Case Si, j ∈ FixedSubset(ID∗,R∗): It selects a random exponent r2 ∈ Zp and creates a time-
constrained update key by implicitly setting fGL(L j) = ŷ as

TUKT,Si, j =
(

U0 = gy j(uT
2 h2)

r2 , U1 = g−r2
)
.
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– Case Si, j ∈ FixedSubset(ID∗,R∗): It sets I = {0, x̂} and calculates two Lagrange coef-
ficients ∆0,I(L j) and ∆ẑ,I(L j). Next, it selects a random exponent r′′2 ∈ Zp and builds a
time-constrained update key as

TUKT,Si, j =
(

U0 = (B0)
∆0,I(L j)(gŷ)∆x̂,I(L j)(uT

2 h2)
r′′2 , U1 = (B1)

∆0,I(L j)g−r′′2
)
.

4. Finally, it creates an update key UKT,R =
(
CVRI,

{
TUKT,Si, j

}
Si, j∈CVRI

)
.

• Case T = T ∗: In this case, we have R = R∗. It performs the following steps:

1. It first defines the revoked identity set R on the time T and the revoked index set RI of R. Next,
it obtains CVRI∗ = {Si, j} by running SD.Cover(BT ,RI∗).

2. For each Si, j ∈CVRI∗ , it performs the following steps: It sets GL= Li‖d j and retrieves (GL,(x̂, ŷ))
from FL. Next, it selects a random exponent r2 ∈ Zp and builds a time-constrained update key
by implicitly setting fGL(L j) = ŷ as

TUKT ∗,Si, j =
(

U0 = gŷ(uT ∗
2 h2)

r2 , U1 = g−r2
)
.

3. Finally, it creates an update key UKT ∗,R∗ =
(
CVRI∗ ,

{
TUKT ∗,Si, j)

}
Si, j∈CVRI∗

)
.

If this is a decryption key query for an identity ID and a time T , then B proceeds as follows:

• Case ID 6= ID∗: If (ID,∗) /∈ UL, then it selects a random index u such that (∗,u) /∈ UL and saves
(ID,u) to UL. It selects random exponents r′1,r2 ∈ Zp and creates a decryption key DKID,T by implic-
itly setting r1 =−b/(ID− ID∗)+ r′1 as

D0 = (gb)−(u
′
1ID+h′1)/(ID−ID∗)(uID

1 h1)
r′1(uT

2 h2)
r2 , D1 = (gb)1/(ID−ID∗)g−r′1 , D2 = g−r2 .

• Case ID = ID∗: In this case, we have T 6= T ∗ from the restriction of Definition 2.7. It selects random
exponents r1,r′2 ∈ Zp and creates a decryption key DKID,T implicitly setting r2 = −b/(T −T ∗)+ r′2
as

D0 = (uID
1 h1)

r1(gb)−(u
′
2T+h′2)/(T−T ∗)(uT

2 h2)
r′2 , D1 = g−r1 , D2 = (gb)1/(T−T ∗)g−r′2 .

If this is a revocation query for an identity ID and a time T , then B updates RL by running RIBE.Revoke(ID,
T,RL,ST ).

Challenge: A submits two challenge messages M∗0 ,M
∗
1 . B chooses a random bit µ ∈ {0,1} and creates the

challenge ciphertext CT ∗ by implicitly setting s = c as

C = Z ·M∗µ , C0 = gc, C1 = (gc)u′1ID∗+h′1 , C2 = (gc)u′2T ∗+h′2 .

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B outputs 0 if µ = µ ′ or 1 otherwise.

To finish the proof, we first show that the simulation is correct. The public parameters is correct since
random exponents u′1,h

′
1,u
′
2,h
′
2 ∈ Zp are chosen. We show that the private keys are correct. In case of
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ID 6= ID∗, we have that a personalized private key for Si, j such that Si, j /∈ FixedSubset(ID∗,R∗) is correctly
distributed from the setting r1 = (−b/(ID− ID∗)+ r′1)∆0,I(L j)+ r′′1 as

K0 = g fGL(L j)(uID
1 h1)

r1 = gα∆0,I(L j)+ŷ∆x̂,I(L j)(uID
1 h1)

r̃1∆0,I(L j)+r′′1

=
(
gα(uID

1 h1)
r̃1
)∆0,I(L j)gŷ∆x̂,I(L j)(uID

1 h1)
r′′1

=
(
gab((ga)ID−ID∗gu′1ID+h′1)−b/(ID−ID∗)+r′1

)∆0,I(L j)gŷ∆x̂,I(x j)(uID
1 h1)

r′′1

=
(
(gb)−(u

′
1ID+h′1)/(ID−ID∗)(uID

1 h1)
r′1
)∆0,I(L j)gŷ∆x̂,I(L j)(uID

1 h1)
r′′1 ,

K1 = g−r1 = g(b/(ID−ID∗)−r′1)∆0,I(L j)−r′′1 =
(
(gb)1/(ID−ID∗)g−r′1

)∆0,I(L j)g−r′′1 .

In case of ID = ID∗, we have that a personalized private key for Si, j is correctly distributed from the setting
L j = x̂ and fGL(x̂) = ŷ as

K0 = g fGL(L j)(uID
1 h1)

r1 = gŷ(uID
1 h1)

r1 , K1 = g−r1 .

Next, we show that the update keys are correct. In case of T 6= T ∗, we have that a time-constrained update
key for Si, j such that Si, j /∈ FixedSubset(ID∗,R∗) is correctly distributed from the setting r2 = (−b/(T −
T ∗)+ r′2)∆0,I(L j)+ r′′2 as

U0 = g fGL(L j)(uT
2 h2)

r2 = gα∆0,I(L j)+ŷ∆x̂,I(L j)(uT
2 h2)

r̃2∆0,I(L j)+r′′2

=
(
gα(uT

2 h2)
r̃2
)∆0,I(L j)gŷ∆x̂,I(L j)(uT

2 h2)
r′′2

=
(
gab((ga)T−T ∗gu′2T+h′2)−b/(T−T ∗)+r′2

)∆0,I(L j)gŷ∆x̂,I(L j)(uT
2 h2)

r′′2

=
(
(gb)−(u

′
2T+h′2)/(T−T ∗)(uT

2 h2)
r′2
)∆0,I(L j)gŷ∆x̂,I(L j)(uT

2 h2)
r′′2 ,

U1 = g−r2 = g(b/(T−T ∗)−r′2)∆0,I(L j)−r′′2 =
(
(gb)1/(T−T ∗)g−r′2

)∆0,I(L j)g−r′′2 .

In case of T = T ∗, we have that a time-constrained update key for Si, j is correctly distributed from the setting
L j = x̂ and fGL(x̂) = ŷ as

U0 = g fGL(L j)(uT
2 h2)

r2 = gŷ(uT
2 h2)

r2 , U1 = g−r2 .

We show that the decryption keys are correct. In case of ID 6= ID∗, the decryption key is correctly
distributed by setting r1 =−b/(ID− ID∗)+ r′1 as

D0 = gα(uID
1 h1)

r1(uT
2 h2)

r2 = gab((ga)ID−ID∗gu′1ID+h′1)−b/(ID−ID∗)+r′1(uT
2 h2)

r2

= (gb)−(u
′
1ID+h′1)/(ID−ID∗)(uID

1 h1)
r′1(uT

2 h2)
r2 ,

D1 = g−r1 = gb/(ID−ID∗)−r′1 = (gb)1/(ID−ID∗)g−r′1 .

In case of ID = ID∗, the decryption key is correctly distributed by setting r2 =−b/(T −T ∗)+ r′2 as

D0 = gα(uID
1 h1)

r1(uT
2 h2)

r2 = gab(uID
1 h1)

r1((ga)T−T ∗gu′2T+h′2)−b/(T−T ∗)+r′2

= (uID
1 h1)

r1(gb)−(u
′
2T+h′2)/(T−T ∗)(uT

2 h2)
r′2 ,

D2 = g−r2 = gb/(T−T ∗)−r′2 = (gb)1/(T−T ∗)g−r′2 .
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Finally, we show that the challenge ciphertext is correct. If Z = Z0 = e(g,g)abc is given, then the chal-
lenge ciphertext is correctly distributed as

C = Ω
s = e(g,g)αs = e(g,g)abc, C0 = gs = gc,

C1 = (uID∗
1 h1)

s = ((ga)ID∗−ID∗gu′1ID∗+h′1)s = (gc)u′1ID∗+h′1 ,

C2 = (uT ∗
2 h2)

s = ((ga)T ∗−T ∗gu′2T ∗+h′2)s = (gc)u′2T ∗+h′2 .

Otherwise, the component C of the challenge ciphertext is independent of δ in the A’s view since Z1 is a
random element in GT .

Let η be a random bit for Zη . From the above simulation, we have Pr[µ = µ ′|η = 0] = 1
2 +AdvIND-sRL-CPA

RIBE,A (λ )

since the distribution of the simulation is correct, and we also have Pr[µ = µ ′|η = 1] = 1
2 since µ is com-

pletely hidden to A. Therefore we can obtain the following equation

AdvDBDH
B (λ ) =

∣∣Pr[B(D,Z0) = 0]−Pr[B(D,Z1) = 0]
∣∣∣∣Pr[µ = µ

′|η = 0]
∣∣− ∣∣Pr[µ = µ

′|η = 1]
∣∣

=
1
2
+AdvIND-sRL-CPA

RIBE,A (λ )− 1
2
= AdvIND-sRL-CPA

RIBE,A (λ ).

This completes our proof.

3.6 Discussions

Efficiency. In our RIBE scheme that employs the SD scheme, the public parameters, a private key, an
update key, and a ciphertext consist of O(1),O(log2 Nmax),O(r), and O(1) number of group elements re-
spectively where Nmax is the maximum number of users and r is the number of revoked users in an update
key. Compared with the previous RIBE scheme that employs the CS scheme that has O(logNmax) number
of group elements in a private key and O(r log(Nmax/r)) number of group elements in an update key, our
RIBE scheme can reduce the number of group elements in an update key by increasing the number of group
elements in a private key. If we use the LSD scheme of Halevy and Shamir [15] instead of the SD scheme,
then we can reduce the number of group element in a private key to O(log1.5 Nmax).

Removing Stored Polynomials. The setup algorithm of our RIBE scheme should maintain the function list
FL that stores a random polynomial f (x) of degree one for each group in a tree. If Nmax is the maximum
number of users in the system, then the maximum number of groups is Nmax logNmax since a group is defined
by a node vi that is not a leaf node in the tree and a depth d j in the tree. A pseudo-random function PRF
can be used to remove FL. That is, the master key MK consists of a random exponent α and a seed z for
PRF, and a random polynomial fGL(x) for a group can be defined as fGL(x) = aGLx+α where GL is a
group label and aGL = PRFz(GL). The security of this modified scheme also holds from the security of the
pseudo-random function.

Supporting an Exponential Number of Users. Our RIBE scheme takes the maximum number of users
Nmax as an input and assigns each user to a leaf node of a binary tree with depth logNmax. To support an
exponential number of users, a binary tree with depth 2λ can be used where λ is a security parameter and
the bit size of an identity is 2λ . Additionally, a random function fGL(x) can be deterministically generated
by using a pseudo-random function PRF instead of keeping a function list FL. Furthermore, if a user is
assigned to a leaf node of a tree such that the label L of the leaf node is equal to the identity string ID, then
the user list UL is not needed.

Layered Subset Difference. Compared with the previous RIBE scheme that employs the CS scheme,
our RIBE scheme that uses the SD scheme reduce the number of group elements in update keys from
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O(r log(Nmax/r)) to O(r), but it increases the number of group elements in private keys from O(logNmax)
to O(log2 Nmax). To reduce the size of private keys in RIBE, we can use the layered subset difference (LSD)
scheme of Halevy and Shamir [15]. In the LSD scheme, the number of subsets in a private set PVu is
O(log1.5 Nmax) and the number of subsets in a covering set CVR is still O(r). Our RIBE scheme also can
employ the LSD scheme since the LSD scheme is a special case of the SD scheme. The security proof of
this RIBE scheme that uses the LSD scheme also holds.

Comparison with the RIBE scheme of Boldyreva et al. Compared with the previous RIBE schemes, our
RIBE scheme and the RIBE scheme of Boldyreva et al. [4] has the similarity of using a random polynomial
of degree one. However, the purpose of using a random polynomial is quite different between two schemes
since we use a random polynomial of degree one for single member revocation to integrate with the SD
scheme whereas they use a degree one polynomial for the FIBE scheme of Sahai and Waters [35].

Chosen-Ciphertext Security. The proposed RIBE scheme only provides the indistinguishability under
chosen-plaintext attacks (IND-CPA). To provide the stronger indistinguishability under chosen-ciphertext
attacks (IND-CCA) where an adversary can request decryption queries, we can use the general transforma-
tion of Canetti, Halevi, and Katz [9] since our RIBE scheme can be easily modified to support the HIBE
scheme with 3-level of Boneh and Boyen [5]. That is, we can use the additional level of HIBE to provide
the integrity of ciphertexts by using an one-time signature scheme. The proof of IND-CCA security easily
follows since the decryption queries can be easily simulated by the private key delegation capability of the
HIBE scheme.

Achieving Full Security. The security of our RIBE scheme is only proven in the selective revocation list
model that is weaker than the well-known selective model since the revocation identity set R∗ should be
additionally given. The previous RIBE schemes that employ the CS scheme were already proven in the full
model by using a fully secure IBE scheme since the assigned key of a subset in the CS scheme is independent
with each other [25, 37]. However, it is not easy to prove the full security of our RIBE scheme by using
a fully secure IBE scheme and a partitioning method since the assigned key of a subset in the SD scheme
is dependent of each member in a group. In Section 4, we show that our RIBE scheme in composite-
order bilinear groups can be proven in the full model if we use the dual system encryption technique of
Waters [24, 41] instead of using the partitioning method.

4 Revocable IBE with Full Security

In this section, we propose an RIBE scheme in composite-order bilinear groups and prove its full security
under static assumptions.

4.1 Bilinear Groups of Composite Order

Let N = p1 p2 p3 where p1, p2, and p3 are distinct prime numbers. Let G and GT be two multiplicative cyclic
groups of same composite order N and g be a generator of G. The bilinear map e : G×G→ GT has the
following properties:

1. Bilinearity: ∀u,v ∈G and ∀a,b ∈ ZN , e(ua,vb) = e(u,v)ab.

2. Non-degeneracy: ∃g such that e(g,g) has order N, that is, e(g,g) is a generator of GT .

We say that G is a bilinear group if the group operations in G and GT as well as the bilinear map e are
all efficiently computable. Furthermore, we assume that the description of G and GT includes generators
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of G and GT respectively. We use the notation Gpi to denote the subgroups of order pi of G respectively.
Similarly, we use the notation GT,pi to denote the subgroups of order pi of GT respectively.

4.2 Complexity Assumptions

We present tree static assumptions that were introduced by Lewko and Waters [24].

Assumption 4.1 (Subgroup Decision). Let (N,G,GT ,e) be a description of the bilinear group of composite
order N = p1 p2 p3. Let gp1 ,gp2 ,gp3 be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively. The Assumption
is that if the challenge tuple

D = ((N,G,GT ,e),gp1 ,gp3) and Z,

are given, no PPT algorithmA can distinguish Z = Z0 = X1 from Z = Z1 = X1R1 with more than a negligible
advantage. The advantage of A is defined as AdvSD

A (λ ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) = 0]

∣∣ where the
probability is taken over random choices of X1 ∈Gp1 and R1 ∈Gp2 .

Assumption 4.2 (General Subgroup Decision). Let (N,G,GT ,e) be a description of the bilinear group of
composite order N = p1 p2 p3. Let gp1 ,gp2 ,gp3 be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively. The
Assumption is that if the challenge tuple

D = ((N,G,GT ,e),gp1 ,gp3 ,X1R1,R2Y1) and Z,

are given, no PPT algorithm A can distinguish Z = Z0 = X2Y2 from Z = Z1 = X2R3Y2 with more than a
negligible advantage. The advantage of B is defined as AdvGSD

A (λ ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) = 0]

∣∣
where the probability is taken over random choices of X1,X2 ∈Gp1 , R1,R2,R3 ∈Gp2 , and Y1,Y2 ∈Gp3 .

Assumption 4.3 (Composite Diffie-Hellman). Let (N,G,GT ,e) be a description of the bilinear group of
composite order N = p1 p2 p3. Let gp1 ,gp2 ,gp3 be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively. The
Assumption is that if the challenge tuple

D = ((N,G,GT ,e),gp1 ,gp2 ,gp3 ,g
a
p1

R1,gb
p1

R2) and Z,

are given, no PPT algorithm A can distinguish Z = Z0 = e(gp1 ,gp1)
ab from Z = Z1 = e(gp1 ,gp1)

c with
more than a negligible advantage. The advantage of A is defined as AdvComDH

A (λ ) =
∣∣Pr[A(D,Z0) = 0]−

Pr[A(D,Z1) = 0]
∣∣ where the probability is taken over random choices of a,b,c ∈ ZN , and R1,R2 ∈Gp2 .

4.3 Construction

Let ∆i,I be a Lagrange coefficient which is defined as ∆i,I(x) = ∏ j∈I, j 6=i
x− j
i− j for an index i ∈ ZN and a set of

indexes I in ZN . Our RIBE scheme is described as follows:

RIBE.Setup(1λ ,Nmax): This algorithm takes as input a security parameter 1λ and the maximum number
Nmax of users.

1. It first generates a bilinear group G of composite order N = p1 p2 p3 where p1, p2, and p3 are
random primes. Let g1 be a random generator of Gp1 . It selects a random exponent α ∈ ZN and
random elements u1,h1,u2,h2 ∈Gp1 , Y ∈Gp3 . It sets a user list UL that contains a tuple (ID,u)
as an empty one, and also sets a function list FL that contains a tuple (GL, fGL(x)) for a group
label GL as an empty one.
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2. It obtains BT by running SD.Setup(Nmax). Let S be the collection of all subsets Si, j of BT .
For each Si, j ∈ S, it sets GL = Li‖d j and performs the following steps: If (GL,∗) /∈ FL, then it
selects a random polynomial fGL(x) of degree 1 such that fGL(0) = α and saves (GL, fGL(x)) to
FL.

3. It outputs a master key MK = (α,FL), an empty revocation list RL, a state ST = (BT ,UL), and
public parameters PP =

(
(N,G,GT ,e),g = g1,Y,u1,h1,u2,h2,Ω = e(g,g)α

)
.

RIBE.GenKey(ID,MK,ST,PP): This algorithm takes as input an identity ID ∈ I, the master key MK, the
state ST = (BT ,UL), and public parameters PP.

1. It first randomly assigns the identity ID to a leaf node vu in BT that is not yet assigned where
u∈N is an index assigned to ID. It saves (ID,u) to UL. Next, it obtains PVu = {Si, j} by running
SD.Assign(BT ,u).

2. For each Si, j ∈PVu, it performs the following steps: It sets GL= Li‖d j and retrieves (GL, fGL(x))
from FL. Next, it selects random r1 ∈ ZN , Y0,Y1 ∈Gp3 and creates a personalized private key as

PSKID,Si, j =
(

K0 = g fGL(L j)(uID
1 h1)

r1Y0, K1 = g−r1Y1

)
.

3. Finally, it outputs the state ST and a private key SKID =
(
PVu,

{
PSKID,Si, j

}
Si, j∈PVu

)
.

RIBE.UpdateKey(T,RL,MK,ST,PP): This algorithm takes as input a time T , the revocation list RL, the
master key MK, the state ST = (BT ,UL,FL), and public parameters PP.

1. It first defines the revoked set R of user identities on the time T from RL. That is, if there exists
(ID′,T ′) such that (ID′,T ′) ∈ RL for any T ′ ≤ T , then ID′ ∈ R. It also defines the revoked index
set RI ⊆N of the revoked identity set R by using UL. Next, it obtains CVRI = {Si, j} by running
SD.Cover(BT ,RI).

2. For each Si, j ∈CVR, it performs the following steps: It sets GL= Li‖d j and retrieves (GL, fGL(x))
from FL. Next, it selects random r2 ∈ ZN , Y0,Y1 ∈ Gp3 and creates a time-constrained update
key as

TUKT,Si, j =
(

U0 = g fGL(L j)(uT
2 h2)

r2Y0, U1 = g−r2Y1

)
.

3. Finally, it outputs the state ST and an update key UKT,R =
(
CVRI,

{
TUKT,Si, j

}
Si, j∈CVRI

)
.

RIBE.DeriveKey(SKID,UKT,R,PP): This algorithm takes as input a private key SKID = (PVu,{PSKID,Si, j})
for an identity ID, an update key UKT,R = (CVRI,{TUKT,Si, j}) for a time T and a revoked set R of
identities, and the public parameters PP.

1. If ID 6∈ R, then it obtains (Si, j,Si′, j′) by running SD.Match(CVRI,PVu) such that Si, j ∈ CVR,
Si′, j′ ∈ PVu, and i = i′∧d j = d j′ ∧ j 6= j′. Otherwise, it outputs ⊥.

2. It retrieves TUKT,Si, j = (U0,U1) from UKT,R, and PSKID,Si′, j′ = (K0,K1) from SKID. Next, it sets
I = {L j,L j′} and calculates two Lagrange coefficients ∆L j,I(0) and ∆L j′ ,I(0) by using the fact
L j 6= L j′ . It chooses random r′1,r

′
2 ∈ ZN , Y ′0,Y

′
1,Y
′
2 ∈Gp3 and creates decryption key components

as

D0 = (K0)
∆L j′ ,I

(0)
(U0)

∆L j ,I(0) · (uID
1 h1)

r′1(uT
2 h2)

r′2Y ′0,

D1 = (K1)
∆L j′ ,I

(0) ·g−r′1Y ′1, D2 = (U1)
∆L j ,I(0) ·g−r′2Y ′2.
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3. Finally, it outputs a decryption key DKID,T =
(
D0,D1,D2

)
.

RIBE.Encrypt(ID,T,M,PP): This algorithm takes as input an identity ID, a time T , a message M, and the
public parameters PP. It first chooses a random exponent s∈ZN and outputs a ciphertext by implicitly
including ID and T as

CTID,T =
(

C = Ω
s ·M, C0 = gs, C1 = (uID

1 h1)
s, C2 = (uT

2 h2)
s
)
.

RIBE.Decrypt(CTID,T ,DKID′,T ′ ,PP): This algorithm takes as input a ciphertext CTID,T = (C,C0,C1,C2), a
decryption key DKID′,T ′ = (D0,D1,D2), and the public parameters PP. If (ID = ID′)∧ (T = T ′), then
it outputs the encrypted message M as M =C ·

(
∏

2
i=0 e(Ci,Di)

)−1
. Otherwise, it outputs ⊥.

RIBE.Revoke(ID,T,RL,ST ): This algorithm is the same as that of Section 3.3.

4.4 Security Analysis

To prove the security of our RIBE scheme in composite-order bilinear groups, we use the dual system
encryption technique of Waters [24, 41]. The dual system encryption technique was successfully used to
prove the security of HIBE, ABE, and PE schemes [22,24,32,41]. However, the the dual system encryption
does not directly applicable to the RIBE scheme since the adversary of RIBE can request a private key
query for a challenge identity ID∗ and an update key query for a challenge time T ∗ that were not allowed
in IBE, HIBE, and ABE. Note that the dual system encryption technique essentially uses those restrictions
of adversary in IBE, HIBE, and ABE when it changes normal private keys to semi-functional private keys
to solve the paradox of dual system encryption. To handle the private key query for ID∗ and the update key
query for T ∗ in RIBE, we need different techniques for dual system encryption.

We organize personalized private keys in a private key and time-constrained update keys in an update
key in the order of groups, and change those keys in the same group from normal to semi-functional through
hybrid games. Note that this strategy that change keys in the same group from normal to semi-functional
was used in the security proof of RS-ABE [18, 34]. In contrast to the RS-ABE scheme that uses the CS
scheme, our RIBE scheme uses the SD scheme that has a complex key assignment part and this makes it
difficult for us to prove the security. To overcome this difficulty, we carefully redesign semi-functional types
and hybrid games by using the fact that there are only one private key query for ID∗ and one update key
query for T ∗ in RIBE that match to the challenge ciphertext.

Theorem 4.4. The above RIBE scheme is fully secure under chosen plaintext attacks if the SD, GSD, and
DBDH assumptions hold. That is, for any PPT adversary A, we have that AdvIND-CPA

RIBE,A (λ ) ≤ AdvSD
B (λ )+

O(q2 log2 Nmax +q2rmax)AdvGSD
B (λ )+AdvDBDH

B (λ ) where q is the maximum number of private key, update
key, and decryption key queries of A.

Proof. We first define the semi-functional type of private keys, update keys, decryption keys, and cipher-
texts. For the semi-functional type, we let g2 denote a fixed generator of the subgroup Gp2 .

RIBE.GenKeySF. This algorithm first creates a normal private key SK′ID = (PVu,{PSK′ID,Si, j
}Si, j∈PVu) by

using MK where PVu = {Si, j} and PSK′ID,Si, j
= (K′0,K

′
1). For each Si, j ∈ PVu, it chooses a random

exponent δi, j ∈ ZN once for Si, j and builds a semi-functional personalized private key PSKID,Si, j =(
K0 = K′0gδi, j

2 ,K1 = K′1
)
. It outputs a semi-functional private key SKID = (PVu,{PSKID,Si, j}Si, j∈PVu).

21



RIBE.UpdateKeySF. This algorithm first creates a normal update key UK′T,R = (CVRI,{TUK′T,Si, j
}Si, j∈CVRI )

by using MK. For each Si, j ∈CVRI , it chooses a random exponent δi, j ∈ ZN once for Si, j and builds a
semi-functional time-constrained private key TUKT,Si, j =

(
U0 =U ′0gδi, j

2 ,U1 =U ′1
)
. It outputs a semi-

functional update key UKT,R = (CVRI,{PUKT,Si, j}Si, j∈CVRI ).

RIBE.DeriveKeySF. This algorithm first creates a normal decryption key DK′ID,T = (D′0,D
′
1,D

′
2) by using

MK. It chooses a random exponent a ∈ ZN and outputs a semi-functional decryption key DKID,T =(
D0 = D′0ga

2,D1 = D′1,D2 = D′2
)
.

RIBE.EncryptSF. This algorithm first creates a normal ciphertext CT ′ID,T = (C′,C′0,C
′
1,C
′
2). It chooses

random exponents c,d1,d2 ∈ ZN and outputs semi-functional ciphertext CTID,T =
(
C0 = C′0gc

2,C1 =

C′1gcd1
2 ,C2 =C′2gcd2

2

)
.

Note that if a semi-functional decryption key is used to decrypt a semi-functional ciphertext, then the de-
cryption fails since an additional random element e(g2,g2)

ac is left.
To prove the security, we use a sequence of hybrid games. For the hybrid games that change personalized

private keys (or time-constrained update keys) that are related with a subset Si, j from normal ones to semi-
functional ones, we need to state additional information of a subset Si, j in BT . Note that a personalized
private key for Si, j and a time-constrained update key for Si′, j′ share the same polynomial f (x) if i = i′∧d j =
d j′ since they belong to the same group GL = Li‖d j where Li = L(vi) and d j is the depth of v j. Thus we
associate a personalized private key (or a time-constrained update key) with a tuple of indexes (ig, im, ic) to
state additional information about the group GL where ig is a group index, im is a member index, and ic is a
counter index.

Suppose that a personalized private key (or a time-constrained update key) is related with a subset
Si, j, Then this key has a group label GL = Li‖d j and a member label ML = L j. The group index ig for
personalized private keys (or time-constrained update keys) is assigned as follows: If the group GL appears
first time in queries, then we set ig as the number of distinct group GL′ in previous queries plus one. If the
group GL already appeared before in queries, then we set ig as the value i′g of previous personalized private
key (or time-constrained update key) with the same group GL. The member index im for the group ig is
assigned as follows: If the member ML for this group GL appears first time in queries, then we set im as
the number of distinct members for this group GL in previous queries plus one. If the member ML for this
group already appeared before in queries, then we set im as the value i′m of previous one. The counter index
ic is assigned as follows: If the group and member (GL,ML) appears first time in queries, then we set ic as
one. If the group and member (GL,ML) appeared before in queries, then we set ic as the number of queries
with the group and member (GL,ML) that appeared before plus one.

The security proof consists of the sequence of hybrid games: The first game will be the original security
game and the last one will be a game such that the adversary has no advantage. We define the games as
follows:

Game G0. This game is the original security game. In this game, all personalized private keys, time-
constrained update keys, decryption keys, and the challenge ciphertext are normal.

Game G1. In the next game, all personalized private keys, time-constrained update keys, and decryption
keys are normal, but the challenge ciphertext is semi-functional.

Game G2. Next, we define a new game G2. In this game, all personalized private keys, time-constrained
update keys, and the challenge ciphertext are semi-functional, but decryption keys are normal. For the
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security proof, we additionally define a sequence of games G1,1, . . . ,G1,h, . . . ,G1,qg where G1 = G1,0
and qg is the maximum number of groups that are used in private keys and update keys. In the game
G1,h for 1 ≤ h ≤ qg, the challenge ciphertext is semi-functional, personalized private keys and time-
constrained update keys with a group index ig such that ig ≤ h are semi-functional, and the remaining
personalized private keys and time-constrained update keys with an index ig such that h < ig are
normal. It is obvious that G1,qg = G2.

Game G3. In this game G3, all personalized private keys, time-constrained update keys, decryption keys,
and the the challenge ciphertext are semi-functional.

Game G4. In the final game G4, all personalized private keys, time-constrained update keys, decryption
keys, and the challenge ciphertext are semi-functional, but the challenge ciphertext component C is
random.

Let AdvG j
A be the advantage of A in the game G j. We easily obtain that AdvIND-CPA

RIBE,A (λ ) = AdvG0
A ,

AdvG1
A = AdvG1,0,2

A , AdvG2
A = AdvG1,q,2

A , and AdvG4
A = 0. Through the following Lemmas 4.5, 4.6, 4.7, and

4.10, we can obtain the following equation

AdvIND-CPA
RIBE,A (λ )

≤
∣∣AdvG0

A −AdvG1
A
∣∣+ qg

∑
h=1

∣∣AdvG1,h−1
A −AdvG1,h

A
∣∣+ ∣∣AdvG2

A −AdvG3
A
∣∣+ ∣∣AdvG3

A −AdvG4
A
∣∣

≤ AdvSD
B (λ )+5(qsk +quk)

qg

∑
h=1

qm

∑
hm=1

qc

∑
hc=1

AdvGSD
B (λ )+2qdkAdvGSD

B (λ )+AdvDBDH
B (λ )

≤ AdvSD
B (λ )+

(5
2

q2 log2 Nmax +10q2rmax +2q
)
AdvGSD

B (λ )+AdvDBDH
B (λ ).

where q = qsk +quk +qdk. This completes our proof.

Lemma 4.5. If the SD assumption holds, then no polynomial-time adversary can distinguish between G0
and G1 with a non-negligible advantage.

Proof. Suppose there exists an adversaryA that distinguishes between G0 and G1 with a non-negligible ad-
vantage. A simulatorB that solves the SD assumption usingA is given: a challenge tuple D=((N,G,GT ,e),
gp1 ,gp3) and Z where Z = Z0 = X1 ∈ Gp1 or Z = Z1 = X1R1 ∈ Gp1 p2 . Then B that interacts with A is de-
scribed as follows:

Setup: B first chooses random exponents u′1,h
′
1,u
′
2,h
′
2,α ∈ ZN . It sets BT by running SD.Setup and FL

by selecting fGL(x) for each GL in BT . It sets MK = (α,FL), RL = /0, ST = (BT ,UL = /0), and publishes
PP =

(
(N,G,GT ,e),g = gp1 ,Y = gp3 ,u1 = gu′1

p1 ,h1 = gh′1
p1 ,u2 = gu′2

p1 ,h2 = gh′2
p1 ,Ω = e(g,g)α

)
.

Phase 1: To response queries, B creates normal keys by running the normal algorithms since it knows MK.
Note that it cannot create semi-functional keys since it does not know gp2 .
Challenge: A submits a challenge identity ID∗, a challenge time T ∗, and challenge messages M∗0 ,M

∗
1 . B

flips a random coin µ ∈ {0,1} and creates a challenge ciphertext CT ∗ by implicitly setting gs to be the Gp1

part of Z as CT ∗ =
(
C = e(Z,g)α ·M∗µ , C0 = Z, C1 = (Z)u′1ID∗+h′1 , C2 = (Z)u′2T ∗+h′2

)
.

Phase 2: Same as Phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.
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If Z = Z0 = X1, then the simulation is the same as G0 since the challenge ciphertext is correctly dis-
tributed. If Z = Z1 = X1R1, then the simulation is the same as G1 since the challenge ciphertext is generated
as semi-functional by implicitly setting d1 ≡ u′1ID∗ + h′1 mod p2,d2 ≡ u′2T ∗ + h′2 mod p2. The values
u′1,h

′
1,u
′
2,h
′
2 modulo p2 are not correlated with their values modulo p1 by the Chinese Remainder Theorem

(CRT). This completes our proof.

Lemma 4.6. If the GSD assumption holds, then no polynomial-time adversary can distinguish between
G1,h−1 and G1,h with a non-negligible advantage.

Proof. We first divide the behavior of an adversary as two types: Type-I and Type-II. We next show that this
lemma holds for two types of the adversary. Let ID∗ and T ∗ be the challenge identity and the challenge time
respectively. The two types of adversaries are formally defined as follows:

Type-I. An adversary is Type-I if it queries on an identity ID such that ID= ID∗ for at least one personalized
private key with the group index h, or it queries on a time T such that T = T ∗ for at least one time-
constrained update key with the group index h. More specifically, this adversary can be divided as
follows:

• Type-I-A. This adversary queries on an identity ID such that ID 6= ID∗ for all personalized
private keys with the group index h, and it queries on a time T such that T = T ∗ for at least one
time-constrained update key with the group index h.

• Type-I-B. This adversary queries on a time T such that T 6= T ∗ for all time-constrained update
keys with h, and it queries on an identity ID such that ID = ID∗ for at least one personalized
private key with h.

• Type-I-C. This adversary queries on an identity ID such that ID = ID∗ for at least one person-
alized private key with h, and it queries on a time T such that T = T ∗ for at least one time-
constrained update key with h.

Type-II. An adversary is Type-II if it queries on an identity ID such that ID 6= ID∗ for all personalized
private keys with the group index h, and it queries on a time T such that T 6= T ∗ for all time-constrained
update keys with the group index h.

Let CVRI∗ be the covering set of the update key for the time T ∗ and revoked set R∗, and PVu∗ be the
private set of the private key for the identity ID∗. Let h∗m be a member index of the group index h such that
the personalized private key for ID∗ or the time-constrained update key for T ∗ belong to the member index
h∗m. If the adversary is Type-I-A, then there is only one member index h∗m since CVRI∗ is a partition. If the
adversary is In Type-I-B, then there is only one member index h∗m since PVu∗ is related with a path. If the
adversary is Type-I-C, the member index h∗m of CVRI∗ with the group index h should be the same as that of
PVu∗ with the same group index h in the SD scheme if ID∗ ∈ R∗. If the adversary is Type-II, then there is no
member index h∗m since the adversary does not request a key query for ID∗ or T ∗.

For the Type-I adversaryAI , we define hybrid games H(1,1),1,H(1,1),2, . . . ,H(qm,qc),1,H(qm,qc),2 =H′(qm,qc),2,

H′(qm,qc),1, . . . ,H
′
(1,1),2,H

′
(1,1),1,H

′
(1,0),2,H

′′ where G1,h−1 = H(1,0),2, H′′ = G1,h, qm is the maximum number
of distinct member subsets of the group index h, and qc is the maximum number of queries for one member
subset. The games are formally defined as follows:

Game H(hm,hc),1. This game H(hm,hc),1 for 1≤ hm ≤ qm and 1≤ hc ≤ qc is almost the same as G1,h−1 except
the generation of personalized private keys and time-constrained update keys with the group index
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h. These personalized private keys and time-constrained update keys with indexes (ig = h, im, ic) are
generated as follows:

• Case ig < h: The keys (personalized private keys and time-constrained update keys) are gener-
ated as semi-functional.

• Case ig = h: The keys are generated as follows:

– (im 6= h∗m)∧ (im < hm) or (im 6= h∗m)∧ (im = hm)∧ (ic < hc):
If this is a personalized private key query, then it generates a normal PSK′ = (K′0,K

′
1)

and creates the semi-functional personalized private key of type 2 as PSKID,Si, j =
(
K0 =

K′0ga
2,K1 = K′1

)
by selecting a new random exponent a ∈ ZN .

If this is a time-constrained update key query, then it generates a normal TUK′ = (U ′0,U
′
1)

and creates the semi-functional time-constrained update key of type 2 as TUKT,Si, j =
(
U0 =

U ′0ga
2,U1 =U ′1

)
by selecting a new random exponent a ∈ ZN .

– (im 6= h∗m)∧ (im = hm)∧ (ic = hc):
If this is a personalized private key query, then it generates a normal PSK′ = (K′0,K

′
1)

and creates the semi-functional personalized private key of type 1 as PSKID,Si, j =
(
K0 =

K′0ga
2,K1 = K′1gb

2

)
by selecting new random exponents a,b ∈ ZN .

If this is a time-constrained update key query, then it generates a normal TUK′ = (U ′0,U
′
1)

and creates the semi-functional time-constrained update key of type 1 as TUKT,Si, j =
(
U0 =

U ′0ga
2,U1 =U ′1gb

2

)
by selecting new random exponents a,b ∈ ZN .

– (im 6= h∗m)∧ (im = hm)∧ (hc < ic) or (im 6= h∗m)∧ (hm < im): It simply creates a normal type
key.

– (im = h∗m): It simply creates a normal type key.

• Case ig > h: The keys are generated as normal.

Note that if a semi-functional personalized private key of type 1 and a normal time-constrained update
key are used to decrypt a semi-functional ciphertext, then the decryption fails since an additional ran-
dom element e(g2,g2)

c(a−bd1) is left. If a= bd1, then the the decryption succeeds and this personalized
private key is nominally semi-functional of type 1. Similarly, if a semi-functional time-constrained
update key of type 1 and a normal personalized private key are used to decrypt a semi-functional
ciphertext, then the decryption fails since an additional random element e(g2,g2)

c(a−bd1) is left. If
a = bd1, then the the decryption succeeds and this time-constrained update key is nominally semi-
functional of type 1.

Game H(hm,hc),2. This game H(hm,hc),2 is almost the same as H(hm,hc),1 except that the personalized private
key (or the time-constrained update key) with the indexes (ig = h, im, ic) such that (im 6= h∗m)∧ (im =
hm)∧ (ic = hc) is generated with b = 0. In the game H(qm,qc),2, all personalized private keys and time-
constrained update keys with the group index h are semi-functional of type 2 except that personalized
private keys and time-constrained update keys with the member index h∗m are normal.

Game H′(hm,hc),1. This game H′(hm,hc),1 is almost the same as H(hm,hc),1 except the generation of a personalized
private key (or a time-constrained update key) with the indexes (ig = h, im, ic) such that (im 6= h∗m)∧
(im = hm)∧ (hc ≤ ic) or (im 6= hm)∧ (hm < im). These personalized private keys (or time-constrained
update keys) are generated as follows:
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• (im 6= h∗m)∧ (im = hm)∧ (ic = hc): Let δi, j be a random exponent in ZN that is fixed for this
member subset Si, j.
If this is a personalized private key query, then it generates PSK′′ = (K′′0 ,K

′′
1 ) as the same

as H(hm,hc),1 and creates the semi-functional personalized private key as PSKID,Si, j =
(
K0 =

K′′0 gδi, j
2 ,K1 = K′′1

)
.

If this is a time-constrained update key query, then it generates TUK′′ = (U ′′0 ,U
′′
1 ) as the same

as H(hm,hc),1 and creates the semi-functional time-constrained update key as TUKT,Si, j =
(
U0 =

U ′′0 gδi, j
2 ,U1 =U ′′1

)
.

• (im 6= h∗m)∧ (im = hm)∧ (hc < ic) or (im 6= h∗m)∧ (hm < im): It creates a semi-functional key by
using the fixed δi, j for this member subset Si, j.

Game H′(hm,hc),2. This game H′(hm,hc),2 is almost the same as H′(hm,hc),1 except that the personalized private
key or time-constrained update key with the indexes (ig = h, im, ic) such that (im 6= h∗m)∧ (im = hm)∧
(ic = hc) is generated with b = 0. The modification is similar to the game H′(hm,hc),1. In the game
H′(1,0),2, all personalized private keys and all time-constrained update keys with the group index h
except the keys with the member index h∗m are semi-functional where a fixed δi, j is used for each
member.

Game H′′. This game H′′ is the same as G1,h. Compared to the game H′(1,0),2, the remaining personalized
private keys and time-constrained update keys with the member index h∗m are changed to be semi-
functional by using a fixed δi, j for this member subset Si, j.

Let AdvHi
AI

be the advantage of AI in a game Hi. From the following Claims 4.11, 4.12, 4.13, 4.14, and
4.15, we can obtain the following equation

AdvH(1,0),2
AI

−AdvH ′′
AI

≤
qm

∑
hm=1

qc

∑
hc=1

∣∣AdvH(hm,hc−1),2
AI

−AdvH(hm,hc),1
AI

∣∣+ qm

∑
hm=1

qc

∑
hc=1

∣∣AdvH(hm,hc),1
AI

−AdvH(hm,hc),2
AI

∣∣+
qm

∑
hm=1

qc

∑
hc=1

∣∣Adv
H ′(hm,hc),2
AI

−Adv
H ′(hm,hc),1
AI

∣∣+ qm

∑
hm=1

qc

∑
hc=1

∣∣Adv
H ′(hm,hc),1
AI

−Adv
H ′(hm,hc−1),2
AI

∣∣+
∣∣Adv

H ′(1,0),2
AI

−AdvH ′′
AI

∣∣
≤ 5(qsk +quk)

qm

∑
hm=1

qc

∑
hc=1

AdvGSD
B (λ ).

For the Type-II adversary AII , we define hybrid games I(1,1),1,I(1,1),2, . . . ,I(qm,qc),1,I(qm,qc),2 = I′(qm,qc),2,

I′(qm,qc),1, . . . ,I
′
(1,1),2,I

′
(1,1),1,I

′
(1,0),2,I

′′ where G1,h−1 = I(1,0),2 and I′′ = G1,h. The games are formally defined
as follows:

Game I(hm,hc),1. This game I(hm,hc),1 is almost the same as H(hm,hc),1 except that there is no case im = h∗m
since the adversary is Type-II.

Game I(hm,hc),2. This game I(hm,hc),2 is almost the same as H(hm,hc),2 except that there is no case im = h∗m
since the adversary is Type-II.
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Game I′(hm,hc),1. This game I′(hm,hc),1 is almost the same as H′(hm,hc),1 except that there is no case im = h∗m
since the adversary is Type-II.

Game I′(hm,hc),2. This game I′(hm,hc),1 is almost the same as H′(hm,hc),1 except that there is no case im = h∗m since
the adversary is Type-II. In the game I′(1,0),2, all personalized private keys and all time-constrained
update keys with the group index h are semi-functional where a fixed δi, j is used for each member.

Let AdvIi
AII

be the advantage of AII in a game Ii. From the following Claims 4.16, 4.17, 4.18, and 4.19,

we can easily obtain the equation AdvI0,2
AII
−AdvI′′

AII
≤ 5(qsk +quk)AdvGSD

B (λ ).

Let EI,EII be the event such that an adversary behave like the Type-I, Type-II adversary respectively.
From the above three inequalities for three types, we have the following inequality as

AdvG1,h−1
A −AdvG1,h

A ≤ Pr[EI](AdvG1,h−1
AI

−AdvG1,h
AI

)+Pr[EII](AdvG1,h−1
AII

−AdvG1,h
AII

)

≤ Pr[EI](AdvH(1,0),2
AI

−AdvH ′′
AI
)+Pr[EII](AdvI(1,0),2

AII
−AdvI′′

AII
)

≤ 5(qsk +quk)
qm

∑
hm=1

qc

∑
hc=1

(
Pr[EI]AdvGSD

B (λ )+Pr[EII]AdvGSD
B (λ )

)
≤ 5(qsk +quk)

qm

∑
hm=1

qc

∑
hc=1

AdvGSD
B (λ ).

This completes our proof.

Lemma 4.7. If the GSD assumption holds, then no polynomial-time adversary can distinguish between G2
and G3 with a non-negligible advantage.

Proof. Let qdk be the number of decryption key queries of an adversary. For the security proof, we addi-
tionally define a sequence of games G2,1,1,G2,1,2, . . . ,G2,k,1,G2,k,2, . . . ,G2,qdk,1,G2,qdk,2 where G2 = G2,0,2.
The games are defined as follows:

Game G2,k,1. In this game, all personalized private keys, all time-constrained update keys, and the challenge
ciphertext are semi-functional. The first k−1 decryption keys are semi-functional. The kth decryption
key is semi-functional of type 1 and it is generated as DKID,T = (D0 = D′0ga

2,D1 = D′1g−b1
2 ,D2 =

D′2g−b2
2 ) where DK′ID,T = (D′0,D

′
1,D

′
2) is a normal decryption key and a,b1,b2 are random exponents

in ZN . The remaining decryption keys are normal.

Game G2,k,2. In this game, all personalized private keys, all time-constrained update keys, the challenge
ciphertext header, and the first k decryption keys are semi-functional. But the remaining decryption
keys are normal. It is obvious that G2,qdk,2 = G3.

Note that if a semi-functional decryption key of type 1 is used to decrypt a semi-functional ciphertext, then
the decryption fails since an additional random element e(g2,g2)

c(a−b1d1−b2d2) is left. If a = b1d1 + b2d2,
then the the decryption succeeds. In this case, we say that the decryption key is nominally semi-functional
of type 1.

Let AdvG2,i, j
A be the advantage of A in the game G2,i, j. We easily obtain that AdvG2

A = AdvG2,0,2
A and

AdvG3
A = Adv

G2,qdk ,2

A . From the following Claims 4.8 and 4.9, we can obtain the following equation

AdvG2
A −AdvG3

A ≤
qdk

∑
k=1

∣∣AdvG2,k−1,2
A −AdvG2,k,1

A
∣∣+ qdk

∑
k=1

∣∣AdvG2,k,1
A −AdvG2,k,2

A
∣∣

≤ 2qdkAdvGSD
B (λ ).
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This completes our proof.

Claim 4.8. If the GSD assumption holds, then no polynomial-time adversary can distinguish between
G2,k−1,2 and G2,k,1 with a non-negligible advantage.

Proof. Suppose there exists an adversary AI that distinguishes between G2,k−1,2 and G2,k,1 with a non-
negligible advantage. A simulator B that solves the GSD assumption using AI is given: a challenge tuple
D = ((N,G,GT ,e),gp1 ,gp3 ,X1R1,R2Y1) and Z where Z = Z0 = X2Y2 or Z = Z1 = X2R3Y2. Then B that
interacts with AI is described as follows:

Setup: B first chooses random exponents u′1,h
′
1,u
′
2,h
′
2,α ∈ ZN . It sets BT by running SD.Setup and FL

by selecting fGL(x) for each GL in BT . It sets MK = (α,FL), RL = /0, ST = (BT ,UL = /0), and publishes
PP =

(
(N,G,GT ,e),g = gp1 ,Y = gp3 ,u1 = gu′1

p1 ,h1 = gh′1
p1 ,u2 = gu′2

p1 ,h2 = gh′2
p1 ,Ω = e(g,g)α

)
.

Phase 1: For each query, B proceeds as follows: If this is a personalized private key (or time-constrained
update key) query, then it creates a semi-functional one by using MK and R2Y1 given in the assumption. If
this is a jth decryption key query for ID and T , then it handles this query as follows:

• If j < k, then it creates a semi-functional decryption key since it knows MK and R2Y1 is given in the
assumption.

• If j = k, then it selects random r′1,r
′
2 ∈ ZN , Y ′0,Y

′
1,Y
′
2 ∈ Gp3 and creates a decryption key DKID,T =(

D0 = gα(Z)(u
′
1ID+h′1)r

′
1(Z)(u

′
2T+h′2)r

′
2Y ′0, D1 = (Z)−r′1Y ′1, D2 = (Z)−r′2Y ′2

)
.

• If j > k, then it creates a normal decryption key since it knows MK.

Challenge: B flips a random coin µ ∈ {0,1} and creates a semi-functional ciphertext by implicitly setting
gs =X1 and gc

2 =R1 as CT ∗=
(
C = e(X1R1,g)α ·M∗µ , C0 =X1R1, C1 =(X1R1)

u′1ID∗+h′1 , C2 =(X1R1)
u′2T ∗+h′2

)
.

Phase 2: Same as Phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

If Z = Z0 = X2Y2, then the simulation is the same as G2,k−1,2 since the kth decryption key and the
semi-functional challenge ciphertext are correctly distributed by implicitly setting r1 ≡ logg(X2)r′1 mod p1,
r2 ≡ logg(X2)r′2 mod p1, and s≡ logg(X1) mod p1. If Z = Z1 = X2R3Y2, then the simulation is almost the
same as G2,k,1 except that the kth decryption key is generated as a nominally semi-functional one of type 1 by
implicitly setting b1 ≡ logg2

(R3)r′1 mod p2, b2 ≡ logg2
(R3)r′2 mod p2, and a≡ b1(u′1ID+h′1)+b2(u′2T +

h′2) mod p2. To finish the proof, we should argue that the adversary cannot distinguish the nominally semi-
functional decryption key from the semi-functional decryption key of type 1. To argue this, we use the
restriction of the security model such that a decryption key query for an identity ID and a time T such that
(ID = ID∗)∧ (T = T ∗) is not allowed. Suppose there exists an unbounded adversary. Then the adversary
can gather the values a ≡ b1(u′1ID+ h′1)+ b2(u′2T + h′2),b1,b2 mod p2 from the kth decryption key and
d1 ≡ u′1ID∗+ h′1,d2 ≡ u′2T ∗+ h′2 mod p2 from the challenge ciphertext. If (ID 6= ID∗)∨ (T 6= T ∗), then
b1(u′1ID+ h′1) + b2(u′2T + h′2) mod p2, u′1ID∗+ h′1 mod p2 and u′2T ∗+ h′2 mod p2 look random to the
adversary since u′ix+ h′i is a pair-wise independent function, (ID 6= ID∗)∨ (T 6= T ∗) by the restriction of
the security model, and u′1,h

′
1,u
′
2,h
′
2 mod p2 are information theoretically hidden to the adversary. This

completes our proof.

Claim 4.9. If the GSD assumption holds, then no polynomial-time adversary can distinguish between G2,k,1
and G2,k,2 with a non-negligible advantage.

28



Proof. The proof of this claim is almost the same as that of Claim 4.8, except the generation of the kth
decryption key. The kth decryption key for ID and T is generated as follows:

• If j = k, then it selects random r′1,r
′
2,a
′ ∈ ZN , Y ′0,Y

′
1,Y
′
2 ∈Gp3 and creates a decryption key DKID,T =(

D0 = gα(Z)(u
′
1ID+h′1)r

′
1(Z)(u

′
2T+h′2)r

′
2(R2Y1)

a′Y ′0, D1 = (Z)−r′1Y ′1, D2 = (Z)−r′2Y ′2
)
.

Note that the kth decryption key is no longer correlated with CT ∗ since the element D0 is re-randomized by
(R2Y1)

a′ . If Z = Z0 = X2Y2, then the simulation is the same as G2,k,2. If Z = Z1 = X2R3Y2, then the simulation
is the same as G2,k,1.

Lemma 4.10. If the CompDH assumption holds, then no polynomial-time adversary can distinguish be-
tween G3 and G4 with a non-negligible advantage.

Proof. Suppose there exists an adversary A that distinguish G3 from G4 with a non-negligible advantage.
A simulator B that solves the CompDH assumption using A is given: a challenge tuple D = ((N,G,GT ,e),
gp1 ,gp2 ,gp3 ,g

a
p1

R1,gb
p1

R2) and Z where Z = Z0 = e(gp1 ,gp1)
ab or Z = Z1 = e(gp1 ,gp1)

c. Then B that interacts
with A is described as follows:

Setup: B chooses random exponents u′1,h
′
1,u
′
2,h
′
2 ∈ ZN and implicitly sets α = a from the term ga

p1
R1. It

sets BT by running SD.Setup and FL by selecting a random point (x,y) for each GL in BT . Note that a
random fGL(x) for GL is implicitly defined by two points (0,a) and (x,y) and g fGL(L j)

p1 R for any L j can be
computable from the Lagrange interpolation method where R ∈ Gp2 . It sets RL = /0, ST = (BT ,UL = /0)
and publishes the public parameters PP =

(
(N,G,GT ,e),g = gp1 ,Y = gp3 ,u1 = gu′1 ,h1 = gh′1 ,u2 = gu′2 ,h2 =

gh′2 ,Ω = e(g,ga
p1

R1)
)
.

Phase 1: For each query, B creates a semi-functional key since ga
2R1 and g2 are given from the assumption.

Note that it cannot create a normal update key since it does not know ga
p1
∈Gp1 .

Challenge: B first flips a random coin µ ∈{0,1} and creates a challenge ciphertext CT ∗=
(
C = Z ·M∗µ , C0 =

gb
p1

R2, C1 = (gb
p1

R2)
u′1ID∗+h′1 , C2 = (gb

p1
R2)

u′2T ∗+h′2
)
.

Phase 2: Same as Phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

If Z = Z0, then the simulation is the same as G3 since the challenge ciphertext is correctly distributed by
implicitly setting s = b. If Z = Z1, then the simulation is the same as G4 since the element C is random.

4.4.1 Type-I Adversary

Claim 4.11. If the GSD assumption holds, then no polynomial-time Type-I adversary can distinguish be-
tween H(hm,hc−1),2 and H(hm,hc),1 with a non-negligible advantage.

Proof. Suppose there exists an adversary AI that distinguishes between H(hm,hc−1),2 and H(hm,hc),1 with a
non-negligible advantage. A simulator B that solves the GSD assumption using AI is given: a challenge
tuple D = ((N,G,GT ,e),gp1 ,gp3 ,X1R1,R2Y1) and Z where Z = Z0 = X2Y2 or Z = Z1 = X2R3Y2. Then B that
interacts with AI is described as follows:

Setup: B selects random exponents u′1,h
′
1,u
′
2,h
′
2,α ∈ ZN . It sets BT by running SD.Setup and FL by

selecting fGL(x) for each GL in BT . It sets MK = (α,FL), RL = /0, ST = (BT ,UL = /0), and PP =(
(N,G,GT ,e),g = gp1 ,Y = gp3 ,u1 = gu′1 ,h1 = gh′1 ,u2 = gu′2 ,h2 = gh′2 ,Ω = e(g,g)α

)
.

Phase 1: Let h∗m be a member index of the group index h such that the personalized private key for ID∗ or
the time-constrained update key for T ∗ belong to the member index h∗m such that 1 ≤ h∗m ≤ qm where qm is
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the maximum number of members in the group index h. As mentioned before, there is only one index h∗m in
the Type-I adversary. B selects a random index k such that 1≤ k≤ qm to guess h∗m, and it can correctly guess
h∗m with the probability of 1/qm. Note that qm ≤ qsk +quk since the private set of a private key is related with
a path and the covering set of an update key is a partition where qsk is the number of private key queries and
quk is the number of update key queries of the adversary.

For each query, B proceeds as follows: If this is a decryption key query, then it creates a normal one
since it knows MK. If this is a personalized private key or a time-constrained update key query with indexes
(ig, im, ic), then it handles this query as follows:

• Case ig < h: It first builds a normal key since it knows MK and converts it to a semi-functional one
by using R2Y1 that is given in the assumption and selecting a random exponent δ ′i, j once for the subset
Si, j.

• Case ig = h: It generates the key as follows:

– (im 6= h∗m)∧ (im < hm) or (im 6= h∗m)∧ (im = hm)∧ (ic < hc):
If this is a personalized private key query, then it first builds a normal one and converts it to a
semi-functional one of type 2 by selecting a new random exponent a′ ∈ZN as PSKID,Si, j =

(
K0 =

g fGL(L j)(uID
1 h1)

r1Y ′0 · (R2Y1)
a′ , K1 = g−r1Y ′1

)
.

If this is a time-constrained update key query, then it first builds a normal one and converts it
to a semi-functional one of type 2 by selecting a new random exponent a′ ∈ ZN as TUKT,Si, j =(
U0 = g fGL(L j)(uT

2 h2)
r2Y ′0 · (R2Y1)

a′ , U1 = g−r2Y ′1
)
.

– (im 6= h∗m)∧ (im = hm)∧ (ic = hc):
If this is a personalized private key query, then it chooses random elements Y ′0,Y

′
1 ∈ Gp3 and

creates a key as PSKID,Si, j =
(
K0 = g fGL(L j)(Z)u′1ID+h′1Y ′0, K1 = Z−1Y ′1

)
.

If this is a time-constrained update key query, then it chooses random elements Y ′0,Y
′
1 ∈Gp3 and

creates a key as TUKT,Si, j =
(
U0 = g fGL(L j)(Z)u′2T+h′2Y ′0, U2 = Z−1Y ′1

)
.

– (im 6= h∗m)∧(im = hm)∧(hc < ic) or (im 6= h∗m)∧(hm < im): It creates a normal key since it knows
MK.

– (im = h∗m): It creates a normal key since it knows MK.

• Case ig > h: It creates a normal key since it knows MK.

Challenge: B flips a random coin µ ∈ {0,1} and creates a semi-functional ciphertext by implicitly setting
gs =X1 and gc

2 =R1 as CT ∗=
(
C = e(X1R1,g)α ·M∗µ , C0 =X1R1, C1 =(X1R1)

u′1ID∗+h′1 , C2 =(X1R1)
u′2T ∗+h′2

)
.

Phase 2: Same as Phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

If Z = Z0 = X2Y2, then the simulation is the same as H(hm,hc−1),2 since the personalized private key (or
the time-constrained update key) with (im 6= h∗m)∧ (im = hm)∧ (ic = hc) and the semi-functional challenge
ciphertext are correctly distributed by implicitly setting r1 ≡ logg(X2) mod p1 (or r2 ≡ logg(X2) mod p1),
and s ≡ logg(X1) mod p1. If Z = Z1 = X2R3Y2, then the simulation is almost the same as H(hm,hc),1 except
that the personalized private key (or the time-constrained update key) with (im 6= h∗m)∧ (im = hm)∧ (ic = hc)
is generated as a nominally semi-functional one of type 1 by implicitly setting a ≡ logg2

(R3)(u′1ID+ h′1)
mod p2 (or a≡ logg2

(R3)(u′2T +h′2) mod p2) and b≡ logg2
(R3) mod p2.

To finish the proof, we should argue that the Type-I adversary cannot distinguish the nominally semi-
functional one of type 1 from the semi-functional one of type 1. To argue this, we use the fact that we have
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ID 6= ID∗ for all personalized private key queries for ID with indexes (ig = h, im, ic) such that im 6= h∗m, and
T 6= T ∗ for all time-constrained update key queries for T with indexes (ig = h, im, ic) such that im 6= h∗m.
Suppose there exists an unbounded Type-I adversary. If the query with (im 6= h∗m)∧ (im = hm)∧ (ic = hc) is
a personalized private key, then the adversary can gather the values a ≡ b(u′1ID+ h′1),b mod p2 from the
personalized private key with (im 6= h∗m)∧(im = hm)∧(ic = hc) and d1≡ u′1ID∗+h′1 mod p2, d2≡ u′2T ∗+h′2
mod p2 from the challenge ciphertext. We obtain that u′1ID+ h′1 mod p2 and u′1ID∗+ h′1 mod p2 look
random to the adversary since u′1x+h′1 is a pair-wise independent function, ID 6= ID∗ if im 6= h∗m, and u′1,h

′
1

mod p2 are information theoretically hidden to the adversary. If the query with (im 6= h∗m)∧(im = hm)∧(ic =
hc) is a time-constrained update key, then we also obtain that u′2T +h′2 mod p2 and u′2T ∗+h′2 are random
to the adversary since u′2x+ h′2 pair-wise independent function, T 6= T ∗ if im 6= h∗m, and u′2,h

′
2 mod p2 are

information theoretically hidden to the adversary. This completes our proof.

Claim 4.12. If the GSD assumption holds, then no polynomial-time Type-I adversary can distinguish be-
tween H(hm,hc),1 and H(hm,hc),2 with a non-negligible advantage.

Proof. The proof of this claim is almost the same as that of Claim 4.11 except the generation of the key
with indexes ig = h and (im 6= h∗m)∧ (im = hm)∧ (ic = hc). This key with the group index h is generated as
follows:

• (im 6= h∗m)∧ (im = hm)∧ (ic = hc):

If this is a personalized private key query, then it chooses random a′ ∈ ZN , Y ′0,Y
′
1 ∈Gp3 and creates a

key as PSKID,Si, j =
(
K0 = g fGL(L j)(Z)u′1ID+h′1Y ′0(R2Y1)

a′ , K1 = Z−1Y ′1
)
.

If this is a time-constrained update key query, then it chooses random a′ ∈ZN , Y ′0,Y
′
1 ∈Gp3 and creates

a key as TUKT,Si, j =
(
U0 = g fGL(L j)(Z)u′2T+h′2Y ′0(R2Y1)

a′ , K1 = Z−1Y ′1
)
.

Note that this personalized private key or time-constrained update key is no longer correlated with CT ∗ since
the element K0 is re-randomized by (R2Y1)

a′ .

Claim 4.13. If the GSD assumption holds, then no polynomial-time Type-I adversary can distinguish be-
tween H′(hm,hc−1),2 and H′(hm,hc),1 with a non-negligible advantage.

Claim 4.14. If the GSD assumption holds, then no polynomial-time Type-I adversary can distinguish be-
tween H′(hm,hc),1 and H′(hm,hc),2 with a non-negligible advantage.

The proofs of Claim 4.13 and Claim 4.14 are almost the same as that of Claim 4.11 and Claim 4.12
respectively. The only difference is that each element K0 of personalized private keys and each element U0
of time-constrained update keys with indexes (ig = h, im, ic) such that im 6= h∗m that are generated in Claim
4.11 and Claim 4.12 respectively are additionally multiplied by (R2Y1)

δ ′i, j where δ ′i, j is a fixed exponent that
is related with the member subset Si, j. This modification is possible since R2Y1 is given in the assumption.
We omit the detailed proofs of these claims.

Claim 4.15. If the GSD assumption holds, then no polynomial-time Type-I adversary can distinguish be-
tween H′(1,0),2 and H′′ with a non-negligible advantage.

Proof. The proof of this claim is almost the same as that of Claim 4.11 except that the generation of per-
sonalized private keys and time-constrained update keys with the group index ig = h. These keys with the
group index ig = h are generated as follows:

• Case ig = h: Let δ ′i, j be a fixed exponent in ZN for each member Si, j in this group index h.
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– (im 6= h∗m):
If this is a personalized private key query, then it selects random r1 ∈ZN , Y ′0,Y

′
1 ∈Gp3 and creates

a semi-functional key as PSKID,Si, j =
(
K0 = (Z)L j gα(uID

1 h1)
r1Y ′0 · (R2Y1)

δ ′i, j , K1 = g−r1Y ′1
)
.

If this is a time-constrained update key query , then it selects random r2 ∈ ZN , Y ′0,Y
′
1 ∈Gp3 and

creates a semi-functional key as TUKT,Si, j =
(
U0 = (Z)L j gα(uT

2 h2)
r2Y ′0 ·(R2Y1)

δ ′i, j , U1 = g−r2Y ′1
)
.

– (im = h∗m):
If this is a personalized private key query, then it selects random r1 ∈ZN , Y ′0,Y

′
1 ∈Gp3 and creates

a key as PSKID,Si, j =
(
K0 = (Z)L j gα(uID

1 h1)
r1Y ′0, K1 = g−r1Y ′1

)
.

If this is a time-constrained update key query, then it selects random r2 ∈ ZN , Y ′0,Y
′
1 ∈ Gp3 and

creates a key as TUKT,Si, j =
(
U0 = (Z)L j gα(uT

2 h2)
r2Y ′0, U1 = g−r2Y ′1

)
.

If Z = Z0 = X2Y2, then the simulation is the same as H′(1,0),2 since all personalized private keys and time-
constrained update keys with the group index h implicitly uses a random polynomial fGL(x) ≡ logg(X2) ·
x+α mod p1 and it implicitly sets δi, j ≡ loggp2

(R2)δ
′
i, j mod p2 for each member index im 6= h∗m. If Z =

Z1 = X2R3Y2, then the simulation is the same as H′′ since it implicitly sets δi, j = loggp2
(R3)L j mod p2 for

the member index h∗m. As mentioned, the personalized private key query for ID∗ and the time-constrained
update key query for T ∗ should belong to the member index h∗m. This completes our proof.

4.4.2 Type-II Adversary

Claim 4.16. If the GSD assumption holds, then no polynomial-time Type-II adversary can distinguish be-
tween I(hm,hc−1),2 and I(hm,hc),1 with a non-negligible advantage.

Claim 4.17. If the GSD assumption holds, then no polynomial-time Type-II adversary can distinguish be-
tween I(hm,hc),1 and I(hm,hc),2 with a non-negligible advantage.

Claim 4.18. If the GSD assumption holds, then no polynomial-time Type-II adversary can distinguish be-
tween I′hc−1,2 and I′hc,1 with a non-negligible advantage.

Claim 4.19. If the GSD assumption holds, then no polynomial-time Type-II adversary can distinguish be-
tween I′hc,1 and I′hc,2 with a non-negligible advantage.

The proofs of Claim 4.16, 4.17, 4.18, and 4.19 are almost the same as those of Claim 4.11, 4.12, 4.13,
and 4.14 respectively except that there is no case im = h∗m since the Type-II adversary does not request a
personalized private key for ID∗ and a time-constrained update key for T ∗. We omit the detailed proofs of
these claims.

5 Conclusion

In this work, we presented a new technique for RIBE that can use the efficient SD scheme (or the LSD
scheme) instead of the CS scheme for key revocation. By following our technique, we first proposed a new
RIBE scheme in bilinear groups by combining the IBE scheme of Boneh and Boyen [5] and the SD scheme,
and then we proved it security in the selective revocation list model. We also proposed another RIBE
scheme in bilinear groups by combining the IBE scheme in composite-order bilinear groups of Lewko and
Waters [24] and the SD scheme, and proved its full security under static assumptions. Our constructions
also can be integrated with the LSD scheme to reduce the size of private keys.

32



An interesting open problem is to build efficient R-ABE, RS-ABE, and RS-PE schemes that provide the
revocation functionality for ABE and PE by using the SD scheme. One may expect that our technique in
this work can be used to achieve these schemes, but there is one crucial difficulty to prove the security of
the schemes since our proof techniques in the selective revocation list model (or the full model) only work
when there is only one private key (or one update key) that matches to a challenge ciphertext. However,
there are many private key queries in ABE that can decrypt a challenge ciphertext. Thus, we expect that
a new different technique will be needed to build R-ABE, RS-ABE, and RS-PE schemes that use the SD
scheme.
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