
Efficient Secure and Verifiable Outsourcing of Matrix

Multiplications

Abstract

With the emergence of cloud computing services, a resource-constrained client can outsource
its computationally-heavy tasks to cloud providers. Because such service providers might not be
fully trusted by the client, the need to verify integrity of the returned computation result arises.
The ability to do so is called verifiable delegation or verifiable outsourcing. Furthermore, the
data used in the computation may be sensitive and it is often desired to protect it from the cloud
throughout the computation. In this work, we put forward solutions for verifiable outsourcing
of matrix multiplications that favorably compare with the state of the art. The cost of verifying
the result of computation consists of a single modulo exponentiation and can be further reduced
if the cloud is rational. A rational cloud is neither honest nor arbitrarily malicious, but rather
economically motivated with the sole purpose of maximizing its monetary reward. Our solutions
achieve several desired features such as data protection, public verifiability, and computation
chaining.

1 Introduction

The emergence of cloud computing technologies enables clients who are unable to procure and main-
tain their own computing infrastructure to resort to convenient on-demand computing resources.
Despite the paradigm being economically sensible for resource-limited clients, it comes with new
security and privacy concerns. One of them is the lack of transparency and control over the out-
sourced computation, which necessitates the need to verify the result to guarantee integrity of the
computation. Another one is the need to protect confidentiality of the data used in the outsourced
computation, which can be proprietary, personal, or otherwise sensitive. Addressing these security
objectives is thus the focus of this work.

Computation outsourcing to a cloud computing provider is common today and can take different
forms. In particular, in addition to the conventional scenario when a computationally-limited client
outsources its computation to the cloud and receives the result, there are many uses of cloud
computing that involve multiple entities. For example, a doctor’s office might send computation
associated with a patient’s test to a cloud provider, while the patient in question is also entitled to
access to the result of the computation and thus should be able to verify integrity of the returned
result. This calls for solutions where the integrity of the result can be verified by entities who do
not have access to secret keys thus achieving public verifiability. Furthermore, when the delegator
runs multiple computations on the same setup, prior literature calls for further separation of the
delegator’s tasks into the initial setup that produces the common parameters and generates keys
and the task of generating an instance of the computation to be placed on the cloud. For example,
using the previous example of doctor’s office, the setup can be performed by the doctor while each
individual task is generated by a lab assistant. In this setting, it is obvious that lab assistant should
not have access to the doctor’s master key if present.

1

The specific problem that we treat in this work is that of matrix multiplication outsourcing.
Because of popularity of matrix multiplication computation in a number of different domains and
relatively high cost of this operation on large inputs, secure matrix multiplication outsourcing has
received attention in research literature [4, 5, 24, 39]. We continue this line of research and show
below how our results compare to the state of the art.

A novel feature that we put forward in this work and which is not present in publications that
treat the same topic can be described as follows: we divide the overall computation in multiple
stages and associate a key with each of them. Only if the computation in the current stage is
performed correctly and the correct key is recovered, the server can learn the computation used
in the next stage. And without the correct key, it is computationally infeasible to proceed to the
next stage and pass verification in any of the stages that follow. This feature allows us to achieve
several goals:

1. The fact that the computation is chained from one stage to another allows for more efficient
verification of the overall task. That is, corrupting a single cell of the product matrix inval-
idates the values in all other cells that follow, and verifying the result of the final stage is
sufficient in ensuring that the entire task was performed correctly. Other publications, on the
other hand, require verification of every matrix cell to ensure correctness of the entire output.

2. If the server misbehaves during the computation and produces incorrect values for one or
more cells of the product matrix, in order to proceed with the computation, it has to invest
into substantially larger computation. In other words, the effect of the server’s misbehavior
is enlarged to the maximum extent, where any deviation from the computation substantially
increases the computation cost. Thus, this mechanism is design to deter the server from
deviating from the correct computation.

3. When the result is returned to the client and does not pass verification, the client can efficiently
identify the first stage during which the server deviated from the prescribed computation and
ask the same or different server to rerun the computation starting from that stage.

4. In the event that the server carries out the computation honestly, but gets compromised
or infected by malware that corrupts the computation, the server can use the checkpoints
between the stages to efficiently determine that corruption took place and quickly recover
from it. That is, if the server is unaware of the compromise and continues with the task, the
outcome is not going to pass verification and the computational effort becomes wasted. With
the checkpoints, on the other hand, the server will identify the problem, stop the computation,
resolve the problem, and resume the task without putting effort in the computation that will
later have to be disregarded.

Our contributions can be summarized as follows:

• We present the core construction for verifiable outsourcing in presence of malicious adversaries
who can arbitrarily deviate from the prescribed computation (Section 4). In our scheme,
delegating a task requires work linear in the input size, carrying out the computation itself is
also optimal, and verification of the resulting matrix product involves only a single modulo
exponentiation.

• We present another construction that assumes rational adversaries who are neither honest nor
arbitrarily malicious, but rather economically motivated with the sole purpose of maximizing
the monetary reward (Section 5.1). Under this adversarial model, verification of the returned
result involves only a single comparison.

2

• We extend the construction in the rational setting to incorporate the chaining feature as
described above without compromising any other properties (Section 5.3). In particular, this
has no impact on the complexity of the resulting scheme.

• We next show how data privacy can be added to the constructions in both malicious and
rational settings (Section 6). This increases the cost of recovering the output, but it is still
linear in the output size.

• Lastly, we extend our constructions to achieve public verifiability, in which any entity with
access to public verification key can assess the validity of the returned result (Section 7).
When such solutions are combined with data protection, access to the verification key does
not allow for recovering the output or input of the computation. The complexities of these
solutions also remain low, as in the previous constructions.

All our schemes achieve public delegatability, which means that the entity who runs system setup
can be different from the entities who form a task to be outsourced.

In reducing the cost associated with verifiable computation schemes for matrix multiplication
outsourcing, our focus was on reducing the cost of verifying the result as this may be a more
frequently used operation or an operation performed by weaker clients. The cost of task preparation
in our and other schemes requires O(n2) cryptographic operations for input matrices of size n× n,
i.e., linear in the size of input. The server’s work for carrying out matrix multiplication is O(n3)
cryptographic operations, i.e., uses the conventional matrix multiplication algorithm.

We note that the cost of O(n2) cryptographic operations used in task preparation is rather high
and will exceed the cost of computing matrix multiplication locally for small matrices. In particular,
matrix multiplication algorithms of asymptotic complexity as low as O(n2.373) are known, but
the huge constants hidden behind the big-O notation prevent most of them from being used in
practice (i.e., they require more than 2n3 work) [3]. In particular, for matrices of dimension
n < 1020, only the algorithm by Strassen 1969 and Winograd 1971 of complexity O(n2.807) and
the technique of trilinear aggregating of complexity O(n2.775) result in implementations of matrix
multiplications that outperform the conventional O(n3) algorithm [3, 37]. This means that our and
related constructions reduce the cost of matrix multiplication for the client only for large matrices
when performing n2 cryptographic operations is below O(n2.775) work.

Before we proceed with the description of our constructions, we discuss related work (Section 2)
and provide background information and definitions (Section 3).

2 Related Work

We divide all related work in categories and discuss each category in turn.

Verifiable Computation. In verifiable computation [30, 26, 22, 2, 41, 40, 24, 18, 21], a client
outsources a computationally intensive task to a server and verifies its results in an efficient manner
upon its completion. The basic question was formulated in work on interactive proofs (IP) [8, 31],
efficient arguments based on probabilistically checkable proofs (PCP) [35, 36], and computationally
sound (CS) proofs [38]. We highlight some of the more relevant results below.

A typical PCP-based scheme is normally not applicable to our scenario because in such schemes
the client needs to maintain a large amount of data in order to verify the results of the computation,
while in our setting the client is only capable of storing data linear in the input size. Recently,
argument systems based on the work of Kilian [35, 36] have been built [43, 42, 46]. They require
the prover to make a commitment to the computation that should be consistent with the queries

3

that will be issued afterwards by the verifier. The client therefore needs to engage in an interactive
protocol to carry out the verification procedure. This is also different from our setup, where the
client is not involved in interactive computation besides submitting the problem to the server and
receiving the results. Parno et al. recently introduced Pinocchio [40], which allows execution of
a general function represented as a circuit to be delegated to an untrusted worker. The cost of
output verification in [40] is linear in the size of the function’s input and output, but requires only
a constant number of most expensive operations (pairing evaluation), which resembles similarities
to our scheme in presence of malicious adversaries. Our verification cost is still lower in practical
terms and is further reduced in the schemes with rational adversaries. The asymptotic complexity
of the server’s computation in [40] is the same as in our scheme, but our solution offers faster
performance. Lastly, the setup of [40] uses a different key generation phase from our problem
generation phase, which is applied to a function instead of function’s input in our solution. The
cost of key generation in [40] is higher than the cost of problem generation in our solution, but the
key generation algorithm in [40] may be executed less frequently.

Succinct Non-Interactive Arguments of Knowledge (SNARKs) [11] are CS proofs of knowledge
for NP that can potentially be utilized to realize verifiable computation. SNARKs represents
a succinct argument system that allows a prover to prove the knowledge of NP statements by
performing work independent of the size of the problem instance and its witness. The problem was
motivated in early work of Kilian [35] and uses a Merkle hash tree and PCPs to achieve a four-
message interactive argument for NP. It was later enhanced in [38] to achieve a one-message protocol
by additionally incorporating Private Information Retrieval (PIR). As SNARKs are intended for
succinct verification using either a designated or public verifier [12], they are considered as an ideal
candidate for implementing verifiable computation. However, it is still unknown whether there
exists a concrete SNARK construction that relies on standard cryptographic assumptions [29].

Another line of work [26, 22, 21] uses fully homomorphic encryption [28] in combination with
verifiable computation to additionally achieve data protection. Unfortunately, these solutions ne-
cessitate an expensive offline phase that requires the client to invest poly(k, T) or poly(n, k) time,
where T is the time it takes to compute the function, n is the memory size, and k is a security
parameter, to generate public keys or a commitment used for verification. Our solution does not
require any large one-time overhead, which is of benefit to resource-constrained clients who lack
sufficient resources, but still would like to delegate the computation.

Homomorphic MAC and Signature Schemes. A homomorphic Message Authentication
Code (MAC) scheme [1] allows an entity with possession of a secret key sk to produce a tag σ
that authenticates message m with a property that allows someone with access to public evalua-
tion key pvk to combine multiple authenticators together. That is, given a set of authenticators
σ1, σ2, . . . , σn for messages m1,m2, . . . ,mn, any entity with pvk is able to homomorphically eval-
uate a function P on (σ1, σ2, . . . , σn) and produce a short tag σ′ that authenticates correctness of
m′ = P (m1,m2, . . . ,mn). In the public-key setting, signature schemes are used in place of MAC
schemes to result in similar functionality [34]. To realize verifiable computation using a homomor-
phic MAC (or signature) scheme, a client first sends function P and (mi, σi) for 1 ≤ i ≤ n as its
inputs to a server. The server computes m′ = P (m1,m2, . . . ,mn) as a result and the correspond-
ing authenticator σ′ and the returns the values to the client. The client next uses the MAC (or
signature) authentication procedure on (m′, σ′) to verify correctness of computational result m′. In
earlier schemes [34, 14, 1, 19], homomorphic authenticators were mainly used to verify evaluation
results of a linear function. They were later extended in [13, 17, 27] to support more general func-
tions such as constant-degree polynomials and arithmetic circuits with polynomially-bound degrees.
In order to apply solutions based on homomorphic authenticators to verifiable computation, the

4

Scheme
Verifiable Data Public Output-Indep. Deterministic

Computation Privacy Verifiability Verification Verification
Atallah et al. [4] 3 3 7 7 7

Mohassel [39] 3 3 7 7 7

Fiore et al. [24] 3 7 3 7 3

Backes et al. [9] 3 7 7 7 3

This work 3 3 3 3 3

Table 1: Comparison with related work.

verification mechanism should be much more efficient than executing the function P itself, which
is unfortunately not the case for most available schemes. Furthermore, it is not clear as to how
to protect secrecy of the underlying messages using these techniques as neither the MAC nor the
signature schemes serve this purpose.

Matrix Computation. The problem of verifiable matrix computation has been studied in recent
literature [24, 39, 4, 9]. In addition to computation verification, existing solutions offer other
important security features that are: 1) data protection, i.e., protection of both input and output
matrices throughout the computation; 2) public verifiability, i.e., the ability of any entity to verify
the result of outsourced computation; and 3) deterministic verification, i.e., the ability to detect
faulty cells in an output matrix with probability 1. Unlike prior work, our scheme achieves all
of these features. Additionally, we achieve another desirable property called output-independent
efficiency that allows for a constant number of cryptographic operations (modulo exponentiations
or pairing operations) to be used during verification independent of the size of the output matrix.
Table 1 summarizes features of our solution and other schemes. Note that [24] has similar security
features to our scheme, and even though not explicitly specified in that work, it is feasible to
incorporate privacy protection into their scheme as realized in [47]. We, however, found the scheme
cannot be adjusted to efficiently handle rational adversaries.

Next, we provide a more detailed comparison of our work with closely related schemes. Note
that we treat deterministic verification as a property that is non-trivial to achieve and thus consider
only the work of Fiore et al. [24] and Backes et al. [9]. The construction of [9], however, is based
on the scheme of [24] and would offer the same performance as that of [24] in our setting (the
advantage of [9] is that it allows for more flexible function specification and scheduling). Thus, we
list only performance of [24] as the representative of both [24] and [9].

The computational overhead for the client and the server is presented in Table 2, where n
represents the size of each dimension of input matrices, and cm, ce, and cp denote the time to carry
out a modular multiplication, exponentiation, and a pairing operation, respectively. In the table,
we use notation VCm and VCr to denote our verifiable computation schemes for malicious and
rational adversaries, respectively. Note that some of the constructions for rational adversary do
not involve any cryptographic operations for verification (and rather perform a single comparison)
and that work is listed as O(1). Finally, note that in some of our constructions for the rational
adversary, the work for task preparation or server’s computation is increased compared to the
equivalent constructions for the malicious adversary, but the verification cost is substantially (and
asymptotically) reduced.

The timings of elementary cryptographic operations can be inferred from the benchmarks in
[20]. For groups that admit an asymmetric bilinear map e : G1 × G2 → GT , which offer faster
performance than groups that admit a symmetric bilinear map e : G1 ×G1 → GT and are used in
this work (as detailed later in the paper) and can be used in the solution of [24], the timings are as
follows: for 128-bit security, a modulo exponentiation in G1 or G2 can be performed in 0.1–0.4ms

5

Scheme
Client’s Server’s Client’s

Preparation Computation Verification

Fiore et al. [24] (priv. ver.) (4ce + 3cm)n2 cen
3 (ce + cm)n2

VCm (priv. ver.) (2ce + 4cm)n2 cpn
3 ce + cmn

2

VCr (priv. ver.) (4ce + 6cm)n2 cpn
3 + (ce + cm)n2 O(1)

Fiore et al. [24] (pub. ver.) (4ce + 3cm)n2 cen
3 (cp + ce + cm)n2

VCm (pub. ver.) (2ce + 4cm)n2 cen
3 cpn+ (ce + cm)n2

VCr (pub. ver.) (4ce + 6cm)n2 cpn
3 + (ce + cm)n2 ce

VCm (priv. ver. + privacy) (2ce + 6cm)n2 2cpn
3 ce + cmn

2

VCr (priv. ver. + privacy) (5ce + 8cm)n2 2cpn
3 + cmn

2 O(1)
VCm (pub. ver. + privacy) (8ce + 16cm)n2 4cen

3 4cpn+ 4(ce + cm)n2

VCr (pub. ver. + privacy) (5ce + 8cm)n2 2cpn
3 + cmn

2 ce

Table 2: Computation in our and mostly closely related schemes.

Scheme Client’s Storage Server’s Storage Communication

Fiore et al. [24] (priv. ver.) n2κ n2κ+ 2n2 2n2κ+ 3n2

VCm (priv. ver.) 3nκ 2n2κ+ 2n2 (2n2 + 1)κ+ 3n2

VCr (priv. ver.) κ 2n2κ+ 2n2 (2n2 + 1)κ+ 3n2

Fiore et al. [24] (pub. ver.) n2κ n2κ+ 2n2 2n2κ+ 3n2

VCm (pub. ver.) (n2 + n)κ n2κ+ 2n2 (n2 + n)κ+ 3n2

VCr (pub. ver.) κ 2n2κ+ 2n2 (2n2 + 1)κ+ 3n2

VCm (priv. ver. + privacy) 3nκ 4n2κ (5n2 + 1)κ
VCr (priv. ver. + privacy) (n2 + 2n)κ 4n2κ (5n2 + 1)κ
VCm (pub. ver. + privacy) 4(n2 + n)κ 4n2κ+ 8n2 4(n2 + n)κ+ 12n2

VCr (pub. ver. + privacy) (n2 + 2n)κ 4n2κ (5n2 + 1)κ

Table 3: Storage and communication in our and mostly closely related schemes.

on a single core of a conventional 2.4GHz desktop machine, a modulo exponentiation in GT in
0.4–0.9ms, and the pairing operation in 2.1–2.3ms. The cost of modulo multiplications is at least
two orders of magnitude smaller than that of performing modulo exponentiations.

The storage and communication requirements of our constructions and those of [24] are listed
in Table 3. In the table, the security parameter κ denotes the bitlength of group elements. The
client’s storage is computed as the amount of information the client needs to maintain in order to
be able to verify the result (i.e., the size of the key). Then the task delegator and each task verifier
will require additional storage for their respective input and output matrices. The server’s storage
corresponds to the amount of storage the server needs to maintain in order to carry out the task.
Lastly, communication corresponds to both sending the task to the server and returning the result
and the proof of computation to the client.

Rational Computation. In recent years, game theory has been used in cryptographic research [23,
33] to develop a new adversarial model – a rational adversary who is no longer treated as arbitrarily
malicious, but who is motivated by some utility function with the sole purpose of maximizing its
utility. It is known that under this model protocols can be designed with better efficiency than that
of traditional counterparts [25]. As our problem deals with verifiable computation, we are interested
in rational proof systems that have been recently studied in [6, 7, 32]. The essential merits of rational
proof systems are that they allow for extremely low communication and verification time [6, 7] and
can even achieve single-round proofs if the prover is computationally bounded [32]. The basic idea
of this line of work is that the prover will send the result of computation to the verifier who will
compute the corresponding reward based on the “quality” of prover’s result, and the reward will

6

be maximized only if the result is correct. The publications focus on general complexity classes
such as uniform TC0 (polynomial-time, constant-depth threshold circuits) and decision problems
in P ||NP (polynomial time with access to parallel queries to an NP oracle), while in our case, we
target specific matrix computation with the goal of achieving even better efficiency.

Another related work in this setting is the hourglass scheme [45] which is a technique employed
by a tenant for enforcing an economically rational cloud provider to keep the user’s data at rest
encrypted (even when it possesses decryption keys). The basic idea is to encode the data after it
has been encrypted in such a way that applying the encoding on the fly upon receiving the tenant’s
challenges imposes significant resource constraints on the provider. Therefore, by observing the
time it takes to serve the tenant’s request, the tenant will know whether the provider is complying
with the storage policy. Note that the scheme does not work in presence of fully malicious ad-
versaries (who, e.g., can store both plaintext files and their encoded versions) and this is why the
approach only targets economically rational adversaries who adopt the most reasonable strategy
that maximizes their profits. Our work applies a similar idea to computation of matrix multiplica-
tion instead of storage (i.e., if the provider deviates from the prescribed computation, it will have
to invest larger computation into passing verification).

3 Background and Definitions

3.1 Basic Definitions

Throughout this work we use notation x
R← S to denote that x is chosen uniformly at random

from the set S. A function ε(n) is said to be negligible if for sufficiently large n its value is smaller
than the inverse of any polynomial poly(n). Let F be a family of functions and Dom(f) denote the
domain of function f ∈ F . Also, let κ denote a security parameter. We use H : {0, 1}∗ → {0, 1}`1(κ)
to denote a collision resistant hash function that takes as input a string x and outputs an `1(κ)-bit
hash y. We also use notation || to denote string concatenation. For matrix A, notation Aij refers
to the element of A at row i and column j.

Definition 1 Let F : {0, 1}κ × {0, 1}`2(κ) → {0, 1}`2(κ) be a family of functions. For k ∈ {0, 1}κ,
the function fk : {0, 1}`2(κ) → {0, 1}`2(κ) is defined as fk(x) = F (k, x). F is said to be a family of
pseudo-random functions (PRF) if for every probabilistic polynomial time (PPT) adversary A with
oracle access to a function fk and all sufficiently large κ, |Pr[Afk(1κ)−Pr[AR(1κ)]| is negligible in

κ, where k
R← {0, 1}κ and R is a function chosen at random from all possible functions mapping

`2(κ)-bit inputs to `2(κ)-bit outputs.

We use notation PRF to refer to a pseudo-random function family.

Definition 2 (Bilinear map) A one-way function e : G1 × G2 → GT is a bilinear map if the
following conditions hold:

• (Efficient) G1, G2, and GT are groups of the same prime order p and there exists an efficient
algorithm for computing e.

• (Bilinear) For all g1 ∈ G1, g2 ∈ G2, and a, b ∈ Zp, e(ga1 , gb2) = e(g1, g2)
ab.

• (Non-degenerate) If g1 generates G1 and g2 generates G2, then e(g1, g2) generates GT .

Throughout this work, we assume there exists a trusted setup algorithm Set that, on input a security
parameter 1κ, outputs the setup for groups G1 = 〈g1〉 and G2 = 〈g2〉 of prime order p that have a
bilinear map e, and e(g1, g2) generates GT of order p. That is, (p,G1,G2,GT , g1, g2, e)← Set(1κ).

7

3.2 Computational Assumptions

The first computational assumption that we use in this work is the Multiple Decisional Diffie-
Hellman Assumption (m-M-DDH) [16], which can be stated as follows:

Definition 3 (m-M-DDH assumption) Let G be a group of prime order p, g ∈ G is its gen-
erator, and m ≥ 2. Given D = (gx1 , . . . , gxm , {gxixj}1≤i<j≤m) for random x1, . . . , xm ∈ Zp, and
random tuple Drand = (g1, . . . , gm, {gij}1≤i<j≤m) in G, we define the advantage of adversary A in
solving the M-DDH problem as

AdvM-DDH
A (κ) = |Pr[A(g, p,m,D) = 1]− Pr[A(g, p,m,Drand) = 1]|

We say that the M-DDH assumption holds if for every PPT algorithm A AdvM-DDH
A (κ) is negligible.

Some of our schemes are built using subgroups of elliptic curves with pairings where the deci-
sional Diffie-Hellman (DDH) problem is hard. The use of DDH-hard pairing groups requires the
External Diffie-Hellman (XDH) assumption [10].

Definition 4 (XDH assumption) Let (p,G1,G2,GT , g1, g2, e) ← Set(1κ). We define the ad-
vantage of adversary A in solving the DDH problem in G1 as

AdvXDH
A (κ) = |Pr[A(p, g1, g2, g

a
1 , g

b
1, g

ab
1) = 1]− Pr[A(p, g1, g2, g

a
1 , g

b
1, g

c
1) = 1]|

where a, b, c
R← Zp. We say that the XDH assumption holds if for every PPT algorithm A

AdvXDH
A (κ) is negligible.

The XDH assumption implies that there is no efficiently computable homomorphism from G1

to G2. This assumption is also necessary for the M-DDH assumption to hold in groups that admit
a bilinear map.

3.3 Verifiable Computation

A verifiable computation scheme VC is a 4-tuple of polynomial-time algorithms (Setup, ProbGen,
Compute, Verify) that allows a user to outsource the computation of function f ∈ F to an untrusted
worker. A verifiable computation scheme VC is defined as follows:

Setup(1κ, f)→ params: On input a security parameter κ and function f to be outsourced, it pro-
duces public parameters params.

ProbGen(x, params)→ (SKx,EKx, σx): Given an input x ∈ Dom(f), this algorithm is run by the
delegator to produce a secret key SKx associated with the problem instance for computation
outsourcing and output verification, an evaluation key EKx given to the worker to carry out
the outsourced computation, and an encoding σx of input x.

Compute(EKx, σx)→ σy: Given an encoded input σx and an evaluation key EKx, this algorithm is
run by the worker to produce an encoded outcome σy, where y = f(x).

Verify(SKx, σy)→ y ∪ ⊥: Given an encoded output σy and the secret key SKx, this algorithm out-
puts y or an error ⊥ upon result verification.

8

The correctness requirement is such that the values produced by the algorithms will allow any
honest worker who faithfully executes Compute to pass verification of the output it produces. More
formally, for any f ∈ F , any params ← Setup(1κ, f), and any x ∈ Dom(f), if (SKx,EKx, σx) ←
ProbGen(x, params), σy ← Compute(EKx, σx), and y ← Verify(SKx, σy), then Pr[y = f(x)] = 1.

To formulate security of a verifiable computation scheme, we define an interactive security
experiment described next. In the experiment, the adversary A is allowed to query ProbGen al-
gorithms on inputs of its choice xi and obtain the corresponding evaluation key EKxi and input
encoding σxi . In the private key setting, it is also granted oracle access to Verify algorithm, where
OVerify(xi, σy) runs y ← Verify(SKi, σy) and returns y. Eventually, A outputs the input x∗ on which
it would like to be challenged, obtains evaluation key EKx∗ and encoding σx∗ , and produces output
encoding σ′y. The adversary succeeds if the output is different from f(x∗) and the verification
algorithm does not output an error ⊥. Note that this definition captures full adaptive security as
opposed to weaker selective security where the adversary is required to commit to the challenge
input x∗ in the beginning of the game.

Experiment ExpVer
A (VC, f, κ)

params← Setup(1κ, f)

for i = 1 to q do

xi ← AOVerify(·,·)(σx1 ,EK1, . . . , σxi−1 ,EKi−1)

(SKi,EKi, σxi)← ProbGen(xi, params)

x∗ ← A(σx1
,EK1, . . . , σxq

,EKq)

(SKx∗ ,EKx∗ , σx∗)← ProbGen(x∗, params)

σ′y ← A(σx1
,EK1, . . . , σxq

,EKq, σx∗ ,EKx∗)

y′ ← Verify(SKx∗ , σ′y)

if y′ 6= ⊥ and y′ 6= f(x∗) return 1

else return 0

For any κ ∈ N and any function f ∈ F , we define the advantage of an adversary A making
at most q = poly(κ) queries in the above security game against VC as AdvVer

A (VC, f, q, κ) =
Pr[ExpVer

A (VC, f, κ) = 1].

Definition 5 We say that a verifiable computation scheme VC is secure if for any PPT adversary
A, any κ, and any f ∈ F , it holds that AdvVerA (VC, f, q, κ) is negligible in κ.

In this work we consider two types of adversaries: the first type is the traditional type of
adversary that can arbitrarily deviate from the prescribed computation as defined by Compute
functionality. We denote this type of adversary as malicious. While the malicious adversary model
leads to strong security guarantees, it has been criticized as overly pessimistic due to neglecting
the incentive that could potentially cause computational entities to deviate from the prescribed
behavior. We therefore consider the second type of adversary which we denote as rational. A
rational adversary is neither honest nor malicious, but only interested in maximizing its reward
attained during computation. The rationale behind including this type of the adversary is that it
allows us to design more efficient solutions if the server can be assumed not to intentionally corrupt
the result. Next, we formally define the rational adversary model in verifiable computation, which
was initially proposed in [6] and later refined for rational argument systems in [7, 32].

Definition 6 A function f admits a rational argument with security parameter κ if there exists a
protocol (P, V) and a randomized reward function reward: {0, 1}? → R≥0 such that for any prover
P̂ of size ≤ 2κ(|x|) and input x ∈ {0, 1}?, the following three properties hold:

• Pr[output(P, V)(x) = f(x)] = 1.

9

• There exists a negligible function µ(·) such that

E[reward((P, V)(x))] + µ(|x|) ≥ E[reward((P̂ , V)(x))].

• If there exists a polynomial p(·) such that Pr[output((P̂ , V)(x)) 6= f(x)] ≥ p(|x|)−1, then there
exists a polynomial q(·) such that

E[reward((P, V)(x))] ≥ E[reward((P̂ , V)(x))] + q(|x|)−1.

The first property refers to completeness of the protocol, which says prover P is able to return
a correct answer f(x) by following the prescribed protocol. The second property ensures that by
deviating from the prescribed protocol in a computationally bounded manner, a dishonest prover
P̂ will achieve at most negligibly larger gain than a faithful prover P . The last property guarantees
that if P̂ does not report a correct answer f(x) with a noticeable probability, he has to bear a
noticeable utility loss. A rational argument system ensures that a rational adversary will maximize
the reward if and only if he honestly follows the prescribed protocol to report the correct answer.
Therefore, to prove security of a protocol, we need to show that it conforms to Definition 6 under
reasonable assumptions on cost and utility, which we formulate in the server-client setting as follows:

Assumption 1 • For each outsourced task, both the monetary reward the client compensates
and the computational cost the server bears are polynomial to the size of the input.

• As the server aims to make profits by devoting his resources to clients’ specific tasks, the
monetary reward he gains from a client should be larger than the cost it bears, which also
conforms to the standard business practice for cloud service.

• In the event of any inconsistency between the answers the server returns and the answers the
client expects, the server will not receive any reward or even undertake utility loss resulted
from the violation of Service Level Agreement (SLA).

3.4 Data Protection in Outsourced Computation

When the data used in an outsourced task is sensitive (e.g., private, proprietary, etc.), it is desirable
to additionally guarantee secrecy of the data. To formulate secrecy protection of data used in veri-
fiable computation, we define an interactive security experiment described next. In the experiment,
the adversary A is allowed to query ProbGen on inputs xi of its choice a polynomial number of
times, obtain the corresponding evaluation keys EKxi and the encoded inputs σxi , and carry out
arbitrary computations including Compute that produces σyi . Eventually, A outputs two strings
x(1) and x(2) on which it would like to be challenged. A random bit b is drawn. A is given encod-
ing of x(b) σx(b) together with the evaluation key EKx(b) produced using ProbGen. The adversary
A outputs its guess for b and wins if it could correctly determine the value of b, i.e., distinguish
between inputs x(0) and x(1).

Experiment ExpPriv
A (VC, f, κ)

params← Setup(1κ, f)

for i = 1 to q do

xi ← A(σx1
,EK1, . . . , σxi−1

,EKi−1)

(SKi,EKi, σxi)← ProbGen(xi, params)

{x(0), x(1)} ← A(σx1 ,EK1, . . . , σxq ,EKq)

b
R← {0, 1}

10

(SKx(b) ,EKx(b) , σx(b))← ProbGen(x(b), params)

b̂← A(σx1
,EK1, . . . , σxq

,EKq, σx(b) ,EKx(b))

if b̂ = b return 1

else return 0

For any κ ∈ N and any function f ∈ F , we define the advantage of an adversary A making at most
q = poly(κ) queries in the above security game against VC as

AdvPriv
A (VC, f, q, κ) = Pr[ExpPriv

A (VC, f, κ) = 1]− 1/2

Definition 7 We say that a verifiable computation scheme VC ensures data secrecy if for any PPT
adversary A, any κ, and any f ∈ F , it holds that the advantage AdvPrivA (VC, f, q, κ) is negligible.

When we talk about verifiable computation schemes that provide data protection, we separate
the algorithms for computation verification and output recovery. In particular, Verify now only
assesses the validity of the returned (protected) output, while new algorithm Output recovers the
data itself. More formally, we have:

Verify(SKx, σy)→ b: Given an encoded output σy and the secret key SKx, this algorithm outputs
a bit b which is set to 1 iff verification was successful.

Output(SKx, σy)→ y ∪ ⊥: Given an encoded output σy and the secret key SKx, this algorithm
returns the output y or ⊥ if the output could not be recovered.

This separation is particularly useful for solutions with public verifiability (where the verifier may
not have the ability to recover the output) as described next.

3.5 Public Verifiability

Recall that public verifiability allows any entity with access to public verification key to assess
correctness of the result of outsourced computation. To model this formally, we modify the ProbGen
algorithm to produce public verification key, denoted by PVKx, and have Verify take PVKx instead
of SKx as before. More precisely, the interface for ProbGen is now

ProbGen(x, params)→ (SKx,PVKx,EKx, σx),

and the interface for Verify is either

Verify(PVKx, σy)→ y ∪ ⊥ or Verify(PVKx, σy)→ b

without and with data protection, respectively. Note that ProbGen may still produce SKx, which
in particular is used to recover the output in schemes that support data protection.

Incorporating public verifiability into a verifiable computation scheme affects the security ex-
periment in which the adversary participates, and we denote the new security experiment by
ExpPubVer

A (VC, f, κ). The difference from the original definition is that now the adversary is given
public verification keys corresponding to all problems that it queried. For completeness, the full
modified definition is given in Appendix A. As before, the advantage of an adversary A making at
most q = poly(κ) queries in the security experiment against some scheme VC is defined as

AdvPubVer
A (VC, f, q, κ) = Pr[ExpPubVer

A (VC, f, κ) = 1]

We then obtain the following modified security definition:

Definition 8 We say that a verifiable computation scheme with public verifiability VC is secure if
for any PPT adversary A, any κ, and any f ∈ F , it holds that AdvPubVerA (VC, f, q, κ) is negligible
in κ.

11

4 Matrix Multiplication in Presence of Malicious Adversary

4.1 Problem Formulation

The delegator would like to multiply two matrices A and B of dimensions n1 × n2 and n2 × n3,
respectively. It is assumed that the elements of A and B are not sensitive and do not require
protection. In our solution, the delegator’s work is linear in the size of the input and output, which
is optimal.

Our first scheme aims to defend against a malicious adversary who tampers with the computa-
tion or its results regardless of operation costs and attempts to pass the verification test. Also, this
basic construction does not achieve public verifiability: only the entity who possesses the secret key
is able to attest the correctness of outsourced computation. In a consecutive solution in section 7
we extend the scheme to support public verifiability that allows any entity with access to public
key assess the validity of computation results. For notational simplicity, we use VCm to denote this
scheme.

4.2 Description of the Scheme

The main idea used in our solution is that the delegator encodes matrix A into matrix X and matrix
B into matrix Y . The delegator sends matrices {A,B,X, Y } to the server who computes C = A×B
and D = X×Y . The client then verifies correctness of C by checking a secret relationship between
the elements of C and D.

In more detail, the secret relationship is formed by generating secret random group elements

Rij such that Dij = R
Cij

ij , which are of the form g
ricj
T , where {ri}n1

i=1 and {cj}n3
j=1 are two vectors of

random elements. Moreover, in order to satisfy the relationship, we need to embed ri and cj into

each Dij , and this is realized by forming Xij and Yij to be of the form g
riAij

1 and g
cjBij

2 , respectively.
We aim to rely on the M-DDH assumption to show that, given gri1 and g

cj
2 , g

ricj
T is indistinguishable

from a random value, which is however difficult due to the existence of bilinear pairing operation.
To remedy the problem, we completely hide all information about g

cj
2 ’s from the server. As a result,

if we rely on the XDH assumption, (gr1T , . . ., g
rn1
T , {gricjT }1≤i≤n1,1≤j≤n3) is a partial (n1+n3)-M-DDH

tuple and the adversary can have only a negligible advantage in distinguishing the gT
ricj ’s from

random elements of the group. The hiding is achieved by further masking each Yij by a random
value Tij , which should be also in a special form; otherwise, the client will have to compute X × T
to satisfy the relationship, which is the exact workload the client wants to avoid. Therefore, Tij ’s

are formed as g
wjdi
2 using two random vectors {di}n2

i=1 and {wj}n3
j=1, and the client only needs to

perform O(n1n3) work to compute X × T .
When the server returns C and

∑
i

∑
j Dij , the delegator uses {ricj}1≤i≤n1,1≤j≤n3 and informa-

tion about the product X×T to verify that the sum of the elements in C after proper randomization
matches

∑
i

∑
j Dij . If the verification succeeds, the delegator uses C as the correct output. The

details are given in Figure 1.
The complexity of ProbGen run by the delegator is dominated by computing key vk and ma-

trices X and Y , and is therefore O(n1n2 + n2n3). Compute involves the execution of two matrix
multiplications resulting in complexity O(n1n2n3). Verify consists of ensuring the validity of C by
checking its elements against s that Compute produces and has complexity O(n1n3), i.e., linear in
the size of the output. The value of s is computed in such a way that a malicious adversary is
unable to construct an incorrect s that passes the verification test.

12

Setup(1κ, f): Given f that indicates matrix multiplication, using the security parameter κ
run (p,G1,G2,GT , g1, g2, e) ← Set(1κ) and set Set params = (p,G1,G2,GT , g1, g2, gT =
e(g1, g2), f). Matrix elements should be representable as values in Zp.

ProbGen(x = (A,B), params): On input two matrices A and B of respective dimensions n1 × n2
and n2 × n3, perform:

1. Choose ri
R← Z∗p for 1 ≤ i ≤ n1, dj

R← Z∗p for 1 ≤ j ≤ n2, and ck, wk
R← Z∗p for

1 ≤ k ≤ n3.
2. Compute ti =

∑n2
k=1Aikdk for 1 ≤ i ≤ n1, w =

∑n3
j=1wj , and vki = ritiw for 1 ≤ i ≤

n1.
3. Compute Xij = g

riAij

1 for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2.
4. Compute Yij = g

cjBij+wjdi
2 for 1 ≤ i ≤ n2 and 1 ≤ j ≤ n3.

5. Set SKx = ({ci}n3
i=1, {vki}

n1
i=1, {ri}

n1
i=1), EKx = params, and σx = (A,B,X, Y).

Compute(EKx, σx = (A,B,X, Y)): Given σx, execute:

1. Compute C = A×B.
2. Compute s =

∏n1
i=1

∏n3
j=1

∏n2
k=1 e(Xik, Ykj).

3. Set σy = (C, s).

Verify(SKx = ({ci}n3
i=1, {vki}

n1
i=1, {ri}

n1
i=1), σy = (C, s)): Verify whether g

∑n1
i=1 ri

∑n3
j=1 cjCij+vki

T = s.
If the check succeeds, output C; otherwise, output ⊥.

Figure 1: Description of the core scheme VCm in presence of malicious adversaries.

4.3 Analysis of the Scheme

To demonstrate correctness, we show that if the computation was performed correctly, Verify out-
puts product A×B. In Verify, we have:

g
∑n1

i=1 ri
∑n3

j=1 cjCij+vki
T =

n1∏
i=1

g
ri

∑n3
j=1 cjCij+vki

T

=

n1∏
i=1

n3∏
j=1

g
ricjCij+ritiwj

T =

n1∏
i=1

n3∏
j=1

g
∑n2

k=1 riAik(cjBkj+wjdk)

T

=

n1∏
i=1

n3∏
j=1

n2∏
k=1

e(griAik
1 , g

cjBkj+wjdk
2) =

n1∏
i=1

n3∏
j=1

n2∏
k=1

e(Xik, Ykj)

= s

The security property that this scheme achieves can be stated as follows:

Theorem 1 Assuming that the M-DDH and XDH problems are hard, the verifiable computation
scheme VCm is secure according to Definition 5 in presence of malicious adversaries.

Theorem 1 Our proof follows the hybrid argument. We start with the security experiment
ExpVer

A (VCm, f, κ) and devise a sequence of security games, where the adversary A’s view in one
game is indistinguishable from its view in another game. We analyzeA’s advantage AdvVer

A (VCm, f, q, κ)
in winning the experiment. Let Ti denote the event that the security experiment returns 1 in game
Gi. The security games are defined as follows:

13

Game G0. Define G0 to be the same as ExpVer
A (VCm, f, κ).

Game G1. The game is identical to G0, except that when generating Yij , the delegator will

use random value r
(1)
ij in Zp instead of wjdi. In other words, each Yij is formed as g2

cjBij+r
(1)
ij as

opposed to g
cjBij+wjdi
2 in game G0. To be able to verify the result of computation, the delegator

also changes each vki in SKx from its original value ri
∑n2

k=1

∑n3
j=1Aikdkwj to ri

∑n2
k=1

∑n3
j=1Aikr

(1)
kj ,

while keeping the remaining portion of VCm construction unchanged. This will allow the delegator
to verify the result of computation without any changes to Verify.

Comparing A’s view in games G0 and G1, we have that g
wjdi
1 ’s are replaced with random group

elements. Now notice that all g
wjdi
1 ’s collectively form a partial (n2 +n3)-M-DDH tuple. This gives

us that the advantage A has in game G0 is at most AdvM-DDH
A (κ) larger than in game G1 and thus

any non-negligible difference in the adversary’s behavior between the games G0 and G1 can be
used to break the M-DDH assumption. Therefore, we have that |Pr[T1]− Pr[T0]| ≤ AdvM-DDH

A (κ)
and based on our assumption that the M-DDH problem is hard the difference in the adversary’s
view between games G0 and G1 is negligible.

Game G2. The game is identical to G1 except the delegator removes information about cj and Bij

from each Yij , i.e., Yij = g
r
(1)
ij

2 instead of g
cjBij+r

(1)
ij

2 . To be able to verify the result of computation,
we also update SKx to compensate for the difference in Yij ’s. We thus add the difference in the
vki’s

∑n1
i=1

∑n3
j=1 ricj(

∑n2
k=1AikBkj) to the value of vk1 in G1 while keeping the remaining vki’s

the same as in G1 (note that ther are other possibilities because only
∑

i vki’s is used). Because

the r
(1)
ij ’s are completely random, the distribution of the Yij ’s in G1 and in G2 is identical and thus

Pr[T2] = Pr[T1]. Now observe that we removed any information about the cj ’s from A’s view.
Let us next analyze A’s success in winning ExpVer

A (VCm, f, κ) in G2. Assuming the XDH
assumption is true, the M-DDH problem is hard in our setting with bilinear maps, i.e., it is hard
in GT . Thus, while A can compute griT for each i, ({griT }1≤i≤n1 , {g

ricj
T }1≤i≤n1,1≤j≤n3) is a partial

(n1 + n3)-M-DDH tuple and A can have only a negligible advantage in distinguishing the g
ricj
T ’s

from random group elements. Now suppose that A was able to return a tuple (Ĉ, ŝ) that differs
from correct (C, s), but nevertheless passes verification. Then the returned value satisfies the

equation gT
∑n1

i=1

∑n3
j=1 ricj(Cij−Ĉij) = s/ŝ. Because the server has no information about the cj ’s and

furthermore is unable to distinguish g
ricj
T ’s from random group elements, the only way for A to

create simultaneously valid Cij−Ĉij and s/ŝ is to correctly guess the value of g
ricj
T . The probability

of this happening is, however, negligible in κ and thus Pr[T2] is negligible as well.
Combined with the previous analysis of the differences in the adversarial success between games

G0 and G2, we obtain thatA’s advantage is negligible in winning the experiment ExpVer
A (VCm, f, κ)

as desired. �

5 Matrix Multiplication in Presence of Lazy Adversary

Our next construction aims at defending against a rational adversary. Because a rational adversary
behaves in the most profitable manner by considering both the compensation paid by the client
and the cost endured during the computation, it would be to the adversary’s advantage to honestly
report all computed results to obtain compensation for the work (rather than report a bogus result
that could be detected with overwhelming probability and hence yield a lower reward).

In our solution against rational adversaries VCr, we would like to achieve two features: (i) to
force a rational adversary who wishes to maximize its profits to conform to the prescribed protocol
and (ii) in case of faulty computation, to pinpoint location of faulty cells by both the server and the

14

client. Realizing both features is achieved by requiring the client to perform only work sublinear
in the size of the matrices at the time of computation verification. For the ease of presentation, we
describe our solution in a modular manner, where the first scheme support only the first feature
and the second presented scheme enhances it with the second feature.

5.1 Description of the Base Scheme

The main idea behind VCr is similar to that of VCm: as before, the delegator encodes A into X and
B into Y and asks the server to compute products A×B and X×Y . Similar to VCm, correctness of
A×B is verified by checking a secret relationship between the two matrix products. However, unlike
VCm, where the delegator performs the verification itself, in VCr, the delegator further outsources
the verification task to the server and only performs one string comparison to confirm correctness
of the verification process. The saving in the verification cost comes with slightly increased work
during problem generation, but this work is still linear in the size of the input and output. This
scheme can be particularly suitable in the setting with three distinct entities (besides the server)
such as a doctor who delegates problem generation to lab assistants and patients who verifies the
result of the computation returned by the server. The entity performing problem generation (i.e.,
lab assistant in the above example) is willing to put in additional (one-time) work to benefit routine
operations (i.e., verification) by end users (patients).

In our solution, the delegator, as before, produces X as a randomized version of A with its

elements of the form g
riAij

1 and Y as a randomized version of B with its elements of the form

g
cjBij+wjdi
2 . The delegator also releases a new matrix Z formed as g

ricj
T to aid the server in producing

a proof of correct computation. Unlike VCm, security of which relies on the secrecy of g
ricj
T , in VCr,

we need to incorporate additional secret information in the solution to guarantee security despite

public exposure of matrix Z. If we treat Y as B̂ + T , where B̂ = g
cjBij

2 and T = g
wjdi
2 , we want to

use X×T as secret information. In order to do that, the cells of X×T should be indistinguishable
from random group elements, and can be produced by the server only if it follows the prescribed
protocol. Towards the goal, we incorporate additional randomization into X and B̂ by representing

their elements as g
ri/mjAij

1 and g
cjmiBij

2 , respectively, using another random vector {mi}n2
i=1. The

secret verification key is set to be the result of hashing of all cells of X × T . Therefore, to pass
verification, the server has to recover all elements of X×T correctly. Notice that because the server
is unable to separate B̂ from T in Y and thus compute X × T by unintended means, the server is
forced to compute X×Y and A×B, determine X× B̂ from A×B with the help of Z, and remove
X × B̂ from X × Y to recover the key. The scheme is given in Figure 2.

The complexity of ProbGen is O(n1n2 + n1n3 + n2n3), i.e., linear in the size of the input
and output. The complexity of Compute is dominated by two matrix multiplications resulting in
O(n1n2n3) time. Lastly, the Verify algorithm performs a single string comparison of complexity
O(1) and outputs the matrix of size n1 × n3.

Security of this solution holds only when each cell Aij of matrix A takes a non-zero value. For
that reason, we next describe a mechanism for encoding an arbitrary matrix M into an equivalent
matrix M ′ that contains only non-zero values and decoding the result after M ′ is used in the
computation.

Matrix encoding: Given M of dimensions n1 × n2, choose any value ` such that Aij + ` 6= 0 for
1 ≤ i ≤ n1 and 1 ≤ j ≤ n2. To form M ′, add ` to each element of M , i.e., M ′ij = Mij + `,
and store ` for future reference.

Matrix decoding: Let C ′ = M ′ ×N ′, where M ′ (N ′) is an encoded version of matrix M (resp., N)
using value `1 (resp., `2) and has dimensions n1 × n2 (resp., n2 × n3). Observe that each

15

Setup(1κ, f): Given f that indicates matrix multiplication, using the security parameter κ
run (p,G1,G2,GT , g1, g2, e) ← Set(1κ) and set Set params = (p,G1,G2,GT , g1, g2, gT =
e(g1, g2), f). Matrix elements should be representable as values in Zp.

ProbGen(x = (A,B), params): On input two matrices A and B of respective dimensions n1 × n2
and n2 × n3, perform:

1. Choose ri
R← Z∗p for 1 ≤ i ≤ n1, dj ,mj

R← Z∗p for 1 ≤ j ≤ n2, and ck, wk
R← Z∗p for

1 ≤ k ≤ n3.
2. Compute Xij = g

ri/mjAij

1 for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2.
3. Compute Yij = g

cjmiBij+wjdi
2 for 1 ≤ i ≤ n2 and 1 ≤ j ≤ n3.

4. Compute Zij = g
cjri
T for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n3.

5. Compute ti =
∑n2

k=1Aikdk/mk for 1 ≤ i ≤ n1, and vkij = tiriwj for 1 ≤ i ≤ n1 and
1 ≤ j ≤ n3.

6. Compute skij = g
vkij
T for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n3, set skj = H(sk1j ||sk2j || . . . ||skn1j)

for 1 ≤ j ≤ n3, and sk = H(sk1||sk2|| . . . ||skn3).
7. Set SKx = sk, EKx = (params, Z), and σx = (A,B, X,Y).

Compute(EKx = (params, Z), σx = (A,B,X, Y)): Execute the following steps:

1. For j = 1, . . ., n3 do:

(a) For 1 ≤ i ≤ n1, compute

• V (1)
ij =

∑n2
k=1AikBkj

• V (2)
ij =

∏n2
k=1 e(Xik, Ykj) = gT

∑n2
k=1 Aik(cjriBkj+wjdkri/mk)

• ∆ij = V
(2)
ij /Zij

V
(1)
ij for 1 ≤ j ≤ n3 and 1 ≤ i ≤ n1.

2. Compute ˆskj = H(∆1j ||∆2j ||. . .||∆n1j) and ŝk = H(ŝk1||ŝk2||. . .||ŝkn3).

3. Set σy = (V (1), ŝk).

Verify(SKx = sk, σy = (V (1), ŝk)): Verify whether ŝk = sk. If the check succeeds, output V (1);
otherwise, output ⊥.

Figure 2: Description of the core scheme VCr in presence of lazy adversaries.

element C ′ij =
∑n2

k=1 (Mik + `1)(Nkj + `2). To recover C = M×N , compute the offset ∆ij for
each element, which equals to `2

∑n2
k=1Mik + `1

∑n2
k=1Nkj + n2`1`2, and set Cij = C ′ij −∆ij .

Note that the value `2
∑n2

k=1Aik (`1
∑n2

k=1Bkj) is the same for all elements in a single row
of matrix M (resp., single column of matrix N). This means that we only need to compute
that value for n1 rows of matrix M (resp., n3 columns of matrix N). The overall complexity
of computing all offsets is therefore O(n1n2 +n2n3) and the complexity of computing C from
C ′ is O(n1n3).

The decoding computation is simplified when only one of the matrices used in the product
was encoded to eliminate zero entries (as in VCr). In that case, the offset becomes ∆ij =
`1
∑n2

k=1Nkj assuming that M was the encoded matrix, and the overall complexity of decoding
is O(n1n3 + n2n3).

16

5.2 Analysis

To demonstrate correctness of VCr, we show that if the computation was performed correctly, the
server is able to recover the key sk. That is, an honest server will be able pass verification when
sk is honestly computed as sk = H(sk1||sk2||. . .||skn3) and for each j = 1, . . ., n3, we have:

ˆskj = H(∆1j ||∆2j ||. . .||∆n1j)

= H(V
(2)
1j /Z1j

V
(1)
1j ||V (2)

2j /Z2j
V

(1)
2j ||. . .||V (2)

n1j
/Zn1j

V
(1)
n1j)

= H(gT
∑n2

k=1 A1k(wjdk/mk)r1 ||. . .||gT
∑n2

k=1 An1k
(wjdk/mk)rn1)

= H(ŝk1j ||ŝk2j ||. . .||ŝkn1j) = skj

That is, since ŝkj = skj for each j, ŝk = sk. Security of our VCr scheme can be stated as follows:

Theorem 2 If H is a collision-resistant hash function, the M-DDH and XDH assumptions hold,
and all elements of A are non-zero, a server that deviates from the correct protocol can only pass
verification with a probability negligible in the security parameter.

Proof Similar to the proof of Theorem 1, we proceed with a series of games using the hybrid
argument and analyze the adversary’s capabilities in the final game.

Game G0. Define G0 to be the same as ExpVer
A (VCr, f, κ).

Game G1. The game is identical to G0, except that when generating Yij , the delegator will use

random value r
(1)
ij in Zp instead of wjdi. To be able to verify the result using the original Verify, the

delegator also updates each vkij in SKx from riwj
∑n2

k=1Aikdk/mk in G0 to ri
∑n2

k=1Aikr
(1)
kj
/mk.

As before, assuming that (n2 + n3)-M-DDH problem is hard, |Pr[T1]− Pr[T0]| is negligible.

Game G2. The game is identical to G1 except that the delegator removes cj , mi, and Bij from each

Yij , which is now formed as g
r
(1)
ij

2 instead of g
cjmiBij+r

(1)
ij

2 . The delegator also makes corresponding

changes to SKx to ensure that Verify works by setting each vkij to
∑n2

k=1Aikri(r
(1)
kj /mk − cjBkj).

Because the r
(1)
ij ’s are completely random, the distribution of the Yij ’s in G1 and the Yij ’s in G2 is

identical and A’s view does not change, i.e., Pr[T2] = Pr[T1].

Game G3. The game is identical to G2 except that the delegator replaces the ri/mj ’s in Xij ’s

with random values r
(2)
ij and the cjri’s used in generating Zij ’s with random values r

(3)
ij . The

delegator also sets each vkij in SKx to
∑n2

k=1Aik(r
(2)
ik r

(1)
kj −Bkjr

(3)
ij) to be able to verify the result of

computation. Because anyone with access to the public parameters can compute values equivalent

to Xij in GT (i.e., g
riAij/mj

T), we treat all values as an instance of a single M-DDH problem. Then

assuming the (n1 + n2 + n3)-M-DDH problem defined on griT ’s (gri1 ’s), g
cj
T ’s, and g

1/mj

T ’s (g
1/mj

1 ’s)
is hard, the difference in A’s view between G2 and G3 is negligible.

Game G4. The game is the same as G3 except that each Xij = g
r
(2)
ij

1 instead of g
r
(2)
ij Aij

1 . Addition-

ally, each vkij in SKx is set to
∑n2

k=1 (r
(2)
ik r

(1)
kj −AikBkjr

(3)
ij). Assuming each Aij is non-zero, A’s

view is unchanged from G3.
Now observe that we completely removed any information used in constructing key sk from A’s

view. This implies that A is unable to pass verification with more than negligible probability by
guessing or performing unrelated computation. Next, we show that the only way to pass verification
with non-negligible probability is to faithfully follow the protocol and compute correct key sk.
Specifically, to match sk computed as H(sk1||sk2||. . .||skn3), A needs to produce correct ski for

17

i = 1, . . . , n3 because of the collision-resistance of hash function H. Similarly, because each ski is
formed as H(∆1j ||∆2j ||. . .||∆n1j), A has to have ∆ij ’s to produce correct ski and pass verification.
Furthermore, observe that ∆ij is a function of di, wj , and 1/mk (more precisely, a function of their
product) and information about diwj is encoded in Y and information about 1/mk is encoded in
X (and no other values contain information about di, wj , or 1/mk). Then the only way for A to
derive diwj/mk is to use X and Y as a whole and apply the pairing operation which will result in

the desired product. Now notice that by doing this, A will introduce the term gT
cjri

∑n2
k=1 AikBkj

that protects ∆ij . To remove it, A has to use Zij , which is the only value that is a function of cj .

Thus, A is forced to compute Zij
V

(1)
ij to obtain correct ∆ij , which necessitates faithful computation

of V (1) that corresponds to A×B. By executing the above steps, A is forced to follow the protocol,
which is the only way to produce correct sk with a non-negligible probability. �

Assumption 2 If the server returns σy = (V (1, ŝk) such that ŝk = sk, but V (1) 6= C, there is a
non-negligible probability that the error will be detected by the client.

This assumption is crucial to our result and can be realized by outsourcing a small (but non-
negligible) fraction 0 < ρ < 1 of all tasks to a second independent server. For example, for each
task the client chooses random v ∈ [0, 1], and if v ≤ ρ, the client uses two (non-colluding) servers
for independently outsourcing the task and compares the returned products C afterwards. If the
servers are non-colluding and at least one returned C is incorrect, the client will be able to detect
misbevior with non-negligible probability. This implies that if the server performed the work to
pass the verification test, it will be incentivized to return correct C.

Theorem 3 If Assumptions 1 and 2 and assumptions of Theorem 2 hold, VCr is secure in presence
of rational adversaries according to Definition 6.

Proof of Theorem 3 Based on Assumptions 1 and 2 and Theorem 2, we show VCr satisfies the
three conditions specified in Definition 6, and hence is a rational argument system.

It is obvious that if the server follows the prescribed protocol in a faithful manner, he is able
to return a correct answer with probability 1. Furthermore, Theorem 2 states that, if the server
deviates from the prescribed protocol, he only has a negligible probability to pass the verification
test. Let µ(|x|) denote such a probability, where x is the client’s input. Also, let R(|x|) and C(|x|)
denote the server’s reward and cost, respectively, which according to Assumption 1 are polynomial
in |x|. Therefore, if the reward is 0 when the server is caught cheating, the expected reward for an
unfaithful prover that did not perform the computation is

E[reward((P̂ , V)(x))] = (1− µ(|x|)) · 0 + µ(|x|)R(|x|).

If, however, the server performed the computation correctly, but did not return correct matrix
C, its expected reward is p1 · (−C(|x|)) + (1− p1)(R(|x| −C(|x|)), where p1 denotes the probability
that the problem is detected at a later point, in which case the compensation is 0. Let p2 denote
the probability that a cheating server follows the first strategy (i.e., does not perform the compu-
tation) and (1 − p2) will be the probability that it follows the second strategy (i.e., performs the
computation, but returns incorrect matrix C). This gives us the overall expected reward

E[reward((P̂ , V)(x))] = p2µ(|x|)R(|x|) + (1− p2)((1− p1)(R(|x|)− C(|x|))− p1C(|x|))

In the case of truthful behavior, E[reward((P, V)(x))] = R(|x|) − C(|x|) > 0. Because in the
first cheating strategy the expected reward (µ(|x|)R(|x|)) is negligible and in the second cheating

18

strategy the reward is always less than the reward of honest behavior, we obtain that

E[reward((P, V)(x))] > E[reward((P̂ , V)(x))].

Regarding the third property, if Pr[output((P̂ , V)(x)) 6= f(x)] ≥ p(|x|)−1 = p, and if we use
E[rewardP̂] to denote the overall reward of a dishonest server that is computed in the proof of
second property, we have

E[reward((P̂ , V)(x))] = p · E[rewardP̂] + (1− p)E[reward((P, V)(x))]

Therefore, E[reward((P, V)(x))]−E[reward((P̂ , V)(x))] = p((p1 + p2 − p1p2)(R(|x|)−C(|x|)) +
p1(1 − p2)C(|x|) − p2µ(|x|)R(|x|)). Because p and p1 are positive non-negligible probabilities,
(p1 + p2 − p1p2) ≥ p1, p1(1 − p2) ≥ 0, and p2µ(|x|)R(|x|) is a negligible value, we can represent
the above difference in expected rewards using another non-negligible positive polynomial q(|x|)−1,
and have the third property satisfied.

The above means that following the prescribed protocol and producing correct matrix products
A×B and X × Y is the most profitable strategy for a rational adversary.

5.3 Description of Enhanced Scheme

In this section, we propose an enhanced scheme that supports chaining and allows honest parties to
pinpoint faulty cells in case of computation corruption or intentional deviation from the prescribed
computation using a single mechanism. That is, recall that this feature makes it difficult for
a dishonest server to continue with the next stage of the computation if it was not carried out
correctly at the current stage and allows the client to efficiently identify the first stage at which a
fault occurred. It also allows the cloud itself to detect a problem with the computation (in case
of compromise or malware infection). The basic idea behind the solution is that the client divides
the entire computation into n3 sub-computations. The keys ski are formed as before, but now
the ith key is used to encode the inputs of the (i + 1)th sub-computation. The server is able to
recover the (i + 1)th sub-key only if it executes sub-computations at stages 1 through i correctly.
Upon computation completion, the verifier receives the last key from the server and examines its
correctness. If the verifier notices a discrepancy between the returned key and its expected value, he
will ask the server to return all the keys generated throughout the computation. The verifier then
applies a procedure similar to binary search to locate the first incorrect key, which corresponds to
the first sub-computation that has been executed incorrectly. This operation can be implemented
in O(log n) steps, where n is the total number of sub-computations. The server will also be able to
examine the correctness of the first i sub-computations that have been executed so far by verifying
that the inputs of (i + 1)th sub-computation could be decoded correctly using ski. If this check
fails, this serves as a notification to the server of the existence of faulty cells and the server can
suspend the computation to identify faulty sells among the cells computed so far.

The detail of our solution can be described as follows: The client generates five matrices
{A,B,X, Y, Z} and forms keys ski as in the base scheme. Now the computation of the ith column of
matrices A×B and X×Y is considered to be the ith sub-computation. The client then blinds each
element of the (i+1)th column of matrices B and Y by XORing them with a pseudo-random string.
This pseudo-random string is produced using ski as the secret key to a pseudo-random function
PRF, which is evaluated on the cell’s row and column indices together with a unique identifier for
each matrix to guarantee uniqueness of the input/output. In order to remove blinding and recover
the next sub-computation, the server needs to produce correct ski as before (by computing the ith

19

Setup(1κ, f): The same as in VCr.

ProbGen(x = (A,B), params): Given matrices A and B, perform:

1. Compute X, Y , Z, and {ski}n3
i=1 as in VCr.

2. Set B̂i1 = Bi1 and Ŷi1 = Yi1 for 1 ≤ i ≤ n2; and also set
• B̂ij = PRFskj−1

(i||j||0)⊕ (Bij ||0λ)

• Ŷij = PRFskj−1
(i||j||1)⊕ (Yij ||0λ)

for 1 ≤ i ≤ n2 and 2 ≤ j ≤ n3, where λ is a correctness parameter.
3. Set SKx = {ski}n3

i=1, EKx = (params, Z), and σx = (A, B̂,X, Ŷ).

Compute(EKx = (params, Z), σx = (A, B̂,X, Ŷ)): Execute steps:

1. Set U
(1)
i1 = B̂i1 and U

(2)
i1 = Ŷi1 for 1 ≤ i ≤ n2.

2. For j = 1, . . ., n3 do:

(a) For 1 ≤ i ≤ n1, compute

• V (1)
ij =

∑n2
k=1AikU

(1)
kj

• V (2)
ij =

∏n2
k=1 e(Xik, U

(2)
kj)

(b) Let ∆ij = V
(2)
ij /Zij

V
(1)
ij for 1 ≤ i ≤ n1. Compute ˆskj = H(∆1j ||∆2j ||. . .||∆n1j).

(c) If j 6= n3, for 1 ≤ i ≤ n2 compute

• U (1)
ij+1||W1 = B̂ij+1 ⊕ PRF ˆskj

(i||j + 1||0)

• U (2)
ij+1||W2 = Ŷij+1 ⊕ PRF ˆskj

(i||j + 1||1)

If W1 or W2 is not equal to 0λ, report an error and abort.

3. Set σy = (V (1), ŝkn3).

Verify(SKx = {ski}n3
i=1, σy = (V (1), ŝkn3)): Verify whether ŝkn3 = skn3 . If the check succeeds,

output V (1). Otherwise, retrieve all {ŝki}n3
i=1 from the server and find the smallest index i

such that ŝki 6= ski using binary search.

Figure 3: Description of scheme VCr that incorporates chaining and allows for fast location of an
error in the computation.

column of two matrix products) and evaluate the PRF on that key to reproduce the random mask.
This will allow the server to recover the inputs for the (i+1)th column of matrix B and Y , i.e., the
(i+ 1)th sub-computation, and continue the computation. We make the size of the pseudo-random
string output by PRF to be longer than the size of the matrix elements they mask so that the
remaining bits can be used to verify that the input to the (i+ 1)th sub-computation was decoded
correctly. That is, we append a zero string of a predefined size to each input before encoding, and
the server can use it to verify that decoding was successful (and if it was not, investigate the reason
for the failure). At the end of the computation, the server recovers and returns the last key skn3 ,
which the client compares to the expected key and accepts the result of the computation if the
verification succeeds. The scheme is given in Figure 3.

The complexity of ProbGen and Compute algorithms remain the same as the basic scheme, i.e.,
O(n1n2 + n1n3 + n2n3) and O(n1n2n3), respectively. The Verify algorithm performs a single string
comparison of complexity O(1) and outputs a matrix of size n1 × n3 in case of no errors. If the
check, however, fails, the client retrieves n3 keys and additionally performs O(log n3) work.

20

5.4 Analysis

To show correctness, it is trivial to demonstrate that the server is able to recover the inputs for
the next sub-computation upon computing key skj for each j. Because the server can produce
each random mask by computing PRFskj−1

(i||j||id), it is able to obtain the inputs and complete
the computation.

We start showing security of the enhanced VCr scheme with the following claim:

Lemma 1 If H is a collision-resistant hash function, PRF is a pseudo-random function, the M-
DDH and XDH assumptions hold, and all elements of A are non-zero, it is computationally difficult
for the server who did not follow the prescribed computation for stages 1 through i to recover the
input for (i+ 1)th sub-computation for i ≥ 1.

Proof We prove this by induction on i.

Basic step: Let i = 1. The server receives inputs to the first sub-computation in the clear and
would like to recover the inputs for the next sub-computation. First, notice that the inputs
to the second-computation are protected by the output of PRF evaluated on unique points.
This means that a computationally-bounded server will be unable to learn any information
about the inputs with greater than negligible probability without access to sk1. To recover
sk1, however, the only option for the server is to comply with the prescribed computation,
using exactly the same argument as in the proof of Theorem 2.

We obtain that an adversary who deviates from the prescribed computation is unable to
recover sk1 and thus the inputs for the second sub-computation, as claimed.

Induction step: Suppose that the claim is true for some k = i and we show that it is true for
k = i + 1. The argument proceeds similarly to the basic step above. That is, by induction
we know that it is infeasible to recover inputs for the ith sub-computation without following
the prescribed computation. Therefore, if the server was able to recover the inputs to the ith
sub-computation, it must be difficult to recover the inputs to the (i+ 1)th sub-computation
without honestly carrying out the computation for the ith sub-computation. The security
argument proceeds in the same way as in the basic step.

If the server was not able to recover the inputs to the ith sub-computation, it is still infeasible
to recover the inputs to the (i+1)th sub-computation due to the security of the PRF function
used. This completes the proof.

Theorem 4 If H is a collision-resistant hash function, PRF is a pseudo-random function, the M-
DDH and XDH assumptions hold, and all elements of A are non-zero, the server that deviates from
the correct protocol can only pass verification with a probability negligible in the security parameter.

Proof According to Lemma 1, if the server deviates at any stage of the protocol except for the last
one, it will be computationally difficult for him to recover the input of the last stage, which leads
to a negligible probability to pass verification. Moreover, if the server deviates at the last stage,
according to Theorem 2, it also results in a negligible success probability. This means if the server
deviates from the prescribed protocol, he can only pass verification with a probability negligible in
the security parameter.

Theorem 5 If Assumptions 1 and 2 and assumptions of Theorem 4 hold, VCr that incorporates
chaining is secure in presence of rational adversaries according to Definition 6.

21

The proof is similar to that of Theorem 3.

Corollary 1 If the result of the returned computation does not verify, the client will be able to
identify the first faulty sub-computation using O(log(n3)) string comparisons.

Proof Based on Lemma 1, if a key ski was not computed correctly, it is computationally difficult
to recover all consecutive keys ski+1, . . ., skn3 . This means that to identify the first faulty sub-task,
the client needs to find i such that the server’s ŝki 6= ski, but ŝki−1 = ski−1. Finding such an i
using binary search can be accomplished in O(log(n3)) steps.

6 Support for Matrix Privacy

In this section, we extend both of our previous constructions, VCm and VCr, to incorporate privacy
(or data secrecy) protection of input/output matrices. We denote the resulting schemes as VCpm
and VCpr , respectively. In more detail, we would like to ensure that the server who executes the
outsourced task is unable to learn any information regarding input matrices A and B, and consecu-
tively their product A×B, throughout the computation. We thus modify both schemes to achieve
this goal, while still preserving their original properties of verifiable computation.

6.1 Support for Matrix Privacy in Malicious Setting

In VCpm, we wish to guarantee that the server is unable to infer any information about the input
matrices A and B from σx and EKx that ProbGen outputs. Because EKx consists of only public pa-
rameters, we need to concentrate on σx that consists of matrices A, B, X, and Y . To protect A and
B, our solution encodes them using a homomorphic encryption scheme (e.g., BGN encryption [15])
that supports one multiplication and an unlimited number of additions on messages in encrypted
form. This allows for matrix multiplication A × B to be privately carried out on encrypted data.
With respect to the remaining matrices, notice that no changes to Y are necessary. That is, the

term g
wjdi
2 protects each element of matrix B that matrix Y encodes, assuming that the M-DDH

assumption holds. Matrix X in its original form, however, can disclose information about the ele-
ments of matrix A. To prevent this disclosure, we encode its elements in a form similar to that of

matrix Y , by incorporating a random term g
hjui
1 into each element of Y . The detailed protocol is

presented in Figure 4.
To protect the original elements of matrix X, the delegator chooses additional random values

ui and hj in ProbGen, which are incorporated into the elements of X. Because the format of the

elements in X is changed from g
riAij

1 to g
riAij+hjui
1 , the key vk should also be updated accordingly

to satisfy the verification equation. This change does not affect the complexity of ProbGen, which
remains as O(n1n2+n2n3). In Compute, the server executes the protocol in the same way as in VCm
except that the server now performs matrix multiplication on ciphertexts Enc(Aij) and Enc(Bij)
rather than cleartext and returns the encrypted matrix Enc(C) to the client. The complexity of
Compute is still dominated by two matrix multiplications resulting in O(n1n2n3) time. In Verify,
the client decrypts Enc(C) to obtain C in the clear and then follows the verification procedure
of VCm. As before, the procedure has complexity O(n1n3) (i.e., linear in the size of the output).
Output has the same complexity O(n1n3).

22

Setup(1κ, f): The same as in VCm.

ProbGen(x = (A,B), params): On input two matrices A and B of respective dimensions n1 × n2
and n2 × n3, perform:

1. Choose ri, ui
R← Z∗p for 1 ≤ i ≤ n1, dj , hj

R← Z∗p for 1 ≤ j ≤ n2, and ck, wk
R← Z∗p for

1 ≤ k ≤ n3.
2. Compute w =

∑n3
j=1wj and then ti =

∑n2
k=1Aikdk and vki = ritiw for 1 ≤ i ≤ n1.

3. Compute mi =
∑n2

k=1 hkBki for 1 ≤ i ≤ n3, c =
∑n3

i=1 cimi, and vki = vki + uic for
1 ≤ i ≤ n1.

4. Compute h =
∑n2

k=1 hkdk and vki = vki + uihw for 1 ≤ i ≤ n1.
5. Compute Xij = g

riAij+hjui
1 for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2.

6. Compute Yij = g
cjBij+wjdi
2 for 1 ≤ i ≤ n2 and 1 ≤ j ≤ n3.

7. Setup homomorphic encryption scheme Enc; denote by paramsE the scheme’s public
parameters and by dk private decryption key.

8. Encrypt each element of A and B to produce Enc(Aik) and Enc(Bkj) for 1 ≤ i ≤ n1,
1 ≤ k ≤ n2, and 1 ≤ j ≤ n3.

9. Set SKx = ({ci}n3
i=1, {vki}

n1
i=1, {ri}

n1
i=1, dk), EKx = (params, paramsE), and σx =

(Enc(A),Enc(B), X, Y).

Compute(EKx, σx = (Enc(A),Enc(B), X, Y,)): Given σx, execute:

1. Compute Enc(C) = Enc(A)× Enc(B).
2. Compute s =

∏n1
i=1

∏n3
j=1

∏n2
k=1 e(Xik, Ykj).

3. Set σy = (Enc(C), s).

Verify(SKx = ({ci}n3
i=1, {vki}

n1
i=1, {ri}

n1
i=1, dk), σy = (Enc(C), s)): Decrypt Enc(C) using dk to re-

cover C and verify whether g
∑n1

i=1 ri(
∑n3

j=1 cjCij)+vki
T = s. If the check succeeds, output 1;

otherwise, output 0.

Output(SKx = ({ci}n3
i=1, {vki}

n1
i=1, {ri}

n1
i=1, dk), σy = (Enc(C), s)): Decrypt Enc(C) using dk to re-

cover and output C or ⊥ in case of failure.

Figure 4: Description of scheme VCpm for malicious adversaries that achieves data privacy.

6.1.1 Analysis

To demonstrate correctness, we show that if the computation was performed correctly, Verify output
1, the delegator recovers product A×B. We have:

g
∑n1

i=1 ri(
∑n3

j=1 cjCij)+vki
T =

n1∏
i=1

g
ri

∑n3
j=1 cjCij+vki

T =

n1∏
i=1

n3∏
j=1

g
ricjCij

T ×
n1∏
i=1

gvkiT

=

n1∏
i=1

n3∏
j=1

g
∑n2

k=1 ricjAikBkj

T ×
n1∏
i=1

n3∏
j=1

g
∑n2

k=1 (Aikdkriwj+hkBkjuicj+hkdkwjui)

T

=

n1∏
i=1

n3∏
j=1

n2∏
k=1

e(griAik+uihk
1 , g

cjBkj+wjdk
2) =

n1∏
i=1

n3∏
j=1

n2∏
k=1

e(Xik, Ykj) = s

The data protection property of VCpm construction can be stated as follows:

23

Theorem 6 Assuming that the M-DDH and XDH problems are hard and Enc is a semantically
secure encryption scheme, the verifiable computation scheme VCpm achieves data secrecy according
to Definition 7.

Proof First, notice that the input matrices A and B are protected with secure encryption. This
means that we only need to concentrate on the remaining matrices X and Y that the server receives.
The goal is to ensure that no information about the inputs is revealed from X or Y throughout the
computation. Towards the goal, we proceed with a series of games using the hybrid argument and
analyze the adversary’s capabilities in the final game.

Game G0. Define G0 to be the same as ExpPriv
A (VCpm, f, κ).

Game G1. The game is identical to game G0, except that when generating Xij and Yij , the

delegator will use random values r
(1)
ij and r

(2)
ij from Zp instead of hjui and wjdi, respectively. To be

able to verify the result using the original Verify, the delegator correspondingly updates the vki’s

in SKx. That is, the delegator computes vkij = ri
∑n2

k=1

∑n3
j=1Aikr

(2)
kj + cj

∑n1
i=1

∑n2
k=1 r

(1)
ik Bkj +∑n2

k=1 r
(1)
ik r

(2)
kj for each 1 ≤ i ≤ n1 and 1 ≤ j ≤ n3 and then sets vki =

∑n3
j=1 vkij for 1 ≤ i ≤ n1. As

before, assuming that (n1 + n2)-M-DDH and (n2 + n3)-M-DDH problems are hard, the difference
in the adversary’s view between G1 and G0 is negligible.

Game G2. The game is identical to G1 except that the delegator removes information about

ri and Aij from each Xij , which is now formed as g
r
(1)
ij

1 instead of g
riAij+r

(1)
ij

1 . Similarly, the

delegator removes information about cj and Bij from each Yij , which is now formed as g
r
(2)
ij

2

instead of g
cjBij+r

(2)
ij

2 . To ensure consistency, the delegator also updates vki’s in SKx to vki =∑n3
j=1

∑n2
k=1 (r

(1)
ik r

(2)
kj − ricjAikBkj). Because the r

(1)
ij ’s (r

(2)
ij ’s) are completely random, the distribu-

tions of Xij ’s (resp., Yij ’s) in G1 and the Xij ’s (resp., Yij ’s) in G2 are identical and the adversary’s
view does not change.

Now observe that we completely eliminated any information about the inputs A and B from
the adversary’s view, which makes the probability of the server winning game G2 exactly 1/2.
Combined with the previous analysis of differences in the adversarial success between games G0 and
G2, we obtain the adversary’s advantage is negligible in winning the experiment ExpPriv

A (VCpm, f, κ).

Theorem 7 Assuming that the M-DDH and XDH problems are hard, the verifiable computation
scheme VCpm is secure according to Definition 5.

Proof There are two differences in the adversary’s view between VCm and VCpm: (i) in VCpm, the
input matrices A and B are sent to the server encrypted and (ii) in VCpm, each element of matrix X

includes an additional random term g
hjui
1 . These differences, however, do not give any advantage

to the adversary in winning the security game ExpVer
A (VCpm, f, κ). Therefore, the proof proceeds

similar to the proof of Theorem 1 and the claim still holds.

6.2 Support for Matrix Privacy in Lazy Setting

Now we would like to modify VCr to add data protection. Unlike VCm, where the computation of
product matrix C and verification value s can be carried out independently, in VCr the server needs
to perform these two computations together in order to produce correct key ŝk used for verification
purposes. A direct consequence of the difference is that we can no longer apply arbitrary encryption
algorithm to matrices A and B because randomness used in ciphertexts will lead to the delegator’s

24

Setup(1κ, f): The same as in VCr.

ProbGen(x = (A,B), params): On input two matrices A and B of respective dimensions n1 × n2
and n2 × n3, perform:

1. Choose ri
R← Z∗p for 1 ≤ i ≤ n1, dj , vj ,mj , sj

R← Z∗p for 1 ≤ j ≤ n2, and ck, wk, uk
R← Z∗p

for 1 ≤ k ≤ n3.
2. Compute Xij = g

ri/mjAij

1 for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2.
3. Compute Yij = g

cjmiBij+wjdi
2 for 1 ≤ i ≤ n2 and 1 ≤ j ≤ n3.

4. Compute X ′ij = g
ri/vjAij

1 for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2.
5. Compute Y ′ij = g

cjviBij+ujsi
2 for 1 ≤ i ≤ n2 and 1 ≤ j ≤ n3.

6. Compute ti =
∑n2

k=1Aikdk/mk for 1 ≤ i ≤ n1, and v̂kij = tiriwj for 1 ≤ i ≤ n1 and
1 ≤ j ≤ n3.

7. Compute t′i =
∑n2

k=1Aiksk/vk for 1 ≤ i ≤ n1, and vkij = v̂kij − t′iriuj for 1 ≤ i ≤ n1
and 1 ≤ j ≤ n3.

8. Compute skij = g
vkij
T for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n3, set skj = H(sk1j ||sk2j || . . . ||skn1j)

for 1 ≤ j ≤ n3, and sk = H(sk1||sk2|| . . . ||skn3).
9. Set SKx = ({ci}n3

i=1, {ri}
n1
i=1, {v̂kij}

n1,n3
i=1,j=1, sk), EKx = (params), and σx =

(X,Y,X ′, Y ′).

Compute(EKx, σx = (X,Y,X ′, Y ′)): Execute the following steps:

1. For 1 ≤ j ≤ n3 and 1 ≤ i ≤ n1, compute

• V (1)
ij =

∏n2
k=1 e(Xik, Ykj) = gT

∑n2
k=1 Aik(cjriBkj+wjdkri/mk)

• V (2)
ij =

∏n2
k=1 e(X

′
ik, Y

′
kj) = gT

∑n2
k=1 Aik(cjriBkj+ujskri/vk)

• ∆ij = V
(1)
ij /V

(2)
ij

2. Compute ŝkj = H(∆1j ||∆2j ||. . .||∆n1j) and ŝk = H(ŝk1||ŝk2||. . .||ŝkn3).

3. Set σy = (V (1), ŝk).

Verify(SKx = ({ci}n3
i=1, {ri}

n1
i=1, {v̂kij}

n1,n3
i=1,j=1, sk), σy = (V (1), ŝk)): Verify whether ŝk = sk and

output 1 if the verification was successful and 0 otherwise.

Output(SKx = ({ci}n3
i=1, {ri}

n1
i=1, {v̂kij}

n1,n3
i=1,j=1, sk), σy = (V (1), ŝk)): Compute g

Cij

T =

(V
(1)
ij /g

v̂kij
T)(cjri)

−1

, recover Cij from the result, and output C. If the computation
fails, output ⊥.

Figure 5: Description of scheme VCpr for rational adversaries that achieves data privacy.

inability to properly compute ŝk. To resolve the issue, we encode A andB using a similar mechanism
to that of forming matrices X and Y . That is, we use the product of two newly generated random
values (such as in the form of wjdi in Yij) to protect each individual element in A and B, and
correspondingly update vkij to allow for correct verification. Description of how to modify input
matrices to contain only non-zero values was given in Section 5.1. Our VCpr construction is given
in Figure 5.

The differences from VCr is that in ProbGen the client now generates additional random values
and uses them in combination with other values to form new matrices X ′ and Y ′ from input
matrices A and B in a similar way X and Y are formed. Furthermore, there is now no need

25

for the client to produce matrix Z as part of the evaluation key because secret random values
cj ’s and ri’s are now incorporated into X ′ and Y ′. The overall complexity of ProbGen is still
O(n1n2 + n1n3 + n2n3). In Compute, the server performs almost the same computation as in VCr,
except that in order to produce V (1), the server needs to perform n1n2n3 pairing operations instead
of modular exponentiations. The overall complexity of Compute is still O(n1n2n3). In Verify, the
verification procedure is a single comparison and therefore has complexity O(1). If the verification
passes, the client calls Output and uses cj ’s, ri’s, and v̂kij ’s from its secret key to recover product
C = A×B from V (1). In particular, to obtain each matrix element Cij , the client needs to compute

the discrete logarithm of (V
(1)
ij /g

v̂kij
T)(cjri)

−1

to the base gT , which in general is hard. However, if
we restrict matrix elements to a small range, the discrete logarithm can be computed by trying all
values in the range or precomputing all powers of gT . The complexity of Output is thus O(n1n3)
cryptographic operations due to the need to recover C.

6.2.1 Analysis

To demonstrate correctness, we show that if the computation was performed correctly, the server
is able to recover the key sk. For each j = 1, . . ., n3, we have:

ˆskj = H(∆1j ||. . .||∆n1j) = H(V
(1)
1j /V

(2)
1j ||. . .||V

(1)
n1j
/V

(2)
n1j

)

= H(gT
∑n2

k=1 A1k(wjdk/mk)r1−
∑n2

k=1 A1k(ujsk/vk)r1 ||. . .||gT
∑n2

k=1 An1k
(wjdk/mk)rn1−

∑n2
k=1 An1k

(ujsk/vk)rn1)

= H(ŝk1j ||. . .||ŝkn1j) = skj

Then since ŝkj = skj for each j, ŝk = sk. The data protection property of VCpr construction can
be stated as follows:

Theorem 8 Assuming that the M-DDH and XDH problems are hard and A does not contain zero
elements, the verifiable computation scheme VCpr achieves data secrecy according to Definition 7.

Proof We proceed with a series of games using the hybrid argument and analyze the adversary’s
capabilities in the final game.

Game G0. Define G0 to be the same as ExpPriv
A (VCpr , f, κ).

Game G1. The game is identical to game G0, except that when generating Yijs and Y ′ijs, the

delegator will use random values r
(1)
ij and r

(2)
ij in Zp instead of wjdi and ujsi, respectively. To be able

to verify the result using the original Verify and recover the output using the original Output, the

delegator modifies each vkij to ri
∑n2

k=1Aik(r
(1)
kj /mk − r

(2)
kj /vk) and also updates sk correspondingly

using the vkij ’s. Moreover, to be able to correctly decrypt the result to recover the output, the

delegator also modifies each v̂kij to ri
∑n2

k=1Aik(r
(1)
kj /mk). As before, assuming (n2 + n3)-M-DDH

problem is hard, the difference in the adversary’s view between G1 and G0 is negligible.

Game G2. The game is identical to G1 except that the delegator removes information about cj ,

Bij , and mi (vi) from each Yij (resp., Y ′ij). Each Yij is now formed as g
r
(1)
ij

1 instead of g
cjmiBij+r

(1)
ij

1

and each Y ′ij is now formed as g
r
(2)
ij

1 instead of g
cjviBij+r

(2)
ij

1 . The secret key SKx will be set to be the

same as that of G1 in order to verify the returned computation, while v̂kij needs to be modified to

ri
∑n2

k=1Aik(r
(1)
kj /mk)− cjri

∑n2
k=1AikBkj . Because the r

(1)
ij ’s and r

(2)
ij ’s are completely random, the

distributions of Yij ’s and Y ′ij ’s in G1 and their distribution in G2 are identical and the adversary’s
view does not change.

26

Game G3. The game is identical to G2 except that when generating Xij ’s, the delegator will use

random values r
(3)
ij in Zp instead of ri/mj ’s and when generating X ′ij ’s, the delegator will use random

values r
(4)
ij in Zp instead of ri/vj ’s. The delegator then computes vkij as

∑n2
k=1Aik(r

(3)
ik r

(1)
kj − r

(4)
ik r

(2)
kj)

and v̂kij as
∑n2

k=1Aikr
(3)
ik r

(1)
kj − cjri

∑n2
k=1AikBkj . Because some values (ri’s) are used in both X

and X ′, we treat all ri/mj and ri/vj as an instance of a single M-DDH problem. Then assuming
that (n1 + 2n2)-M-DDH problem is hard, the difference in the adversary’s view between G2 and
G3 is negligible.

Game G4. The game is identical to G3 except that the delegator removes information about

Aij from each Xij and X ′ij , which are now formed as g
r
(3)
ij

1 and g
r
(4)
ij

1 instead of g
Aijr

(3)
ij

1 and

g
Aijr

(4)
ij

1 , respectively. The delegator then computes vkij as
∑n2

k=1 (r
(3)
ik r

(1)
kj − r

(4)
ik r

(2)
kj) and v̂kij as∑n2

k=1 r
(3)
ik r

(1)
kj − cjri

∑n2
k=1AikBkj . Because the r

(3)
ij ’s and r

(4)
ij ’s are completely random and all Aij ’s

are non-zero, the distributions of Xij ’s and X ′ij ’s in G3 are identical to their distributions in G4.
Therefore, the adversary’s view does not change between G3 and G4.

Now observe that we completely removed any information about the input matrices A and B
from the adversary’s view, which implies that the server’s probability in winning in G4 is exactly
1/2. Combined with the previous analysis of differences in the adversarial success between games
G0 and G4, we obtain that the adversary’s advantage is negligible in winning the experiment
ExpPriv

A (VCpr , f, κ). �

Theorem 9 If the verification of the returned result was successful, H is a collision-resistant hash
function, the M-DDH and XDH assumptions hold, and all elements of A are non-zero, the server
that deviates from the correct protocol can only pass verification with a probability negligible in the
security parameter.

Proof The only difference in the adversary’s view from VCr is that matrices (A,B,Z) that the
adversary receives are replaced with matrices (X ′, Y ′). In either scheme, they are used to form V (1)

and consequently construct the verification key ŝk. Next, note that in both schemes the verification
key is computed in the same way, but strictly less information about the data is revealed to the
adversary in VCpr (i.e., X ′ and Y ′ do not reveal any information about the key and input matrices
under out computational assumptions). Therefore, the adversary does not gain any advantage in
passing verification without following the prescribed computation and the security claim holds in
VCpr as well. �

Theorem 10 If Assumptions 1 and 2 and assumptions of Theorem 9 hold, VCpr is secure in pres-
ence of rational adversaries according to Definition 6.

As before, the proof will be similar to that of Theorem 3, and we omit the details here. It is worth
noting that we can easily modify VCpr to incorporate key chaining, which allows for efficient location
of faulty cells when verification fails, by adding an additional layer of encoding to matrices Y and
Y ′.

7 Support for Public Verifiability

Recall that public verifiability means that at the time of problem generation the delegator produces
a public verification key and after the server executes the computation delegated to it any entity
with the knowledge of the public key is able to verify correctness of the outsourced computation.

27

In this section, we incorporate public verifiability into VCm and VCr constructions while preserving
their original security properties. In particular, the client will now produce a public verification
key PVKx as a public version of SKx at ProbGen time, which is roughly in the form of gSKx . This
key then can be utilized by any auditing entity at Verify time to confirm correctness of outsourced
computation upon its completion. We also show how the introduced modifications can be applied
to privacy-preserving versions of schemes VCpm and VCpr so that all features of public delegatability
and verifiability, privacy protection, and computation verification will be supported in a single
construction.

7.1 Support for Public Verifiability in Lazy Setting

Recall that in VCr, SKx produced at problem generation time consists of only key sk. Therefore,
all that is needed to convert the solution into a publicly verifiable scheme is to make a public version
of the key, gsk, publicly available. Thus, our scheme with public verifiability VCpvr can be described
as follows:

1. In ProbGen, the only difference is that in step 7 we set PVKx = gsk and the algorithm returns
PVKx instead of SKx. Here, g is a generator of a cyclic group G in which the discrete logarithm
problem is hard, and any G and g will suffice.

2. In Verify, the difference is that the input now includes PVKx instead of SKx and the verification

consists of checking whether PVKx = gŝk, where as before ŝk is part of output produced by
Compute.

The remaining algorithms, Setup and Compute, are unchanged from VCr.

Theorem 11 Assuming that the M-DDH and XDH problems are hard, H is a collision-resistant
hash function, and matrix A contains only non-zero elements, the verifiable computation scheme
VCpvr is secure according to Definition 8.

Proof There is only one difference in the adversary’s view between VCr and VCpvr in accordance
to Definition 8: In VCpvr , the adversary can observe published PVKx = gsk for all of its queries.
However, as the discrete logarithm problem is hard in G, the adversary is unable to extract infor-
mation about sk and therefore will not gain any non-negligible advantage in winning the security
game ExpPubVer

A (VCpvr , f, κ). The proof for this construction proceeds in the same way to the proof
of Theorem 2 and the security claim holds. �

Because the release of PVKx does not reveal enough information to compromise security of the
scheme, we can apply the same modification to the privacy-preserving version VCpr of this scheme,
without having to make additional adjustments. In the resulting construction, any verifier will be
able to assess correctness of the performed computation using PVKx, but will not be able to recover
the output without access to additional information stored in SKx. The delegator uses procedure
Output to recover the produce matrix C.

7.2 Support for Public Verifiability in Malicious Setting

Unlike the previous solution, to achieve public verifiability in the malicious adversary setting PVKx
to be gv for every v ∈ SKx does not work. Doing this would reveal crucial key information, which
can be easily exploited by the server to compromise integrity of the computation. In particular,

assume that PVKx now consists g
ricj
T for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n3 and g

∑n1
k=1 rivki

T , and Verify

28

Setup(1κ, f): The same as in VCm.

ProbGen(x = (A,B), params): On input two matrices A and B of respective dimensions n1 × n2
and n2 × n3, perform:

1. Choose ri
R← Z∗p for 1 ≤ i ≤ n1, dj

R← Z∗p for 1 ≤ j ≤ n2, and ck, wk
R← Z∗p for

1 ≤ k ≤ n3.
2. Compute ti =

∑n2
k=1Aikdk for 1 ≤ i ≤ n1, f =

∑n3
j=1wj , and vki = tif for 1 ≤ i ≤ n1.

3. Compute Yij = g
cjBij+wjdi
2 for 1 ≤ i ≤ n2 and 1 ≤ j ≤ n3.

4. Set PVKx = ({gri1 }
n1
i=1, {g

ricj
T }n1,n3

i=1,j=1, g
∑n1

i=1 rivki
T), EKx = params, and σx = (A,B, Y).

Compute(EKx, σx = (A,B, Y)): Given σx, execute:

1. Compute C = A×B.
2. Compute si =

∏n3
j=1

∏n2
k=1 Y

Aik
kj for 1 ≤ i ≤ n1.

3. Set σy = (C, {si}n1
i=1).

Verify(PVKx = ({gri1 }
n1
i=1, {g

ricj
T }n1,n3

i=1,j=1, g
∑n1

i=1 rivki
T), σy = (C, {si}n1

i=1)): Verify whether∏n1
i=1

∏n3
j=1 (g

ricj
T)

Cij × g
∑n1

i=1 rivki
T =

∏n1
i=1 e(g

ri
1 , si). If the check succeeds, output C;

otherwise, output ⊥.

Figure 6: Description of scheme VCpvm in malicious setting that supports public verifiability.

consists of checking whether
∏n1
i=1

∏n3
j=1 (g

ricj
T)Cij + g

∑n1
k=1 rivki

T = s holds (where s is returned by

Compute).1 To launch an attack, the adversary first correctly computes matrix C and s, then

randomly chooses one matrix element Cij , changes it to Cij + δ, and multiplies s by g
ricjδ
T . By

doing that, the adversary is able to produce a tuple (Ĉ, ŝ) that differs from the correct one (C, s),
but nevertheless passes the verification test. Notice that this attack is infeasible in the original VCm
scheme as the adversary has no information about g

ricj
T and hence is unable to correctly produce

ŝ. Therefore, to support public verifiability in the malicious setting, we need to introduce further
changes to the scheme.

We refer to the new scheme with public verifiability as VCpvm .

The idea behind the modification is to prevent the server from merging offset g
ricjδ
T with s by

making the values belong to two different groups. That is, we design the scheme in a way that the
values of the form gricj are available only in GT , while s will have to be produced by the server as an
element of G2. Because groups G2 and GT are used in the bilinear function e : G1×G2 → GT , there
does not exist an efficiently computable conversion from an element gxT in GT to the corresponding
element gx2 in G2. Then in the construction the delegator produces PVKx that consists of gri1 , g

ricj
T

and g
∑n1

i=1 rivki
T and provides σx that consists of only three input matrices A, B, and Y (rather than

four in VCm) to the server. The server computes each si to be an element of G2 by performing
a modulo exponentiation using A and Y (rather than the pairing operation in VCm) and returns
their values to the client. Because verification of the result now consists of checking whether the

product of all (g
ricj
T)Cij ’s and g

∑n1
i=1 rivki

T matches the product of e(gri1 , si)’s, it is no longer feasible
for the adversary to succeed in the above attack. A detailed description of the new scheme VCpvm is

1Note that because s is returned as an element of GT and each Cij is returned as an element in Z∗p, the values

g
ricj
T for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n3 and g

∑n1
k=1

rivki

T represent the minimum information the verifier needs to possess
to carry out the verification procedure.

29

given in Figure 6.
The complexity of ProbGen is dominated by computing public verification key PVKx and matrix

Y , and is O(n1n2 + n1n3 + n2n3). Compute involves matrix multiplication and has complexity
O(n1n2n3). Verify consists of ensuring the validity of C by checking its elements against si that
Compute produces and involves n1n3 modulo exponentiations and n1 pairing operations.

Theorem 12 Assuming that the M-DDH, XDH, and some other problems are hard, the verifiable
computation scheme with public verifiability VCpvm is secure according to Definition 8.

Proof Similar to previous proofs, we proceed with a series of games using the hybrid argument
and analyze the adversary’s capabilities in the final game.

Game G0. Define G0 to be the same as ExpPubVer
A (VCpvm , f, κ).

Game G1. The game is identical to game G0, except that when generating Yij and vk in gvkT , the

delegator will use a random value r
(1)
ij from Zp instead of wjdi. Assuming that (n2 + n3)-M-DDH

problem is hard, the difference in the adversary’s view between G1 and G0 is negligible.

Game G2. We next remove information about cj ’s from the elements of Y . That is, we replace

each Yij = g
r
(1)
ij +cjBij

2 with g
r
(1)
ij

2 . Because each r
(1)
ij is random, the distribution of Yij ’s will not be

affected. The r
(1)
ij ’s, however, are also used in vk and thus we also update gvkT to be consistent

with other information. That is, gvkT from G1 is multiplied by g
−

∑n1
i=1

∑n3
j=1

∑n2
k=1 ricjAikBkj

T to form

gvkT = g

∑n1
i=1

∑n3
j=1

∑n2
k=1 riAik(r

(1)
kj −cjBkj)

T in G2.

Game G3. In this game, we apply another instance of M-DDH problem. This time, we replace

all instances of ricj (in g
ricj
T) with random values from Zp, which we denote by r

(2)
ij .

That is, now each g
ricj
T in PVKx is replaced with g

r
(2)
ij

T and gvkT is replaced with g

∑n1
i=1

∑n3
j=1

∑n2
k=1 Aik(rir

(1)
kj −r

(2)
ij Bkj)

T .
Assuming that (n3 + n1)-M-DDH problem is hard, the difference in the adversary’s view between
G2 and G1 is negligible. Note that the M-DDH assumption holds when gciT and griT are available
to the adversary. In our case, the adversary has access to gri1 and therefore griT , but no information
about g

cj
2 is available, which means that we can safely apply the M-DDH assumption.

Now, suppose that in game G3 the server is able to return output (Ĉ, {ŝi}n1
i=1) that differs from

the expected (C, {si}n1
i=1), but which nevertheless passes verification. According to the security

definition, the adversary wins if Ĉ 6= C, but verification is successful. This means that the returned

values must satisfy
∏n1
i=1

∏n3
j=1(g

r
(2)
ij

T)Cij−Ĉij =
∏n1
i=1 e(g

ri
1 , si − ŝi), where Cij 6= Ĉij for at least one

value of i and j.

Now note that the server has no information regarding r
(2)
ij ’s beyond the released g

r
(2)
ij

T ’s and

thus he has a negligible probability of making
∑n1

i=1

∑n3
j=1 r

(2)
ij (Cij − Ĉij) equal to any given value

beyond his control. Furthermore, the only information available to the server in G2 are random

elements of the group g
r
(1)
ij

2 (which in particular means that the ŝi’s cannot depend on r
(2)
ij ’s as the

server is unable to use g
r
(2)
ij

T ’s from GT to form ŝi’s in G2).
This means that in this game the server must guess a function of random elements from Zp

when forming Ĉ 6= C, the probability of which is negligible in the security parameter and thus the
probability of winning the game.

Combined with the previous analysis of the differences in the adversarial success between games
G0 and G3, we obtain thatA’s advantage is negligible in winning the experiment ExpPubVer

A (VCpvm , f, κ),
as desired. �

30

While the above result already states security of the scheme, we can prove an even stronger
property which guarantees that all information returned by the server, i.e., both matrix C and
vector s, is correct. This is opposed to only guaranteeing that the output of the computation C
is correct. To show the strengthen result, we rely on a new cryptographic assumption that we call
k-Computational Linear Aggregation (CLA) assumption and which we prove secure in the generic
group model. We obtain the following:

Theorem 13 Assuming that the M-DDH, XDH, and CLA problems are hard, the verifiable com-
putation scheme with public verifiability VCpvm is secure according to Definition 8 and additionally
guarantees that all information returned by malicious server in σy is correct.

The details of the k-CLA assumption, its proof of security in the generic model, and the proof
of Theorem 13 can be found in Appendix B.

7.3 Support for Public Verifiability and Data Privacy in Malicious Setting

Recall that it was easy to add data privacy to scheme VCm because the computation consisted of
computing products A×B andX×Y . These products can be computed independently and therefore
we could encode matrices A and B using any homomorphic encryption scheme that supports one
multiplication and many additions on encrypted data. In VCpvm , on the other hand, matrix X is
not used, but instead both products utilize A. Thus, if we encrypt input matrices A and B in
order to protect the data from the computational server and the auditor, the client will need to
incorporate randomness used during forming ciphertexts into public verification key PVKx, which
makes the use of encryption more challenging. More importantly, to produce si’s to be in G2, we
need the elements of A to take values from Zp because Yij (which are also used in the computation
of si’s) are already elements of G2. To meet the above requirements, instead of using encryption,
we additively split each element of matrix A into two shares to obtain matrices A0 and A1 that will
be distributed to independent and non-colluding servers. The same is applied to matrix B. The
total of four servers are used. Each server then performs the same computation as in VCpvm on its
shares of matrices A and B and each result is verified independently.

When the client receives the results from all servers, it can reconstruct the output from its
shares. More specifically, the solution proceeds as follows:

1. The Setup procedure is the same as in VCpvm .

2. At ProbGen time, the client performs the following steps:

(a) Generate a n1 × n2 matrix R with its elements randomly drawn from {0, 1}`+ρ, where `
is the bitlength of the elements of A and B and ρ is a statistical security parameter. Use
matrix R to split matrix A into A0 and A1 with their elements computed as A0

ij = Rij and

A1
ij = Aij −Rij , respectively. Similarly, generate a n2 × n3 matrix R′ with its elements

drawn at random from {0, 1}`+ρ and split matrix B into B0 and B1 as B0
ij = R′ij and

B1
ij = Bij −R′ij .

(b) Set EKx computed as in VCpvm , and σx = (A0, B0, Y 0) for the first server, σx = (A1, B0, Y 0)
for the second server, σx = (A0, B1, Y 1) for the third server, and σx = (A1, B1, Y 1) for
the fourth server, where Y i denotes the matrix Y computed according to the elements
of Bi. PVKx is also computed in the same way as in VCpvm with the exception that gvkT is
computed according to A0 in PVKx for the first and third servers and according to A1

for the second and fourth servers.

31

3. For Compute, each server performs the same computation as in VCpvm on its respective inputs.

4. During Verify, an auditor uses σy returned by an individual server and the corresponding
PVKx to verify the returned result in the same way as in VCpvm .

5. During Output, the client receives σy from each of the four servers. Let Ci denote the product
matrix returned by server i. The client then recovers C by computing C1 +C2 +C3 +C4 =
A×B.

Theorem 14 Assuming the M-DDH and XDH problems are hard and independent and non-colluding
servers and auditors are used, the above verifiable computation scheme with public verifiability and
data secrecy VCpv,pm is a secure according to Definitions 7 and 8.

The proof of this theorem is straightforward. That is, VCpvm is used without changes, which
means that VCpv,pm is also a verifiable computation scheme with public verifiability. Data privacy
follows from the fact that a server or an auditor only obtain access to statistically protected data
and the unprotected data is never used in the computation. Thus, the probability of the adversary
learning any information about the data is negligible in the statistical security parameter ρ.

8 Conclusions

This work presents schemes for verifiable outsourcing of matrix multiplications, where it is assumed
that the server to which the computation is being outsourced can either arbitrarily deviate from
the prescribed computation or is rational, or lazy, in the sense that it will perform only the mini-
mum amount of work to pass the verification but will not maliciously corrupt the returned result.
The complexity and features of our schemes favorably compare to the state of the art, with the
solution in the lazy setting having lower verification cost of only a single comparison. Our basic
constructions achieve public delegatability and can be extended with features of data protection,
public verifiability and chaining (supporting all or a subset of the features).

References

[1] S. Agrawal and D. Boneh. Homomorphic MACs: MAC-based integrity for network coding. In
ACNS, pages 292–305, 2009.

[2] B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient verification
via secure computation. In ICALP, pages 152–163, 2010.

[3] M. Atallah and M. Blanton, editors. Algorithms and Theory of Computation Handbook. Volume
I: General Concepts and Techniques, chapter 17. CRC Press, 2009.

[4] M. Atallah and K. Frikken. Securely outsourcing linear algebra computations. In ASIACCS,
pages 48–59, 2010.

[5] M. Atallah, K. Frikken, and S. Wang. Private outsourcing of matrix multiplication over closed
semi-rings. In SECRYPT, pages 136–144, 2012.

[6] P. D. Azar and S. Micali. Rational proofs. In Proceedings of the 44th Annual ACM Symposium
on Theory of Computing, STOC ’12, pages 1017–1028, 2012.

32

[7] P. D. Azar and S. Micali. Super efficient rational proofs. In Proceedings of the 14th ACM
Conference on Electronic Commerce, EC ’13, pages 29–30, 2013.

[8] L. Babai. Trading group theory for randomness. In STOC, pages 421–429, 1985.

[9] M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computation on outsourced
data. In CCS, pages 863–874, 2013.

[10] L. Ballard, M. Green, B. Medeiros, and F. Monrose. Correlation-resistant storage via keyword-
searchable encryption. IACR Cryptology ePrint Archive Report 2005/417, 2005.

[11] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resistance to
succinct non-interactive arguments of knowledge, and back again. In ITCS, pages 326–349,
2012.

[12] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and bootstrapping
for snarks and proof-carrying data. In Proceedings of the 45th Annual ACM Symposium on
Theory of Computing, STOC ’13, pages 111–120, New York, NY, USA, 2013. ACM.

[13] D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial functions. In Proceed-
ings of the 30th Annual International Conference on Theory and Applications of Cryptographic
Techniques, EUROCRYPT’11, pages 149–168, Berlin, Heidelberg, 2011. Springer-Verlag.

[14] D. Boneh and D. M. Freeman. Linearly homomorphic signatures over binary fields and new
tools for lattice-based signatures. In Proceedings of the 14th International Conference on
Practice and Theory in Public-Key Cryptography, PKC’11, pages 1–16, Berlin, Heidelberg,
2011. Springer-Verlag.

[15] D. Boneh, E. Goh, and K. Nissim. Evaluating 2-dnf formulas on ciphertexts. In Proceedings
of the Second International Conference on Theory of Cryptography, TCC’05, pages 325–341,
2005.

[16] E. Bresson, O. Chevassut, and D. Pointcheval. Dynamic group diffie-hellman key exchange
under standard assumptions. In Proceedings of the 21st International Conference on the Theory
and Applications of Cryptographic Techniques, EUROCRYPT ’02, pages 321–336, 2002.

[17] D. Catalano and D. Fiore. Practical homomorphic macs for arithmetic circuits. In Proceedings
of the 32nd Annual International Conference on Theory and Applications of Cryptographic
Techniques, EUROCRYPT’13, pages 336–352, Berlin, Heidelberg, 2013. Springer-Verlag.

[18] D. Catalano, D. Fiore, R. Gennaro, and K. Vamvourellis. Algebraic (trapdoor) one-way func-
tions and their applications. In TCC, pages 680–699, 2013.

[19] D. Catalano, D. Fiore, and B. Warinschi. Efficient network coding signatures in the standard
model. In Proceedings of the 15th International Conference on Practice and Theory in Public-
Key Cryptography, PKC’12, pages 680–696, Berlin, Heidelberg, 2012. Springer-Verlag.

[20] CertiVox. Benchmarks and Subs performance for MIRACL library.
https://certivox.org/display/EXT/Benchmarks+and+Subs.

[21] K. Chung, Y. T. Kalai, F. Liu, and R. Raz. Memory delegation. In CRYPTO, pages 151–165,
2011.

33

[22] K.-M. Chung, Y. Kalai, and S. Vadhan. Improved delegation of computation using fully
homomorphic encryption. In CRYPTO, pages 483–501, 2010.

[23] Y. Dodis, S. Halevi, and T. Rabin. A cryptographic solution to a game theoretic problem. In
Proceedings of the 20th Annual International Cryptology Conference on Advances in Cryptol-
ogy, CRYPTO ’00, pages 112–130, 2000.

[24] D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials and matrix
computations, with applications. In CCS, pages 501–512, 2012.

[25] J. Garay, J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Rational protocol design: Cryptog-
raphy against incentive-driven adversaries. In Proceedings of the 54th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2013, pages 648–657, 2013.

[26] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: outsourcing
computation to untrusted workers. In CRYPTO, pages 465–482, 2010.

[27] R. Gennaro and D. Wichs. Fully homomorphic message authenticators. Cryptology ePrint
Archive, Report 2012/290, 2012.

[28] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.

[29] C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In STOC, pages 99–108, 2011.

[30] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: Interactive proofs
for muggles. In STOC, pages 113–122, 2008.

[31] S. Goldwasser, S. Micali., and C. Rackoff. The knowledge complexity of interactive proof
systems. SIAM Journal on Computing, 18(1):186–208, Feb 1989.

[32] S. Guo, S. Hubáček, A. Rosen, and M. Vald. Rational arguments: Single round delegation
with sublinear verification. In Proceedings of the 5th Conference on Innovations in Theoretical
Computer Science, ITCS ’14, pages 523–540, 2014.

[33] J. Halpern and V. Teague. Rational secret sharing and multiparty computation: Extended
abstract. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing, STOC
’04, pages 623–632, 2004.

[34] R. Johnson, D. Molnar, D. X. Song, and D. Wagner. Homomorphic signature schemes. In
CT-RSA, pages 244–262, 2002.

[35] J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
STOC, pages 723–732, 1992.

[36] J. Kilian. Improved efficient arguments. In CRYPTO, pages 311–324, 1995.

[37] J. Landerman, V. Pan, and X.-H. Sha. On practical algorithms for accelerated matrix muti-
plication. Linear Algebra and Its Applications, 162–164:557–588.

[38] S. Micali. CS proofs. In FOCS, pages 436–453, 1994.

[39] P. Mohassel. Efficient and secure delegation of linear algebra. IACR Cryptology ePrint Archive
Report 2011/605, 2011.

34

[40] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical verifiable
computation. In IEEE Symposium on Security and Privacy, pages 238–252, 2013.

[41] B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in public: Verifiable
computation from attribute-based encryption. In TCC, pages 422–439, 2012.

[42] S. Setty, , N. Panpalia, B. Braun, A. J. Blumberg, and M. Walfish. Taking proof-based
verified computation a few steps closer to practicality. In Proceedings of the 21st USENIX
Conference on Security Symposium, Security’12, pages 253–268, Berkeley, CA, USA, 2012.
USENIX Association.

[43] S. Setty, R. McPherson, A. Blumberg, and M. Walfish. Making argument systems for out-
sourced computation practical (sometimes). In Proceedings of the Network and Distributed
Systems Security Symposium, NDSS’12, 2012.

[44] V. Shoup. Lower bounds for discrete logarithms and related problems. In Proceedings of the
16th Annual International Conference on Theory and Application of Cryptographic Techniques,
EUROCRYPT’97, pages 256–266, Berlin, Heidelberg, 1997. Springer-Verlag.

[45] M. D. Van, A. Juels, A. Oprea, R. L. Rivest, E. Stefanov, and N. Triandopoulos. Hourglass
schemes: How to prove that cloud files are encrypted. In CCS, pages 265–280, 2012.

[46] V. Vu, S. Setty, A. Blumberg, and M. Walfish. A hybrid architecture for interactive verifiable
computation. In Proceedings of the 2013 IEEE Symposium on Security and Privacy, SP’13,
Berkeley, CA, USA, 2013. IEEE Computer Society.

[47] L. Zhang and R. Safavi-Naini. Private outsourcing of polynomial evaluation and matrix multi-
plication using multilinear maps. In Cryptology and Network Security, pages 329–348. Springer
International Publishing, 2013.

A Additional Definitions

We present the security experiment for a verifiable scheme with public verifiability:

Experiment ExpPubVer
A (VC, f, κ)

params← Setup(1κ, f)
for i = 1 to q do

xi ← A(σx1 ,EK1,PVK1, . . . , σxi−1 ,EKi−1,PVKi−1)
(SKi,PVKi,EKi, σxi)← ProbGen(xi, params)

x∗ ← A(σx1 ,EK1,PVK1, . . . , σxq ,EKq,PVKq)
(SKx∗ ,PVKx∗ ,EKx∗ , σx∗)← ProbGen(x∗, params)
σ′y ← A(σx1 ,EK1,PVK1, . . . , σxq ,EKq,PVKq, σx∗ ,EKx∗ ,PVKx∗)
y′ ← Verify(PVKx∗ , σy)
if y′ 6= ⊥ and y′ 6= f(x∗) return 1
else return 0

B Stronger Security of VCpvm and k-CLA Assumption

In this section, we introduce a new assumption, called k-Computational Linear Aggregation (k-
CLA) assumption, show its security in the generic group model, and then show that utilizing it

35

will allow us to prove a stronger security property of the verifiable computation scheme with public
verifiability in presence of malicious adversaries VCpvm as described in Section 7.2.

The k-CLA assumption is defined as follows:

Definition 9 (k-CLA assumption) Let (p,G1,G2,GT , g1, g2, e)← Set(1κ). Given R = (gr11 , g
r2
1 ,

. . . , grk1) with random ri ∈ Z∗p, the adversary A needs to produce T = (gt12 , g
t2
2 , . . . , g

tk
2) with ti ∈ Z∗p

that satisfy the equation
∑k

i=1 riti ≡ 0 (mod p). A’s advantage in solving the k-CLA problem is
defined as

Advk-CLAA (κ) = Pr[A(p, g1, g2, k, e,D) = 1].

We say that the k-CLA assumption holds if for every PPT algorithm A, Advk-CLAA (κ) is negligible
in κ.

Lemma 2 In the generic group model, the probability for an adversary who issues q operations to
solve the k-CLA problem is at most (k2 + 4q2 + 2kq + k + 4)/2p.

Proof Given public information p, G1, G2, GT , g1, g2, e, and k, we keep track of three lists,
L1 = {(xi, σ1(xi))}, L2 = {(yi, σ2(yi))}, and L3 = {(zi, σ3(zi))} with each of them maintaining
the queries performed on cyclic groups G1, G2, and GT , respectively. Initially, L1 contains k + 1
encodings corresponding to the group generator g1 and inputs gri1 for 1 ≤ i ≤ k, L2 contains a
single encoding corresponding to the group generator g2, and L3 is empty. The three lists will be
updated according to the procedures listed below:

• Group Action in G1: The generic algorithm specifies two values xi and xj of the current
encoding list L1 and a sign bit, and the oracle computes x′ = xi+xj or x′ = xi−xj according
to the sign bit. If (x′, σ1(x

′)) ∈ L1, the oracle will return σ1(x
′) to the algorithm; otherwise,

the oracle will choose a new value for σ1(x
′), append it to L1, and return it to the algorithm.

• Group Action in G2: This procedure is the same as for G1, except that the queried inputs
are encoded using function σ2 and list L2 is used instead of L1.

• Group Action in GT : This procedure is the same as for G1, except that the queried inputs
are encoded using function σ3 and list L3 is used instead of L1.

• Bilinear Map: The generic algorithm specifies two values xi and yj from lists L1 and L2,
respectively, and the oracle will compute zij = xi · yj . If (zij , σ3(zij)) ∈ L3, the oracle will
return σ3(zij) to the algorithm; otherwise, the oracle will choose a new value for σ3(zij),
append it to L3, and return it to the algorithm.

After performing q operations based on the above rules, the algorithm outputs a list T = (σ2(y1),
σ2(y2), . . . , σ2(yk)). Because the encodings for the elements in each cyclic group are represented as
random polynomials, their degree will be at most 1 in L1 and L2 and at most 2 in L3. Furthermore,
it was shown in [44] that (i) a non-zero polynomial with degree d in the group of order p will be
evaluated to 0 with probability at most d/p, and (ii) two unequal polynomials of degree d instan-
tiated with random values for their variables will be evaluated to the same value with probability
at most d/p. Next, we analyze the probability of simulation failure that occurs when the oracle
outputs two different encodings for the same element in the group, namely two unequal polynomials
in L1, L2, and L3 evaluate to the same value when the variables are assigned random values from
Zp. There may occur four inconsistencies:

36

1. The first inconsistency may occur in the encodings of elements in G1, i.e., when two distinct
polynomials originated from the encoding σ1 evaluate to the same output on inputs chosen
uniformly at random. Based on [44], the probability that this happens is at most 1/p. Then
if τ1 queries were issued in G1, there will be (k + τ1 + 1) pairs in L1. The probability that

this inconsistency occurs for any element in L1 is
(
τ1+k+1

2

)
= (k+τ1+1)(k+τ1)

2p ≤ (k+q+1)(k+q)
2p .

2. The second inconsistency may occur in the encodings of elements in G2. Similar to the
previous case, the probability of this occurring for any two elements in L2 is 1/p. If τ2 queries
were issued in G2, there will be (τ2 + 1) pairs in L2, and the probability of this inconsistency

occurring for any element in L2 is
(
τ2+1
2

)
= (τ2+1)τ2

2p ≤ q(q+1)
2p .

3. The third inconsistency may occur in the encodings of elements in GT . Unlike the previous
two cases, the degree of polynomials for the encoding σ3 has degree at most 2, and therefore
the probability that two specific polynomials result in this inconsistency is ≤ 2/p. When
τ3 queries were issued in GT , there will be (τ3) pairs in L3, and the probability of this

inconsistency occurring for any element in L3 is
(
τ3
2

)
= τ3(τ3−1)

p ≤ q(q−1)
p .

4. Finally, we would like to show that it is unlikely that polynomials originated from encodings
σ1 and σ2 satisfy the equation

∑k
i=1 σ1(xi)σ2(yi) = 0 (mod p), which implies that the answers

returned by the adversary do not satisfy the k-CLA problem. In particular, the polynomial∑k
i=1 σ1(xi)σ2(yi) has degree at most 2 and will not be a zero-polynomial. Therefore, when

the variables are instantiated with random values, the probability for the polynomial to be
evaluated to zero is ≤ 2/p. This means that when the adversary returns a single assignment
to solve the k-CLA problem, the probability for the occurrence of any inconsistency in the
assignment will be ≤ 2/p.

We obtain that, based on the union bound, the probability for any of the above inconsistencies to
occur is ≤ (k2 + 4q2 + 2kq + k + 4)/2p �.

Proof of Theorem 13 Consider the setup used in the proof of Theorem 12. It was already shown
that if the server modifies matrix product C, verification will be successful only with a negligible
probability. To prove the stronger statement of this theorem, we now need to show that if the server
returns correct matrix C, but incorrect values for si’s, it is also unable to pass the verification with
more than a negligible probability.

Suppose that the server returns correct matrix C. In order for the returned values to deviate
from the correct values, there should exist at least a single ŝi for some 1 ≤ i ≤ n1 that is not equal
to si. Let the number of ŝi’s that are not not equal to the corresponding si’s to be k for some

1 ≤ k ≤ n1. Because the verification procedure checks for gvkT
∏n1
i=1

∏n3
j=1 (g

ricj
T)

Cij =
∏n1
i=1 e(g

ri
1 , si),

we obtain that in order to pass verification, it must hold that
∏k
i=1 e(g

ri
1 ,∆si) = g0T , where ∆si is

the difference between si and ŝi. Recall that each si is in the form gui2 for some ui and thus ∆si

can be written as g
ui−u′i
2 = gti2 . Now, given gri1 for i = 1, . . ., n1, the server needs to compute gti for

1 ≤ i ≤ k such that each ti is non-zero and the equation
∏k
i=1 e(g

ri
1 , g

ti
2) = g0T holds. Note that this

is exactly what the k-CLA problem is. Thus, assuming that n1-CLA assumption is hard, we obtain
that the server will not be able to corrupt any information in the output without being noticed
with more than a negligible probability. �

37

