
Isolated Execution in Many-core Architectures

Ramya Jayaram Masti
Institute of Information Security

ETH Zurich
rmasti@inf.ethz.ch

Claudio Marforio
Institute of Information Security

ETH Zurich
maclaudi@inf.ethz.ch

Devendra Rai
Computer Engineering and Networks Laboratory

ETH Zurich
raid@tik.ee.ethz.ch

Srdjan Capkun
Institute of Information Security

ETH Zurich
capkuns@inf.ethz.ch

Abstract

We explore how many-core platforms can be used to enhance the security of future systems and to support important security
properties such as runtime isolation using a small Trusted Computing Base (TCB). We focus on the Intel Single-chip Cloud Computer
(SCC) to show that such properties can be implemented in current systems. We design a system called SEMA which offers strong
security properties while maintaining high performance and flexibility enabled by a small centralized security kernel. We further
implement and evaluate the feasibility of our design. Currently, our prototype security kernel is able to execute applications in
isolation and accommodate dynamic resource requests from them.

We show that, with minor modifications, many-core architectures can offer some unique security properties, not supported by
existing single- and multi-core architectures, such as application context awareness. Context awareness, a new security property that
we define and explore in this work, allows each application to discover, without any interaction with the security kernel, which
other parts of the system are allowed to interact with it and access its resources. We also discuss how an application can use context
awareness to defend itself from an unlikely, yet potentially compromised security kernel.

I. INTRODUCTION

A number of high-performance parallel computing platforms based on many-core architectures that are suitable for use in
a wide range of applications have recently emerged. Examples of such systems include Adapteva’s Epiphany co-processor [1]
which is meant for use in cost- and power-efficient embedded applications and Intel’s Single Chip Cloud Computer (SCC) [2]
which is suitable for high-end cloud computing applications. These architectures consist of a large number of cores (many more
compared to traditional multi-core systems) that communicate over a fast interconnect. Most such architectures are designed to
heavily optimize inter-core communication using a number of techniques such as shared cache and message buffers, in order to
improve the performance of parallel computing applications.

Given the potential for broad use of many-core architectures in a number of security and safety critical systems it is only
natural to ask — Which security properties do these architectures offer and which properties could they offer? Examples of
systems where many-core architectures are likely to be used include public clouds where Virtual Machines (VMs) are supplied
by mutually untrusted parties, mobile platforms where installed applications have different levels of sensitivity and originate from
sources with varying levels of trust and cyber-physical systems where applications have different criticality and corresponding
priorities of execution [3], [4]. For simplicity, we henceforth use applications to refer to the software that executes in any of these
three contexts. In all these systems, requirements for isolation between applications themselves and between applications and
their underlying operating systems is one of the core security issues. It is clear that in order to limit the impact of the compromise
of a subset of applications, it is desirable to provide each application with its own securely isolated execution environment which
encompasses all the resources that the application requires.

In existing systems that use traditional multi-core architectures, as opposed to many-core ones, secure isolation is achieved
by using a thin layer of trusted software often referred to as the system Trusted Computing Base (TCB). In order to manage
and securely isolate system resources, the TCB runs at the highest privilege level and it is therefore desirable to keep it as
small as possible, limiting the exposed attack surface. This is usually achieved by decomposing and restructuring traditional
kernels (e.g. Linux) and retaining only security- and performance-critical functions within the TCB. Efforts in this direction have
resulted in security kernels like seL4 [5], NOVA [6], and HypeBIOS [7] which are as small as a few thousand lines of code,
orders of magnitude smaller than for example Linux. These existing solutions will now have to be ported by taking into account
the nuances of many-core systems and their optimized resource sharing mechanisms. We show that many-core systems further
simplify the design of existing TCB based solutions. This is because their hardware inherently supports efficient inter-process
communication and features that can be leveraged to provide run-time isolation which are two important components of all
existing TCBs.



Existing and upcoming multi-core architectures also provide hardware support for the creation of Trusted Execution Environ-
ments (TEEs) and therefore the isolation of applications; example technologies include Intel TXT [8], SGX [9], [10], [11], AMD
SVM [12] and ARM TrustZone [13]. Intel TXT, AMD SVM and ARM TrustZone create TEEs by switching the entire platform
between two states — one that is trusted to be secure and runs a thin TCB like the solutions presented above and another that
runs an untrusted commodity OS. We show that many-core systems can provide similar guarantees at the granularity of individual
cores instead of the entire platform, i.e., they can support many isolated execution environments that run in parallel. Furthermore,
these isolated environments are more flexible than the ones that Intel SGX supports because they are not functionally restricted;
for example, the secure isolated environments in many-core platforms can access virtualized peripherals and support secure
input/output unlike Intel SGX.

In this work, we explore the security properties and opportunities enabled by many-core systems. We investigate design choices
in the construction of many-core systems that allow secure but flexible partitioning of system resources between applications
(or VMs, in a cloud-like scenario). Given the available cores and memory, we show that many-core systems can enable further
simplification of existing TCBs thereby providing stronger isolation. Unlike existing TEE technologies, they can also be used to
run large and demanding applications or VMs that span multiple cores in parallel and in complete isolation. We further show that
many-core systems can not only support isolation, but also enable new security properties such as application context awareness.
More specifically, we make the following contributions:

• By reviewing existing many-core architectures we show that they do not inherently provide strong security guarantees
(e.g., per-core runtime isolation of applications). Memory and routing in these architectures has been designed and
configured for high performance computing but not for efficient isolation of applications i.e., of cores and memory on
which they run.

• We show that, with some modifications, many-core systems can be used to provide flexible and strong isolation of
applications or entire systems that span multiple cores (e.g., VM instances or larger computing projects). We do this
by designing SEMA, a system that modifies and extends the Intel SCC many-core platform. Our system consists of
a modified Intel SCC platform which enforces isolation and a small security kernel that constitutes the software TCB
and is responsible for system resource management. In contrast to existing TEE solutions, our solution enables multiple
functionally unconstrained, isolated execution environments to run in parallel on their respective cores and allows them
to interact with (virtualized) peripherals.

• We further show that since many-core architectures could be modified to support strong isolation of applications, they
can reduce the complexity and thus the trust assumptions of the system’s security kernel. Within SEMA we implement a
minimal security kernel which sits on top of the modified Intel SCC platform. The functions of our kernel are limited to
the assignment of applications to their respective cores and memory. We test the performance and evaluate the security
guarantees that our system offers through a prototype implementation.

• Finally, we explore how many-core architectures can enable application isolation from the security kernel itself (to account
for its possible compromise). We also discuss how to enable security properties like application context awareness, by
which we mean the ability of a given application to become aware of which other applications share resources (e.g.,
memory) with it and which other applications have access to its state or communication. For example, a given application
should be able to discover if any other application in the system or the security kernel has access to its memory. This
is a useful property since it does not limit the ability of the applications to interact and share data and resources, but
still enables them to have oversight over this interaction. We discuss which modifications of the Intel SCC platform are
required to achieve context awareness.

Although different papers hinted at the possibility of using many-core systems for strong isolation([14], [15], [16]), to the best
of our knowledge this is the first work that fully explores how this can be achieved and the security properties that many-core
systems can provide.

The rest of the paper is organized as follows. We begin by presenting our problem statement in Section II. We then
analyze commercially available many-core platforms and show that none of them can be securely partitioned into isolated
execution environments using a centralized security kernel in Section III. In Section IV, we describe SEMA, an Intel SCC-
based architecture that can create isolated execution environments using a centralized security kernel and analyze its security. We
discuss extensions to SEMA that can be used to defend against a compromised security kernel itself in Section V. We present our
prototype implementation of SEMA and evaluate its performance in Section VI. Finally, we describe related work and conclude
in Sections VII and VIII respectively.

II. PROBLEM STATEMENT

Today’s computing systems typically consist of a large number of software components that co-exist and share platform
resources through an operating system. These components usually do not trust each other owing to different sources (e.g.,
applications in smartphones), different owners (e.g., user VMs in cloud computing environments) and different priorities (e.g.,
mixed-criticality applications in safety-critical systems). For simplicity, we refer to such software components in any of these
contexts as applications henceforth. As already discussed in the introduction, one of the ways of limiting the damage that a



Cores

Caches

 Memory

DMA 

Network 
interface

TILE 

Router 

External 
DDR

Peripherals

RouterR

T Tile

R
NoC

R

T

T

TT T

T T

T

R

T

R

T

R R

R

T

R

T

R R

R R

RR

Fig. 1: A many-core processor is typically organized in tiles that are connected by a Network-on-Chip (NOC). Each tile contains
one or more cores, caches, some local memory and a network interface that connects the tile to the NoC via the router.

compromised application can cause on a system is to provide each application with its own isolated execution environment. Such
an environment should protects the application against external interference. On most computing platforms, isolation is managed
by the system TCB consisting of operating systems or hypervisors, which make sure that applications are protected at runtime.
However, a key limitation of this approach is the vulnerability of such operating systems and hypervisors themselves which
results from their complexity. To address this problem, a number of technologies have been developed in the recent years to
provide hardware support for isolation of a given application from other applications and from its underlying operating system
or hypervisor.

Current processors include security extensions (e.g., Intel Trusted Execution Technology (TXT) [8], AMD Secure Virtual
Machine (SVM) [12]) to bootstrap a trusted execution environment (TEE) on an untrusted operating system. These security
extensions provide a dynamic root of trust for measurement (DRTM), i.e., they allow a user to verify the integrity of the
target application at launch-time and protect it against run-time intervention from the OS or other co-resident applications.
Recently, Intel announced a new range of processor extensions called Software Guard Extensions (SGX) that support multiple
concurrent TEEs called enclaves [9], [10], [11]. Intel SGX protects the confidentiality and integrity of code and data within
each enclave against unauthorized access from other enclaves and their underlying untrusted hypervisor. However, applications
running within enclaves have no direct access to peripherals. In ARM TrustZone-enabled systems the processor supports two
execution states [13], namely, secure world and normal world (or non-secure world). The processor switches between these
states in a time-slicing manner, so that only one state is active at a time. The normal world runs the OS and regular applications
on top of it, whereas the secure world runs trusted applications. The latter run on top of a small layer of software called the
trusted OS. Software running in the secure world is isolated from anything running in the normal world. Existing multi-core
systems further allow the assignment of cores and memory to for example VMs using a disengaged hypervisor [14]. All of these
technologies and approaches consider only single and multi-core systems. They neither consider how to achieve isolation on
many-core architectures nor additional security properties that many-core architectures could enable.

In this paper, we fill this gap and explore how many-core systems can enable several security properties. As we already
described, the support for runtime application isolation has already been explored in the context of single- and multi-core
systems. The first problem that we therefore want to address is how isolation using a small security kernel can be efficiently
achieved within many-core systems. The second problem that we want to address is the one of application isolation from a
possibly compromised security kernel. To solve this problem we explore how to restrict kernel capabilities such that it cannot
harm the applications it manages, and how to enable applications to be aware of the context within which they execute. We note
that context awareness was, so far, not considered in any architecture and emerges as a new property that can be enabled by
many-core systems.

In what follows, we describe the properties that are desirable in any isolation solution for many-core architectures.

Flexibility: The architecture should allow the creation of flexible and dynamic execution environments, i.e., execution environ-
ments with varying resources (cores, memory, access to peripherals) on demand. Each execution environment should be securely
isolated from others and must incur negligible overhead due to the isolation enforcement mechanisms.

Small TCB: Since the integrity of the security kernel which constitutes the system TCB is vital to the security of the platform, it
is necessary to keep it as small and low in complexity as possible. It is also necessary to minimize its interaction with any other
co-resident (and potentially malicious) software so as to minimize the risk of its compromise. This can be achieved by using
the kernel only for scheduling and resource management in the system and by allowing applications to execute independently
without run-time kernel support, except when they need to request additional resources.

Restricted Kernel Capabilities: It is often necessary to minimize the impact of kernel compromise in order to limit the damage
to the applications it manages. Ideally, a compromised kernel should be able, at most, to stop the execution of a given task
or decide to not schedule it at all. It should never be able to interfere with an application’s execution, access or modify the



R R

RR

R R

R R

R R

RR

R

R

R

Centralized
TCB 

Trusted Agent 
(TCB Element)

R R

RR

R R

R R

R R

RR

R

R

R

Fig. 2: Many-core systems can be partitioned into isolated execution environments either by using a distributed software TCB
in which a trusted agent runs on every core (left) or a centralized TCB that runs in its own environment and leverages hardware
support to enforce run-time isolation between other environments (right). Here we assume that each tile has a single core.

application’s state. One way to achieve this is to restrict the capabilities of the kernel itself so that an attacker who gains control
over it has limited options and cannot for example access the application’s memory.

Context Awareness: The architecture should provide each application with a mechanism to detect all other applications that
have been configured to interact with it (e.g., share memory with it). It would be up to the application currently running, to
decide how to act upon discovering that a new application is able to interact with it. Currently, no architecture allows for context
awareness without the direct help of the highest-privilege software, i.e., the kernel running in the system. Therefore, once the
kernel is compromised, an application would not be able to know which other applications are able to access its memory and
other resources. One benefit of application context awareness within many-core systems is that it can provide each application
with ways to detect if other applications or the kernel are trying to violate the confidentiality and integrity of its data and code
but without limiting the ways in which applications can interact. An application can then react appropriately (e.g., skip sensitive
operations) if it discovers suspicious interactions/accesses.

III. ANALYSIS OF EXISTING MANY-CORE SYSTEMS

In this section, we review existing many-core architectures and analyze the feasibility of achieving the security properties
discussed in Section II on them.

A. Solution Space

Most many-core processors follow a tiled architecture as shown in Figure 1. Each tile consists of one or more cores and a
network interface that connects the tile to the on-chip network. Each tile may additionally contain one or more caches (either
integrated into each core or shared by all cores on the tile). It may also include a small on-tile memory that is either partitioned
between or shared by all cores on the tile; this memory is typically used for message passing between cores in multi-processing
applications. Alternatively, tiles communicate via a shared on-chip memory. Furthermore, all cores have access to one or more
large off-chip (DDR) memories which are used to store application code and data. Finally, each tile may optionally include a
Direct Memory Access (DMA) engine used for efficient data transfers either between tiles or between the tiles and off-chip
components (e.g., memory, peripherals). DMA engines allow for separation of communication and computation tasks and are,
therefore, useful for efficient multi-processing.

The network interface at every tile connects it to the other on-chip (e.g., other cores, shared on-chip memory, etc.) and off-chip
(e.g., DDR memory) components via the Network-on-Chip (NoC). This network consists of a set of connected routers (one per
network interface) that are responsible for transferring data among tiles and between the tiles and off-chip components. Each
router typically contains five interfaces (North, South, East, West, parent-tile), uses a static routing algorithm and a round-robin
scheduling algorithm to transfer packets arriving at its different interfaces. The NoC is a high-bandwidth network and allows
efficient transfer of large data with very low latency.

Access to off-chip components is realized by forwarding the relevant traffic to the routers at the periphery of the chip which
connect to those components. Examples components include memory controllers that mediate access to DDR memory, network
interfaces, etc.

The space of solutions that achieve secure isolation on many-core systems can be roughly divided in two categories:
(i) solutions that require a trusted agent/TCB element on every tile and (ii) solutions that only require a centralized TCB
that executes in its own isolated environment. We illustrate these solutions in Figure 2. Given the security properties that we
want to achieve, the design and potential use of many-core architectures, especially cloud computing, in this work we opt for
solutions that rely on a centralized TCB. Such solutions, compared to those that rely on a distributed TCB, will (i) result in a
smaller TCB, (ii) reduce the interaction between the applications and the TCB or allow better TCB disengagement, (iii) allow



Physical Address

Dest ID Offset

CORE

On-tile 
Memory

Memory at 
Another Tile

DDR I/O

NETWORK 
INTERFACE

DMA ENGINE

Physical Address

Epiphany co-processor

CACHE 
ENGINE

Translation 
Buffers

DMA 
Engine

Virtual Address

Dest ID 

NETWORK 
INTERFACE

NoC Packet

 Header Body

DDR I/OCache on 
Other Tiles

On-tile 
Cache

TileraIntel SCC

CORE Memory Management Unit

NETWORK 
INTERFACE

Look-Up-Table (LUT)

Physical Address

Virtual Address

DDRLUT

On-tile Off-tile

I/OOn-tile 
Memory

 Memory at 
Another Tile

Registers

Fig. 3: Address space isolation is key to achieving secure isolation on many-core architectures. The process of address translation
in currently available commercial systems is freely configurable by any software that is running on any core of the system (like
in Intel SCC that uses Look-Up-Tables), completely static (as in the Epiphany co-processor) or controlled by a privileged entity
on each tile like in Tilera’s Tilepro processors. None of them currently support address space isolation using a centralized TCB.

us to address the privacy concerns of individual execution environments (e.g., in the cloud) and finally, (iv) help in limiting the
impact of a malicious TCB.

However, realizing centralized solutions requires support from the underlying hardware to securely isolate individual execution
environments. In particular, the hardware needs effective mechanisms to control data flow and access within and across different
tiles — this is especially important in the case of many-core systems which feature hardware support for data sharing among
tiles for efficient multi-processing. Below, we look at commercially available systems and analyze if they provide support for
the creation of multiple isolated execution environments using a centralized TCB.

We focus on three popular systems: Intel’s Single-chip Cloud Computer (SCC), Adapteva’s Epiphany chip and Tilera’s line
of many-core processors. We chose these processors because they are commercially available today and have contrasting designs
— these systems vary in terms of the number of cores per-tile, cache architectures, memory access and sharing mechanisms.

B. Analysis of Commercial Systems

Most many-core architectures use memory-mapping for access to all system resources. This includes access to the on-tile
resources like local memory and registers as well as off-tile and off-chip resources like the memory on other tiles, DDR memory
and I/O peripherals. Therefore, isolating different execution environments essentially reduces to isolating address spaces. In order
to determine the feasibility of creating isolated execution environments on commercial many-core processors, we look at how
they create and manage different address spaces in the system (Figure 3). Note that this address space partitioning is typically
the responsibility of the security kernel (also called the software TCB), which is a small but privileged layer of software that
configures and controls the system. We summarize our findings below.

Intel Single Chip Cloud Computer (SCC): Intel SCC [2] is a co-processor that consists of 48 x86 cores that are organized in
24 tiles (two per tile). Each core has a memory management unit that translates virtual addresses to physical addresses. These
physical addresses in turn get translated into a system-wide address using a Look-Up-Table (LUT) at the network interface. Each
core has its own LUT and is able to read as well as modify it from software (both from user and supervisor mode) at run-time.
Therefore, each core can access any system resource except the caches on each tile by simply modifying its LUT. Each LUT
entry points to a 16MB region of memory. We note that the LUTs of both cores on a tile are memory mapped to the same
16MB region.

Interestingly, access to the LUT itself is configured through an entry in it and therefore, it is possible to prevent a core from
accessing its own LUT by simply removing this entry. However, this also deprives the core of access to important registers
(for interrupt, power, frequency management) that reside in the same memory region as the LUT itself. If software on the core
requires access to these registers, then granting it access to only the registers (and not the LUT) requires a trusted layer of
software that intercepts any access to the LUT. In other words, it requires a security kernel element on each tile to enforce
isolation.

Furthermore, the LUTs in Intel SCC can also be used to enable application context awareness — an application on a certain
core can read the LUTs of all other cores in the system to determine if it shares resources with any of them. However, this
also allows it to learn about all the resources that other cores have access to and even modify them. Such unlimited access to
LUTs of other cores is undesirable from the security point of view. Finally, Intel SCC does not also have mechanisms to limit
the privilege of the security kernel itself.



Epiphany Co-processor: Adapteva’s Epiphany co-processor [1] contains between 16 and 1024 RISC cores (similar to ARM)
and is targeted at low-power embedded systems. The cores are 32-bit and distributed into separate tiles. Each core only uses a
flat 32-bit address space that is partitioned between local on-tile memory, memory on other tiles, external DDR and peripherals.
The network interface uses an implicit and fixed set of rules to determine the target, i.e., it uses the top 12 bits of every address
to find the destination tile. Since the network interfaces are not programmable, the default settings that allow every core to access
all system resources cannot be changed. This implies that one would have to run a privileged kernel component at every core
to restrict access to system resources.

Furthermore, the Epiphany co-processor allows DMA transfers both from and to the local memory on each tile. Since such
DMA access bypasses any kernel component running on the core, it may not be possible to achieve isolation even with a software
TCB element on each core but this remains to be verified1. Lastly, the Epiphany co-processor contains no features that can be
used to enable application context awareness or restricting the capabilities of a potentially compromised security kernel.

Tilera’s TILEPro Processors: Tilera’s many-core processors [17] contain up to 64 tiles with one core each. Each core follows
a Very Long Instruction Word (VLIW) architecture and has its own cache and on-tile routing engine. Each core also supports
memory virtualization through address Translation Buffers (TLBs). These TLBs can only be configured by software that runs
in the second highest privilege mode of the processor called the hypervisor mode (the highest mode is used for debugging the
hypervisor). Therefore, by running a software kernel agent that runs in hypervisor mode and using it to configure the TLBs, it is
possible to limit a core’s access to system resources. The hypervisor can also configure the DMA-engine on each tile to support
IOMMU-like features. However, this does not satisfy the requirement of a centralized TCB.

We note that Tilera’s processors support mechanisms to disable communication between adjacent tiles in hardware. Together,
with Tilera’s hypervisor that runs on every core, these hardware features can be used to create isolated execution environments [18].
However, the possible layout of such environments is restricted in the sense that they have to be contiguous. Finally, the Tilepro
processors have no mechanisms that can be leveraged to achieve application context awareness without the help of the security
kernel or to contain the privileges of such a hypervisor or any other security kernel in the system.

In summary, all the above commercially available many-core processors require a kernel component running at each core
in order to create isolated execution environments. Furthermore, none of these systems inherently support context awareness
for applications although they (at least Intel SCC) could be easily modified to achieve it. Finally, these current systems do not
provide any means to limit the damage resulting from a compromised security kernel.

Although centralized and distributed TCBs have their own advantages and disadvantages, given the space of applications that
we target in this work (i.e., cloud computing), we focus on designs based on a centralized TCB. A thorough comparison in terms
of security, flexibility and performance between the two approaches is intended as part of future work.

IV. SEMA: A SECURE MANY-CORE SYSTEM ARCHITECTURE

In this section, we present SEMA, a system that extends Intel SCC and supports flexible creation and management of isolated
execution environments on this many-core architecture. SEMA relies on a centralized security kernel that is in charge of creating,
managing and tearing down execution environments. We designed the system such that the kernel runs on one of the system
tiles and the applications run on other cores and resources assigned to them by the kernel. We assume that all the peripherals
connected to the SCC are virtualized, i.e., that they expose a dedicated interface to each client (core in this case) and allow
concurrent requests from multiple clients without the engagement from the TCB. As we already noted, such a centralized solution
fulfills well the requirements imposed by for example cloud computing systems where secure isolation between VM instances
as well as their isolation from the TCB is strongly preferred. The choice to implement SEMA as an extension to Intel SCC was
natural since this architecture required minimal changes to achieve the desired security properties. In what follows, we describe
the Intel SCC architecture in detail and highlight our extensions to it.

Figure 4 presents a schematic of SEMA. Underlying our system is an Intel SCC, composed of 24 tiles organized in a 6x4
matrix. Each tile contains two cores, each with their own L1 and L2 caches. Each tile also has some local on-tile memory that
is used by cores for efficient message-passing between tiles and is called the Messaging Passing Buffer (MPB). The network
interface at each tile, also called the mesh interface, contains one Look-Up-Table (LUT) per core that is used to translate the
physical address issued by a core to a system address. A system address could point to the MPB, memory-mapped registers on
the tile, the LUT itself, DDR memory or memory-mapped peripherals. Each LUT entry points to a 16MB region of memory —
in other words, this is the granularity of memory access control.

Intel SCC has four on-chip memory controllers that serve as gateways to four different DDR blocks each up to 8GB in size.
By default, the entire system is divided into four quadrants each corresponding to one memory controller. All cores in a quadrant
are mapped to the same memory controller by default. However, the mapping of cores to memory controllers can be modified
by changing their LUTs.

Intel SCC’s LUT-based design is very conducive for flexible and efficient system partitioning. Since access to all system
resources can be controlled through the LUTs, it is practical to implement security policies in them. However, currently LUTs

1We have not yet been able to obtain a prototype board for testing.



R MC

NoC

NoCT Tile Router Memory Controller Network on Chip

MC

MC

MC

MC

R R

MPB 
Pentium

L2 cache

NETWORK INTERFACE

Pentium

LUTs
Context 

Aggregator
Privacy 
Enabler

TCB TILE

L2 cache

MPB 
Pentium

L2 cache

NETWORK INTERFACE

Pentium

LUTs
Context 

Aggregator
Privacy 
Enabler

APPLICATION TILE

L2 cache

X X

Fig. 4: In SEMA, the security kernel runs on a single tile and is responsible for setting up and dispatching applications to other
cores. Only the kernel is allowed to modify the LUTs in the system and therefore, any dynamic modification to them has to
be mediated by it. However, to defend against a compromised security kernel, each core in the system would need to support
TEE-like features. This combined with our extensions to the network router (shown in dark grey on the right) at each tile help
achieve run-time isolation even in the context of a compromised kernel by enabling context awareness for applications that run
on the cores and limiting access from the kernel to each core’s local memory.

are writable by the cores themselves and preventing this results in loss of other functionality (for details, see Section III). To
overcome this limitation, in SEMA we assign the LUT of each core to a dedicated 16MB block to which that core can be
denied access or given read-only permissions. Furthermore, unlike the current design, the LUTs of the two cores on the same
tile are assigned to different 16MB blocks to prevent unwanted interference between cores. The same reasoning applies to the
MPBs on every tile. Any attempt to access resources that are not reachable via the LUTs essentially results in the termination
of the application that violated the security policy. This run-time isolation is enforced by the LUTs themselves during address
translation as shown in Figure 3.

The security kernel in SEMA performs three major functions: (i) scheduling (ii) resource allocation and (iii) security (LUT)
configuration. Note that in this work, we do not focus on the scheduling algorithms that the kernel chooses to implement. The
kernel first decides when and on which core(s) an application will execute, allocates resources to it, configures the hardware to
enforce run-time isolation and finally, allows the application to execute. It does not offer any run-time services to the application
other than dynamic resource allocation. The kernel itself occupies a single tile and is the first to execute after system boot.

A. SEMA: Boot and Operation

At boot, in SEMA, the security kernel is loaded into the DDR and it begins execution on one of the tiles in the system. When
it schedules a new application for execution, it allocates one or more cores, dedicated DDR memory and instances of virtual
devices to the application. It then configures the LUTs of these allocated cores to ensure that they all have access to the each
other’s resources (MPB, DDR, etc.). The kernel then loads the application into the assigned memory and resets the corresponding
cores to start its execution. These are the only steps required to run any software ranging from a simple bare-metal program to
a full Linux OS on a new core. The application now executes with the resources allocated to it until it terminates voluntarily or
is stopped by the kernel. Note that the kernel can terminate applications on other cores and halt them by raising a non-maskable
interrupt (NMI).

The application that is started by the kernel can independently administer all the resources allocated to it. However, it cannot
access or modify any resource to which it was not given access through its LUT configuration. Any attempt to do this results
in the application being terminated. Thus, multiple applications can execute in their own independent, isolated environments
concurrently without interfering with each other. The same guarantees apply to the protection of the kernel itself against the
malicious applications that it may schedule and run.

Finally, in SEMA, an application running in its own execution environment can request more resources from the kernel. To
accommodate these requests, the kernel uses the same procedure described above to allocate additional resources. The simplicity
of partitioning system resources is a result of the LUT-based architecture that represents a central access point to all system
resources. This allows flexible and dynamic sharing as well as firewalling of resources. It also enables the creation of isolated
execution environments that can scale dynamically in a secure manner.

B. Security Analysis

In this section, we briefly analyze SEMA and show that it achieves some of the security properties discussed in Section II.
We begin by presenting our assumptions about the attacker’s capabilities.



We consider an adversary who controls, or by remote compromise gains control, over one or more applications which execute
alongside security-sensitive applications, all running on the SEMA system. The goal of the attacker is to obtain access to or
modify any sensitive information in the sensitive applications or interfere with their execution. We however assume that the
adversary does not have physical access to the SEMA hardware and therefore cannot compromise it nor launch any physical
attacks against it. Finally, we assume that the hardware itself is trusted and functions as expected.

In order to interfere with a sensitive application, the adversary must be able to gain access to one or more of its resources.
Given that in SEMA, access to all resources is configured using the LUTs, the adversary should only be able to modify the
LUTs of one or more cores that he controls. However, in SEMA, only the system’s security kernel has access to the LUTs of all
cores in the system and therefore, only it can make modifications to them. An attacker cannot gain access to the resources of any
other application and cannot interfere with it. This protection equally applies to the kernel itself. Moreover, since the security
kernel can create environments of varying resource configurations by appropriately configuring the LUTs, SEMA satisfies the
property of Flexibility. By design, SEMA disengages the security kernel which only does scheduling and resource allocation in
the system and therefore has a Small TCB.

As presented so far, SEMA does not provide any protection against the compromised security kernel. In the next section we
show how our system can be extended to provide this protection as well and satisfy the remaining properties listed in Section II.

V. DEFENDING AGAINST A COMPROMISED SECURITY KERNEL

SEMA uses a trusted security kernel to create and isolate execution environments from each other and relies on the minimal
and disengaged nature of the kernel to reduce the risk of its compromise. Nevertheless, it is desirable to have an architecture
that can limit the damage that can be caused by an attacker who gains control over the kernel. More specifically, a compromised
kernel should at most be able to stop a task or not schedule it at all — there is little we can do to prevent this because the
kernel is responsible for resource allocation and scheduling. However, the compromised kernel should not be able to access or
modify sensitive information belonging to the application or influence the application’s execution, i.e., we must at least be able
to still achieve isolation guarantees in the event of kernel compromise. Furthermore, an application should also be able to detect
a misbehaving kernel by leveraging on the context awareness feature supported by the underlying hardware. Below, we discuss
how these two properties can be achieved in the context of Intel SCC.

Isolation: In order to achieve isolation, an application has to protect all the resources — both on-tile and off-tile components
in its execution environment. As a first step, we focus only on achieving isolation of application’s on-tile resources, namely, its
core, caches and MPB.

Since the kernel is compromised, it could inject (highly privileged) malicious code into any application’s execution environ-
ment. Therefore, we require a mechanism that is similar to TEE construction using Intel TXT [8], Intel SGX [9], [10], [11] or
CARMA [19] that allow us to construct a TEE by circumventing a malicious OS/hypervisor on traditional multi-core systems.
In fact, CARMA was designed to offer TEEs that are limited to the on-die components which is similar to creating a TEE on a
tile. It essentially uses the Cache-as-RAM capabilities that is available in modern CPUs to create a TEE. Such a TEE would also
require support from the network interface to block all accesses to on-tile resources from outside (say using a privacy enabler
as shown in Figure 4).

Context Awareness: Context awareness essentially allows an application to learn about all the resources that it shares with other
execution environments in the system. This allows the application to e.g., detect that a misbehaving kernel which misconfigured
resources that were not meant to be shared.

Since all the information about access to different system resources is contained in the LUTs, aggregating this information
allows a core to determine with which other cores it shares these resources. However, it is also undesirable for a given core to
learn about the LUT entries and in turn, all the resources of other cores in the system. Therefore, we propose extending the
network interface on the tile with a hardware-based context aggregator that provides a special service — it gathers the LUT
information of all other cores through its router, filters out all entries that do not have a match in the requesting core’s LUT
and passes this information to that core. As a result, a core only learns if it shares resources with any other core but nothing
more. A core could access this functionality by using the TEE environment that can be created using features like CARMA as
we discuss above. Otherwise, a malicious kernel can intercept the messages from the network interface and modify them before
they reach the application that runs on the core.

We note that this approach could lead to Time-Of-Check Time-Of-Use (TOCTOU) attacks, i.e., the compromised kernel
could modify the LUTs just before the check is performed. However, this would require that the kernel learns about when this
check occurs. One way for the kernel to do this is to monitor the traffic between the context-aggregators at different routers and
this can be prevented by ensuring that the routers do not forward any information not destined for their own tile to the software
on that tile, i.e., preventing routers from working in promiscuous mode. The only other way for the kernel to learn about the
check is to be running on the target application’s tile but this can be prevented by using TEE techniques like CARMA or Intel
TXT (on one core).



MPB MPB MPB MPB

TCB TCBSLAVE SLAVE

Data transfer from the Slave to the TCB 

PULL PULL

MPB MPB MPB MPB

TCB TCBSLAVE SLAVE

Data transfer from the TCB to the Slave 

PULL PUSH

RCCE Our library (LWRR)

RCCE Our library (RWLR)

Fig. 5: Currently, Intel’s RCCE library for communication between cores assumes that all cores in the system can read and write
each other’s MPBs. However, this is not desirable for communication between the kernel and any slave application because it
requires the latter to have read-write access to the kernel’s MPB. Our new communication library overcomes this drawback and
restricts slave cores to using local reads and writing only to their MPBs.

VI. IMPLEMENTATION AND EVALUATION

Although the changes required to Intel SCC to realize the SEMA architecture are quite small, they still require changes to
the SCC hardware. Given that Intel SCC is an experimental platform, we believe that the changes to it that we propose are
small enough to be incorporated into a future product. Here, we prototype and evaluate important components of the SEMA
architecture assuming that these hardware changes are in place. We adopt this approach for two reasons: first, the components
that we implement will not change much even when incorporated into a full prototype and second, the system performance is
not affected by the modifications that we propose.

A. Our Prototype

Our prototype consists of two main components: a simplified kernel and a secure communication library. We describe them
in detail below.

Simplified TCB: Our security kernel is a single threaded bare-metal application based on the BareMichael framework [20]. The
kernel runs on core 0 — the first core on the first tile of the Intel SCC. Since Intel SCC was designed as a co-processor, it does
not have a BIOS of its own and also lacks access to disk (the abundant RAM is used as a disk dump). Applications can only
be loaded for execution on the SCC via the PCI Express (PCIe) interface that connects it to the host. We, therefore, load our
simplified kernel using this interface. We note that we only have remote access to the Intel SCC board via Intel’s University
program and hence cannot modify this setup in any way.

The security kernel can be configured to load either a full OS (like Linux) or a bare-metal application on to a slave core.
For brevity, we refer to software that is loaded by the kernel as a slave application. The kernel first sets up the slave core’s
LUT, loads the slave application into the target core’s memory and resets the target core to start execution. Additionally, the
kernel allows a slave application to request more resources (cores). The kernel also assists the slave application in the setup
and configuration of its newly granted resources. More specifically, it sets up the LUTs of the extra cores granted to the slave
application on its behalf. Note that the slave application by itself cannot do this because by design, SEMA allows only the kernel
to write LUTs in the system. The kernel also configures sharing of MPBs or DDR memory between the slave application and
its newly allocated cores.

Secure Communication Library: We implement a secure communication library that allows slave applications to interface
with the security kernel. Such communication may be necessary, for example, when requesting more resources, sharing existing
resources with other applications, etc.

Intel’s original communication library for SCC is called RCCE and it enables communication between cores of the system
through the MPBs. RCCE assumes that all cores in the system have access to each others MPBs and can read as well as write
to them. As shown in Figure 5, RCCE uses a local-write, remote-read policy; i.e., a sender writes his data locally and notifies
the receiver who then pulls the actual data. This is not suitable for communication between the kernel and its slave applications
because it entails allowing the slave applications to read and write the kernel’s message passing buffer.

To overcome this problem, we implemented a new communication library that requires any slave core to only read from and
write to its local MPB (Figure 5). The security kernel in turn polls each slave’s MPB for a new message and reads available
messages from it directly. Similarly, it also writes messages meant for a slave directly to the slave’s MPB. In other words, unlike



MC

MC

MC

MC

R R

RR

R

R

R R

RR

R

R

R R

RR

R

R

R R

RR

R

R

36 46

0 2 4 6 8 10

TCB

Fig. 6: We evaluate two aspects of the performance of our prototype: first, the slave application setup time (i.e., the time required
to load an application on to another core and execute it) and second, the inter-core communication latency when our library is
used. We measure these values for different distances (different number of hops) between the security kernel and the slave core
(and its DDR memory). We choose one core on each tile outlined by dotted lines for the first test and a core on the tiles filled
in grey for the second test.

RCCE that only allows data pulls, our library allows data pulls which we refer to as Local-Write-Remote-Read (LWRR) and
data pushes which we call Remote-Write-Local-Read (RWLR). Payloads are transferred in chunks of 64 bytes as this is the
maximum buffer size available per core on partitioning the MPB (4KB) into 96 parts (one read and write buffer for each core on
the Intel SCC). Note that by maintaining separate read and write buffers per core, the library enables full duplex communication.

B. Code Complexity

Since code size is often used as an indicator of code complexity which in turn is directly related to the risk of compromise,
here we discuss the size of the security kernel and the communication library in our prototype.

TCB Complexity: Although we did not implement a complete security kernel which constitutes the software TCB, our prototype
allows us to measure the complexity (in terms of Lines-Of-Code/LOC) of the process of setting up the execution of a slave
application. This essentially involves three functions: (i) LUT configuration of slave cores, (ii) slave application/OS load and
(iii) resetting the core(s) assigned to the application. The memcpy code module2 which is used by these functions is around 50
LOC.

The LUT of each core has 256 entries each of which is one word (32-bit) in size. The complexity of the LUT configuration
function depends on the number of LUTs written. In our system, we use a filtered version of Intel’s default LUT configuration
that maps the LUTs and MPBs of all tiles into each core’s LUTs. More specifically, we map about forty entries that together
enable access to 640MB of DDR, two entries that point to the LUTs itself, two entries for the MPB, 5 entries to the different
system interfaces (network card, host controller, etc.) and one LUT that points to the boot segment when we set up the LUTs
of a core. This takes about 46 LOC per core.

The complexity of the code used to load the slave application depends upon its size. The actual load process involves two
steps: first, the kernel remaps one of its own LUT entries to the target DDR memory and then copies over code to that segment.
The kernel repeats this for every code segment in the slave application. Our prototype uses about 50 LOC to map one segment
of memory. Resetting a core involves only flipping a bit in one of the core’s registers after computing its address and takes about
20 LOC.

Finally, our prototype security kernel also contains code to communicate with its slave applications and grant them extra
resources. Its overall size (allowing for debug output) is about 700 LOC. As we have described we make use of the BareMichael
bare-metal framework to execute our kernel. We did not change its code-base which contains around 2693 LOC. We note that
our code can be further optimized to reduce the size of the kernel even further.

Complexity of the Secure Communication Library: The secure communication library contains five main functions. The first
function is used to setup the flags and buffers required for communication in the MPB as part of the library’s initialization. The
library also contains two functions for reading and writing remote MPBs which is used by the kernel and two other functions
for reading and writing local MPBs which is used by the slave applications to communicate with the kernel. Finally, the library
also includes Intel’s memcpy implementation. Together, they constitute around 500 LOC.

2We used Intel’s optimized memcpy that we adapted from the RCCE library in our implementation.



 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

0-
2

0-
10

0-
36

0-
46

T
im

e
 (

µ
s)

Cores Involved

(a) LUT Setup

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

0-
2

0-
10

0-
36

0-
46

T
im

e
 (

µ
s)

Cores Involved

(b) Linux Load

 0

 10

 20

 30

 40

 50

 60

 70

0-
2

0-
10

0-
36

0-
46

T
im

e
 (

µ
s)

Cores Involved

(c) MPB Clear

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0-
2

0-
10

0-
36

0-
46

T
im

e
 (

µ
s)

Cores Involved

(d) Reset Core

Fig. 7: Loading the Linux OS from the security kernel for execution on a slave core (in this case, cores 2, 10, 36, 46) involves
four steps: LUT setup, loading of the linux image into DDR, clearing the MPBs of the slave core and finally resetting it. The
time required for each of these functions depends on the distance (hop count) of the slave core and its memory controller from
the kernel.

C. Performance Evaluation

We evaluated the performance of our prototype with respect to two metrics, namely, the slave application setup time and the
data transfer latency between cores using the secure communication library. We discuss the results of our experiments in detail
below.

Slave Application Setup Time: The slave application setup time is the time required to dispatch and begin execution of the
application on one core. In our experiments, we measure the time it takes to load a Linux OS which is roughly 32MB in size
and is divided into 6 segments. The time required to load Linux depends on two main factors: the location of the core and the
DDR memory (or memory controller) that the core uses. So we choose the experimental setup shown in Figure 6 as it explores
the corner cases with respect to both these factors. More specifically, we load Linux from the kernel running on core 0 to cores
2, 10, 36 and 48. Cores 10, 36 and 46 are not only farthest from core 0 in terms of hop-count (in the x- and y-directions and
in total, respectively) but also use different memory controllers compared to core 2 which is only 1-hop away from the kernel
and also shares its memory controller.

Figure 7 shows the results of our experiments. Each data point in these plots is an average over 25 measurements. We
note that the variance in most of the values is very small and not visible in the plots. Clearly, the LUT configuration, MPB
initialization and core reset depend upon the location of the target core. As its distance from the kernel’s core (in terms of the
number of hops) increases, the time required for these tasks also increases. Note that the setup time for core 36 is smaller than
core 10 because it is only 3 (along the y-axis) hops away as opposed to core 10 which is 5 hops (along the x-axis) away from
the kernel on core 0. The application load time depends on the distance between the memory controller of the target core’s DDR
and the kernel. As the hop count between the target memory controller and the kernel increases, the application load time also
increases.

In summary, it takes between 1.5 and 3 seconds to load a Linux OS onto a core in the platform from the kernel running on
core 0. We postulate that running the kernel on a more central core (say in the 2nd or 3rd row and on the 3rd or 4th column)
would result in more efficient loads because it requires a reduced number of hops to reach every other core on the system.

Inter-core Communication Latency: The data transfer latency between cores using the new communication library is the amount
of time it takes to transfer payloads of different sizes between the MPBs belonging to two cores. We compare the performance
of our library against Intel’s standard RCCE library. The data transfer latency between cores depends upon the data size as well
as the distance in terms of the number of hops between them because the library uses the on-tile MPB for communication.



 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 3
2

 6
4

 1
28

 2
56

 5
12

 1
02

4

 2
04

8

 4
09

6

La
te

n
cy

 (
µ
s)

Size (bytes)

RWLR
LWRR
RCCE

(a) Core 0 to Core 2 (1 hop)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 3
2

 6
4

 1
28

 2
56

 5
12

 1
02

4

 2
04

8

 4
09

6

La
te

n
cy

 (
µ
s)

Size (bytes)

RWLR
LWRR
RCCE

(b) Core 0 to Core 4 (2 hops)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 3
2

 6
4

 1
28

 2
56

 5
12

 1
02

4

 2
04

8

 4
09

6

La
te

n
cy

 (
µ
s)

Size (bytes)

RWLR
LWRR
RCCE

(c) Core 0 to Core 6 (3 hops)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 3
2

 6
4

 1
28

 2
56

 5
12

 1
02

4

 2
04

8

 4
09

6

La
te

n
cy

 (
µ
s)

Size (bytes)

RWLR
LWRR
RCCE

(d) Core 0 to Core 8 (4 hops)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 3
2

 6
4

 1
28

 2
56

 5
12

 1
02

4

 2
04

8

 4
09

6

La
te

n
cy

 (
µ
s)

Size (bytes)

RWLR
LWRR
RCCE

(e) Core 0 to Core 10 (5 hops)

Fig. 8: Inter-core communication latency for payload sizes between 32 and 4096 bytes using Intel’s RCCE library and our library
(LWRR, RWLR). The latency increases linearly (note that the x-axis is plotted using logarithmic scale) with payload size and
the number of hops.

Therefore, in our experiments, we studied data transfer latency for cores that were 1 to 5 hops apart as shown by the greyed out
boxes in Figure 6.

Figure 8 shows the results of our experiments for data sizes varying between 32 bytes and 4096 bytes. Each data point in
these plots is an average over 90 measurements. We note that the variance in these values is very small and not visible in the
plots. We see that the data transfer latency increases linearly with payload size for both our library and the standard RCCE
library. The transfer time also increases with the increase in distance between cores. Furthermore, our library performs better
than the RCCE library due to its asynchronous nature, i.e., in our library the sender does block until the receiver acknowledges
the transfer on every data exchange before continuing with other tasks. However, the sender waits until the previous message is
flagged as read before transmitting a new message.

In summary, our library is not only more secure for communication between the security kernel and slave applications but
also exhibits better performance than the standard RCCE library.

VII. RELATED WORK

To the best of our knowledge, there is no work that directly addresses the problem of securing the execution of software
on many-core architectures. We believe that this is partly due to the fact that such architectures have primarily been proposed
and designed for high-performance computing via fast memory interconnects between different cores. Previous attempts that
come the closest to our work are from the domain of safety engineering which try to isolate faults [21] and provide timing
guarantees through spatial and temporal isolation of accesses to shared resources [4]. However, these papers do not consider any
compromise of system components (including their equivalent of the TCB) and hence do not address the security related issues
as we do here.

Many-core systems: Most research on many-core systems so far, has focused on improving the performance of high performance
computing [22], [23] or on implementing traditional OS functionality [20], [24], [25]. More specifically, in [20], the authors
present a framework for bare-metal execution on Intel’s SCC. Similarly, in [24], the authors propose a framework to execute
a bare-metal hypervisor on such platform and this is extended in [25] to enable fast inter-kernel communication running on
the bare-metal hypervisor. In contrast to these proposals, our work does not focus on improving the performance on many-core
systems but instead tries to improve their security. Furthermore, unlike other existing work, our prototype enables the co-existence
of bare-metal and full-fledged operating systems running securely on many-core platforms.

Porting kernels to Intel’s SCC: In [15] the authors propose a way to port Barrelfish, a multikernel architecture [26] to Intel’s
SCC. Similarly, in [16] the authors provide a port of the microkernel Fiasco.OC to Intel’s SCC. In both cases, the authors point
out that memory isolation is not currently possible on the SCC and mention that they intend to address it as part of future work.



However, currently, as far as we can tell, these papers do not address the various security aspects of many-core systems as we
do here.

Security Using Networks-on-Chip(NoC): There have been a number of proposals in the past to leverage the NoCs on chips to
enforce security. For example, there have been proposals to enhance NoCs to perform access control [4], [27], [28], monitor
system behavior using NoCs [29] as well as to protect communication between cores [30]. However, none of these papers
discusses any mechanisms to protect against a compromised security kernel or context awareness as we define it in this paper.

Security kernels and hypervisors: Research in securing operating systems has been traditionally carried out by shrinking the
trusted computing base of a system. This has led to the development of microkernels that have been proposed and deployed
in the context of personal computers [31] and embedded systems [5]. Traditionally, a microkernel in contrast to a monolithic
kernel only supports memory isolation, inter-process communication and threading. All other services (e.g., file systems, memory
management) run as user-space tasks. On currently available many-core systems, such microkernel solutions would have to execute
on every core to control access to resources.

In cloud computing environments where multiple clients want to share the same platform (usually through virtualization), a
thin layer of software called the hypervisor manages access to system resources [32], [33]. More recent work in particular on
NOVA [6] has led to new solutions that further reduce the code-base of a hypervisor which constitutes the TCB in virtualized
systems. The main ideas of a microhypervisor, such as NOVA, have been borrowed from traditional microkernels. As in the case
of microkernels, such a hypervisor would have to run on every core in a many-core system to guarantee isolation of software
running on it.

In addition to reducing the size of the system TCB itself, there have also been efforts to minimize its interaction with other
software components through disengagement. However, in contrast to existing disengaged solutions like NoHype [14], which
require static resource allocation, our architecture allows applications to dynamically request for more resources without a large
increase in complexity as we showed in our prototype.

To summarize, in contrast to related work, we have analyzed the support for security that exists in commercial many-core
systems, defined new security properties like context awareness that they can potentially support and explored the design space
for secure many-core systems in general and in the context of Intel SCC in particular.

VIII. CONCLUSION

In this work we explored the feasibility of creating and managing isolated execution environments on many-core systems.
We showed that, on commercial many-core platforms, one has to run a trusted agent (TCB element) on every core to enforce
isolation between applications in different execution environments. We then presented SEMA, an Intel SCC-based architecture
that leverages the Look-Up-Tables (LUTs) available for each core to control access to all system resources. In SEMA, only the
security kernel can modify the LUTs of all cores and, therefore, applications cannot circumvent the protections configured by
the kernel through the LUTs.

Although SEMA uses a small security kernel and hence faces a low risk of its compromise, we still propose new mechanisms
to defend against a malicious kernel. We defined a new security property called context awareness which refers to the ability of
individual applications being able to learn and discover about what else in the system is configured to interact with them without
the help of the kernel. Furthermore, we implemented SEMA on the Intel SCC and evaluated the performance of loading and
executing a Linux OS from a small kernel. We also implemented a new communication library for data exchange between the
kernel and the other cores in the system. Our work shows that existing many-core architectures with small modifications can
provide strong security guarantees and also limit the capabilities of the system’s security kernel; this makes them suitable for
use in several applications ranging from cloud and mobile computing to safety-critical systems.

REFERENCES

[1] Adapteva, “Ephiphany Multicore IP,” www.adapteva.com/products/epiphany-ip/epiphany-architecture-ip/, last access 2013.
[2] Intel Corporation, “SCC External Architecture Specication (EAS),” https://communities.intel.com/servlet/JiveServlet/previewBody/5852-102-1-9012/SCC

EAS.pdf, Revision 1.1, last access 2013.
[3] R. Jayaram Masti, C. Marforio, A. Ranganathan, A. Francillon, and S. Capkun, “Enabling Trusted Scheduling in Embedded Systems,” in Proceedings of

the 28th Annual Computer Security Applications Conference, ser. ACSAC’12, 2012, pp. 61–70.
[4] B. Motruk, J. Diemer, R. Buchty, R. Ernst, and M. Berekovic, “IDAMC: A Many-Core Platform with Run-Time Monitoring for Mixed-Criticality,” in

High-Assurance Systems Engineering (HASE), 2012 IEEE 14th International Symposium on, 2012, pp. 24–31.
[5] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and

S. Winwood, “seL4: Formal verification of an os kernel,” in Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles, ser.
SOSP’09, 2009, pp. 207–220.

[6] U. Steinberg and B. Kauer, “NOVA: A Microhypervisor-based Secure Virtualization Architecture,” in Proceedings of the 5th European Conference on
Computer Systems, ser. EuroSys ’10, 2010, pp. 209–222.

[7] Y. Zhang, W. Pan, Q. Wang, K. Bai, and M. Yu, “HypeBIOS: Enforcing VM Isolation with Minimized and Decomposed Cloud TCB,” www.people.vcu.
edu/∼myu/s-lab/publications/Zhang2012.pdf, Tech. Rep., 2013.

[8] Intel Corporation, “Intel Trusted Execution Technology Measured Launched Environment Programming Guide,” www.intel.eu/content/www/eu/en/
software-developers/intel-txt-software-development-guide.html, last access 2013.



[9] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue, and U. R. Savagaonkar, “Innovative Instructions and Software Model
for Isolated Execution,” in Proceedings of the 2nd International Workshop on Hardware and Architectural Support for Security and Privacy, ser. HASP’13,
2013.

[10] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata, “Innovative Technology for CPU Based Attestation and Sealing,” in Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security and Privacy, ser. HASP’13, 2013.

[11] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo, “Using Innovative Instructions to Create Trustworthy Software Solutions,” in Proceedings
of the 2nd International Workshop on Hardware and Architectural Support for Security and Privacy, ser. HASP’13, 2013.

[12] Advanced Micro Devices, “AMD64 Virtualization Codenamed “Pacifica” Technology, Secure Virtual Machine Architecture Reference Manual,” http:
//www.mimuw.edu.pl/∼vincent/lecture6/sources/amd-pacifica-specification.pdf, last access 2013.

[13] ARM, “Building a Secure System using TrustZone Technology,” http://www.arm.com, 2009.
[14] E. Keller, J. Szefer, J. Rexford, and R. B. Lee, “NoHype: Virtualized Cloud Infrastructure Without the Virtualization,” in Proceedings of the 37th Annual

International Symposium on Computer Architecture, ser. ISCA’10, 2010, pp. 350–361.
[15] S. Peter, T. Roscoe, and A. Baumann, “Barrelsh on the Intel Single-chip Cloud Computer,” www.barrelfish.org/TN-005-SCC.pdf, 2013.
[16] Partheymuller, Markus and Stecklina, Julian and Döbel, Björn, “Fiasco.OC on the SCC,” http://os.inf.tu-dresden.de/papers ps/intelmarc2011-fiascoonscc.

pdf, Tech. Rep., 2011.
[17] Tilera Corporation, “TILEPro Processor Family,” www.tilera.com/products/processors/TILEPro Family, last access 2013.
[18] ——, “Tile Processor Architecture Overview for the TILEPro Series,” www.tilera.com/scm/docs/UG120-Architecture-Overview-TILEPro.pdf, release 1.2,

last access 2013.
[19] A. Vasudevan, J. McCune, J. Newsome, A. Perrig, and L. van Doorn, “CARMA: A Hardware Tamper-resistant Isolated Execution Environment on

Commodity x86 Platforms,” in Proceedings of the 7th ACM Symposium on Information, Computer and Communications Security, ser. ASIACCS ’12,
2012, pp. 48–49.

[20] M. Ziwisky and D. Brylow, “BareMichael: A Minimalistic Bare-metal Framework for the Intel SCC,” in Proceedings of the 6th Many-core Applications
Research Community (MARC) Symposium, Toulouse, France, 2012.

[21] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith, “Configurable isolation: Building high availability systems with commodity multi-core
processors,” in Proceedings of the 34th Annual International Symposium on Computer Architecture, ser. ISCA ’07, 2007, pp. 470–481.

[22] P. Gschwandtner, T. Fahringer, and R. Prodan, “Performance Analysis and Benchmarking of the Intel SCC,” in Cluster Computing (CLUSTER), 2011
IEEE International Conference on, 2011, pp. 139–149.

[23] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Evaluation and Improvements of Programming Models for the Intel SCC Many-core Processor,” in
High Performance Computing and Simulation (HPCS), 2011 International Conference on, 2011, pp. 525–532.

[24] P. Reble, J. Galowicz, S. Lankes, and T. Bemmerl, “Efficient Implementation of the bare-metal hypervisor MetalSVM for the SCC,” in Proceedings of
the 6th Many-core Applications Research Community (MARC) Symposium, Toulouse, France, 2012.

[25] P. Reble, S. Lankes, C. Clauss, and T. Bemmerl, “A Fast Inter-Kernel Communication and Synchronization Layer for MetalSVM,” in Proceedings of the
3rd Many-core Applications Research Community (MARC) Symposium, 2011.

[26] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania, “The Multikernel: A New OS Architecture
for Scalable Multicore Systems,” in Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles, ser. SOSP’09, 2009, pp. 29–44.

[27] S. Lukovic and N. Christianos, “Enhancing Network-on-chip Components to Support Security of Processing Elements,” in Proceedings of the 5th Workshop
on Embedded Systems Security, ser. WESS ’10, 2010, pp. 12:1–12:9.

[28] J.-P. Diguet, S. Evain, R. Vaslin, G. Gogniat, and E. Juin, “NOC-centric Security of Reconfigurable SoC,” in Proceedings of the First International
Symposium on Networks-on-Chip, ser. NOCS ’07, 2007, pp. 223–232.

[29] L. Fiorin, G. Palermo, and C. Silvano, “MPSoCs Run-time Monitoring Through Networks-on-chip,” in Proceedings of the Conference on Design, Automation
and Test in Europe, ser. DATE ’09, 2009, pp. 558–561.

[30] C. Gebotys and R. Gebotys, “A Framework for Security on NoC Technologies,” in VLSI, 2003. Proceedings. IEEE Computer Society Annual Symposium
on, 2003, pp. 113–117.

[31] J. Liedtke, “On micro-kernel construction,” in Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles, ser. SOSP ’95, 1995, pp.
237–250.

[32] Xen Project, “The XEN Project,” http://www.xenproject.org/, last access 2013.
[33] VMware, “VMware Incorporated,” http://www.vmware.com/, last access 2013.


