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Abstract

We calculate the probability of success of block-hiding mining strategies in bitcoin-like net-
works. These strategies involve building a secret branch of the block-tree and publishing it
opportunistically, aiming to replace the top of the main-branch and rip the reward associ-
ated with the secretly mined blocks. We identify two types of block-hiding strategies and
chart the parameter space where those are more beneficial than the standard mining strategy
described in Nakamoto’s paper. Our analysis suggests a generalization of the notion of the
relative hashing power as a measure for a miner’s influence on the network. Block-hiding
strategies are beneficial only when this measure of influence exceeds a certain threshold.
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Chapter 1

Introduction

Bitcoin is the world’s first open source, decentralized digital currency ([1]). Bitcoin’s main
innovation is the ability to capture value in digital tokens through the creation of ”digital
scarcity” independent of a central authority. Clearly, a digital token that aims to capture
value cannot achieve it’s goal if it can be created or duplicated arbitrarily. Precious metals
for instance, are scarce due to physical limitations. Fiat money is scarce through regulations
and laws. All previous attempts to create a scarce digital resource depended upon a central
authority that validates transactions and forces scarcity by disallowing arbitrary creation
and multiple usage of the same token.

Bitcoin achieves the same goals without a central authority. Transaction validation is
achieved by duplicating the entire history of all transactions in all nodes of a distributed
peer to peer computer network, thus allowing each node in the network to verify transac-
tion validity independently. Each new transaction is immediately transmitted to the entire
network. Because of the network’s lack of centralization different nodes may be aware of a
different, possibly conflicting set of transactions at a given time.

Bitcoin’s main innovation is a way to achieve consensus about accepted transaction history
amongst all nodes of the network. This is done by having each node independently bundle a
set of valid transactions of his choice into a data structure called a block in a process called
“mining”. Mining a block demands computational effort, a.k.a proof of work. Each valid
block references it’s predecessor thus creating a block-chain which is the globally accepted
history of transactions. Nodes that find valid blocks are rewarded with new bitcoins, creating
an economic incentive to mining.

Once a valid block is found it is immediately transmitted to the network where all other
nodes can easily (and quickly) verify it’s validity and accept the one-block-longer block-
chain as the new valid history of transactions. However, since block creation is random
it is possible that more than one node manages to create a valid block and transmit it to
the network. Each node chooses the longest branch1 it is being made aware of first as the
block-chain. When several branches are in state of a tie, the network’s consensus about the
“true” block-chain is temporarily broken. Consensus is restored when a new block is found,

1More precisely, the branch with maximal proof of work.
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breaking the tie, a fact that can be globally accepted.
Thus, Bitcoin’s consensus is subject to probability. A transaction that at one time is

considered part of the globally accepted history of transactions may not be considered so in
the future. However, as shown in [1], the probability that a transaction included in the block-
chain is later removed2 diminishes exponentially as more blocks are compounded on top of
it. Another limitation to Bitcoin’s consensus mechanism is that a node possessing enough
computational power can “hijack” the block-chain and dictate the global set of accepted
transactions to be any desired set of valid transactions3. These limitations to Bitcoin’s
consensus mechanism are the price being paid for not using a central authority.

Bitcoin’s consensus mechanism suffers from another weakness. The Bitcoin protocol
assumes miners publish newly found blocks immediately and that every miner shifts it’s
mining effort to the top of the block-chain as soon as it is being made aware of a new block.
However, these behaviours are not enforced and a necessary consequence of decentralization
is that every miner is free to mine as she sees fit. If a miner “breaks the rules” too aggressively,
her blocks are in danger of being rejected by the network. However, some wiggle room exists
for miners to participate without strictly following the Bitcoin protocol. For example, a
miner can choose not to share a newly found block and build a secret branch of the block-
tree that she only reveals opportunistically. Such non-traditional strategies were discussed
in [3, 6] and shown to enable miners to increase their profit.

In this paper we are interested in finding out if and when non-standard mining strategies
that involve building a secret branch of the block-tree and publishing it opportunistically
(dubbed “block-hiding” strategies) give miners a higher probability of success in mining
blocks, compared to the standard strategy outlined in the Bitcoin protocol.

2Together with the block containing it
3Miners with more than 50% of the networks resources can do that with 100% probability of success.

This is known as a the 51% attack.
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Chapter 2

Three mining strategies

2.1 The Standard Mining Strategy

The standard mining strategy follow the bitcoin protocol described in [1]. Such miners
publish each block as soon as it is discovered and switch their mining efforts to the head of
the block-chain1 as soon as they become aware of a new valid block.

· · · → BL → BL+1 → BL+2 → . . .

2.2 Block-Hiding Strategies

Miners following this type of mining strategies do not share newly found blocks and instead
work on extending a secret branch of the block-tree. The miners publish their secret branch
when it is most beneficial to them.

· · · → BL → BL+1 → BL+2 → · · · → BL+n Main (2.1)

↘
B̃L+1 → B̃L+2 −→ . . . −→ B̃L+m Secret

2.2.1 Type I (try to win)

Type I miners mine a secret branch until it is longer than the main branch. At this time
they can publish it and replace the last n blocks mined by the Standard miners in favour of
their m > n secretly mined ones.

1In practice different miners may be aware of different branches of the block-tree at a given moment.
Such differences are resolved with very high probability once a new block is found.
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2.2.2 Type 0 (reach a tie and get some help)

Type 0 miners mine a secret branch until it is of the same length as the main branch. At
this time they publish it. Now the network is bifurcated. The Type 0 miners joined by some
of the standard miners will mine on top of the newly published Type 0 branch. The rest of
the standard miners continue working on the standard branch. If the former manage to find
a new block first then the Type 0 strategy was successful.

2.3 Our Goal

A miner of relative power q can choose to follow any one of the mining strategies. If she
selects to follow the gospel of [1] the probability of success in mining a new block equals q.
Alternatively, she could follow one of the block-hiding strategies, and when the rest of the
network mines a new block, mine a secret branch and publish it opportunistically instead of
immediately switching her mining efforts to the head of the chain.

Our goal in this work is to analyse which mining strategy is most beneficial in that it
gives the highest probability of eventually claiming the rewards associated with the next block.
To that effect we calculate the probability that a block-hiding miner succeeds in replacing a
block (and possibly some number of confirmation blocks on top of it) by publishing a secretly
mined branch of the block-tree. Alternatively, this can be viewed as the probability that a
block which is part of the block-chain will not survive (i.e. be part of the block-chain in the
future) due to the effort of a block-hiding miner.
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Chapter 3

Setup

Let us denote by H the total hashing power of the network and divide it abstractly into a
Standard part which holds a portion pH of the total hashing power (where p ∈ [0, 1]) and a
Block hiding part, which holds the rest qH = (1− p)H.

We start our analysis at a given point in time where the block-chain is of length L and
denote the last block mined as BL. As time marches on the Standard miners continue to mine
on top of it (BL+1,BL+2, . . . ) while the block hiding miners are building a separate branch
on top of BL (B̃L+1, B̃L+2, . . . ). This is depicted in figure 2.1. The block-hiding miners aim
to replace the top of the chain mined on top of BL by using one of the two block-hiding
strategies.

3.1 Calculating the probability of success

In order to calculate the probability that a block in the block-chain will be removed due
to the effort of a block-hiding miner we first calculate the probability that the block-hiding
miners manage to extend their secret branch on top of a certain block by m blocks while the
block-chain added n confirmations on top of the same block (as depicted in figure 2.1) and
multiply by the probability that starting from such a configuration the block-hiding miner
manages to catchup with the main chain. Our analysis follows the one presented in [2].

3.1.1 Getting to the starting point

Treating block mining as a negative binomial random variable, the probability Pn,p(m) that
m blocks are mined in the secret branch before n blocks are mined in the main branch is
proportional to pnqm and can be shown (appendix A.1) to be given by

Pn,q(m) =

(
n+m− 1

m

)
(1− q)nqm n = 1, 2, . . . (3.1)
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3.1.2 Catching up from the starting point

The probability a
(r)
n,m(q) that a block-hiding miner manages to catch-up and overtake the

block-chain by at least r blocks, given the situation above1 is given by a Markov chain that
depends only on the advantage z = n−m of the main network over the block-hiding miner
and the parameter r. Formally, the chain satisfies the recurrence relation

a(r)
z (q) = (1− q)a

(r)
z+1(q) + qa

(r)
z−1(q) (3.2)

with boundary conditions encoding the fact that a success is defined by the secret branch
being longer than the main branch by at least r blocks

Boundary Conditions:

{
a
(r)
−r = 1

a
(r)
∞ = 0

(3.3)

The relation 3.2 can be solved with boundary conditions 3.3 by

a(r)
z (q) =


(

q

1− q

)z+r
q ∈ [0, 1

2
] and − r < z ∈ Z

1 otherwise

(3.4)

1Namely, that until the moment the main network mines it’s nth block on top of BL, the block-hiding
miner manages to mine m blocks on top of it.
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Chapter 4

Type I Strategy

Let Q(q) be the probability that a Type I miner succeeds. By definition, the Type I strategy
is successful when applied on top of BL if the miner manages to catch-up on BL+1 and win
by at least one block, after starting with m = 0, 1, . . . secret blocks. By publishing the secret
branch the miner replaces BL+1 and any blocks mined by the network on top of it.

The starting point for the catch-up process for some m is shown below:

· · · → BL → BL+1 Main (4.1)

↘
B̃L+1 → B̃L+2 −→ . . . −→ B̃L+m Secret

By definition of the Type I strategy, the secret branch needs to be longer by at least one
block1, so we need to set the boundary condition in 3.3 to r = 1.

4.1 Block Revocation Probability

The probability of success of a Type I miner is given by the a sum over all lengths of the
secret branch at the beginning of catch-up. For each length m we multiply the probability
of getting to that starting point 3.1 while the main branch mines BL+1 by the probability of
catching up with the main branch from that starting point. The result is the following sum:

Q(q) =
∞∑
m=0

P1,q(m)a
(1)
1−m(q) (4.2)

which gives (see details in appendix A.2.1)

Q(q) =


q2

1− q
(3− 2q) q ∈ [0, 1

2
]

1 q ∈ [1
2
, 1]

(4.3)

1Hence the name: “Type I”.

7



In Figure 4.1 we plot the probability of a successful Type I strategy as a function of the
relative hashing power q. As a reference we also plot the probability of success in mining a
block for a standard miner with the same hashing power q.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
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0.7

0.8

0.9

1.0

Probability of Success for Type I strategy

Standard: P=q
Type I: P=Q(q)

Figure 4.1: The orange curve plots the probability that a Type I miner manages to revoke
the next block mined by the network and replace it (and any blocks mined on top of it)
with blocks she mined in her secret branch. The blue curve is the baseline probability of
harvesting a block by a Standard miner with the same hashing power q

4.2 Block Revocation after n confirmations

We can use equations 3.4 and 3.1 to calculate the probability of success of a Type I miner
under the extra constraint that BL+1 receives at least n confirmation before being revoked.

Q
(1)
(n)(q) =

∑∞
m=0 Pn,q(m)a

(1)
n−m(q) = (4.4){

1−
∑n

m=0

(
n+m−1

m

)
[(1− q)nqm − (1− q)m−1qn+1] q ∈ [0, 1

2
]

1 q ∈ [1
2
, 1]

(4.5)

Below we show the probability of block-revocation by a Type I miner for some values of
q and some number of confirmations. If we use Satoshi’s heuristics for safely considering a
block as part of the block-chain if the probability of revocation by an attacker with 10% of
the hashing power is less than 0.1% we see that 5 confirmations will do.
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q n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

0% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

2% 0.12% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

4% 0.49% 0.06% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

6% 1.10% 0.21% 0.04% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

8% 1.98% 0.49% 0.13% 0.03% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00%

10% 3.11% 0.95% 0.30% 0.10% 0.03% 0.01% 0.00% 0.00% 0.00% 0.00%

12% 4.52% 1.63% 0.61% 0.23% 0.09% 0.04% 0.01% 0.01% 0.00% 0.00%

14% 6.20% 2.56% 1.10% 0.48% 0.21% 0.10% 0.04% 0.02% 0.01% 0.00%

16% 8.17% 3.78% 1.82% 0.89% 0.44% 0.22% 0.11% 0.06% 0.03% 0.02%

18% 10.43% 5.33% 2.82% 1.52% 0.84% 0.46% 0.26% 0.15% 0.08% 0.05%
20% 13.00% 7.24% 4.17% 2.45% 1.46% 0.88% 0.53% 0.32% 0.20% 0.12%
22% 15.89% 9.54% 5.92% 3.74% 2.39% 1.54% 1.00% 0.66% 0.43% 0.28%
24% 19.10% 12.27% 8.12% 5.47% 3.73% 2.56% 1.77% 1.23% 0.86% 0.61%
26% 22.66% 15.45% 10.83% 7.72% 5.57% 4.05% 2.96% 2.18% 1.61% 1.19%
28% 26.57% 19.12% 14.11% 10.58% 8.01% 6.12% 4.70% 3.63% 2.81% 2.18%
30% 30.86% 23.30% 18.01% 14.12% 11.18% 8.91% 7.15% 5.75% 4.65% 3.77%
32% 35.54% 28.02% 22.56% 18.41% 15.16% 12.56% 10.46% 8.75% 7.34% 6.18%
34% 40.64% 33.31% 27.83% 23.53% 20.05% 17.19% 14.81% 12.80% 11.10% 9.65%
36% 46.17% 39.20% 33.85% 29.54% 25.96% 22.93% 20.35% 18.11% 16.17% 14.46%
38% 52.17% 45.72% 40.66% 36.49% 32.95% 29.89% 27.21% 24.85% 22.74% 20.86%
40% 58.67% 52.91% 48.30% 44.43% 41.08% 38.14% 35.52% 33.16% 31.02% 29.06%
42% 65.69% 60.78% 56.80% 53.40% 50.41% 47.75% 45.34% 43.14% 41.11% 39.24%
44% 73.29% 69.39% 66.18% 63.42% 60.97% 58.75% 56.72% 54.85% 53.11% 51.47%
46% 81.51% 78.76% 76.49% 74.52% 72.75% 71.15% 69.66% 68.28% 66.98% 65.76%
48% 90.39% 88.95% 87.75% 86.71% 85.77% 84.91% 84.11% 83.37% 82.67% 82.00%
50% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Table 4.1: The probability of Block Revocation after n confirmations due to Type I mining.
Gray cells denote probabilities smaller than 0.1%

Adding the extra assumption that the Type I miner pre-mined a “double-spend” block
reproduced the results of [2]:

∑∞
m=0 Pn,q(m)a

(1)
n−(m+1)(q) = (4.6){

1−
∑n

m=0

(
n+m−1

m

)
[(1− q)nqm − (1− q)mqn] q ∈ [0, 1

2
]

1 q ∈ [1
2
, 1]

(4.7)
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Chapter 5

Type 0 Strategy

In this chapter we calculate the probability of success of a Type 0 mining strategy. Instead
of publishing the secret branch when it is longer than the main branch, a Type 0 miner
publishes it one step before, when his secret branch is of the same length as the main branch
(i.e. when they reach a tie).

The reason this is potentially beneficial is that due to latency effects in the bitcoin network
(recently discussed in [5]) not all miners share the same view of the entire block-tree at all
moments. All Standard miners shift their efforts to the longest branch they know of, but for
some period of time different parts of the network may be aware of different, and equally
valid, longest branches. In such a case the network bifurcates. Each sub-network continues
mining it’s longest-branch until the next block is mined by either one and a new block-chain
is established1. Following the notation used in [3] let us denote by γ the ratio of standard
miners that choose to mine on top of the newly-published-used-to-be-secret Type 0 branch.
This means that q + γp of the total hashing power is now dedicated to making the Type 0
branch the longest and with some probability this branch will end up as the winner.

Let us denote the probability that this type of tie strategy succeeds by Sγ(q). We can
calculate Sγ(q) starting the same way as we did when we derived 5.3 but use a Markov chain
with boundary condition reflecting a tie instead of wining. We then multiply that probability
by the probability of catching up and wining the race with hashing power q + γp, starting
from that point.

Formally, we want to solve 3.2 with boundary conditions r = 0:

a(0)
z (q) =


(

q

1− q

)z
q ∈ [0, 1

2
] and z = 0, 1, 2 . . .

1 otherwise

(5.1)

1In principle this type of block-chain bifurcation can continue to span multiple blocks, with exponentially
decreasing probability.
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Using the same logic used to derive 5.2 we get the probability for a tie is given by

T (q) =
∞∑
m=0

P1,q(m)a
(0)
1−m(q) (5.2)

resulting in (see details in appendix A.2.2)

T (q) =

{
2q q ∈ [0, 1

2
]

1 q ∈ [1
2
, 1]

(5.3)

Now the Type 0 miner, joined by γ of the standard miners, are competing with the
rest of the standard miners. The probability to win starting from a tie is thus given by (see
equation 3.4)

a
(1)
0 (qeff ) =


qeff

1− qeff
qeff ∈ [0, 1

2
]

1 qeff ∈ [1
2
, 1]

(5.4)

where
qeff = q + γp = q + γ(1− q). (5.5)

The condition qeff ∈ [0, 1
2
] translates to

0 ≤ q ≤ qc(γ) =
1− 2γ

2− 2γ
(5.6)

The curve qc(γ) (depicted in figure 5.1) satisfies 0 ≤ qc(γ) ≤ 1

2
, monotonically decreases

with γ and hits 0 when2 γ = 1
2
.

Based on all that, the solution to Sγ(q) = T (q) · a(1)0 (qeff ) breaks into three regimes:

Sγ(q) = T (q)︸︷︷︸
reach a tie

· a(1)0 (qeff )︸ ︷︷ ︸
win given a tie

=


2q · qeff

1−qeff
= 2q · q(1−γ)+γ

(1−q)(1−γ) q ∈ [0, qc]

2q q ∈ [qc,
1
2
]

1 q ∈ [1
2
, 1]

(5.7)

2qeff ( 1
2 ) = 1

2 (1 + q) which is bigger than 1
2 for any q.
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Figure 5.1: The three regions of the solution to Sγ(q). The red curve is qc(γ).

Note that if γ ≥ 1
2

the first regime does not exist and the solution degenerates to:

Sγ≥ 1
2
(q) = T (q) · a0(qeff ) =

{
2q q ∈ [0, 1

2
]

1 q ∈ [1
2
, 1]

= min(2q, 1) (5.8)

In figure 5.2 we plot the probability of success of the Type 0 strategy Sγ(q) for various
values of the parameter γ, side by side with the probabilities of success of the Standard and
Type I strategies.
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Figure 5.2: The Type 0 strategy probability of success Sγ(q), plotted for various values of
the parameter γ and against the probabilities for the Standard and Type I strategies.
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Chapter 6

The γ, q phase space

Our aim in this chapter is to map the γ, q phase space and find which strategy yields the
maximal probability of success for the miner in each region.

6.1 Type I vs. Standard

To find out how big q needs to be for the Type I of strategy to become more beneficial than
the standard strategy we need to solve for Q(q) ≥ q

q2

1− q
(3− 2q) ≥ q (6.1)

which since 0 ≤ q ≤ 1 gives the condition

q ≥ q0 = 1− 1√
2
∼ 0.293 (6.2)

We conclude that Type I strategy is better than the standard strategy for q > q0. Once
q ≥ 1

2
we get to the famous “51% attack” where the Type I strategy is guaranteed to succeed,

but even for q0 ≤ q ≤ 1
2

Type I increases the probability of success for mining a new block
compared to the standard strategy

6.2 Type 0 vs. Standard

A Type 0 strategy is more beneficial than the standard strategy when Sγ(q) ≥ q where Sγ(q)
is given in equation 5.7.

In the second and third regimes of equation 5.7 (or for any q if γ ≥ 1
2
, see equation 5.8

and figure 5.1) the Type 0 strategy is beneficial over the standard strategy for any q, because
it is always true that 0 ≤ q ≤ min(2q, 1).
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In the first regime (i.e. when q < qc(γ)) we can find at what value of q the Type 0
strategy starts being more beneficial than the standard strategy by solving

2q · q(1− γ) + γ

(1− q)(1− γ)
≥ q (6.3)

which gives the condition qb(γ) ≤ q ≤ qc(γ), where

qb =
1− 3γ

3− 3γ
(6.4)

The curve qb(γ) designating the boundary where the Type 0 strategy starts becoming
more beneficial than the standard strategy is plotted in Figure 6.1. Note that if γ = 0 this
strategy is beneficial only when q > 1

3
and if γ ≥ 1

3
it is beneficial for all q.

Figure 6.1: The Type 0 strategy is more beneficial than the standard strategy outside of the
inner curve qb(γ). Standard mining is more beneficial only in region IA.

Taking all three regimes into account we conclude that the Type 0 strategy is more
beneficial than the Standard strategy when

Sγ(q) ≥ q =⇒

q >
1− 3γ

3− 3γ
γ ∈ [0, 1

3
]

any q γ ∈ [1
3
, 1]

(6.5)

or, summarized further by

Sγ(q) ≥ q =⇒ q > max

{
1− 3γ

3− 3γ
, 0

}
(6.6)
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To decide if Type 0 is beneficial or not it is not enough to compare it to the Standard
strategy. Even in the regime where it is more beneficial than the Standard strategy we must
compare it to Type I to decide which block-hiding strategy wins. In the next section we do
exactly that and compare the two block-hiding strategies.

6.3 Comparing Type 0 to Type I

There are two interesting comparisons one can make between Type 0 and Type I strategies.
One is to compare how they match against the standard strategy,namely, for a given γ do we
first hit the regime where a Type 0 or a Type I strategy is more beneficial than the standard
strategy. The other is to ignore the standard strategy and ask, for a given value of γ, q which
is better, Type 0 or Type I.

6.3.1 Which block-hiding is beneficial first

Let us first tackle the first question and find out for a given γ whether Type 0 or Type I
wins first. For γ ≥ 1

3
, Type 0 wins already at q = 0, so the interesting part is where γ < 1

3

where we can compare qb(γ) (given in equation 6.4) with q0 (given in equation 6.2). Solving
for the intersectin of the two curves

1− 3γ

3− 3γ
= 1− 1√

2
(6.7)

We get a single intersection at a special value of γ

γc = 1− 2

3

√
2 ∼ 0.0572 (6.8)

A Type 0 strategy is more beneficial than the standard strategy sooner (i.e. smaller q)
than Type I for γ ≥ γc.

Indeed, you can see in Figure 5.2 that the green curve representing γ = 0 lies below
the orange curve which represents the Type I strategy, while the red curve representing
γ = 0.1 > γc lies above it.

To summarize, when γ ≥ 1
3

the Type 0 strategy is beneficial over the standard strategy
for any value of q. When γ < 1

3
, the hashing power of the block-hiding miner needs to

exceed a threshold before a block-hiding strategy is beneficial. If γc ≤ γ ≤ 1
3

we bump into

the Type 0 first (the threshold given by qb = 1−3γ
3−3γ ), while if γ < γc we bump into Type I

first (the threshold is given by q0 = 1− 1√
2
).

6.3.2 Type 0 vs. Type I

Finally, ignoring the standard strategy for a moment, we can ask for the range of parameters
q, γ where the Type 0 strategy is more beneficial than the Type I strategy. Formally we need
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to solve:

2q · q(1− γ) + γ

(1− q)(1− γ)
≥ q2

1− q
(3− 2q) (6.9)

which gives the condition

2q2 − q +
2γ

1− γ
≥ 0 (6.10)

This condition is satisfied in two regimes for γ.

Sγ(q) ≥ Q(q) =⇒

{
any q γ ∈ [ 1

17
, 1]

q < q−(γ) or q > q+(γ) γ ∈ [0, 1
17

]
(6.11)

where

q±(γ) =
1

4

(
1±

√
1− 17γ

1− γ

)
(6.12)

6.4 The Strategy Phase Space

We can chart the strategy phase space parametrized by γ, q ∈ [0, 1]2, and divide it into
regions characterized by the most beneficial mining strategy: Standard, Type 0 or Type
I.

The γ, q phase space is governed by four functions (really three intersecting curves):

• q0 = 1− 1√
2

determining for what q Type I is better than standard.

• max{qb(γ) = 1−3γ
3−3γ , 0} determining for what q Type 0 is better than standard.

• q+(γ) = 1
4

(
1 +

√
1−17γ
1−γ

)
• q−(γ) = 1

4

(
1−

√
1−17γ
1−γ

)
where the last two determine which strategy is better, Type 0 or I when γ < 1

17
. Interestingly

enough, the 3 functions q0, qb(γ), q+(γ) intersect in a single point γ = γc, q = q0 which
simplifies the structure of the phase space diagram, slicing it into exactly 6 regions each
characterized by one of the 6 possible orderings between the 3 available strategies.

• The circular curve (created by the two branches q±) determines, for a given γ, which of
the two block-hiding strategies, Type 0 or Type I is more beneficial. Inside the circular
region (and all the way to the q axis) is the region where Type I is better than type 0.
Outside this region Type 0 is better than Type 1. This is determined by equation 6.10.
Note that this division doesn’t specify whether any of the strategies is better than the
standard one.
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• Type I strategy is more beneficial than the Standard strategy in the region above the
horizontal line q = q0. .

• Type 0 strategy is more beneficial than the Standard strategy in the region above the
monotonically decreasing curve qb(γ) (extending from 1

3
on the q axis to 1

3
on the γ

axis and the continuing on the γ axis all the way to γ = 1).

Figure 6.2: The 3 curves sectioning the γ, q phase space into 6 regions characterized by a
hierarchy of the 3 strategies. For brevity we denote the Type I strategy by ”1”, the Type 0
strategy by ”0” and the Standard strategy by ”S”. For example, in the top region Type 0 is
more beneficial than Type I which in turn is more beneficial than the standard strategy.

A miner, seeking to maximize profit, can select the most beneficial strategy in each region.
The resulting phase space is divided into 3 regions characterized by the winning strategy, is
depicted in figure 6.3.
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Figure 6.3: The 3 regions of the q, γ phase space. The standard strategy is best in the region
near the origin. Type I is best in the little area on top of the standard region. In the rest of
phase space the Type 0 strategy is most beneficial.

6.5 Comments

Note that the regime where either block-hiding strategies are more beneficial than the stan-
dard strategy is bounded away from the origin. It is tempting to look at the radial distance
from the origin of phase space as a measure of a “miner’s influence”

I(q, γ) ≡
√
q2 + γ2. (6.13)

This definition is motivated by the rough symmetry1 between the parameters γ and q.
There are a few remarks in order:

• Figure 6.3 marks the regions where a block-hiding strategy in beneficial, but does not
guarantee success. Success of either strategies is still guaranteed (i.e. the probability
of success is strictly 1) only in the top half of phase space, in the region where q ≥ 1

2

(the infamous 51% attack).

1All we mean by that is that figure 6.3 is almost symmetric under a rotation along the 45◦ angle that
rotates γ ↔ q.
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• The authors of [3] identified a region delimited by the curve 1−γ
3−2γ ≤ q ≤ 1

3
where the

“selfish” mining strategy is more beneficial than the standard one. As one would expect
based on the fact that the “selfish” strategy utilizes a combination of the two strategies
discussed here, this curve intersects both Type I and Type 0 regions as depicted in
figure 6.4.

Figure 6.4: In this plot we see the location of the curve describing the “seflish” strategy of
[3] within the γ, q phase space.
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Chapter 7

Summary and Conclusions

The Bitcoin protocol leaves some aspects of mining as heuristics that are not enforced. This
wiggle room allows miners to explore mining strategies that deviate from what was described
in [1] but are still technically valid and will be accepted by all nodes in the Bitcoin network.
Bitcoin’s main innovation is the ability to withstand “Double Spend” attacks, which can be
viewed as a particular case of a block-hiding mining strategy. Other variants were known
for quite a while [6, 3] and serve as an interesting theoretical ground for studying the limits
of the Bitcoin protocol.

In this paper we analysed the probability of success of block-hiding miners, charted the
phase space associated with block-hiding strategies and identified the most beneficial mining
strategy in each regime. As a corollary we calculated the probability of block revocation
due to the presence of a Type I miner. Our analysis extend the results of [3] and refine the
notion of when exactly a miner becomes “too big”, starting to pose a potential threat to the
Bitcoin network (see [4] for a recent discussion).

As long as miners posses a small enough fraction of the total hashing power and are not
too well connected to lure an disproportionally big part of the network to mine on top of
their block in case of a tie, the Standard mining strategy as presented in [1] turns out to be
the most beneficial. It would be interesting if keeping miners in the safe zone can be actively
discouraged by additions to the protocol.

7.1 Acknowledgements

We would like to thank Aviv Zohar and Meni Rosenfeld for comments on earlier versions of
this manuscript.
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Appendix A

Calculation Details

A.1 Probability distribution
∞∑
m=0

Pn,q(m) = pn
∞∑
m=0

(
n+m− 1

m

)
qm = pn

1

(1− q)n
= 1

where we used the binomial identity holding for any complex s inside the unit circle
(|s| < 1)

1

(1− s)n
=
∞∑
k=0

(
n+ k − 1

k

)
sk

A.2 Q
(r)
(n)(q)

Q
(r)
(n)(q) =

∑∞
m=0 Pn,q(m)a

(r)
n−m(q) =

∑n+r−1
m=0

(
n+m−1

m

)
(1− q)nqm

(
q

1− q

)n−m+r

+
∑∞

m=n+r

(
n+m−1

m

)
(1− q)nqm q ∈ [0, 1

2
]

1 q ∈ [1
2
, 1]

=


∑n+r−1

m=0

(
n+m−1

m

)
(1− q)nqm

[(
q

1− q

)n−m+r

− 1

]
+ 1 q ∈ [0, 1

2
]

1 q ∈ [1
2
, 1]

=

{∑n+r−1
m=0

(
n+m−1

m

)
[(1− q)m−rqn+r − (1− q)nqm] + 1 q ∈ [0, 1

2
]

1 q ∈ [1
2
, 1]

=

{
1−

∑n+r−1
m=0

(
n+m−1

m

)
[(1− q)nqm − (1− q)m−rqn+r] q ∈ [0, 1

2
]

1 q ∈ [1
2
, 1]
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A.2.1 Q(q)

In the case Q(q) ≡ Q
(1 )
(1 ) (q) we get:

Q(q) =
∑∞

m=0 P1,q(m)a
(1)
1−m(q)

=

{
1−

∑1
m=0 [(1− q)qm − (1− q)m−1q2] q ∈ [0, 1

2
]

1 q ∈ [1
2
, 1]

=

1− (1− q) +
q2

1− q
− (1− q)q + q2 q ∈ [0, 1

2
]

1 q ∈ [1
2
, 1]

=


q2

1− q
+ 2q2 q ∈ [0, 1

2
]

1 q ∈ [1
2
, 1]

=


q2

1− q
(3− 2q) q ∈ [0, 1

2
]

1 q ∈ [1
2
, 1]

A.2.2 T (q)

In the case T (q) ≡ Q
(0 )
(1 ) (q) we get:

T (q) =
∑∞

m=0 P1,q(m)a
(0)
1−m(q)

=

{
1− [(1− q)− q] q ∈ [0, 1

2
]

1 q ∈ [1
2
, 1]

=

{
2q q ∈ [0, 1

2
]

1 q ∈ [1
2
, 1]

23



Bibliography

[1] Satoshi Nakamoto. Bitcoin p2p virtual currency. http://www.bitcoin.org/.

[2] Meni Rosenfeld. Analysis of hashrate-based double-spending.
https://bitcoil.co.il/Doublespend.pdf/.

[3] Ittay Eyal, Emin Gun Sirer. Majority is not Enough: Bitcoin Mining is Vulnerable.
http://arxiv.org/abs/1311.0243

[4] Vitalik Buterin http://bitcoinmagazine.com/9402/mining-pool-centralization-crisis-
levels/

[5] Yonatan Sompolinsky, Aviv Zohar Accelerating Bitcoins Transaction Processing
https://eprint.iacr.org/2013/881.pdf

[6] Lear Bahack Theoretical Bitcoin Attacks with less than Half of the Computational Power.
http://arxiv.org/abs/1312.7013

24


	Introduction
	Three mining strategies
	The Standard Mining Strategy
	Block-Hiding Strategies
	Type I (try to win)
	Type 0 (reach a tie and get some help)

	Our Goal

	Setup
	Calculating the probability of success
	Getting to the starting point
	Catching up from the starting point


	Type I Strategy
	Block Revocation Probability
	Block Revocation after n confirmations

	Type 0 Strategy
	The ,q phase space
	Type I vs. Standard
	Type 0 vs. Standard
	Comparing Type 0 to Type I
	Which block-hiding is beneficial first
	Type 0 vs. Type I

	The Strategy Phase Space
	Comments

	Summary and Conclusions
	Acknowledgements

	Calculation Details
	Probability distribution
	Q(n)(r)(q) 
	Q(q)
	T(q)


	Bibliography

