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Abstract
We illustrate a vulnerability introduced to elliptic curve
cryptographic protocols when implemented using a func-
tion of the OpenSSL cryptographic library. For the given
implementation using an elliptic curve E over a binary
field with a point G ∈ E, our attack recovers the majority
of the bits of a scalar k when kG is computed using the
OpenSSL implementation of the Montgomery ladder. For
the Elliptic Curve Digital Signature Algorithm (ECDSA)
the scalar k is intended to remain secret. Our attack re-
covers the scalar k and thus the secret key of the signer
and would therefore allow unlimited forgeries. This is
possible from snooping on only one signing process and
requires computation of less than one second on a quad
core desktop when the scalar k (and secret key) is around
571 bits.

1 Introduction
Elliptic curve cryptography (ECC) [24, 26] includes a
number of public-key cryptographic protocols whose se-
curity relies on the computational intractability of the
Elliptic Curve Discrete Logarithm Problem (ECDLP):
Given an elliptic curve over a finite field and two points G
and H on the curve, find the scalar k such that H = kG.

ECC offers a higher encryption strength per key-bit
than related methods whose security is reliant on the hard-
ness of computing discrete logarithms in a finite field or
factoring the product of large primes. Consequently, ECC
uses significantly shorter keys and offers faster operations

than other methods, contributing to its rising popularity.
The Elliptic Curve Digital Signature Algorithm (EC-

DSA) [6, 22, 28] is a standard digital signature algorithm
implemented using elliptic curves. One core operation of
the ECDSA algorithm, as in many ECC protocols, is the
scalar multiplication of a point on the elliptic curve by a
pseudo-randomly generated secret nonce. The confiden-
tiality of the nonce is paramount for the security of the
algorithm. Past research indicates that partial exposure
of nonce bits can be exploited for efficient attacks on the
secret key [10, 29].

OpenSSL [31] is a cryptographic software package that
implements ECDSA. When using elliptic curves over a
binary field F2m , OpenSSL uses the Montgomery lad-
der [23, 27] algorithm to compute kG, the scalar multipli-
cation of a publically known point G by the secret nonce
k. One of the advantages of the Montgomery ladder is that
it has a regular behaviour, performing the same sequence
of operations for each nonce bit, irrespective of the value
of the bit. This regular behaviour makes it more resilient
to side-channel attacks [23, 30].

While the operations performed by the algorithm are
regular, their targets depend on the value of the bits of the
nonce. To apply the operations to the respective targets,
the OpenSSL implementation uses a conditional branch
based on the value of the bit. By tracing this branch an at-
tacker can recover the values of the nonce bits and, conse-
quently, break the cryptosystem. In this paper we present
our use of the FLUSH+RELOAD cache side-channel at-
tack [40] to trace the branch in the OpenSSL implemen-
tation.
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The FLUSH+RELOAD attack exploits a security weak-
ness in the X86 architecture that allows processes to mon-
itor other processes read and execute access to shared
memory pages. Our spy program monitors access to both
arms of the conditional branch and uses the information
collected from these probes to reconstruct the nonce. This
attack is a threat to the security of any cryptographic pro-
tocol implemented using the OpenSSL scalar multiplica-
tion method when the scalar is intended to remain secret.

In this paper we illustrate the efficiency of the attack
by analysing ECDSA and recovering the secret key us-
ing only one signature at very little computational cost (in
both time and memory). This attack is applicable when
the malicious party has access to the memory of the tar-
geted device. This is a reasonable assumption as could be
the case when using, for example, a multi-user operating
system, co-hosted virtual machines in a cloud computing
environment or a computer victim to malware.

The paper also presents new information on the limi-
tation of the FLUSH+RELOAD attack. We discuss spa-
tial limitations, affecting the distance between multiple
probes, and temporal limitations, affecting the probe res-
olution. The results of this paper support the findings of
Walter [38] that longer keys render a cryptographic algo-
rithm more vulnerable to side-channel analysis.

The rest of this paper is organised as follows: in the
following subsection we discuss related research. The
next section presents background information on ECDSA,
the Montgomery ladder and the FLUSH+RELOAD attack.
Section 3 describes our attack on the OpenSSL implemen-
tation of ECDSA. The results of the attack are analysed in
Section 4. We discuss the implications of the attack and
suggest techniques for mitigation in Section 5.

1.1 Related Work

There have been a number of publications addressing the
security issues of digital signatures when partial informa-
tion is leaked [16, 19, 29].

Gopalakrishnan et al. [16] presents algorithms for solv-
ing the ECDLP using the additional information of some
consecutive bits of the private key. These algorithms out-
perform the currently best known methods of solving the
ECDLP without the extra information or using exhaustive
search on the remaining key space. In this work we do not

focus on the ECDLP. Instead, we use leaked information
about the nonces.

The attacks in Howgrave-Graham and Smart [19] and
in Nguyen and Shparlinski [29] rely on having obtained
a relatively small number of bit of the nonces used for
many signatures and then using the LLL method [25] for
solving the related hidden number problem to find the se-
cret key. The attack of Nguyen and Shparlinski [29], for
example, given a group of order around 160 bits the prob-
abilistic algorithm would obtain the secret key using an
expected 23× 27 signatures (assuming independent and
uniformly at random selected messages) in polynomial
time, using only seven consecutive least significant leaked
bits of each nonce. (Relying on some reasonable assump-
tions.) Each of these assumes only a small fraction of k
is recovered. The main contribution of this work is to il-
lustrate a method, to recover a large majority of the bits,
using only one signature. From these, the full nonce is
obtained using less than one second of additional compu-
tation time. Once the nonce has been fully determined the
secret key can be obtained. Though the goal and approach
of the works are similar, the methods are very different.

The attack of Brumley and Tuveri [10] uses the above
methods to highlight a specific vulnerability in earlier ver-
sions of OpenSSL’s Montgomery ladder implementation
for curves over binary fields. Though the attacks differ,
they both illustrate that the OpenSSL implementation of
the Montgomery ladder is vulnerable to both remote at-
tacks and attacks launched from virtual machines with ac-
cess to the memory of the target computer. The counter-
measure suggested in Brumley and Tuveri [10] will not
thwart our attack.

Cache side-channel attacks have been used against
cryptosystems [1–3, 9, 11, 12, 35, 41]. These attacks use
the PRIME+PROBE technique [35] to target the L1 cache
level. Consequently, the spy program and the victim must
execute on the same execution core of the processor. This
is in contrast to our attack, which targets the last-level-
cache, and can, therefore, be mounted between different
cores.

The FLUSH+RELOAD attack has been used by Yarom
and Falkner [40]. to attack the square-and-multiply expo-
nentiation in the GnuPG implementation of RSA. Unlike
the Montgomery ladder, square-and-multiply is known to
be vulnerable to side-channel attacks.

A similar attack has been used by Gullasch et al. [18].
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This attack relies on a scheduler bug to interleave the ex-
ecution of the victim and the spy on the same processing
core. Furthermore, the Gullasch et al. attack suffers from
false positives and requires processing the capture results
with neural network to filter the false positives out.

2 Preliminaries
In this section we present the relevant general background
information about the attack and also the specific infor-
mation required to understand the context of the example
attack.

2.1 ECDSA
The ElGamal Signature Scheme [15] is the basis of the US
1994 NIST standard, Digital Signature Algorithm (DSA).
The ECDSA is the adaptation of one step of the algorithm
from the multiplicative group of a finite field to the group
of points on an elliptic curve. The main benefit of using
this group as opposed to the multiplicative group of a fi-
nite field is that smaller parameters can be used to achieve
the same security level [24, 26] due to the fact that the
current best known algorithms to solve the discrete loga-
rithm problem in the finite field are sub-exponential and
those used to solve the ECDLP are exponential. See Bala-
subramanian and Koblitz [7], Adleman and Demarrais [4]
and developments thereof for more details.

Parameters: An elliptic curve E defined over a finite
field Fq; a point G ∈ E of a large prime order n (genera-
tor of the group of points of order n). Parameters chosen
as such are generally believed to offer a security level of√

n given current knowledge and technologies. Parame-
ters are recommended to be generated following the Dig-
ital Signature Standard [28]. The field size q is usually
taken to be a large odd prime or a power of 2. The imple-
mentation of OpenSSL uses both prime fields and q = 2m;
the results in this paper relate to the binary field case.

Public-Private Key pairs: The private key is an in-
teger d, 1 < d < n− 1 and the public key is the point
Q = dG. Calculating the private key from the public
key requires solving the ECDLP, which is known to be
hard in practice for the correctly chosen parameters. The
most efficient currently known algorithms for solving the
ECDLP have a square root run time in the size of the

group [14, 39], hence the aforementioned security level.

Suppose Bob, with private-public key pair {dB,QB},
wishes to send a signed message m to Alice, he follows
the following steps:

1. Using an approved hash algorithm, compute e =
Hash(m), take ē to be the leftmost ` bits of e (where
`= min(log2(q), bitlength of the hash)).

2. Randomly select k←R Zn.

3. Compute the point (x,y) = kG ∈ E.

4. Take r = x mod n; if r = 0 then return to step 2.

5. Compute s = k−1(ē+ rdB) mod n; if s = 0 then re-
turn to step 2.

6. Bob sends (m,r,s) to Alice.

The message m is not necessarily encrypted, the contents
may not be secret, but a valid signature gives Alice strong
evidence that the message was indeed sent by Bob. She
verifies that the message came from Bob by

1. checking that all received parameters are correct, that
r,s ∈ Zn and that Bob’s public key is valid, that is
QB 6= O and QB ∈ E is of order n.

2. Using the same hash function and method as above,
compute ē.

3. Compute s̄ = s−1 mod n.

4. Find the point (x,y) = ēs̄G+ rs̄QB.

5. Verify that r = x mod n otherwise reject the signa-
ture.

Step 2 of the signing algorithm is of vital impor-
tance, inappropriate reuse of the random integer led to
the highly publicised breaking of Sony PS3 implementa-
tion of ECDSA. Knowledge of the random value k, a.k.a.
the ephemeral key or the nonce, leads to knowledge of
the secret key. All values (m,r,s) can be observed by an
eavesdropper, ē can be found from m, r−1 mod n can be
easily computed from n and r, and if k is discovered then
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an adversary can find Bob’s secret key through the simple
calculation

dB = (sk− ē)r−1.

Our attack targets Step 3 of the OpenSSL implementa-
tion of ECDSA.

2.2 The Montgomery Ladder

Scalar multiplication is a common operation in cryptog-
raphy and in a number of incidences (such as step 3 of
ECDSA) the scalar is intended to remain secret. This
scalar multiplication is most efficiently performed using
a double-and-add method (or the related right-to-left
method) as outlined in Algorithm 1.

Input: Point P, scalar n, k bits
Output: Point nP
Q← O
for i from k to 0 do

Q← 2Q
if ni = 0 then

Q← Q+P
end

end
Algorithm 1: Double-and-add point scalar multiplica-
tion

Double-and-add methods, though efficient, are vulner-
able to side-channel attacks. The addition law for points
on commonly used elliptic curves is not complete. That
is, the computation of P + Q differs between the cases
P = Q and P 6= Q. Consequently, it is possible to distin-
guish when the if in the loop is executed and hence when
a bit of ni is 0.

The Montgomery ladder, described in Mont-
gomery [27], is presented in Algorithm 2. It differs
from Algorithm 1 in that both a doubling and an addition
of points occur at each step, regardless of the value of the
bit. Thus, the Montgomery ladder thwarts side channel
attacks which measure the computation at each bit to
determine if an addition operation was executed. The
branching in Algorithm 2 controls which point is doubled
and where the addition of points is stored.

Input: Point P, scalar n, k bits
Output: Point nP
R0← O
R1← P
for i from k to 0 do

if ni = 0 then
R1← R0 +R1
R0← 2R0

else
R0← R0 +R1
R1← 2R1

end
end

Algorithm 2: Montgomery ladder point scalar multipli-
cation

Instead of distinguishing additions from doublings, our
attack identifies which branch of the if statement is taken.
The technique we use is described in the next section.

2.3 The FLUSH+RELOAD attack

FLUSH+RELOAD is a recently developed cache side-
channel attack [40]. The attack exploits a weakness in
the X86 processor architecture, which allows processes to
manipulate the cache of other processes.

Using the attack, a spy program can trace or monitor
memory read and execute access of a victim program to
shared memory pages. The spy program only requires
read access to the shared memory pages, hence pages con-
taining binary code in executable files and in shared li-
braries are susceptible to the attack. By monitoring the
victim access to specific locations in these pages, the spy
program learns when the victim executes the code in the
monitored memory locations. From this information the
spy program can infer information on the data processed
by the victim.

The spy program described in Yarom and Falkner [40]
uses the FLUSH+RELOAD attack to retrieve the secret key
from the GnuPG RSA decryption. The spy program mon-
itors the phases of the square-and-multiply exponentia-
tion [17] used by GnuPG. As these phases depend on the
values of the bits of the exponent, monitoring them allows
the spy program to recover the secret exponent.

The attack operates by dividing time into slots. At the
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beginning of a time slot, the spy program flushes the mon-
itored memory line from the cache of the processor. At the
end of the slot, the spy program loads data from the mem-
ory line. Loading data from cached memory lines is sig-
nificantly faster than loading them from memory. Hence,
by measuring the time it takes to load the data, the spy
program can know whether the line is cached or not. As
the line is flushed at the beginning of the slot, having it
cached at the end indicates that the processor accessed the
line during the time slot.

When the victim memory access overlaps the spy mea-
surement, the spy will miss the access [40]. Consequently,
increasing the time slot length reduces the portion of time
the spy spends in measurement and with it the probability
of missing access. On the other hand, the spy is unable to
distinguish between multiple accesses to the same mem-
ory line in a single time slot. It also cannot determine
the order of memory accesses to different memory lines
occurring in the same time slot. Consequently, increas-
ing the time slot reduces the attack’s resolution. Hence
choosing the length of the time slot presents a tradeoff be-
tween the attack resolution and the probability of missing
a memory access.

3 Attacking OpenSSL ECDSA
OpenSSL is one of the most commonly used open-source
cryptographic libraries. It provides a set of cryptographic
services, including both public key and symmetric en-
cryption algorithms, and public key signature algorithms.

OpenSSL’s implementation of ECDSA uses the Mont-
gomery ladder algorithm for scalar multiplication on the
elliptic curve. We use this implementation to demonstrate
that naı̈ve implementations of the Montgomery ladder are
susceptible to the FLUSH+RELOAD attack.

Listing 1 shows the relevant section of the implemen-
tation of the Montgomery ladder in OpenSSL version
1.0.1e. The bits of the multiplication scalar are stored in
the word array scalar->d, where the word size is defined
by the architecture, e.g. 32 bits for the IA-32 architecture
and 64 bits for the X86-64 architecture. The outer loop, at
lines 268 to 286 traverses over the words representing the
scalar. The inner loop, at lines 271 to 284 traverses the
bits in each word. Line 273 tests the bit. For each bit the
implementation executes a group add followed by a group

double. If the bit is set, the implementation uses lines 275
and 276. For clear bits it uses lines 280 and 281.

Listing 1: OpenSSL implementation of the Montgomery
ladder

268 f o r ( ; i >= 0 ; i−−)
269 {
270 word = s c a l a r−>d [ i ] ;
271 whi le ( mask )
272 {
273 i f ( word & mask )
274 {
275 i f ( ! gf2m Madd ( group , &p o i n t−>X, x1 ,

z1 , x2 , z2 , c t x ) ) goto
e r r ;

276 i f ( ! gf2m Mdouble ( group , x2 , z2 , c t x )
) goto e r r ;

277 }
278 e l s e
279 {
280 i f ( ! gf2m Madd ( group , &p o i n t−>X, x2 ,

z2 , x1 , z1 , c t x ) ) goto
e r r ;

281 i f ( ! gf2m Mdouble ( group , x1 , z1 , c t x )
) goto e r r ;

282 }
283 mask >>= 1 ;
284 }
285 mask = BN TBIT ;
286 }

As the listing demonstrates, the implementation is reg-
ular: For each bit, the implementation executes exactly
the same sequence of operations. The only differences
between set and clear bit are the lines that invoke these
operations and the targets of these operations. While this
is a small difference, it is sufficient for mounting an attack
that recovers the values of the bits.

Our spy program uses the FLUSH+RELOAD technique
to monitor the execution of the if statement in line 273.
We distinguish between executing the then and the else
blocks of the if statement. This information reveals the
value of the bit tested by the if statement.

FLUSH+RELOAD monitors execution by placing
probes on shared memory lines. For the attack to recover
the bit values, it must distinguish between memory lines
access sequences resulting from set bits and those result-
ing from clear bits. Achieving this depends on several
factors: the mapping of source code to memory lines, the
sequence of accesses to these memory lines when execut-
ing the code and FLUSH+RELOAD’s ability to accurately
capture the sequences.

The mapping of source lines to cache lines in our build
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of OpenSSL is depicted in Fig. 1. The machine code
created from source lines 273 to 282 covers the virtual
memory address range 0x0812130C to 0x081213e8. This
range spans four cache lines, marked A, B, C and D.

Double

Line 281

Add

Line 280

Clear

Double

Line 276

Add

Line 275

Set

0x08121400

Cache Line A Cache Line B Cache Line DCache Line C

If

0x08121300 0x08121340 0x08121380 0x081213C0

Figure 1: Mapping from source code to memory

The minimum sequence of memory line accesses re-
quired for executing this code can now be constructed.
The if statement at line 273 is executed for each bit.
The code of this statement is in memory line A, hence
this memory line is accessed when processing of a bit
starts. For a set bit, the processing continues with source
line 275, which maps to memory lines A and B. The
actual call to the group add function occurs at address
0x08121347. (See mark in Fig. 1.) After a delay for
computing the group add, execution continues in mem-
ory line B to process the return value and to invoke the
group doubling function. The group doubling function re-
turns to memory line B and execution leaves the if body
at memory line D.

Hence, the sequence of memory line accesses required
for a set bit is: A, B, add, B, double, B, D. Similarly, for a
clear bit, the sequence is: A, C, add, C, D, double, D.

Due to the limited temporal resolution of FLUSH+RE-
LOAD, the attack can observe the order of memory ac-
cesses only if they are sufficiently separated in time.
Hence, in the case of OpenSSL, the attack can only ob-
serve the order of memory accesses if they are separated
by a call to a group operation. For example, when the
bit is set, the attack cannot decide whether the access to
memory line A precedes or follows the access to mem-
ory line B. Similarly, when observed by FLUSH+RE-
LOAD, memory accesses issued after the group double
are merged with those issued at the start of processing
the following bit. Figure 2 shows the observable memory
accesses when processing a set bit followed by a clear bit.

The diagram also shows memory accesses issued by
processor optimisations. These optimisations pre-load
memory lines into the cache to reduce the time the pro-

Double

Required Access Optimisation Access

A

B

C

D

Operation

Bit Value

Time

if add Double

Set

if add

Clear

Loop Loop

Figure 2: Observable memory access over time (process-
ing a set then a clear bit)

gram waits for these lines. For example, when the proces-
sor uses speculative execution [36], it follows both arms
of a conditional branch before evaluating the condition.
When the condition is evaluated, the processor commits to
the pre-processed computation of the correct arm, dispos-
ing of the computation done for the other arm. In the case
of OpenSSL this means that even before evaluating the
bit, the processor may start processing both line 275 and
line 280, triggering memory loads from memory lines A,
B and C.

Another optimisation that can cause additional mem-
ory line access is spatial prefetching [20]. The processor
pairs adjacent memory lines and tries to bring both mem-
ory lines into the cache when there is a miss on one of
the pair’s lines. For example, when there is a cache miss
on memory line A, the spatial prefetcher may attempt to
prefetch memory line B and vice versa.

Consequently, as demonstrated in Fig. 2, the memory
lines accessed between computing the group add and the
group double can be used for recovering the value of the
bit. Probing any of lines A and B gives a positive indica-
tion of set bits. Probing either line C or D gives a positive
indication of clear bits. For our attack we probe memory
lines B and D.

Three limitations of the FLUSH+RELOAD attack affect
its ability to capture the sequence of memory accesses.
The first is the attack temporal resolution which affects
its ability to determine the order of accesses performed
within a short time from each other. The second limita-
tion is the possibility of an overlap between the memory
access and the probe which may result in the attack miss-
ing the access. The third limitation is the result of the
interaction between the FLUSH+RELOAD attack and the
processor optimisation of cache use. In particular, the spa-
tial prefetching optimisation implies that the attack cannot
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be used to probe two cache lines that form a pair, because
probing one of the lines in a pair triggers a prefetch of the
other.

For OpenSSL, the attack resolution should be suffi-
ciently high for the attack to be able to distinguish be-
tween memory accesses done before and after each bit
and those done between the group add and group double
operations of each bit. This can be achieved by setting the
time slot size to be less than the time it takes the victim
to calculate the group double. As group double calcula-
tions are faster than group add calculations, this ensures
that the probed memory lines are flushed when the vic-
tim computes the group add to be probed when the victim
computes the group double.

The probability of an overlap, like the attack resolution,
depends on the length of the time slot. Longer time slots
mean that the portion of time during which the spy probes
is smaller and, therefore, the probability of an overlap is
lower.

As predicted by Walter [38], smaller keys are more re-
silient to the attack. With smaller keys, group operations
are shorter, forcing shorter time slots. The shorter time
slots lead to an increased probability of an overlap and
with it of missing bits.

Missing memory accesses not only prevents the spy
program from recovering the value of bits. It may also re-

sult in the spy program losing the bit position in the scalar
multiplication process. To protect against this possibility,
our attack also probes the first and last memory lines of
the gf2m Mdouble function. Probing these lines provides
the spy program with additional information on the oper-
ation of the victim and facilitates recovering the position
of captured scalar bits.

The next section describes the details of our experimen-
tation with the attack and its results.

4 Experimental Setup and Results
To test the attack on OpenSSL we used an HP Elite 8300
running Fedora 18. As the OpenSSL package shipped
with Fedora does not support ECC, we used our own build
of OpenSSL 1.0.1e. To facilitate the mapping from source
lines to memory addresses we built OpenSSL with de-
bugging symbols. In real attack settings, the attacker will
need to reverse engineer [13] the OpenSSL library. For
the experiment we used the OpenSSL sect571r1 curve.
(NIST Binary-Curve B-571 [28].)

With the selected curve, group add operations take
23,612 cycles on average. The first group double opera-
tion takes 6,552 cycles on average, whereas further group
double operations take 11,962 cycles. Based on the dis-
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cussion in Section 3, we picked a slot length of 10,240
cycles.

Figure 3 shows the results of the probes during 50
time slots. Probes taking less than the threshold of 120
clock cycles indicate a victim access to the probed line.
The shaded areas in the diagram indicate the computation
of the group double operation, identified by probing for
group double start and end. For clarity, we have omitted
these probes from the diagram.

For example, in the first time slot, the spy program cap-
tured access to memory lines B and D, as well as an ac-
cess to the last memory line of the group double. The end
of the group double is also the end of processing a bit,
hence at time slot 1, the victim finished processing a bit
and started the next one. The next captured probe is at
time slot 5. In this time slot, the victim accessed memory
line B and started executing a group double. Access to
line B between the group add and the group double oper-
ations indicates that the bit is set. Processing the next bit
starts at time slot 8 and ends in time slot 16. The access
to memory line D in time slot 13 indicates that the second
bit is clear.

In the absence of access to memory lines B or D in
time slot 42, the start of a group double indicates that the
spy program missed a value of a bit. However, the fact
that a bit was processed at that time slot is not missed,
demonstrating the value of probing the start of the group
double operation.
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To measure the number of missing bits we traced the
computation of 100 signatures. On average, the attack

misses only 4.26% of the bits or 25.28 bits per signature.
The distribution of number of bits missing per signature
is in Fig. 4. The number of missing bits ranges from 10 to
34, with the median at 25 missing bits per signature.
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Figure 5: Missing bits per bit position

As Fig. 5 demonstrates, the distribution of missing bits
position is not uniform. The first bit (bit 0) is always
missed. This is mostly the result of the short time it takes
OpenSSL to compute the group double operation for the
first bit. Even ignoring the first bit, it is evident that miss-
ing bits tend to cluster towards the most significant bits of
the scalar. Around 15% of the bits in positions 1 to 20 are
missed, compared with 3.6% of the bits from position 50
onward, where the distribution of missing bits is approxi-
mately uniform.

5 Discussion

Full Recovery of the Nonce

Given the high proportion of nonce bits recovered by
the FLUSH+RELOAD attack, using the LLL based tech-
niques [19,29] described in Sect. 1.1 seems computation-
ally excessive. With a worst case of 34 bits missing, the
baby step giant step algorithm [33] would require less
then 10 Megabytes of memory and less than one second
of computation to complete the nonce.
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Implications

As the ECDLP is not targeted by this attack, the sig-
nature protocol is made no more vulnerable by our re-
sults. This attack targets the scalar multiplication imple-
mentation of OpenSSL and is therefore particular to im-
plementations using this and similar implementations of
the Montgomery ladder. The vulnerability introduced by
this implementation is due to the bits of the secret nonce
determining which conditional branch is taken. Our spy
program is able to determine how the algorithm executes
by having access to the victim’s memory and used this
knowledge to reconstruct values used by the software.

As demonstrated in this paper, the FLUSH+RELOAD at-
tack has a higher resolution and better accuracy then pre-
viously known attacks. FLUSH+RELOAD applies across
multiple cryptographic schemes and we show that it ap-
plies to implementation hitherto not considered vulnera-
ble to side-channel attacks. It, therefore, presents new
threats to confidentiality of data.

This threat is not limited to cryptographic software.
The attack can be applied to other software and may be
able to extract sensitive information from other software,
including keystroke timing information [32,34], statistical
data on network traffic and disk use and business logic.

Mitigation

Preventing data flow from secrets to branch conditions is
one way for mitigating the attack. The Networking and
Cryptography library (NaCl), implemented by Bernstein,
Lange and Schwabe [8], provides an implementation of
the Montgomery ladder that is not vulnerable to our at-
tack. Instead of using branches, NaCl uses arithmetic op-
erations to select the arguments and targets of the group
operation. Consequently, NaCl’s use of the cache is in-
dependent of the values of the bits in the nonce. Fixing
OpenSSL by using methods similar to those used in NaCl
will provide protection against the attack.

While fixing OpenSSL would prevent the attack we de-
scribe, it is not a panacea for the FLUSH+RELOAD attack.
As discussed above, the attack is generic and can apply to
other software. It would be advisable for implementors
of cryptographic software to avoid using secret informa-
tion to determine which operations or values are accessed
when the memory locations can be distinguished by an

eavesdropper.

The FLUSH+RELOAD technique exploits the lack of
restrictions on the ability to flush specific memory lines
from the cache, which enables processes to interact using
read-only pages. This is a security weakness of the X86
architecture. Addressing this weakness requires a hard-
ware fix. A possible fix is to restrict the ability to flush
memory to memory pages to which the process has write
access and to memory pages to which the system allows
such access. This access control could be implemented by
adding memory types that restrict flush access to the PAT
(Page Attribute Table) [21, chap. 11]

6 Conclusions and future work

The results of this work imply that the OpenSSL Mont-
gomery ladder implementation should be avoided in all
implementations of elliptic curve protocols when a scalar
multiplication step involves a secret parameter. This at-
tack is applicable when the malicious party has access to
the memory of the targeted device, a completely reason-
able assumption, possible when using a multi-user oper-
ating system, a virtual machine or a computer victim to
malware.

The results of this work also support the theory of
Walter [38] that smaller keys are more resilient to side-
channel analysis. In this attack a higher proportion of the
nonce can be obtained for larger key sizes. This implies
that as we, naturally, transition to larger parameters in re-
sponse to increasing computing capabilities, prevention of
side-channel attacks should be incorporated into the im-
plementation design, as is the methodology adopted by
the authors of the NaCl cryptographic library [8].

Further work in this line of research is to apply the
FLUSH+RELOAD attack outside the realm of scalar mul-
tiplication. A possible use is for implementing the Vaude-
nay padding oracle attack [5, 37]. It would also be inter-
esting to test the extent to which the attack can be applied
to non-cryptographic software. The nature of the threat
the attack presents to business logic and to customer pri-
vacy should be evaluated.
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[1] O. Acıiçmez. Yet another microarchitectural attack: exploiting I-

Cache. In P. Ning and V. Atluri, editors, Proceedings of the ACM
Workshop on Computer Security Architecture, pages 11–18, Fair-
fax, Virginia, United States, November 2007.
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