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Abstract. Signcryption is a relatively new cryptographic technique that is sup-
posed to fulfill the functionalities of digital signature and encryption in a single
logical step and can effectively decrease the computational costs and commu-
nication overheads in comparison with the traditional signature-then-encryption
schemes, and aggregate signcryption scheme allows individual signcryption ci-
phertexts intended for the same recipient to be aggregated into a single (shorter)
combined ciphertext without losing any of the security guarantees. In this paper,
we present a new identity-based aggregate signcryption scheme using multilinear
maps. To the best of my knowledge, our new scheme is the first identity-based
aggregate signcryption scheme that admits unrestricted aggregation.

1 Introduction

The two most important functionalities offered by cryptography are authentication and
confidentiality. In 1997 Zheng introduced the concept of signcryption which provides
both confidentiality and authentication [1]. Signcryption is more efficient than perform-
ing sign and encrypt independently on a single message using the most efficient signing
and encryption algorithms. The first formal security model and security proof was giv-
en by Baek et al. in 2002 [2]. Identity based signcryption (IBSC) with formal security
proof was introduced by Malone-Lee in his paper [3]. But Malone-Lees scheme was
not secure and its weakness was pointed out by Libert and Quisquater in [4]. Libert
and Quisquater also proposed three different types of IBSC schemes which satisfy ei-
ther public verifiability or forward security. It became an open challenge to design an
efficient signcryption scheme providing both public verifiability and forward security.
Soon, this open problem was solved. Chow et al. [5] designed an IBSC scheme that
provides both public verifiability and forward security. Boyen [6] presented an IBSC
scheme that provides not only public verifiability and forward security but also cipher-
text unlinkability and anonymity. Chen and Malone-Lee [7] improved Boyens scheme
in efficiency and Barreto et al. [8] constructed the most efficient IBSC scheme to date.
There are two major constraints to design an efficient signcryption scheme, namely
computation and communication efficiency. With the increasing running speed of the
chips, computational efficiency is not of a serious issue, but the bandwidth is still a lim-
itation. Thus communication efficiency is very important in the present scenario. The
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amount of data sent must be kept as close to the theoretical minimum for getting effi-
ciency. For example in banking scenarios one may have to process many signcryption
quickly and simultaneously. In order to reduce the compute cost and overhead of trans-
mission, we use aggregate signcryption. Aggregate signcryption schemes take the con-
ceptual ideas of aggregate signature schemes and apply them to signcryption schemes.
An aggregate signcryption scheme allows individual signcryption ciphertexts intend-
ed for the same recipient to be aggregated into a single (shorter) combined ciphertext
without losing any of the security guarantees that would be present if the original sign-
cryption ciphertexts were transmitted individually. In 2009, Selvi et al. [9] proposed the
first identity-based aggregate signcryption (IBASC) along with a formal security model
and a formal security proof. Then, there are many researches focus on this topic, such as
[10], [11] etc. However, none of those IBASC schemes admits unrestricted aggregation
to date.

In this paper, we construct the first identity-based aggregate signcryption scheme
that admits unrestricted aggregation, and prove its security in the standard model. We
present our results in a generic multilinear map [12] setting and then show how they can
be translated to the GGH [13] graded algebras analogue of multilinear maps. This idea is
inspired by the related work [14] and [15], the former proposed an identity-based aggre-
gate signatures with unrestricted aggregation and the latter proposed an identity-based
key-encapsulation mechanism, both of them are constructed from multilinear maps.

Organization We introduce the leveled multilinear maps, the GGH graded encoding,
and the complexity assumption in Section 2, and review the definitions and security
model for IBASC in Section 3 & 4. Then, we present our IB-KEM in generic multilinear
map setting in Section 5, and make it translated to the GGH framework in Section 6.

2 Leveled Multilinear Maps and the GGH Graded Encoding

2.1 Generic Leveled Multilinear Maps

We give a description of generic, leveled multilinear maps. More details of the GGH
graded algebras analogue of mulitlinear maps are included in Appendix A, and for
further details, please refer to [13].

For generic, leveled multilinear maps. We assume the existence of a group generator
G, which takes as input a security parameter 1λ and a positive integer k to indicate the
number of allowed pairing operations. G(1λ, k) outputs a sequence of groups G =
(G1, ...,Gk) each of large prime order p > 2λ. In addition, we let gi be a canonical
generator of Gi (and is known from the group’s description). We let g = g1.

We assume the existence of a set of bilinear maps {ei,j : Gi × Gj → Gi+j |i, j ≥
1; i+ j ≤ k}. The map ei,j satisfies the following relation:

ei,j(g
a
i , g

b
j) = gabi+j : ∀a, b ∈ Zp

We observe that one consequence of this is that ei,j(gi, gj) = gi+j for each valid
i, j.

When the context is obvious, we will sometimes abuse notation and drop the sub-
scripts i, j, For example, we may simply write e(gai , g

b
j) = gabi+j .
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2.2 Algorithmic Components of GGH Encodings

Garg, Gentry and Halevi (GGH) [13] defined an “approximate” version of a multilinear
group family, which they call a graded encoding system. As a starting point, they view
gαi in a multilinear group family as simply an encoding of α at “level-i”. This encod-
ing permits basic functionalities, such as equality testing (it is easy to check that two
level-i encodings encode the same exponent), additive homomorphism (via the group
operation in Gi), and bounded multiplicative homomorphism (via the multilinear map
e). They retain the notion of a somewhat homomorphic encoding with equality testing,
but they use probabilistic encodings, and replace the multilinear group family with “less
structured” sets of encodings related to lattices.

Abstractly, their k-graded encoding system for a ring R includes a system of sets
S = {S(α)

i ⊂ {0, 1}∗ : i ∈ [0, k], α ∈ R} such that, for every fixed i ∈ [0, k], the sets
{S(α)

i : α ∈ R} are disjoint (and thus form a partition of Si =
⋃
αS

(α)
i ). The set S(α)

i

consists of the “level-i encodings of α”. Moreover, the system comes equipped with
efficient procedures, as follows:

Instance Generation. The randomized InstGen(1λ, 1k) takes as input the security pa-
rameter λ and integer k. The procedure outputs (params, pzt), where params is a de-
scription of an k-graded encoding system as above, and pzt is a level-k “zero-test pa-
rameter”.

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding” a ∈
S0, such that the induced distribution on α such that a ∈ S(α)

0 is statistically uniform.

Encoding. The (possibly randomized) enc(params, i, a) takes i ∈ [k] and a level-zero
encoding a ∈ S(α)

0 for some α ∈ R, and outputs a level-i encoding u ∈ S(α)
i for the

same α.

Re-Randomization. The randomized reRand(params, i, u) re-randomizes encodings
to the same level, as long as the initial encoding is under a given noise bound. Specifi-
cally, for a level i ∈ [k] and encoding u ∈ S(α)

i , it outputs another encoding u′ ∈ S(α)
i .

Moreover for any two encodings u1, u2 ∈ S(α)
i whose noise bound is at most some b,

the output distributions of reRand(params, i, u1) and reRand(params, i, u2) are statis-
tically the same.

Addition and negation. Given params and two encodings at the same level, u1 ∈ S(α1)
i

and u2 ∈ S
(α2)
i , we have add(params, u1, u2) ∈ S

(α1+α2)
i , and neg(params, u1) ∈

S
(−α1)
i , subject to bounds on the noise.

Multiplication. For u1 ∈ S(α1)
i1

, u2 ∈ S(α2)
i2

, we have mult(params, u1, u2) ∈ S(α1·α2)
i1+i2

.

Zero-test. The procedure isZero(params, pzt, u) outputs 1 if u ∈ S(0)
k and 0 otherwise.

Note that in conjunction with the procedure for subtracting encodings, this gives us an
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equality test.

Extraction. This procedure extracts a “canonical” and “random” representation of ring
elements from their level-k encoding. Namely ext(params, pzt, u) outputs (say) K ∈
{0, 1}λ, such that:

– (a) With overwhelming probability over the choice of α ∈ R, for any two u1, u2 ∈
S
(α)
k , ext(params, pzt, u1) = ext(params, pzt, u2),

– (b) The distribution {ext(params, pzt, u): α ∈ R, u ∈ S(α)
k } is statistically uniform

over {0, 1}λ.

The realization method of GGH’s graded encoding system is included in Appendix A.

2.3 Complexity Assumption

Assumption 1 (Multilinear Computational Diffie-Hellman: k-MCDH) [14] The k-
Multilinear Computational Diffie-Hellman (k-MCDH) problem states the following: A
challenger runs G(1λ, k) to generate groups and generators of order p. Then it picks
random c1, ..., ck ∈ Zp. The assumption then states that given g = g1; gc1 , ..., gck it

is hard for any poly-time algorithm to compute g
∏
j∈[1,k] cj

k−1 with better than negligible
advantage (in security parameter λ).

Assumption 2 (GGH analogue of k-MCDH: GGH k-MCDH) [14] The GGH k-
Multilinear Computational Diffie-Hellman (k-MCDH) problem states the following: A
challenger runs InstGen(1λ, 1k) to obtain (params, pzt). Note that params includes a
level 1 encoding of 1, which we denote as g. Then it picks random c1, ..., ck each equal
to the result of a fresh call to samp().

The assumption then states that given params, pzt, enc(1, c1), ..., enc(1, ck), it is
hard for any poly-time algorithm to compute an integer t ∈ [1, 2λ] and an encoding z
such that

isZero(pzt,mult(g, z)− enc(k, t ·
∏

j∈[1,k]

cj))

outputs true.

Assumption 3 (Multilinear Decisional Diffie-Hellman: k-MDDH) [16] The k-Multilinear
Decisional Diffie-Hellman (k-MDDH) problem states the following: A challenger runs
G(1λ, k) to generate groups and generators of order p. Then it picks random c1, ..., ck+1 ∈
Zp. The assumption then states that given g = g1, g

c1 , ..., gck+1 it is hard for any poly-

time algorithm to distinguish g
∏
j∈[1,k+1] cj

k from a uniform Gk-element with better than
negligible advantage (in security parameter λ).

Assumption 4 (GGH analogue of k-MDDH: GGH k-MDDH) [16] The GGH k-
Multilinear Decisional Diffie-Hellman (k-MDDH) problem states the following: A chal-
lenger runs InstGen(1λ, 1k) to obtain (params, pzt). Note that params includes a level
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1 encoding of 1, which we denote as g. Then it picks random c1, ..., ck+1 each equal to
the result of a fresh call to samp().

The assumption then states that given params, pzt, enc(1, c1), ..., enc(1, ck+1) and
a level-k encoding T , it is hard for any poly-time algorithm to decide the output of
isZero(pzt, reRand(T ) − reRand(enc(params,k,

∏
j∈[1,k+1] cj))) is 1 or 0 with better

than negligible advantage (in security parameter λ).

3 Definitions for Identity-Based Aggregate Signcryption Schemes

We now give our definitions for identity-based aggregate signcryption schemes. In our
setting, each signcryption is associated with a multiset S over identities. A set S is of
the form {ID1, ..., ID|S|}. Since S is a multiset it is possible to have IDi = IDj for
i 6= j. All signcryptions, including those that come out of the signcrypt algorithm, are
considered to be aggregate signcryptions. The aggregation algorithm is general in that
it can take any two aggregate signcryptions and combine them into a new aggregate
signcryption.

Our definition allows for an initial trusted setup that will generate a set of com-
mon public parameters PP. This will define a bit length of all messages and identities.
The authority also produces a master secret key used later to run the key generation
algorithm.

We emphasize a few features of our setting. First, aggregation is very general in that
it allows for the combination of any two aggregate signcryptions into a single one. The
aggregation operation does not require any secret keys. The multiset structure allows
one to combine two aggregate signcryptions which both signcrypted from the same
sender.

An identity-based aggregate signcryption scheme (IBASC) consists of the following
five probabilistic polynomial time (PPT) algorithms:

– Authority-Setup(1λ, l, n) : The trusted setup algorithm takes as input the security
parameter as well the bit-length l of messages and bit-length n of the identities. It
outputs a common set of public parameters PP and master secret key MSK.

– KeyGen(MSK, ID ∈ {0, 1}n) : The key generation algorithm is run by the author-
ity. It takes the master secret key MSK and the identity information ID of user UID
as input and outputs a private key SKID . The authority sends SKID to user UID
through a secure channel.

– Signcrypt(PP, Mi ∈ {0, 1}l, IDR ∈ {0, 1}n, IDi ∈ {0, 1}n, SKIDi ) : For gen-
erating the signcryption of a message Mi from user UIDi to user UIDR , the sender
UIDi provides the system parameters PP, the message Mi, the identity information
IDR of receiver UIDR , the identity information IDi of its own, and the private
key SKIDi for IDi as input to this algorithm. The signcryption algorithm outputs
the valid signcryption σi for the message Mi from user UIDi to user UIDR and an
identities set of senders S = {IDi}. We emphasize that a single signcryption that
is output by this algorithm is considered to also be an aggregate signcryption.

– Aggregate(PP, Sx, Sy , σx, σy) : The aggregation algorithm takes as input two
multisets Sx and Sy and purported signcryption σx and σy . The elements of Sx =
{IDx,1, ...,IDx,|Sx|} consist of the identities corresponding to σx and the elements
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of Sy = {IDy,1, ...,IDy,|Sy|} consist of the identities corresponding to σy . The
process produces a signcryption σAgg on the multiset SAgg = Sx ∪ Sy , where ∪ is
a multiset union.

– Unsigncrypt(PP, SKIDR , S, σ) : The unsigncryption algorithm takes as input the
public parameters, the the private key SKIDR for the receiver with identity IDR,
a multiset S = {ID1, ..., ID|S|} and an aggregate signcryption σ corresponding
to S. It outputs a set of messages {M1, ...,M|S|} or a false symbol ⊥ to indicate
whether verification succeeded, where Mi is the message sent from user UIDi with
identity IDi ∈ S to user UIDR with identity IDR.

Correctness The correctness property states that all valid aggregate signcryption will
pass the unsigncryption algorithm and output corresponding messages, where a valid
aggregate is defined recursively as an aggregate signcryption derived by an applica-
tion of the aggregation algorithm on two valid inputs or the signcryption algorithm.
More formally, for all integers λ, l, n, k ≥ 1, all PP∈ Authority-Setup(1λ, l, n), all
ID1, ..., IDk ∈ {0, 1}n, all SKIDi ∈ KeyGen(MSK, IDi), {M1, ...,M|S|} ← Un-
signcrypt(PP, SKIDR , S, σ), if σ is a valid aggregate for multiset S under PP. We
say that an aggregate signcryption σ is valid for multiset S if: (1) S = {IDi} for some
i ∈ [1, k], and σ ∈ Signcrypt(PP, Mi ∈ {0, 1}l, IDR ∈ {0, 1}n, IDi ∈ {0, 1}n,
SKIDi ); or (2) there exists multisets S̃, Ŝ where S = S̃ ∪ Ŝ and valid aggregate sign-
cryption σ̃, σ̂ on them respectively such that σ ∈ Aggregate(PP, S̃, Ŝ, σ̃, σ̂).

4 Security Model for Identity Based Aggregate Signcryption
Schemes

Security of signcryption consists of two different mechanism: one ensuring authenticity,
and the other privacy.

4.1 Unforgeability

Informally, in the unforgeability game, it should be computationally infeasible for any
adversary to produce a forgery implicating an honest identity, even when the adversary
can control all other identities involved in the aggregate and can mount a chosen mes-
sage attack on the honest identity. This is defined using a game between a challenger
and an adversary A with respect to scheme Π = (Authority-Setup, KeyGen, Sign-
crypt, Aggregate, Unsigncrypt).

IBASC-Unforg(Π , A, λ, l, n):

– Setup : The challenger runs Authority-Setup(1λ, l, n) to obtain PP. It sends PP to
A.

– Queries : Proceeding adaptively, A can make four types of requests:
1. Create New Key : The challenger begins with an index i = 1 and empty

sequence of index/identity/private key triples T . On input an identity ID ∈
{0, 1}n, the challenger runs KeyGen(MSK, ID) to obtain SKID. It adds the
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triple (i, ID, SKID) to T and then increments i for the next call. Nothing is
returned to the adversary. We note that the adversary can query this oracle
multiple times for the same identity. This will capture security for applications
that might release more than one secret key per identity.

2. Corrupt User: On input an index i ∈ [1, |T |], the challenger returns to the
adversary the triple (i, IDi, SKIDi) ∈ T . It returns an error if T is empty or i
is out of range.

3. Signcrypt: On input an index i ∈ [1, |T |], an identity information IDR of
receiver, and a message Mi ∈ {0, 1}l, the challenger obtains the triple (i, IDi,
SKIDi )∈ T (returning an error if it does not exist) and returns the signcryption
resulting from Signcrypt(PP, Mi, IDR, IDi, SKIDi ) to A.

4. Unsigncrypt : On input a multiset S = {ID1, ..., ID|S|}, an identity IDR,
and an aggregate signcryption σ (from S to IDR), the challenger obtains the
private key SKIDR for IDR and returns correspond messages {M1, ...,M|S|}
or a false symbol⊥ to indicate whether verification succeeded, whereMi is the
message sent from user UIDi with identity IDi ∈ S to user UIDR with identity
IDR.

– Response : Finally, A outputs a multiset S∗ of identities, a receiver identity ID∗R
and a purported aggregate signcryption σ∗.

We say the adversary “wins” or that the output of this experiment is 1 if: (1) {M∗1 ,
...,M∗|S∗|}←Unsigncrypt(PP, SKID∗R

, S∗, σ∗), (2) there exists an identity ID∗i ∈ S∗
such that ID∗i was not queried for a corrupt query by the adversary on any index cor-
responding to IDi

∗ and (3) there exists a message M∗i corresponding to a sender with
identity ID∗i ∈ S∗ such thatM∗i was not queried for a signcrypt query by the adversary
on any index corresponding to IDi

∗. Otherwise, the output is 0. Define IBASC-ForgA
as the probability that IBASC-Unforg(Π , A, λ, l, n) = 1, where the probability is over
the coin tosses of the Authority-Setup, KeyGen, and Signcrypt algorithms and of A.

Definition 1. (Adaptive Unforgeability) An ID-based aggregate signcryption scheme
Π is existentially unforgeable with respect to adaptive chosen-message attacks if for all
probabilistic polynomial-time adversaries A, the function IBASC-ForgA is negligible
in λ.

Selective Security We consider a selective variant to IBASC-Unforg (selective in both
the identity and the message) where there is an Init phase before the Setup phase,
wherein A gives to the challenger a forgery identity/message pair (ID∗ ∈ {0, 1}n,
M∗ ∈ {0, 1}l). Note that M∗ is the message sent form ID∗. The adversary only “win-
s” causing the experiment output to be 1 if: (1) {M∗1 , ..., M∗|S∗|} ← Unsigncrypt(PP,
SKID∗R

, S∗, σ∗), (2)M∗ ∈ {M∗1 , ...,M∗|S∗|} is the message corresponding to ID∗∈S∗,
(3) ID∗ was not queried for a corrupt query by the adversary on any index correspond-
ing to ID∗ and (4) message M∗ was not queried for a signcrypt query by the adversary
on any index corresponding to ID∗.
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4.2 Confidentiality

Similar to unforgeability game, it should be infeasible for any adversary to distinguish
the challenge signcryption ciphertexts, even when the adversary can mount any adap-
tive chosen identity and chosen ciphertext attacks. This is defined using a game between
a challenger and an adversary A with respect to scheme Π = (Authority-Setup, Key-
Gen, Signcrypt, Aggregate, Unsigncrypt).

IBASC-IND-ID-CCA(Π , A, λ, l, n):

– Setup : The challenger runs Authority-Setup(1λ, l, n) to obtain PP. It sends PP to
A.

– Phase 1 : Proceeding adaptively, A can make four types of requests:
1. Create New Key : The challenger begins with an index i = 1 and empty

sequence of index/identity/private key triples T . On input an identity ID ∈
{0, 1}n, the challenger runs KeyGen(MSK, ID) to obtain SKID. It adds the
triple (i, ID, SKID) to T and then increments i for the next call. Nothing is
returned to the adversary.

2. Corrupt User: On input an index i ∈ [1, |T |], the challenger returns to the
adversary the triple (i, IDi, SKIDi) ∈ T . It returns an error if T is empty or i
is out of range.

3. Signcrypt: On input an index i ∈ [1, |T |], an identity information IDR of
receiver, and a message Mi ∈ {0, 1}l, the challenger obtains the triple (i, IDi,
SKIDi )∈ T (returning an error if it does not exist) and returns the signcryption
resulting from Signcrypt(PP, Mi, IDR, IDi, SKIDi ) to A.

4. Unsigncrypt : On input a multiset S = {ID1, ..., ID|S|}, an identity IDR,
and an aggregate signcryption σ (from S to IDR), the challenger obtains the
private key SKIDR for IDR and returns correspond messages {M1, ...,M|S|}
or a false symbol⊥ to indicate whether verification succeeded, whereMi is the
message sent from user UIDi with identity IDi ∈ S to user UIDR with identity
IDR.

– Challenge :A chooses a multiset of identities S∗ = {ID∗1 , ..., ID∗|S∗|}, a receiver i-
dentity ID∗R, and two multisets of messagesM∗1 = {M∗1,1, ...,M∗1,|S∗|} andM∗2 =

{M∗2,1, ...,M∗2,|S∗|}, where ID∗R /∈ S∗, and |M∗1,i| = |M∗2,i|, for ∀i ∈ [1, |S∗|]. The
Challenger creates and corrupts all identities in S∗. Then, it chooses a random bit
β ∈ {0, 1}, and computes the the signcryptions from Signcrypt(PP, M∗β,i, ID

∗
R,

ID∗i , SKID∗i
) for ∀i ∈ [1, |S∗|]. Finally, the challenger aggregates these signcryp-

tions using the aggregation algorithm, and returns the result {σ∗, S∗} to A. The
adversarys choice of ID∗R is restricted to the identities that he did not corrupt in
Phase 1.

– Phase 2 : Phase 1 is repeated with the restriction that the adversary cannot corrupt
the identity ID∗R, and cannot unsigncrypt {σ∗, S∗}.

– Guess : A outputs a bit b′.

Awins the game if b′ = b. The advantage ofA is given by ADVA = |Pr[b′ = b]− 1
2 |.
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Definition 2. (IND-ID-CCA) An ID-based aggregate signcryption scheme Π is indis-
tinguishable with respect to adaptive chosen-identity and chosen-ciphertext attacks if
for all probabilistic polynomial-time adversariesA, the advantage ADVA is negligible
in λ.

Chosen-Plaintext Attack We consider a restricted variant to IBASC-IND-ID-CCA
where the adversary A is not allowed to make Unsigncrypt requests in Phase 1 and
Phase 2. We call this IBASC-IND-ID-CPA game.

Definition 3. (IND-ID-CPA) An ID-based aggregate signcryption scheme Π is indis-
tinguishable with respect to adaptive chosen-identity and chosen-plaintext attacks if for
all probabilistic polynomial-time adversaries A, the advantage ADVA is negligible in
λ in IBASC-IND-ID-CPA game.

Selective Security We consider a selective variant to IBASC-IND-ID-CPA (selective
in receiver identity) where there is an Init phase before the Setup phase, wherein A
gives to challenger the receiver identity ID∗R ∈ {0, 1}

n. We call this IBASC-IND-sID-
CPA game.

Definition 4. (IND-sID-CPA) An ID-based aggregate signcryption schemeΠ is indis-
tinguishable with respect to selective chosen-identity and chosen-plaintext attacks if for
all probabilistic polynomial-time adversaries A, the advantage ADVA is negligible in
λ in IBASC-IND-sID-CPA game.

5 Our Identity-Based Aggregate Signcryption Construction

5.1 Generic Multlinear Construction

Setup(1λ, l, n)→ (PP, MSK) : The trusted setup algorithm is run by PKG, the master
authority of the ID-based system. It takes as input the security parameter as well the
bit-length l of messages and bit-length n of identities. It first runs G(1λ, k = l + n)
and outputs a sequence of groups

−→
G = (G1, ..., Gk) of prime order p, with canonical

generators g1, ..., gk, where we let g = g1.
Next, it chooses random group elements (A1,0 = ga1,0 , A1,1 = ga1,1 ), ..., (Al,0 =

gal,0 , Al,1 = gal,1 ) ∈ G2
1. It also chooses random exponents (b1,0, b1,1), ..., (bn,0, bn,1)

∈ Z2
p and sets Bi,β = gbi,β for i ∈ [1, n] and β ∈ {0, 1}.
These will be used to define two functions H̄(ID,M) : {0, 1}n × {0, 1}l → Gk

and H̃(ID) : {0, 1}n → Gn. Let m1, ..., ml be the bits of message M and id1, ..., idn
as the bits of ID. It is computed iteratively as

H̄1(ID,M) = H̃1(ID) = B1,id1

for i ∈ [2, n] H̄i(ID,M) = e(H̄i−1(ID,M), Bi,idi) and H̃i(ID) = e(H̃i−1(ID), Bi,idi)

for i ∈ [n+ 1, n+ l = k] H̄i(ID,M) = e(H̄i−1(ID,M), Ai−n,mi−n)
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It defines H̄(ID,M) = H̄k=n+l(ID,M), H̃(ID) = H̃n(ID).
Then, it sets a randomness extractor, which can extract a uniform random l bits

string form Gk, i.e. ext : Gk → {0, 1}l.
The public parameters, PP, consist of the group sequence description plus:

(A1,0, A1,1), ..., (Al,0, Al,1), (B1,0, B1,1), ..., (Bn,0, Bn,1), ext

The master secret key MSK includes PP together with the values (b1,0, b1,1), ...,
(bn,0, bn,1).

KeyGen(MSK, ID ∈ {0, 1}n) : The private key for identity ID = (id1, ..., idn) is

SKID = g
∏
j∈[1,n]bj,idj

n−1 ∈ Gn−1.

Signcrypt(Mi ∈ {0, 1}l, IDR ∈ {0, 1}n, IDi ∈ {0, 1}n, SKIDi , PP) : The Sign-
cryption algorithm takes Mi = (mi,1, ...,mi,l), IDR = (idR,1, ..., idR,n), IDi =

(idi,1, ..., idi,n), SKIDi = g
∏
j∈[1,n]bj,idi,j

n−1 and PP as input, lets temporary variable
Di,0 = SKIDi , and chooses ti ∈ Zp randomly. Then for j = 1 to l it computes Di,j =
e(Dj−1, Aj,mi,j ) ∈ Gn−1+i. The output signcryption is σi = (σi,0, σi,1, σi,2), where

σi,0 = ext(e(H̃(IDR), gtil ))⊕Mi, σi,1 = gtil+1,

σi,2 = Dl = (gk−1)
∏
j∈[1,n]bj,idi,j ·

∏
j∈[1,l]ai,mi,j .

This serves as an ID-based aggregate signcryption for the (single element) multiset
S = {IDi}.

Aggregate(PP, Sx, Sy , σx, σy) : The aggregation algorithm simply computes the out-
put signcryption σz as σz = (σx,0‖σy,0, σx,1‖σy,1, σx,2 · σy,2), where ‖ is a concatena-
tion symbol. The serves as a signcryption on the multiset Sz = Sx ∪ Sy , where ∪ is a
multiset union.
Unsigncrypt(PP, SKIDR , S, σ) : For S = {ID1, ..., ID|S|}, σ = { σID1,0 ‖...‖
σID|S|,0, σID1,1 ‖...‖ σID|S|,1, σ2 }, the unsigncryption algorithm computes that

Mi = σIDi,0 ⊕ ext(e(SKIDR , σIDi,1)) for i ∈ {1, ..., |S|}

It then accepts if and only if

e(σ2, g)
?
=

∏
i=1,...,|S|

H̄(IDi,Mi).
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5.2 Correctness

For correct “decryption”, we have

H̃(IDR) = H̃n(IDR)

= e(H̃n−1(ID), Bn,idR,n)

= e(e(H̃n−2(ID), Bn−1,idR,n−1
), Bn,idR,n)

......

= e(B1,idR,1 , ..., Bn,idR,n)

= e(g
b1,idR,1
1 , ..., g

bn,idR,n
1 )

= g
∏
j∈[1,n]bj,idR,j

n

e(SKIDR , σIDi,1) = e(g
∏
j∈[1,n]bj,idR,j

n−1 , gtil+1)

= g
∏
j∈[1,n]bj,idR,j ·ti

n+l

Therefore, for i ∈ [1, |S|]:

e(H̃(IDR), gtil ) = g
∏
j∈[1,n]bj,idR,j ·ti

n+l = e(SKIDR , σIDi,1)

Then,
σIDi,0 ⊕ ext(e(SKIDR , σIDi,1)) = Mi

For “authentication”, we have

σ2 =
∏

i∈[1,|S|]

σi,2

=
∏

i∈[1,|S|]

(gk−1)
∏
j∈[1,n]bj,idi,j ·

∏
j∈[1,l]aj,mi,j

= (gk−1)
∑
i∈[1,|S|](

∏
j∈[1,n]bj,idi,j ·

∏
j∈[1,l]aj,mi,j )

∏
i=1,...,|S|

H̄(IDi,Mi) =
∏

i=1,...,|S|

(gk)
∏
j∈[1,n]bj,idi,j ·

∏
j∈[1,l]aj,mi,j

= (gk)
∑
i∈[1,|S|](

∏
j∈[1,n]bj,idi,j ·

∏
j∈[1,l]aj,mi,j )

Therefore, if (S, σ) is a “correct” aggregate signcryption ciphertext, then

e(σ2, g) =
∏

i=1,...,|S|

H̄(IDi,Mi) = (gk)
∑
i∈[1,|S|](

∏
j∈[1,n]bj,idi,j ·

∏
j∈[1,l]aj,mi,j ).
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5.3 Security

Unforgeability

Theorem 1. The ID-based aggregate signcryption scheme for message length l and
identity length n in Section 5.1 is selectively secure in the unforgeability game in Section
4 under the (l + n)-MCDH assumption.

Proof. We show that if there exists a PPT adversary A that can break the selective se-
curity of the ID-based aggregate signcryption scheme in the unforgeability game with
a non-negligible advantage for message length l, identity length n and security param-
eter λ, then there exists a PPT simulator that can break the (l+ n)-MCDH assumption.
The simulator takes as input a MCDH instance (g, gc1 , ..., gck ) together with the group
descriptions where k = l + n. Let mj denote the j-th bit of M and idj denote the j-th
bit of ID. The simulator plays the role of the challenger in the game as follows.

– Init: Let ID∗ ∈ {0, 1}n and M∗ ∈ {0, 1}l be the forgery identity/message pair
output by A.

– Setup: The simulator chooses random x1, ..., xl, y1, ..., yn ∈ Zp. For i = 1 to l,
let Ai,m∗i = gci+n and Ai,1−m∗i = gxi . For i = 1 to n, let Bi,id∗i = gci and
Bi,1−id∗i = gyi . We remark that the parameters are distributed independently and
uniformly at random as in the real scheme.

– Queries: Conceptually, the simulator will be able to create keys or signcrypt or
unsigncrypt for the adversary, because his requests will differ from the challenge
identity or message in at least one bit. More specifically,
1. Create New Key: The simulator begins with an index i = 1 and an empty

sequence of index/identity/private key triples T . On input an identity ID ∈
{0, 1}n, if ID = ID∗, the simulator records (i, ID∗, ⊥) in T . Otherwise,
the simulator computes the secret key as follows. Let β be the first index such
that idβ 6= id∗β . Use n − 2 pairings on the Bj,idj values to compute s =

(gn−1)
∏
j=1,...,n∧j 6=β bj,idj . Then compute SKID = syβ = (gn−1)

∏
j=1,...,n bj,idj .

Record (i, ID, SKID) in T . Secret keys are unique and perfectly distributed
as in the real game.

2. Corrupt User: On input an index i ∈ [1, |T |], the simulator returns to the
adversary the triple (i, IDi, SKIDi ) ∈ T . It returns an error if T is empty or i
is out of range. Recall that i cannot be associated with ID∗ in this game.

3. Signcrypt: On input an index i ∈ [1, |T |], an identity information IDR of
receiver, and a message Mi ∈ {0, 1}l, the challenger obtains the triple (i, IDi,
SKIDi )∈ T or returns an error if it does not exist. If IDi 6= ID∗, then the
simulator creates signcryption ciphertext in the usual way.
If IDi = ID∗, then we know Mi 6= M∗. The simulator creates σi,0 and σi,1
in the usual way. Let β be the first index such that mi,β 6= m∗β . Use l − 2

pairings on the Aj,mi,j values to compute σ′i,2 = (gl−1)
∏
j=1,...,l∧j 6=β aj,mi,j .

Next, compute σ′′i,2 = σ′i,2
xi = (gl−1)

∏
j=1,...,l aj,mi,j . Use n − 1 pairings

on the Bj,idi,j values to compute γ = (gn)
∏
j=1,...,n bj,idi,j . Finally, com-

pute σi,2 = e(γ, σ′′i,2) = (gk−1)
∏
j∈[1,n]bj,idi,j ·

∏
j∈[1,l]ai,mi,j . Return σi =
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(σi,0, σi,1, σi,2) and S = {IDi} to A. Signcryption ciphertexts are unique
and perfectly distributed as in the real game.

4. Unsigncrypt : The simulator can run unsigncryption in the usual way, because
it can create and corrupt any identity IDR 6= ID∗ freely.

– Response:A outputs an aggregate signcryption ciphertext σ∗ on multiset S∗ where
ID∗ ∈ S and M∗ is the corresponding message sent from ID∗. The simulator will
extract from this a solution to the MCDH problem. This works by iteratively com-
puting all the other signatures in S∗ and then dividing them out of the aggregate
until only one or more signcryption ciphertexts on (ID∗, M∗) remain. That is, the
simulator takes an aggregate for S∗ and computes an aggregate signcryption cipher-
text for S′ where S′ has one less identity than S∗ at each step. These signatures will
be computed as in the query phase.
Eventually, we have an aggregate instances σ′ on t ≥ 1 of (ID∗,M∗). We have
that e(σ′2, g) = H̄(ID∗,M∗)

t
= (gk)

t·(
∏
j∈[1,n]bj,id∗j

·
∏
j∈[1,l]aj,m∗j

)
and thus σ′2 =

(gk−1)t
∏
j∈[1,k]cj . The simulator computes σ′1/t2 (recall that t is not 0 mod p) which

gives (gk−1)
∏
j∈[1,k]cj and this is given as the solution to the MCDH problem.

As remarked in the Setup and Query phase, the responses of the challenger are
distributed identically to the real unforgeability game. The simulator succeeds whenever
A does.

Confidentiality

Theorem 2. The ID-based aggregate signcryption scheme for message length l and
identity length n in Section 5.1 is IND-sID-CPA under the (l + n)-MDDH assumption.

Proof. We show that if there exists a PPT adversary A that can break the IND-sID-
CPA security of the ID-based aggregate signcryption scheme in IBASC-IND-sID-CPA
game with a non-negligible advantage for message length l, identity length n and secu-
rity parameter λ, then there exists a PPT simulator B that can break the (l+ n)-MDDH
assumption. The simulator takes as input a MDDH instance (g, gc1 , ..., gck+1 , T ) to-

gether with the group descriptions, where k = l+n, and T is identical to g
∏
j∈[1,k+1] cj

k

or uniform and independent in Gk. B’s goal is to output 1 if T = g
∏
j∈[1,k+1] cj

k and
0 otherwise. Let mj denote the j-th bit of M and idj denote the j-th bit of ID. The
simulator plays the role of the challenger in the game as follows.

– Init: A outputs an identity ID∗R = (id∗R,1, ..., id
∗
R,n), where it wishes to be chal-

lenged, the id∗R,j is the j-th bit of ID∗R.
– Setup: B chooses random group elements (A1,0 = ga1,0 , A1,1 = ga1,1 ), ..., (Al,0 =
gal,0 , Al,1 = gal,1 ) ∈ G2

1. It also chooses random exponents b1,..., bn∈ Zp and sets
(Bi,id∗i = gci , Bi,(1−id∗i ) = gbi ) for i ∈ [1, n]. Then, it sets a randomness extrac-
tor ext : Gk → {0, 1}l, and sends (A1,0, A1,1), ..., (Al,0, Al,1),(B1,0, B1,1), ...,
(Bn,0, Bn,1), ext as well as the group sequence description to A. We remark that
the parameters are distributed independently and uniformly at random as in the real
scheme.
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– Phase 1 & 2: Conceptually, the simulator will be able to create keys or signcrypt
for the adversary, because his requests will differ from the challenge identity in at
least one bit. More specifically,
1. Create New Key: The simulator begins with an index i = 1 and an empty

sequence of index/identity/private key triples T . On input an identity ID ∈
{0, 1}n, if ID = ID∗R, the simulator records (i, ID∗R, ⊥) in T . Otherwise,
the simulator computes the secret key as follows. Let β be the first index such
that idβ 6= id∗R,β . Use n − 2 pairings on the Bj,idj values to compute s =

(gn−1)
∏
j=1,...,n∧j 6=β bj,idj . Then compute SKID = sbβ = (gn−1)

∏
j=1,...,n bj,idj .

Record (i, ID, SKID) in T . Secret keys are unique and perfectly distributed
as in the real game.

2. Corrupt User: On input an index i ∈ [1, |T |], the simulator returns to the
adversary the triple (i, IDi, SKIDi ) ∈ T . It returns an error if T is empty or i
is out of range. Recall that i cannot be associated with ID∗R in this game.

3. Signcrypt: On input an index i ∈ [1, |T |], an identity information IDR of
receiver, and a message Mi ∈ {0, 1}l, the challenger obtains the triple (i, IDi,
SKIDi )∈ T or returns an error if it does not exist. Then, the simulator creates
signcryption ciphertext in the usual way.

– Challenge: A chooses a multiset of identities S∗ = {ID∗1 , ..., ID∗|S∗|}, and two
multisets of messagesM∗1 = {M∗1,1, ...,M∗1,|S∗|} andM∗2 = {M∗2,1, ...,M∗2,|S∗|}.
B creates and corrupts all identities in S∗, and gets SKID∗i

for ∀ ID∗i ∈ S∗. We
note, B can do this, because ID∗R /∈ S∗. Then, it chooses a random bit β ∈ {0, 1},
chooses a random integer t′i ∈ Zp, and calculates the the signcryption ciphertexts
σ∗i = (σ∗i,0, σ

∗
i,1, σ

∗
i,2) for ID∗i ∈ S∗, where σi,2 is calculated in the usual way, and

σi,0 = ext(T t
′
i)⊕M∗β,i, σi,1 = g

t′i
∏
j∈[1,l+1] cn+j

l+1 .

Finally, the challenger aggregates these signcryptions using the aggregation algo-
rithm, and returns the result {σ∗, S∗} to A.

– Guess: A outputs his guess b′ ∈ {0, 1} for b.

If b = 1 then A played the proper security game. On the other hand, if b = 0, all
information about the message M∗b is lost. Therefore the advantage of A is exactly 0.
As a result if A breaks the proper security game with a non-negligible advantage, then
B has a non-negligible advantage in breaking the (l+n)-MDDH assumption.

6 IB-ASC in the GGH Framework

In this section, we show how to modify our ID-based construction to use the GGH
[13] graded algebras analogue of multilinear maps. For a simpler exposition of our
scheme and proof. Also, for ease of notation on the reader, we suppress repeated params
arguments that are provided to every algorithm. Thus, for instance, we will write α ←
samp() instead of α ← samp(params). Note that in our scheme, there will only ever
be a single uniquely chosen value for params throughout the scheme, so there is no
cause for confusion. For further details on the GGH framework, please refer to [13].
The realization method of GGH’s graded encoding system is included in Appendix A.
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6.1 Construction in the GGH Framework

Setup(1λ, l, n): The trusted setup algorithm is run by PKG, the master authority of
the ID-based system. It takes as input the security parameter as well the bit-length
l of messages and bit-length n of identities. It then runs (params, pzt)←InstGen(1λ,
1n). Recall that params will be implicitly given as input to all GGH-related algorithms
below.

Next, it chooses random encodings ai,α = samp() for i ∈ [1, l], α ∈ {0, 1}, and
bi,β = samp() for i ∈ [1, n], β ∈ {0, 1}. Then it assigns Ai,α = enc(1, ai,α) for
i ∈ [1, l], α ∈ {0, 1}, and Bi,β = enc(1, bi,β) for i ∈ [1, n], β ∈ {0, 1}.

These will be used to define two functions H̄(ID,M) : {0, 1}n × {0, 1}l → Gk
and H̃(ID) : {0, 1}n → Gn. Let m1, ..., ml be the bits of message M and id1, ..., idn
as the bits of ID. It is computed iteratively as

H̄1(ID,M) = H̃1(ID) = B1,id1

for i ∈ [2, n] H̄i(ID,M) = mult(H̄i−1(ID,M), Bi,idi),

H̃i(ID) = mult(H̃i−1(ID), Bi,idi)

for i ∈ [n+ 1, n+ l = k] H̄i(ID,M) = mult(H̄i−1(ID,M), Ai−n,mi−n)

It defines H̄(ID,M) = reRand(k, H̄k(ID,M)), H̃(ID) = reRand(n, H̃n(ID)).
Then, it sets a pseudorandom number generator F(s) → s′, where s ∈ {0, 1}λ is

the seed, and s′ ∈ {0, 1}l is a pseudorandom number.
The public parameters, PP, consist of the group sequence description plus:

(A1,0, A1,1), ..., (Al,0, Al,1), (B1,0, B1,1), ..., (Bn,0, Bn,1),F

The master secret key MSK includes PP together with the values (b1,0, b1,1), ...,
(bn,0, bn,1).

KeyGen(MSK, ID ∈ {0, 1}n) : The private key for identity ID = (id1, ..., idn) is
SKID = reRand(n− 1, enc(n− 1,

∏
i∈[1,n]bi,idi)).

Signcrypt(Mi ∈ {0, 1}l, IDR ∈ {0, 1}n, IDi ∈ {0, 1}n, SKIDi , PP) : The Sign-
cryption algorithm takes Mi = (mi,1, ...,mi,l), IDR = (idR,1, ..., idR,n), IDi =
(idi,1, ..., idi,n), SKIDi = reRand(n−1, enc(n−1,

∏
j∈[1,n]bj,idi,j )) and PP as input,

lets temporary variable Di,0 = SKIDi , and chooses encodings ti = samp() randomly.
Then for j = 1 to l it computes Di,j = mult(Dj−1, Aj,mi,j ) ∈ Gn−1+i. The output
signcryption is σi = (σi,0, σi,1, σi,2), where

σi,0 = F(ext(mult(H̃(IDR), enc(l, ti))))⊕Mi, σi,1 = enc(l + 1, ti),

σi,2 = reRand(k − 1, Dl).

This serves as an ID-based aggregate signcryption for the (single element) multiset
S = {IDi}.
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Aggregate(PP, Sx, Sy , σx, σy) : The aggregation algorithm simply computes the out-
put signcryption σz as σz = (σx,0‖σy,0, σx,1‖σy,1, σx,2 + σy,2), where ‖ is a concate-
nation symbol. The serves as a signcryption on the multiset Sz = Sx ∪ Sy , where ∪ is
a multiset union.
Unsigncrypt(PP, SKIDR , S, σ) : For S = {ID1, ..., ID|S|}, σ = { σID1,0 ‖...‖
σID|S|,0, σID1,1 ‖...‖ σID|S|,1, σ2 }, the unsigncryption algorithm computes that

Mi = σIDi,0 ⊕F(ext(mult(SKIDR , σIDi,1))) for i ∈ {1, ..., |S|}

It then accepts if and only if the under zero testing procedure outputs true.

isZero(pzt,mult(σ2, g)−
∑

i=1,...,|S|

H̄(IDi,Mi))

Correctness. Correctness follows from the same argument as for the IB-KEM in the
generic multilinear setting.

6.2 Security

Unforgeability

Theorem 3. The ID-based aggregate signcryption scheme for message length l and
identity length n in Section 6.1 is selectively secure in the unforgeability game in Section
4 under the GGH (l + n)-MCDH assumption.

Proof. We show that if there exists a PPT adversary A that can break the selective se-
curity of the ID-based aggregate signcryption scheme in the unforgeability game with a
non-negligible advantage for message length l, identity length n and security parameter
λ, then there exists a PPT simulator that can break the GGH (l+n)-MCDH assumption.
The simulator takes as input a GGH MCDH instance, params, pzt, C1 = enc(1, c1), ...,
Ck = enc(1, ck) where k = l + n. Let mj denote the j-th bit of M and idj denote the
j-th bit of ID. The simulator plays the role of the challenger in the game as follows.

– Init: Let ID∗ ∈ {0, 1}n and M∗ ∈ {0, 1}l be the forgery identity/message pair
output by A.

– Setup: The simulator chooses random x1, ..., xl, y1, ..., yn with fresh calls to samp().
For i = 1 to l, let Ai,m∗i = Ci+n and Ai,1−m∗i = enc(1, xi). For i = 1 to n, let
Bi,id∗i = Ci and Bi,1−id∗i = enc(1, yi). We remark that the parameters are dis-
tributed independently and uniformly at random as in the real scheme.

– Queries: Conceptually, the simulator will be able to create keys or signcrypt or
unsigncrypt for the adversary, because his requests will differ from the challenge
identity or message in at least one bit. More specifically,
1. Create New Key: The simulator begins with an index i = 1 and an empty

sequence of index/identity/private key triples T . On input an identity ID ∈
{0, 1}n, if ID = ID∗, the simulator records (i, ID∗, ⊥) in T . Otherwise,
the simulator computes the secret key as follows. Let β be the first index such
that idβ 6= id∗β . Use n − 2 pairings on the Bj,idj values to compute s =∏
j=1,...,n∧j 6=β Bj,idj . Then compute SKID = reRand(n− 1, s · yβ). Record

(i, ID, SKID) in T . Secret keys are unique and perfectly distributed as in the
real game.
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2. Corrupt User: On input an index i ∈ [1, |T |], the simulator returns to the
adversary the triple (i, IDi, SKIDi ) ∈ T . It returns an error if T is empty or i
is out of range. Recall that i cannot be associated with ID∗ in this game.

3. Signcrypt: On input an index i ∈ [1, |T |], an identity information IDR of
receiver, and a message Mi ∈ {0, 1}l, the challenger obtains the triple (i, IDi,
SKIDi )∈ T or returns an error if it does not exist. If IDi 6= ID∗, then the
simulator creates signcryption ciphertext in the usual way.
If IDi = ID∗, then we know Mi 6= M∗. The simulator creates σi,0 and σi,1
in the usual way. Let β be the first index such that mi,β 6= m∗β . Use l − 2
pairings on the Aj,mi,j values to compute σ′i,2 =

∏
j=1,...,l∧j 6=β Aj,mi,j . Next,

compute σ′′i,2 = σ′i,2 · xi. Use n− 1 pairings on the Bj,idi,j values to compute
γ =

∏
j=1,...,nBj,idi,j . Finally, compute σi,2 = reRand(k−1, γ ·σ′′i,2). Return

σi = (σi,0, σi,1, σi,2) and S = {IDi} toA. Signcryption ciphertexts are unique
and perfectly distributed as in the real game.

4. Unsigncrypt : The simulator can run unsigncryption in the usual way, because
it can create and corrupt any identity IDR 6= ID∗ freely.

– Response:A outputs an aggregate signcryption ciphertext σ∗ on multiset S∗ where
ID∗ ∈ S and M∗ is the corresponding message sent from ID∗. The simulator will
extract from this a solution to the GGH MCDH problem. This works by iteratively
computing all the other signatures in S∗ and then dividing them out of the aggre-
gate until only one or more signcryption ciphertexts on (ID∗, M∗) remain. That is,
the simulator takes an aggregate for S∗ and computes an aggregate signcryption ci-
phertext for S′ where S′ has one less identity than S∗ at each step. These signatures
will be computed as in the query phase.
Eventually, we have an aggregate instances σ′ on t ≥ 1 of (ID∗,M∗). However
recall that H̄(ID∗,M∗) is a level k encoding of (

∏
j∈[1,n]bj,id∗j ) · (

∏
j∈[1,l]aj,m∗j )

=
∏
j∈[1,k]cj . Thus verification of the Signcryption ciphertexts implies that (t, σ′2)

is a solution to the GGH k-MCDH problem, and so the simulator returns (t, σ′2) to
break the GGH k-MCDH assumption.

As remarked in the Setup and Query phase, the responses of the challenger are
distributed identically to the real unforgeability game. The simulator succeeds whenever
A does.

Confidentiality

Theorem 4. The ID-based aggregate signcryption scheme for message length l and
identity length n in Section 6.1 is IND-sID-CPA under the GGH (l + n)-MDDH as-
sumption.

Proof. We show that if there exists a PPT adversary A that can break the IND-sID-
CPA security of the ID-based aggregate signcryption scheme in IBASC-IND-sID-CPA
game with a non-negligible advantage for message length l, identity length n and se-
curity parameter λ, then there exists a PPT simulator B that can break the (l + n)-
MDDH assumption. The simulator takes as input a MDDH instance, params, pzt,
C1 = enc(1, c1), ..., Ck+1 = enc(1, ck+1) and a level-k encoding T , where k = l + n.
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Algorithm B’s goal is to output 1 if isZero(pzt, reRand(T )-reRand(enc(params, k,∏
j∈[1,k+1] cj)))=1 and 0 otherwise. Let mj denote the j-th bit of M and idj denote

the j-th bit of ID. The simulator plays the role of the challenger in the game as follows.

– Init: A outputs an identity ID∗R = (id∗R,1, ..., id
∗
R,n), where it wishes to be chal-

lenged, the id∗R,j is the j-th bit of ID∗R.
– Setup:B chooses random a1,0, a1,1..., al,0, al,1, b1, ..., bn with fresh calls to samp(),

and sets (Ai,0 = enc(1, ai,0), Ai,1 = enc(1, ai,1)) for i ∈ [1, l], sets (Bi,id∗i = Ci,
Bi,(1−id∗i ) = enc(1, bi)) for i ∈ [1, n]. We remark that the parameters are distributed
independently and uniformly at random as in the real scheme.

– Phase 1 & 2: Conceptually, the simulator will be able to create keys or signcrypt
for the adversary, because his requests will differ from the challenge identity in at
least one bit. More specifically,
1. Create New Key: The simulator begins with an index i = 1 and an empty

sequence of index/identity/private key triples T . On input an identity ID ∈
{0, 1}n, if ID = ID∗R, the simulator records (i, ID∗R, ⊥) in T . Otherwise,
the simulator computes the secret key as follows. Let β be the first index such
that idβ 6= id∗R,β . Use n − 2 pairings on the Bj,idj values to compute s =∏
j=1,...,n∧j 6=β Bj,idj . Then compute SKID = reRand(n− 1, s · bβ). Record

(i, ID, SKID) in T . Secret keys are unique and perfectly distributed as in the
real game.

2. Corrupt User: On input an index i ∈ [1, |T |], the simulator returns to the
adversary the triple (i, IDi, SKIDi ) ∈ T . It returns an error if T is empty or i
is out of range. Recall that i cannot be associated with ID∗R in this game.

3. Signcrypt: On input an index i ∈ [1, |T |], an identity information IDR of
receiver, and a message Mi ∈ {0, 1}l, the challenger obtains the triple (i, IDi,
SKIDi )∈ T or returns an error if it does not exist. Then, the simulator creates
signcryption ciphertext in the usual way.

– Challenge: A chooses a multiset of identities S∗ = {ID∗1 , ..., ID∗|S∗|}, and two
multisets of messagesM∗1 = {M∗1,1, ...,M∗1,|S∗|} andM∗2 = {M∗2,1, ...,M∗2,|S∗|}.
B creates and corrupts all identities in S∗, and gets SKID∗i

for ∀ ID∗i ∈ S∗. We
note, B can do this, because ID∗R /∈ S∗. Then, it chooses a random bit β ∈ {0, 1},
chooses random t′i with fresh calls to samp(), and calculates the the signcryption
ciphertexts σ∗i = (σ∗i,0, σ

∗
i,1, σ

∗
i,2) for ID∗i ∈ S∗, where σi,2 is calculated in the

usual way, and

σi,0 = F(ext(T · t′i))⊕M∗β,i, σi,1 = t′i ·
∏

j∈[1,l+1]

Cn+j .

Finally, the challenger aggregates these signcryptions using the aggregation algo-
rithm, and returns the result {σ∗, S∗} to A.

– Guess: A outputs his guess b′ ∈ {0, 1} for b.

If b = 1 then A played the proper security game. On the other hand, if b = 0, all
information about the message M∗b is lost. Therefore the advantage of A is exactly 0.
As a result if A breaks the proper security game with a non-negligible advantage, then
B has a non-negligible advantage in breaking the GGH (l+n)-MDDH assumption.
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A Realization of Graded Encoding System

GGH’s n-graded encoding system works as follows. (This is a whirlwind overview; see
[13] for details.) The system uses three rings. First, it uses the ring of integers O of
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the m-th cyclotomic field. This ring is typically represented as the ring of polynomials
O = Z[x]/(Φm(x)), where Φm(x) is m-th cyclotomic polynomial, which has degree
N = φ(m). Second, for some suitable integer modulus q, it uses the quotient ring
O/(q) = Zq[x]/(Φm(x)). similar to the NTRU encryption scheme [27]. The encodings
live in O/(q). Finally, it uses the quotient ring R = O/I, where I = 〈g〉 is a principal
ideal of O that is generated by g and where |O/I| is a large prime. This is the ring “R”
referred to above; elements of R are what is encoded.

What does a GGH encoding look like? For a fixed random z ∈ O/(q), an element
of S(α)

i - that is, a level-i encoding of α ∈ R - has the form e/zi ∈ O/(q), where e ∈ O
is a “small” representative of the coset α + I (it has coefficients that are very small
compared to q). To add encodings e1/zi ∈ S

(α1)
i and e2/zi ∈ S

(α2)
i , just add them

in O/(q) to obtain (e1 + e2)/zi, which is in S(α1+α2)
i if e1 + e2 is “small”. To mult

encodings e1/zi1 ∈ S(α1)
i1

and e2/zi2 ∈ S(α2)
i2

, just multiply them in O/(q) to obtain

(e1 ·e2)/zi1+i2 , which is in S(α1·α2)
i1+i2

if e1 ·e2 is ”small”. This smallness condition limits
the GGH encoding system to degree polynomial in the security parameter. Intuitively,
dividing encodings does not “work”, since the resulting denominator has a nontrivial
term that is not z.

The GGH params allow everyone to generate encodings of random (known) values.
The params include a level-1 encoding of 1 (from which one can generate encodings
of 1 at other levels), and (for each i ∈ [n]) a sufficient number of level-i encodings of
0 to enable re-randomization. To encode (say at level-1), run samp(params) to sample
a small element a from O, e.g. according to a discrete Gaussian distribution. For a
Gaussian with appropriate deviation, this will induce a statistically uniform distribution
over the cosets of I. Then, multiply a with the level-1 encoding of 1 to get a level-
1 encoding u of a ∈ R. Finally, run reRand(params, 1, u), which involves adding a
random Gaussian linear combination of the level-1 encodings of 0, whose noisiness
(i.e., numerator size) “drowns out” the initial encoding. The parameters for the GGH
scheme can be instantiated such that the re-randomization procedure can be used for
any pre-specified polynomial number of times.

To permit testing of whether a level-n encoding u = e/zn ∈ Sn encodes 0, GGH
publishes a level-n zero-test parameter pzt = hzn/g, where h is “somewhat small” and g
is the generator of I. The procedure isZero(params, pzt, u) simply computes pzt·u and
tests whether its coefficients are small modulo q. If u encodes 0, then e ∈ I and equals
g · c for some (small) c, and thus pzt·u = h · c has no denominator and is small modulo
q. If u encodes something nonzero, pzt·u has g in the denominator and is not small
modulo q. The ext(params, pzt, u) procedure works by applying a strong extractor to
the most significant bits of pzt·u. For any two u1, u2 ∈ S(α)

n , we have (subject to noise
issues) u1 − u2 ∈ S

(0)
n , which implies pzt(u1 − u2) is small, and hence pzt·u1 and

pzt·u2 have the same most significant bits (for an overwhelming fraction of α’s).

Garg et al. provide an extensive cryptanalysis of the encoding system, which we will
not review here. We remark that the underlying assumptions are stronger, but related to,
the hardness assumption underlying the NTRU encryption scheme: that it is hard to
distinguish a uniformly random element from O/(q) from a ratio of “small” elements
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i.e., an element u/v ∈ O/(q) where u, v ∈ O/(q) both have coefficients that are on the
order of (say) qε for small constant ε.


