
FPGA-Based High Performance AES-GCM
Using Efficient Karatsuba Ofman Algorithm

Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez

LIP6-SoC Laboratory, University of Paris VI, France
{karim.abdellatif, roselyne.chotin-avot, habib.mehrez}@lip6.fr

Abstract. AES-GCM has been utilized in various security applications.
It consists of two components: an Advanced Encryption Standard (AES)
engine and a Galois Hash (GHASH) core. The performance of the sys-
tem is determined by the GHASH architecture because of the inher-
ent computation feedback. This paper introduces a modification for the
pipelined Karatsuba Ofman Algorithm (KOA)-based GHASH. In partic-
ular, the computation feedback is removed by analyzing the complexity
of the computation process. The proposed GHASH core is evaluated with
three different implementations of AES (BRAMs-based SubBytes, com-
posite field-based SubBytes, and LUT-based SubBytes). The presented
AES-GCM architectures are implemented using Xilinx Virtex5 FPGAs.
Our comparison to previous work reveals that our architectures are more
performance-efficient (Thr. /Slices).

Keywords: AES-GCM, FPGAs, GHASH, Karatsuba Ofman Algorithm
(KOA).

1 Introduction

Recently, techniques have been invented to combine encryption and authenti-
cation into a single algorithm which is called Authenticated Encryption (AE).
Combining these two security services in hardware produces smaller area com-
pared to two separate algorithms.

Galois Counter Mode (GCM) [1] mode is an AE algorithm. It is well-suited
for wireless, optical, and magnetic recording systems due to its multi-Gbps au-
thenticated encryption speed, outstanding performance, minimal computational
latency as well as high intrinsic degree of pipelining and parallelism. New com-
munication standards like IEEE 802.1ae [2] and NIST 800-38D have considered
employing GCM to enhance their performance. The reconfigurability of FPGAs
offers major advantages when using them for cryptographic applications. Hence,
they are commonly used as an implementation target.

Our Contribution: In this work, we present efficient FPGA-based architec-
tures for AES-GCM by modifying the architecture of the pipelined KOA-based
GHASH. Our focus on state of the art of KOA-based GHASHs leads to solve
the algorithm complexity resulting from the inherent computation feedback. In

2 Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez

addition, three different implementations of AES are evaluated and added to the
proposed GHASH in order to increase the flexibility of the presented work.

The major features and the previous work of AES-GCM are described in Sec-
tion 2. After that, our proposed architecture of GHASH is presented (Section
3). The overall architecture of AES-GCM is shown in Section 4. Implementa-
tion details and performance comparison are discussed in Section 5. Section
6 concludes this work.

2 AES-GCM

AES

Key

AESAES AES AES

+ + +

+ ++

GF(2128)

Multiplier
GF(2

128
)

Multiplier

GF(2128)

Multiplier
GF(2

128
)

Multiplier

GF(2128)

Multiplier
GF(2

128
)

Multiplier

GF(2128)

Multiplier
GF(2

128
)

Multiplier

+

"00..00" CTR[n]CTR[2]CTR[1]CTR[0] Key Key Key Key

H

H H H HA

P[1] P[2] P[n]

C[1] C[2] C[n]

MAC

Encryption using CTR mode

Authentication using
GF multiplier

Fig. 1. AES-GCM: Encryption process is performed using counter mode and authenti-
cation is done using GF(2128), A is an optional 128-bit Additional Authenticated Data
which is authenticated but not encrypted

Recently, Galois Counter Mode (GCM) [1] was considered as a new mode of
operation of Advanced Encryption Standard (AES). GCM simultaneously pro-
vides confidentiality, integrity and authenticity assurances on the data. It sup-
ports not only high speed authenticated encryption but also protection against
bit-flipping attacks. It can be implemented in hardware to achieve high speeds
with low cost and low latency. Software implementations can achieve excellent
performance by using table-driven field operations. GCM was designed to meet
the need for an authenticated encryption mode that can efficiently achieve speeds
of 10 Gbps and higher in hardware. It contains an AES engine in counter mode
and a Galois Hash (GHASH) module as presented in Fig. 1.

As shown in Fig. 1, the GHASH function (authentication part) is composed
of chained GF(2128) multipliers and bitwise exclusive-OR (XOR) operations.
Because of the inherent computation feedback, the performance of the system is
usually determined by the GF(2128).

3

Algorithm 1: GF(2128) multiplier

Input A, H ∈ GF(2128), F(x) Field Polynomial.
Output X
X=0
for i = 0 to 127 do
if Ai = 1 then
X ←− X ⊕H
end if
if H127 = 0 then
H ←− rightshift(H)
else
H ←− rightshift(H)⊕ F (x)
end if
end for
return X

Algorithm 1 describes the GF(2128) multiplier. Serial implementation of
Algorithm 1 performs the multiplication process in 128 clock cycles. Parallel
method can be implemented like [3] and it takes only one clock cycle.

In Algorithm 1, if H is fixed, the multiplier is called a fixed operand
GF(2128) multiplier as shown by [4]. This design proposed by [4] can be used
efficiently (smaller area) on FPGAs as the circuit is specialized for H. We inte-
grated this multiplier proposed by [4] with a key-synthesized AES engine in [5]
in order to support slow changing key applications like Virtual Private Networks
(VPNs). Also, in [5], we proposed a protocol to secure the FPGA reconfiguration
to protect the bitstream because it is a key-based bitsream. The disadvantage of
this method is the new reconfiguration which must be downloaded on the FPGA
in case of changing the key.

Karatsuba Ofman Algorithm (KOA) is used to reduce the complexity (con-
sumed area) of the GF(2128) multiplier. The single step KOA algorithm splits
two m bit inputs A and B into four terms Ah, Al, Bh, Bl which are m/2 bit
terms. The 1-step iteration of KOA shown in Fig.2 can be described as:

Dl = Al ×Bl

Dhl = (Ah ⊕Al) × (Bh ⊕Bl)
Dh = Ah ×Bh

D = DhX
m ⊕Xm/2(Dh ⊕Dhl ⊕Dl) ⊕Dl

(1)

After the multiplication stage is processed using KOA, the binary field re-
duction step is used to convert the length of the vector from 2m − 1 to m as
shown in Equation 2.

C(x) = D mod P (x) (2)

where P(x) is the field polynomial used for the multiplication operation.

P (x) = x128 + x7 + x2 + x + 1 (3)

4 Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez

+ +

hB Bl Ah Al

Dl

Dl

Dhl

Dh

Dh

+

+

= (m/2) Multiplier

= XOR operation

Binary field reduction

(mod P)

mm

m/2
m/2

m/2
m/2

m−1m−1

m−1

2m−1

m

B A

D

C

Fig. 2. Polynomial Multiplication using KOA

KOA was used by [6] to reduce the complexity (consumed area) of the
GF(2128) multiplier as shown in Fig. 3a. From Fig. 3a, the MAC calculation
is as follows:

MAC = (Ci ⊕ Zi−1) ×H (4)

The drawback of the architecture presented in [6] is the the critical delay
resulting from the multiplication stage. In order to reduce the data path (critical
delay) of the KOA multiplier, pipelining concept was accomplished by [7] as
shown in Fig. 3b. Equation 4 was written by [7] as follows:

MAC = Q1 ⊕Q2 ⊕Q3 ⊕Q4, where (5)

Q1 = (((C1 ×H4 ⊕ C5) ×H4 ⊕ C9) ×H4 ⊕) ×H4 (6)

Q2 = (((C2 ×H4 ⊕ C6) ×H4 ⊕ C10) ×H4 ⊕) ×H3 (7)

5

+

Q
1

Q
2

Q
3

Q4

+

MAC
(a)

Ci
Ci

+

KOA multiplier

mod(p)

H

Z i

mod(p)

HH
4

MAC

(b)

X Y

Z

P
ip

el
in

ed
 K

O
A

Fig. 3. (a) KOA based GHAH; (b) Pipelined KOA based GHASH

Q3 = (((C3 ×H4 ⊕ C7) ×H4 ⊕ C11) ×H4 ⊕) ×H2 (8)

Q4 = (((C4 ×H4 ⊕ C8) ×H4 ⊕ C12) ×H4 ⊕) ×H (9)

The hardware architecture proposed by [7] (Fig. 3b) is a 4-stage pipelined
KOA-based GHASH. An example of data flow control for the GHASH is shown
in Table 1, where C1 C8 is the input sequence and ”-” denotes ”don’t care”.
At the beginning, H4 is passed to port Y. After the input of C6, H is passed to
port Y. The partial GHASH values Q1, Q2, Q3, and Q4 are ready at the 9th,
15th, 18th, and 12th clock, respectively. As shown from Table 1, the generated
MAC resulting from 8 frames of 128-bit is ready after 19 clock cycles. Therefore,
the real throughput is calculated as follows:

Throughput(Mbps) = Fmax(MHz) × 128 × (
8

19
) (10)

The last component of Equation 10 is (8
19), it is called the reduction factor

and the authors of [7] neglected this component in their throughput calculation.
Therefore, their presented design of GHASH has not increased the throughput.

6 Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez

Table 1. Data flow control for GHASH calculation by [7]

Clock Ci X Y Z Comment

1 C1 C1 H4 0
2 C2 C2 H4 0
3 C3 C3 H4 0
4 C4 C4 H4 0
5 C5 (C1 ×H4)⊕ C5 H4 C1 ×H4

6 C6 (C2 ×H4)⊕ C6 H C2 ×H4

7 C7 (C3 ×H4)⊕ C7 H C3 ×H4

8 C8 (C4 ×H4)⊕ C8 H C4 ×H4

9 - - - ((C1 ×H4)⊕ C5)H4 z = Q1

10 0 ((C2 ×H4)⊕ C6)×H H ((C2 ×H4)⊕ C6)×H
11 0 ((C3 ×H4)⊕ C7)×H H ((C3 ×H4)⊕ C7)×H
12 0 - - ((C4 ×H4)⊕ C8)×H z = Q4

13 0 - - -
14 0 ((C2 ×H4)⊕ C6)×H2 H ((C2 ×H4)⊕ C6)×H2

15 - - - ((C3 ×H4)⊕ C7)×H2 z = Q2

16 - - - -
17 - - - -
18 - - - ((C2 ×H4)⊕ C6)×H3 z = Q3

19 - - - - GHASH

Henzen et al. [8] proposed 4-parallel AES-GCM using pipelined KOA. Their
design achieved the authentication of 18 frames of 128-bits in 11 clock cycles
because of the latency resulting from the pipelined KOA. As a result, their
throughput is calculated as follows:

Throughput(Mbps) = Fmax(MHz) × 128 × 18

11
(11)

The authors of [8] neglected this component (18
11) in their throughput calcu-

lation and replaced it by 4. Hence, their presented parallel design of GHASH
has not increased the throughput by 4 as shown in Equation 11.

3 Efficient KOA-Based GHASH

Four different architectures of FPGAs-based AES-GCM have been presented in
the open literature ([5],[7],[6],[8]). It is clear that these contributions do gener-
ally have different challenges related to the performance of their architectures.
The performance of the architecture presented by [5] is limited because a new
reconfiguration is needed in case of changing the key. Also, Zhou et al.[7] claimed
the throughput improvement to their previous KOA-based GHASH [6] by using
pipelined KOA but we discussed how their method is not efficient for through-
put improvement as shown in Equation 10. Also, in [8], the authors claimed that

7

their parallel architecture increased the throughput by 4 because they presented
four parallel AES-GCM but we proved that their design is not efficient in terms
of increasing the speed as shown in Equation 11.

In this work, in order to improve the performance of AES-GCM, an efficient
pipelined KOA-based GHASH is presented. As the targeted platform is FPGA,
FPGA-specific properties are considered for performance improvement.

The KOA is selected to reduce the complexity (consumed area) of the classic
school multiplication as presented by [7]. Therefore, our presented GHASH uses
the KOA for performing the GF (2128) multiplication.

As shown in Equation 4, The generation of the MAC is calculated by the
multiplication between H and the result of XORing the input Ci and the previous
output Zi−1. We propose writing Equation 4 as follows:

MAC = (Ci ⊕ Zi−1) ×H
= (Ci ×H) ⊕ (Zi−1 ×H)
= (Ci ×H) ⊕ [(Ci−1 ⊕ Zi−2) ×H2]
= (Ci ×H) ⊕ (Ci−1 ×H2) ⊕ [(Ci−2 ⊕ Zi−3) ×H3]
= (Ci ×H) ⊕ (Ci−1 ×H2) ⊕ (Ci−2 ×H3)
⊕[(Ci−3 ⊕ Zi−4) ×H4]
= ((Ci ×H)︸ ︷︷ ︸⊕ (Ci−1 ×H2)︸ ︷︷ ︸⊕ (Ci−2 ×H3)︸ ︷︷ ︸
⊕ (Ci−3 ×H4)︸ ︷︷ ︸⊕ (C2 ×Hi−1)︸ ︷︷ ︸⊕ (C1 ×Hi)︸ ︷︷ ︸

(12)

According to Equation 12, the feedback resulting from XORing the input Ci

and the previous output Zi−1 is removed because the final MAC is calculated
from the last two lines of the equation.

Assume that there are 64 frames of 128-bit and the generation of MAC is
required. Therefore, Equation 12 will be as follows:

MAC64 = ((C64 ×H)︸ ︷︷ ︸⊕ (C63 ×H2)︸ ︷︷ ︸⊕ (C62 ×H3)︸ ︷︷ ︸
⊕ (C61 ×H4)︸ ︷︷ ︸⊕ (C2 ×H63)︸ ︷︷ ︸⊕ (C1 ×H64)︸ ︷︷ ︸ (13)

If the values form H to H64 are stored and multiplied to the input Ci as shown
in Equation 13, the pipelined architecture can be simply performed. Indeed, the
architecture developed for pipelined KOA-based GHASH is in Fig. 4. 4-stage
pipelined KOA is used. In terms of the complexity, we used 2-step KOA like [7].
The description of Fig. 4 is presented according to the assumption of calculating
the MAC of 64 frames of 128-bit. We divide the process of MAC generation into
two steps:

The first step includes storing the H values in the memory. At the beginning,
H is passed to X and Y ports. The counter counts up and H2 will appear on port
Z after 4 clock cycles because we use 4-stage pipelined KOA. After, the memory
stores H2 and H2 is passed to port Y and H to port X in order to generate H3

and store it in the memory. This process is repeated till filling the memory with
the values from H2 to H64. Filling the memory takes 63 × 4 = 252 clock cycles.
This is called initialization stage.

8 Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez

Up/Down
 Counter

A
d

d
re

ss

mod (P)

Mux1 Mux2

64

MAC

C H

Z

i

XY

64
H

2H
Memory

P
ip

el
in

ed
 K

O
A

Fig. 4. Proposed pipelined KOA-based GHASH

After initializing the memory, the second step concerns with MAC generation
as presented in Equation 13. The counter starts counting down with the first
input. The first input C1 is passed to port Y and the memory passes H64 to
port X. After one clock cycle, the second input C2 is passed to port Y and the
memory passes H63 to port X. This scenario is completed by passing C64 to port
Y and H to port X.

The MAC is calculated by XORing Z values (Equation 13). In terms of the
time taken to generate the MAC, it is 64 clock cycles with 5 additional clock
cycles as a latency (4 clock cycles because of the 4-stage pipelined KOA and one
cycle because of the last register). Therefore, the throughput of the proposed
architecture is as follows:

Throughput(Mbps) = Fmax(MHz) × 128 × 64

69
(14)

The proposed architecture reduces the reduction factor compared to [7] from
8
19 to 64

69 . Therefore, the developed architecture presents the throughput im-
provement compared to [7]. In case of changing the key, 252 clock cycles are

9

needed to initialize the memory. Hence, no new reconfiguration is needed in case
of changing the key compared to [4].

Because of targeting our architecture on Xilinx Virtex5 FPGAs, we rec-
ommend using CLBs for memory implementation because of 6-input Look-Up-
Tables (LUT). Otherwise, using BRAMs is another solution.

4 High Throughput AES-GCM

This section describes adding the proposed GHASH to the pipelined AES in
order to perform the encryption and the authentication of the input message.

Fig. 5 shows the proposed high throughput architecture for AES-GCM. First,
the pipelined AES engine generates H by encrypting ”00..00” frame. Second, the
proposed GHASH needs 252 clock cycles in order to initialize the memory as we
described before. Third, the AES engine changes its mode to be in counter mode
for performing encryption and delivering Ci to the proposed GHASH.

++

R
o

u
n

d
 1

R
o

u
n

d
 2

R
o

u
n

d
 1

0

Key Schedule

H
H

 Ci

Ciphertext

K
10

Proposed GHASH

Counter

"00...00"

Message

K K
1 2

MAC

Key

Encryption using pipelined AES

Authentication using GHASH

Fig. 5. Proposed AES-GCM architecture

The SubBytes transformation of AES can be implemented either by BRAMs,
composite field approach, or direct LUT approach as shown in Fig. 6. Modern
FPGAs contain BRAMs. Therefore, implementing SubBytes using BRAMs de-
creases the consumed slices of the FPGA. The LUT approach is especially in-
teresting on Virtex5 devices because 6-input Look-Up-Tables (LUT) combined
with multiplexors allow an efficient implementation of the AES SubBytes stage.
Composite field approach uses the multiplicative inverse of GF(28) and it is
efficient for memoryless platforms.

10 Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez

+

+ X
−1

2
X

2
X

X
−1

Block

RAM

8 8

(a)

8
LUT

(b)

8

−1

−1

Isomorphic mapping to composite fields

Squarer in GF(2)
4

Multiplication with constant

Multiplicative inversion in GF(2)
4

Multiplication operation in GF(2)
4

Inverse Isomorphic mapping to GF(2)
8

8

4

4
4

4

4

4

4

4

8
88

(c)

X

X

Fig. 6. SubBytes implementation with BlockRAMs (a), with LUTs (b), with composite
field approach (c)

The proposed architecture of AES-GCM perfectly suits the needs of GCM
mode which performs the encryption and the authentication of the input mes-
sage. As we described before, the encryption and the authentication in GCM are
performed using the pipelined AES in counter mode and the proposed GHASH
respectively. Therefore, the proposed architecture could also be tuned to handle
the decryption and authentication. Indeed, Ci is XORed with the output of the
pipelined AES for performing the decryption and also passed to the proposed
GHASH for MAC generation.

5 Hardware comparison

We coded our proposed scheme in VHDL and targeted to Virtex5 (XC5VLX220).
ModelSim 6.5c was used for simulation. Xilinx Synthesize Technology (XST) is
used to perform the synthesize and ISE9.2 was adopted to run the Place And
Route (PAR).

11

Table 2. Hardware comparison

FPGA type Design key SubBytes Slices BRAMs Max-Freq Thr. Thr./Slice
MHz Gbit/s Mbps/Slice

This work Virtex5 AES-GCM • BRAM 3836 50 273.4 32.46 8.46
This work Virtex5 AES-GCM • Comp. 7475 0 264.2 31.36 4.19
This work Virtex5 AES-GCM • LUT 4770 0 311 36.92 7.74

[7] Virtex5 AES-GCM • BRAM 3533 41 314 16.9 4.78
[7] Virtex5 AES-GCM • Comp 6492 0 314 16.9 2.60
[7] Virtex5 AES-GCM • LUT 4628 0 324 17.5 3.77

[8] Virtex5 AES-GCM • BRAM 9561 450 233 48.8 5.1
[8] Virtex5 AES-GCM • Comp 18505 0 233 48.8 2.64
[8] Virtex5 AES-GCM • LUT 14799 0 233 48.8 3.29

[5] Virtex5 AES-GCM ◦ BRAM 2478 40 242 30.9 12.5
[5] Virtex5 AES-GCM ◦ Comp. 5512 0 232 29.7 5.38
[5] Virtex5 AES-GCM ◦ LUT 3211 0 216.3 27.7 8.62

Table 2 shows the hardware comparison between our results and
previous work. Note the filled dots in the ”Key” column. The key is
synthesized into the architecture when denoted by ◦ which requires a
new reconfiguration in case of changing the key. Otherwise, the key
schedule is implemented when denoted by • and no new reconfigura-
tion is needed in case of changing the key.

On Virtex5 platform, our proposed AES-GCM core reaches the throughput
of 32.46 Gbps with the area consumption of 3836 slices and 50 BRAMs. In case of
using composite field SubBytes, it consumes 7475 slices, however no BRAMs are
required. In terms of using LUT SubBytes, the proposed architecture occupies
4770 and reaches the throughput of 36.92 Gbps.

By comparing our results of AES-GCM to [7], the comparison shows that
our performance (Thr. /Slice) is better. This improvement results from reducing
the reduction factor in the equation of throughput as shown in Equation 10 and
Equation 14.

In terms of the 4-parallel AES-GCM by [8], our area consumption (Slices +
BRAMs) is smaller compared to them. Also, our performance is better because
the throughput presented by [8] is calculated as shown in Equation 11.

Our previous work [5] presented architectures for slow changing key appli-
cations like VPNs and the FPGA needs the new reconfiguration when the key
changes. Therefore, the proposed architecture in this paper presents better per-
formance compared to [5] because the FPGA does not need a new reconfiguration
when the key changes but it needs 252 clock cycles for the memory initialization
as described in Section 3.

12 Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez

6 Conclusion

In this paper, we presented the performance improvement of AES-GCM (Thr.
/Slice). This was achieved by modifying the architecture of the pipelined KOA-
based GHASH. With our proposed GHASH, the throughput reduction factor is
decreased. Therefore, the throughput of the proposed AES-GCM architectures
is increased. In addition, three AES implementations (BRAMs-based SubBytes,
composite field-based SubBytes, and LUT-based SubBytes) were evaluated in
order to increase the flexibility of the presented work. The throughput of the
presented AES-GCM cores ranges from 31.36 to 36.92 using Xilinx Virtex5 FP-
GAs. It is shown that the performance of the presented AES-GCM architectures
outperforms the previously reported ones.

References

1. D. McGrew and J. Viega, “The Security and Performance of the Galois/Counter
Mode (GCM) of Operation,” Progress in Cryptology-INDOCRYPT 2004, pp. 377–
413, 2005.

2. “IEEE Standard for Local and metropolitan area networks–Media Access Con-
trol (MAC) Security Amendment 1: Galois Counter Mode–Advanced Encryption
Standard– 256 (GCM-AES-256) Cipher Suite,” IEEE.

3. A. Satoh, “High-Speed Hardware Architectures for Authenticated Encryption Mode
GCM,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 4–pp,
2006.

4. J. Crenne, P. Cotret, G. Gogniat, R. Tessier, and J. Diguet, “Efficient Key-
Dependent Message Authentication in Reconfigurable Hardware,” International
Conference on Field-Programmable Technology (FPT), pp. 1–6, 2011.

5. K. M. Abdellatif, R. Chotin-Avot, and H. Mehrez, “High Speed Authenticated En-
cryption for Slow Changing Key Applications Using Reconfigurable Devices ,” IEEE
Wireless Days, 2013.

6. G. Zhou, H. Michalik, and L. Hinsenkamp, “Efficient and High-Throughput Im-
plementations of AES-GCM on FPGAs,” International Conference on Field-
Programmable Technology (FPT), pp. 185–192, 2007.

7. G. Zhou and H. Michalik, “Improving Throughput of AES-GCM with Pipelined
Karatsuba Multipliers on FPGAs,” Reconfigurable Computing: Architectures, Tools
and Applications, pp. 193–203, 2009.

8. L. Henzen and W. Fichtner, “FPGA Parallel-Pipelined AES-GCM Core for 100G
Ethernet Applications,” pp. 202–205, 2010.

