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Abstract. We consider the case where an authenticated encryption scheme outputs the decrypted
plaintext before successful verification. This scenario raises many security issues, and is highlighted
in the upcoming CAESAR competition. It arises for example when devices have insufficient memory
to store the entire plaintext, or when the decrypted plaintext needs to be processed early due to
real-time requirements. Firstly, we formalize the releasing unverified plaintext (RUP) setting. To
achieve privacy in this setting, we propose using plaintext awareness (PA) along with IND-CPA. An
authenticated encryption scheme is PA if there exists a plaintext extractor for every adversary. The
plaintext extractor does not know the secret key, but tries to fool the adversary by mimicking the
decryption oracle. The release of unverified plaintext then becomes harmless, because it is infeasible
to distinguish between answers from the real decryption oracle and from the plaintext extractor.
We introduce two notions of plaintext awareness in the symmetric-key setting (PA1 and PA2), and
show implications and separations between PA1, PA2, and existing notions. To achieve integrity
of the ciphertexts, INT-CTXT in the RUP setting is required, which we refer to as INT-RUP.
These security notions are then used to make a classification of symmetric-key schemes in the RUP
setting. We analyze existing authenticated encryption schemes in this setting, and provide solutions
to fix insecure schemes.

Keywords. Symmetric-key Cryptography, Authenticated Encryption, Releasing Unverified Plain-
text, Plaintext Awareness, Plaintext Extractor, CAESAR Competition.

1 Introduction

The goal of authenticated encryption (AE) is to provide both privacy and integrity. The de-
cryption of AE conventionally consists of two phases: decryption and verification. As reflected
in classical security models, the plaintext coming from the decryption is released only upon
successful verification.

However, in certain settings it may be desirable to release the plaintext before verification is
complete. It is necessary to do so if there is not enough memory to store the entire plaintext [24]
or because real-time requirements would otherwise not be met [17, 43]. Even beyond these
settings, releasing unverified plaintext allows us to increase the efficiency of certain applications.
For example, let us consider a device with insecure memory [42]. If we want to completely avoid
releasing unverified plaintext into this insecure memory, we can use Encrypt-then-MAC in two
passes: a first pass to verify the MAC, and a second pass to decrypt the ciphertext. However,
we can replace this by an AE scheme that uses only a single pass if this AE scheme is secure
against the release of unverified plaintext.

If the attacker cannot observe the unverified plaintext directly, it may be possible to de-
termine properties of the plaintext through a side channel. This occurs, for example, in the
padding oracle attacks introduced by Vaudenay [44], where an error message or the lack of
an acknowledgment indicates whether the unverified plaintext was correctly padded. Canvel et
al. [20] showed how to mount a padding oracle attack on the then-current version of OpenSSL
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Fig. 1. The two plaintext aware settings (PA1 and PA2) used in the paper, where D is an adversary. Not shown
in the figure is the type of IV used by the EK oracle (cf. Sect. 3.2). Left: Real world, with encryption oracle EK

and decryption oracle DK . Right: Simulated world, with encryption oracle EK and plaintext extractor E. The
plaintext extractor E is a stateful algorithm without knowledge of the secret key K, nor access to the encryption
oracle EK . As shown by the dotted line, E has access to the encryption queries made by adversary D in the PA1
setting, but not in the PA2 setting.

by exploiting timing differences in the decryption processing of TLS. As shown by Paterson and
AlFardan [1, 34] for TLS and DTLS, it is very difficult to prevent that the attacker can learn
the cause of decryption failures.

The issue of releasing unverified plaintext has also been acknowledged and explicitly dis-
cussed in the upcoming CAESAR competition [15]: “Beware that security questions are raised
by any authenticated cipher that handles a long ciphertext in one pass without using a large
buffer: releasing unverified plaintext to applications often means releasing it to attackers and
also requires an analysis of how the applications will react.”

For several AE schemes, including OCB [30], AEGIS [46], ALE [17], and FIDES [17], the
designers explicitly stress that unverified plaintext cannot be released. Although the issue of
releasing unverified plaintext (RUP) in AE is frequently discussed in the literature, it has re-
mained unaddressed even in recent AE proposals. This is likely due to the lack of comprehensive
study.

We would like to mention explicitly that we certainly do not recommend omitting verifica-
tion. Verification is an essential part of an AE scheme, and is necessary to prevent that incorrect
plaintexts are accepted anyway. However, our scenario assumes that the attacker can get hold
of the unverified plaintext, or any information relating to it, before verification is complete.

1.1 Security Under Release of Unverified Plaintext

The main goal of this work is to formalize security for authenticated encryption with the re-
lease of unverified plaintext. To achieve integrity in the RUP setting, we introduce the notion
INT-RUP. For privacy, we propose using both IND-CPA and plaintext awareness (PA).

INT-RUP. The goal of an adversary under INT-CTXT is to produce AE ciphertexts which
pass the verification phase of the decryption. In addition, the adversary can make encryption
queries. We translate the integrity of ciphertexts INT-CTXT notion into the RUP setting, which
we call INT-RUP.

What the new notion of INT-RUP allows, in addition to INT-CTXT, is giving the adversary
the ability to do decryption queries and observe the unverified plaintexts. Notice that to allow
this we require an alternative AE syntax that explicitly separates the decryption and verification
functionalities.

Plaintext Awareness (PA). In the RUP setting an adversary can observe the unverified
plaintexts resulting from decryption queries. We introduce PA as a new symmetric-key notion
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to achieve security in this setting. Informally, we define a scheme to be PA if the adversary
cannot gain any additional knowledge about the plaintext from decryption queries besides what
it can derive from encryption queries.

Our PA notion involves the encryption and decryption functionalities, and can thus be
defined both for encryption schemes, as well as for AE schemes that release unverified plaintext.

At the heart of our new PA notion is the plaintext extractor, shown in Fig. 1. We say that
an encryption scheme is PA if there exists an efficient plaintext extractor for every adversary.
The plaintext extractor is a stateful algorithm with the goal of mimicking the decryption oracle
in order to fool the adversary. It cannot make encryption nor decryption queries, and does
not know the secret key. We define two notions of plaintext awareness: PA1 and PA2. The
extractor is given access to the history of queries made to the encryption oracle in PA1, but
not in PA2. Hence PA1 is used to model RUP scenarios in which the goal of the adversary is to
gain knowledge beyond what it knows from the query history. For situations in which the goal
of the adversary is to decrypt one of the ciphertexts in the query history, we require PA2.

Relations Among Notions. Bellare and Rogaway [11] introduced the notion of PA for public-
key encryption. PA for public-key encryption without random oracles was defined by Bellare and
Palacio [10]. In the symmetric-key setting, our definition of PA is somewhat similar, however
there are important technical differences which make the public-key results inapplicable to the
symmetric-key setting.

The relations among the PA notions and the conventional security notions for encryption
(see Sect. 3.3) are summarized in Fig. 2. We consider three different IV assumptions: random
IV, nonce IV (non-repeating value), and arbitrary IV (value that can be reused), as explained
in Sect. 3.2. The statements of the theorems and proofs can be found in Sect. 5.

The motivation for having two separate notions, PA1 and PA2, is as follows. As we prove
in this work, if the plaintext extractor has access to the query history (PA1), then there are no
implications between IND-CPA+PA1 and IND-CCA. However, if we modify plaintext awareness
so that the plaintext extractor no longer has access to the query history (PA2), then we can prove
that IND-CPA+PA2 implies IND-CCA′. IND-CCA′ is a strengthened version of IND-CCA,
where we allow the adversary to re-encrypt the outputs of the decryption oracle. Note that such
a re-encryption would always be allowed in the public-key setting, but not in the symmetric-key
setting where the key required for encryption is secret.

Furthermore, we also prove that PA2 is equivalent to the notion of decryption independence
(DI). DI captures the fact that encryption and decryption under the same key are only related
to each other as much as encryption and decryption under different keys.

Finally, INT-RUP clearly implies INT-CTXT. The opposite is, however, not necessarily true.

Motivating Examples. To get an intuition of PA1 (shown in Fig. 1) and how it relates to
the RUP setting, we provide two motivating examples with CTR mode. For simplicity, here we
define the encryption function of CTR mode as EK(IV, P ) = EK(IV)⊕M , where the message
M and the initialization value IV consist of one block each, and EK is a block cipher with a
secret key K. The corresponding decryption function is DK(IV, C) = EK(IV) ⊕ C. As shown
in [13], CTR mode is IND-CPA but not IND-CCA, a result that holds for nonce IVs (unique
non-repeating values) as well as for random IVs.

1. CTR mode with a nonce IV is not PA1. Following Rogaway [35], we assume that an adversary
is free to specify the IV for encryption and decryption queries, as long as it does not make
two encryption queries with the same nonce IV. In the attack, an adversary first makes
a decryption query (N,C) with nonce N and one-block ciphertext C to obtain a message
M . The correct decryption of M is EK(N) ⊕ C as output by the decryption oracle. The
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adversary then computes the keystream κ := M ⊕ C. Now in a second query (N,M ′), this
time to the encryption oracle, the adversary obtains C ′ where C ′ = M ′ ⊕ κ.

Plaintext awareness fails in this case: the reply that a plaintext extractor would give for
the decryption query, cannot be consistent with a high probability for the encryption query
that follows it. That is because the plaintext extractor cannot compute κ at the time of the
first decryption query for the following reasons: (i) it does not know the secret key K; (ii) it
is not allowed to do encryption queries; (iii) an encryption query with N has not yet been
recorded in the query history.

2. CTR mode with a random IV is PA1. In this setting, the IV used in encryption is chosen
randomly by the environment, and therefore outside of the control of the attacker. However,
the adversary can still freely choose the IV for its decryption queries. In this random IV
setting, the attack in the nonce IV example does not apply. To see this, let us consider the
situation where an adversary queries the decryption of (IV1, C) with a one-block ciphertext
C. The adversary can compute the keystream associated to IV1, but it does not control
when the same IV1 will be used in encryption. Thus, a plaintext extractor can be defined
as just outputting a random plaintext M in response to the (IV1, C) query.

But what if an adversary makes further decryption queries with the same IV? Suppose the
adversary makes decryption query (IV1, C ⊕∆). Since the plaintext extractor is a stateful
algorithm, it can simply output M ⊕∆ to provide consistency. Furthermore, if an adversary
makes encryption queries, these will be seen by the PA1 plaintext extractor. Therefore,
the plaintext extractor can calculate the keystream from these queries, and respond to any
decryption queries in a consistent way. A full proof for the PA1 security of CTR mode with
random IVs is provided in Prop. 2.

AE schemes such as GCM [31] and CCM [45] reduce to CTR mode in the RUP setting. This is
because the adversary does not need to forge a ciphertext in order to obtain information about
the corresponding (unverified) plaintext. By requiring that the underlying encryption scheme
of an AE scheme is PA1, we ensure that the adversary does not gain any information from
decryption queries, in the sense that no decryption query can be used to find an inconsistency
with any past or future queries to the encryption or decryption oracles.

1.2 Background and Further Related Work

In 2004, Rogaway [36] formalized the notion of encryption schemes based on a nonce IV, in
contrast with prior encryption modes that used a random IV (as in the CBC mode standardized
by NIST in 1980 [33]).

Rogaway and Shrimpton [38] formalized the notion of deterministic AE (DAE). In DAE,
an IV input is optional and can therefore take arbitrary values. A secure DAE differs from a
secure nonce IV AE scheme in the fact that the DAE privacy is possible only up to message
repetitions, namely an adversary can detect repetitions of encryptions of identical messages.
Unfortunately, the encryption of DAE schemes is not online. To resolve this issue, Fleischmann
et al. [23] introduced the notion of authenticated online encryption. The syntax here is the same
as DAE and privacy holds only up to repetitions of messages with identical prefixes or up to
the longest common prefix.

Also, the notion of AE has been extended and generalized in different ways. Tsang et al. [43]
gave syntax and security definitions of AE for streaming data. Bellare and Keelveedhi [7] consid-
ered a stronger security model where data may be key-dependent. Boldyreva et al. reformulated
AE requirements and properties to handle ciphertext fragmentation in [18], and enhanced the
syntax and security definitions so that the verification oracle is allowed to handle multiple failure
events in [19].
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Table 1. PA1 and PA2 security of some deterministic and non-deterministic schemes. In the columns for PA1
and PA2, ✓ means secure (there exists an extractor), and ✗ means insecure (there exists an attack). Proofs for
the security results in this table can be found in Sect. 6.

IV type Online Scheme PA1 PA2 Remark

random ✓ CTR, CBC [33] ✓ ✗

nonce ✓ OCB [37] ✗ ✗

✓ GCM [31], SpongeWrap [16] ✗ ✗

✗ CCM [45] ✗ ✗ not online [39]

arbitrary ✓ COPA [3] ✗ ✗ privacy up to prefix
✓ McOE-G [23] ✗ ✗ ′′

✓ APE [2] ✓ ✗ ′′, backwards decryption
✗ SIV [38], BTM [27], HBS [28] ✓ ✗ privacy up to repetition
✗ Encode-then-Encipher [12] ✓ ✓ ′′, VIL SPRP, padding

1.3 Analysis of Authenticated Encryption Schemes

We categorize existing AE schemes based on the type of IV used by the encryption function:
random IV, nonce IV, and arbitrary IV. The decryption function is assumed to be deterministic
and stateless; we assume that the adversary can specify any IV value to the decryption oracle.

We analyze the security in the RUP setting of several recently proposed AE schemes
(BTM [27], HBS [28], SpongeWrap [16], McOE-G [23], APE [2], and COPA [3]), as well as
the more established AE schemes (Encode-then-Encipher [12], OCB [37], CCM [45], GCM [31],
and SIV [38]). An overview of our privacy results is provided in Table 1, where we additionally
include the encryption-only modes CTR and CBC as random IV examples. We draw a distinc-
tion between the schemes that are online and the schemes that are not. An online (encryption)
scheme is able to produce the ciphertext block as it receives a plaintext block.

Most of the schemes in Table 1 fail to satisfy the notion of PA1 security. To this end, we
propose several techniques to restore PA1 for deterministic schemes, which fall in the arbitrary
IV class, and nonce-based schemes. Firstly, for nonce-based schemes, we introduce the nonce
decoy technique. Next, for the arbitrary IV setting we propose the PRF-to-IV method which
converts a random IV PA1 scheme into an arbitrary IV PA1 scheme. For online deterministic AE
schemes, we demonstrate that PA1 security can be achieved only if the ciphertext is substantially
longer than the plaintext, or the decryption is offline. We show that McOE-G [23] achieves PA1
if the plaintext is padded so that the ciphertext becomes twice as long. We also prove that
APE [2], an online deterministic AE scheme with offline decryption, achieves PA1.

For OCB [37] and COPA [3], we show how to violate the INT-RUP security by using the
unverified plaintext to construct forgeries for these schemes. Finally we show that the nonce
decoy preserves INT-RUP, and the PRF-to-IV method turns any random IV scheme into an
INT-RUP arbitrary IV scheme.

2 Preliminaries

Symbols. Given two strings A and B in {0, 1}∗, we use A‖B and AB interchangeably to denote
the concatenation ofA andB. The symbol⊕ denotes the bitwise XOR operation of two (or more)
strings. The addition + is performed modulo 2n, where n usually is the bit length of a block. For
example, in the CTR mode of operation of a block cipher, we increment the IV value by addition
IV + i (mod 2n), where n is the block size, the n-bit string IV = IVn−1 · · · IV1IV0 ∈ {0, 1}

n

is converted to an integer 2n−1IVn−1 + · · · + 2IV1 + IV0 ∈ {0, 1, . . . , 2
n − 1}, and the result of

addition is converted to an n-bit string in the reverse way. By K
R

← K we mean that K is chosen
uniformly at random from the set K.
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Adversaries and Advantages. An adversary is an oracle Turing machine. Let D be some
class of computationally bounded adversaries; a class D can consist of a single adversary D, i.e.
D = {D}, in which case we write simply D instead of D. For convenience, we use the notation

∆
D

(f ; g) := sup
D∈D

∣∣∣Pr[Df = 1]− Pr[Dg = 1]
∣∣∣

to denote the supremum of the distinguishing advantages over all adversaries distinguishing
oracles f and g, where the notation DO indicates the value output by D after interacting with
oracle O. The probabilities are defined over the random coins used in the oracles and the random
coins of the adversary, if any. Multiple oracles are separated by a comma, e.g. ∆(f1, f2 ; g1, g2)
denotes distinguishing the combination of f1 and f2 from the combination of g1 and g2.

If D is distinguishing (f1, f2, . . . , fk) from (g1, g2, . . . , gk), then by Oi we mean the ith oracle
that D has access to, i.e. either fi or gi depending upon which oracles it is interacting with.
With Oi →֒ Oj we are describing an action that D performs: first D queries Oi, and then at
some point in the future D queries Oj with the output of Oi (assuming it makes sense to use
the output of Oi as the input for Oj directly).

Pseudo-Random Function (PRF). Let G : {0, 1}k×{0, 1}n → {0, 1}m be a function and let
D be an adversary accessing one oracle. The PRF advantage of D with respect to G is defined
as

PRFG(D) := ∆
D

(GK ; Φ) ,

where Φ : {0, 1}n → {0, 1}m is a uniform random function and K
R

← {0, 1}n. We call G a PRF
if the PRF advantage over all D is “small” (we do not need to define what small is for our
purposes). For a variable-input-length (VIL) PRF G : {0, 1}k × {0, 1}∗ → {0, 1}m the PRF
advantage is defined analogously.

Strong Pseudo-Random Permutation (SPRP). Let E : {0, 1}k × {0, 1}n → {0, 1}m be a
block cipher and let D be an adversary accessing one oracle. The SPRP advantage of D with
respect to G is defined as

SPRPE(D) := ∆
D

(EK , DK ; Φ,Φ−1) ,

where Φ : {0, 1}n → {0, 1}m is a uniform random permutation and K
R

← {0, 1}n. We call E an
SPRP if the SPRP advantage over all D is “small” (we do not need to define what small is for
our purposes).

Online Functions. A function f : M → C is said to be n-online if there exist functions
fi : {0, 1}

i → {0, 1}ci and f ′
i : {0, 1}

i → {0, 1}c
′

i such that ci > 0, and for all M ∈ M we have

f(M) = fn(M1) f2n(M1M2) · · · fjn(M1M2 · · ·Mj) f
′
|M |(M) ,

where j = ⌊(|M | − 1)/n⌋ and Mi is the ith n-bit block of M . Often we just say f is online if
the value n is clear from the context.

3 AE Schemes: Syntax, Types, and Security

3.1 New AE Syntax

A conventional AE scheme Π = (E ,D) consists of an encryption algorithm E and a decryption
algorithm D, where we write

(C, T )← EK(IV,A,M) ,

M/⊥ ← DK(IV,A,C, T ) ,
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where K ∈ K is a key, IV ∈ IV an initialization value IV, A ∈ A associated data, M ∈
M a message, C ∈ C the ciphertext, and T ∈ T the tag. Each of these sets is a subset of
{0, 1}∗. The correctness condition states that for all K and IV , if EK(IV,A,M) = (C, T ), then
DK(IV,A,C, T ) = M . A secure AE scheme should return ⊥ when it does not receive a valid
(C, T ) pair.

In order to consider what happens when unverified plaintext is released, we must disconnect
the decryption algorithm from the verification algorithm so that the decryption algorithm always
releases plaintext. A separated AE scheme is a triplet Π = (E ,D,V) of keyed algorithms —
encryption E , decryption D, and verification V — such that

(IV,A,C, T )← EK(IV,A,M) ,

(IV,A,M)← DK(IV,A,C, T ) ,

⊤/⊥ ← VK(IV,A,C, T ) ,

where K, IV,A,M,C, and T are defined as above. For convenience in stating the security defi-
nitions later on, we have defined the encryption and decryption algorithms so that the IV and
A are also output, but if IV and A are not explicitly mentioned as outputs, then we implicitly
include them. Note that in some deterministic schemes IV may be absent. Furthermore, for
simplicity we might omit A if there is no associated data. The special symbols ⊤ and ⊥ indicate
the success and failure of the verification process, respectively.

As in the conventional setting we require a correctness condition: for all K and IV such that
EK(IV,A,M) = (IV,A,C, T ), we require DK(IV,A,C, T ) = (IV,A,M) and VK(IV,A,C, T ) =
⊤.

Relation to Conventional Syntax. Given a separated AE scheme Π = (E ,D,V), we can
easily convert it into a conventional AE scheme Π = (E ,D). Remember that the conven-
tional decryption oracle DK(IV,A,C, T ) outputs M where (IV,A,M) = DK(IV,A,C, T ) if
VK(IV,A,C, T ) = ⊤, and ⊥ otherwise.

The conversion in the other direction is not immediate. While the verification algorithm
V can be easily “extracted” from D (i.e., one can easily construct V using D — just replace
M with ⊤), it is not clear if one can always “naturally” extract the decryption algorithm D
from D. However, all practical AE schemes that we are aware of can be constructed from a
triplet (E ,D,V) as above, and hence their decryption algorithms D are all naturally separable
into D and V .

3.2 Types of AE Schemes

Classification Based on IVs. In order to achieve semantic security [25], AE schemes must
be probabilistic or stateful [5]. Usually the randomness or state is focused into an IV [36]. How
the IV is used restricts the syntax of the scheme and the types of adversaries considered in the
security notions:

1. Random IV. The environment chooses a random IV for each encryption, thus an adversary
has no control over the choice of IV for each encryption. The generated IV must be sent
along with the ciphertext so that the receiver can decrypt.

2. Nonce IV. A distinct IV is used for each encryption, thus an adversary can choose but
does not repeat nonce IV values in its encryption queries. How the parties synchronize the
nonce is left implicit.

3. Arbitrary IV. No restrictions on the IV are imposed, thus an adversary may choose any
IV for encryption. Often a deterministic AE scheme does not even have an IV input, in
which case an IV can be embedded into the associated data A, which gets authenticated
along with the plaintext M but does not get encrypted; A is sent in the clear.
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Table 2. The type of random oracle needed depending upon the class of AE scheme considered.

IV type
type of encryption

online offline

random random oracle random oracle
nonce random oracle random oracle
arbitrary random-up-to-prefix oracle random-up-to-repetition oracle

In all IV cases the adversary can choose arbitrarily the IV input values to the decryption
oracle. Towards formalizing the conventional AE definitions under the new syntax, we make
implicit oracle distinctions depending on the IV type. Note that while for random or nonce
IV schemes semantic security can be achieved, in the case of arbitrary IV, the AE scheme
reduces to deterministic AE for repeated IVs. In the latter case, the two common notions are
“privacy up to repetition” which is used for DAE [38] and “privacy up to prefix” which is used
for authenticated online encryption [23]. In any case, we write $ to indicate the ideal oracle
from which an adversary tries to distinguish the real encryption oracle EK , where K is a secret
key. Depending on the type of AE scheme that uses E , the ideal $ oracle should be either the
random oracle, random-up-to-repetition oracle, or random-up-to-prefix oracle. Each of the cases
with their respective random oracles are listed in Table 2. In order to avoid redundancy in the
wording of the definitions, whenever we write ∆(EK , . . . ; $, . . .), it is understood that the $
oracle is the one appropriate for the AE scheme consisting of E .

Online Encryption/Decryption Algorithms. A further distinction is made between schemes
that are online versus schemes that are not online (as defined in Sect. 2). An AE scheme with
online encryption is one in which the ciphertext can be output as the plaintext is received.
Concretely, we require that for each (K, IV,A) the resulting encryption function is online as a
function of the plaintext M .

Although decryption in AE schemes can never be online due to the fact that the message
needs to be verified before it is output, we still consider schemes which can compute the plaintext
as the ciphertext is received. In particular, a scheme with online decryption is one in which this
plaintext-computing algorithm, viewed as a function of the ciphertext and tag input, is online.
Note that in some schemes the tag could be received before the ciphertext, in which case we
still consider D to be online (even though our new syntax implies that the tag is always received
after the ciphertext).

3.3 Conventional Security Definitions under the New Syntax

Let Π = (E ,D,V) denote an AE scheme. With this new syntax we formulate the definitions
of conventional security notions, IND-CPA, IND-CCA, and INT-CTXT. As mentioned above,
the security notions will be defined in terms of an unspecified $, where the exact nature of $
depends on the type of IV allowed (cf. Table 2).

Definition 1 (IND-CPA Advantage). Let D be a computationally bounded adversary with
access to one oracle O. Then the IND-CPA advantage of D relative to Π is given by

CPAΠ(D) := ∆
D

(EK ; $) ,

where K
R

← K.

Recall from Sect. 2 that we mean that K is chosen uniformly at random from some set.
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Definition 2 (IND-CCA Advantage). Let D be a computationally bounded adversary with
access to two oracles O1 and O2, such that D never queries O1 →֒ O2 nor O2 →֒ O1. Then the
IND-CCA advantage of D relative to Π is given by

CCAΠ(D) := ∆
D

(EK ,DK ; $,DK) ,

where K
R

← K.

Note that IND-CCA as defined above does not apply to the random IV setting. When a random
IV is used, the adversary is not prohibited from querying O2 →֒ O1. We introduce a version of
IND-CCA below, which can be applied to all random, nonce and arbitrary IV settings.

Definition 3 (IND-CCA′ Advantage). Let D be an adversary as in Def. 2, except D may
now query O2 →֒ O1. Then the IND-CCA′ advantage of D relative to Π is given by

CCA
′
Π(D) := ∆

D

(EK ,DK ; $,DK) ,

where K
R

← K.

Definition 4 (INT-CTXT Advantage). Let F be a computationally bounded adversary with
access to two oracles EK and VK , such that F never queries EK →֒ VK . Then the INT-CTXT
advantage of F relative to Π is given by

CTXTΠ(F) := Pr
[
FEK ,VK forges

]
,

where the probability is defined over the random key K and random coins of F. Here, “forges”
means the event of the oracle VK returning ⊤ to the adversary.

4 Security Under Release of Unverified Plaintext

4.1 Security of Encryption

We introduce the notion of plaintext-aware encryption of symmetric-key encryption schemes.
An analysis of existing plaintext-aware schemes can be found in Sect. 6. The formalization is
similar to the one in the public-key setting [10]. Let Π = (E ,D) denote an encryption scheme.

Definition 5 (PA1 Advantage). Let D be an adversary with access to two oracles O1 and
O2. Let E be an algorithm with access to the history of queries made to O1 by D, called a PA1-
extractor. We allow E to maintain state across invocations. The PA1 advantage of D relative
to E and Π is

PA1
E

Π(D) := ∆
D

(EK ,DK ; EK ,E) ,

where K
R

← K, and the probability is defined over the key K, the random coins of D, and the
random coins of E.

The adversary D tries to distinguish the case in which its second oracle O2 is given by DK

versus the case in which O2 is given by E. The task of E is to mimic the outputs of DK given
only the history of queries made to EK by D (the key is not given to E). Note that D is allowed
to make queries of the form EK →֒ E; these can easily be answered by E via the query history.

PA2 is a strengthening of PA1 where the extractor no longer has access to the query history
of EK . Note that in order for this to work, we cannot allow the adversaries to make queries of
the form EK →֒ E.
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Definition 6 (PA2 Advantage). Let D be an adversary as in Def. 5, with the added re-
striction that it may not ask queries of the form O1 →֒ O2. Let E be an algorithm, called a
PA2-extractor. We allow E to maintain state across invocations. The PA2 advantage of D
relative to E and Π is

PA2
E

Π(D) := ∆
D

(EK ,DK ; EK ,E) ,

where K
R

← K, and the probability is defined over the key K, the random coins of D, and the
random coins of E.

An equivalent way of describing PA2 is via decryption independence (DI), which means that
the adversary cannot distinguish between encryption and decryption under the same key and
under different keys.

Definition 7 (Decryption Independence). Let D be a distinguisher accepting two oracles
not making queries of the form O1 →֒ O2, then the DI advantage of D relative to Π is

DIΠ(D) := ∆
D

(EK ,DK ; EK ,DL) ,

where K,L
R

← K are independent.

4.2 Security of Verification

Integrity when releasing unverified plaintext is a modification of INT-CTXT (Def. 4) to include
the decryption oracle as a means to obtain unverified plaintext. Let Π = (E ,D,V) be an AE
scheme with separate decryption and verification.

Definition 8 (INT-RUP Advantage). Let F be a computationally bounded adversary with
access to three oracles EK , DK , and VK , such that F never queries EK →֒ VK . Then the INT-
RUP advantage of F relative to Π is given by

INT-RUPΠ(F) := Pr
[
FEK ,DK ,VK forges

]
,

where the probability is defined over the key K and random coins of F. Here, “forges” means
the event of the oracle VK returning ⊤ to the adversary.

5 Relations Among Notions

In this section we study the relations among the plaintext awareness notions and the conven-
tional security notions for encryption (see Sect. 3.3). The results are separated in the security
of encryption (Sect. 5.1) and the security of verification (Sect. 5.2).

5.1 Security of Encryption

We start off with a theorem justifying the naming of the PA notions.

Theorem 1 (PA2 ⇒ PA1). Let Π be an encryption scheme that is PA2. Then Π is PA1.

Proof. Let Π be an encryption scheme that is PA2 (the proof holds for any type of IV). Let E2

be the PA2-extractor associated to Π. We define the PA1-extractor E1 as follows. Let C be the
input given to E1, then E1 checks to see if C is in the query history of EK .

1. If C is in the query history, then E1 returns the corresponding plaintext from the history.

2. If C is not in the query history, then E1 returns E2(C).

10



IND-CPA + PA1

IND-CPA + PA2IND-CPA

IND-CCA

IND-CCA′

Thm. 2+3

Thm. 6

[6, 22] Thm. 1+4

Thm. 1

Thm. 7

Thm. 4 Thm. 5

RIV nonce + arbitrary all

INT-RUP

INT-CTXT

DI

Thm. 8+9

Thm. 10

Fig. 2. Implications and separations between the IND-CPA, IND-CPA+PA1, IND-CPA+PA2, IND-CCA,
IND-CCA′, PA2, and DI security notions (left) and INT-CTXT and INT-RUP (right). Dashed lines refer to
relations that hold if the IV is random and thin solid lines in case of nonce or arbitrary IV. We use a thick solid
line if the relation holds under all IV cases.

Let D1 be a PA1 adversary for E1. We construct a PA2 adversary D2 as follows: D2 runs D1

and directly forwards D1’s oracle queries to its own oracles. Exactly like E1, the adversary D2

responds to ciphertexts C which are in the query history of EK with the corresponding plaintext
from the history.

The PA1 game is perfectly simulated by D2, hence

PA1
E1

Π (D1) ≤ PA2
E2

Π (D2) .

⊓⊔

As in the public-key setting, PA2 along with IND-CPA implies IND-CCA′.

Theorem 2 (IND-CPA + PA2 ⇒ IND-CCA′). Let Π be an encryption scheme that is
PA2 secure and IND-CPA secure. Then Π is IND-CCA′ secure.

Proof. Let E be the PA2-extractor given with Π (the proof holds for any type of IV). Let D
be an adversary as in Def. 3. By the triangle inequality,

CCA
′
Π(D) = ∆

D

(EK ,DK ; $,DK) ,

≤ ∆
D

(EK ,DK ; EK ,E) + ∆
D

(EK ,E ; $,E) + ∆
D

($,E ; $,DK) . (1)

Extractor E is independent of $, hence

∆
D

($,E ; $,DK) ≤ ∆
D1

(E ; DK) ,

where D1 simulates D’s $-queries. Note that D1 can be viewed as a PA2-adversary, hence

∆
D1

(E ; DK) ≤ PA2
E

Π(D1) .

Furthermore, since E is independent of EK ,

∆
D

(EK ,E ; $,E) ≤ CPAΠ(D2) ,

for some D2 which simulates E. Since the first term in (1) is just PA2EΠ(D), we get

CCA
′
Π(D) ≤ PA2

E

Π(D) + PA2
E

Π(D1) + CPAΠ(D2) .

⊓⊔
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Yet the similarities between public-key and symmetric-key stop there. We have that PA2 +
IND-CPA is in fact equivalent with IND-CCA′.

Theorem 3 (IND-CCA′ ⇒ PA2). Let Π be an encryption scheme that is IND-CCA′ secure.
Then Π is PA2 secure.

Proof. Let Π be an encryption scheme that is IND-CCA′ (with any type of IV). Let E := DK′

for some random key K ′. Let D be an adversary as in Def. 6. By the triangle inequality,

PA2
E

Π(D) = ∆
D

(EK ,DK ; EK ,DK′) ,

≤ ∆
D

(EK ,DK ; $,DK) + ∆
D

($,DK ; EK ,DK′) .

The first term is CCA′
Π(D). Furthermore, note that

∆
D

($,DK ; EK ,DK′) ≤ CPAΠ(D′) ,

for some adversary D′, as D′ can just simulate DK′ . Therefore:

PA2
E

Π(D) ≤ CCA
′
Π(D) + CPAΠ(D1) .

⊓⊔

Note that the above theorems all hold under each IV situation (random, nonce, arbitrary).
The relation between plaintext awareness and IND-CCA only makes sense for the nonce and
arbitrary IV schemes due to the fact that IND-CCA security is not defined for random IV. Here
we actually have a separation both ways:

Theorem 4 (IND-CCA 6⇒ IND-CPA + PA1). Assume there exists a nonce or arbitrary IV
IND-CCA-secure encryption scheme. Then there exists an IND-CCA-secure encryption scheme
that is not PA1 secure.

Proof. Let Π = (E ,D) denote a nonce or arbitrary IV symmetric encryption scheme that is
IND-CCA.

Let N0 be some fixed IV and C0 some fixed ciphertext with DK(N0, C0) = MK . Define
Π̃ = (Ẽ , D̃) as

ẼK(N,M) =

{
C0 if M = MK and N = N0 ,

EK(N,M) otherwise ,

D̃K(N,C) = DK(N,C) .

Claim. There exists an adversary D such that for every extractor E, D succeeds in breaking
the PA1 security of Π̃ with a high probability.

The adversary D simply queries O1(N0,O2(N0, C0)):

1. If O2 = D̃K , D queries ẼK(N0, D̃K(N0, C0)), which always equals C0.
2. If O2 = E, D queries ẼK(N0,E(N0, C0)). This will only equal C0 if E finds MK such that
EK(N0,MK) = C0. This probability can be upper bounded by the CPA advantage of Π
via an adversary A which checks to see if O(N0,E(N0, C0)) = C0 (if the equality holds A
guesses that its oracle is EK).

Claim. Let A be an IND-CCA adversary of Π̃. Then there exist IND-CCA adversaries B and
C of Π with the same or smaller running time than A, such that

CCA
Π̃
(A) ≤ CCAΠ(B) + CCAΠ(C) .
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We construct B as follows: B runs A and answers A’s ẼK query with EK and A’s D̃K queries
with DK (or with the corresponding $ oracle). Note that B’s simulation of A’s IND-CCA game
is perfect unless A induces B to make the query EK(N0,DK(N0, C0)). Since A cannot ask
queries of the form ẼK(N, D̃K(N,C)), A must find (N1, C1) such that

DK(N1, C1) = DK(N0, C0) ,

which in turn allows us to create another IND-CCA adversary C for Π. ⊓⊔

Theorem 5 (IND-CPA + PA1 6⇒ IND-CCA). Assume there exists a nonce or arbitrary
IV PA1 secure and IND-CPA secure encryption scheme. Then there exists a PA1 secure and
IND-CPA secure encryption scheme that is not IND-CCA secure.

Proof. Let Π = (E ,D) be a nonce IV encryption scheme that is IND-CPA and PA1 secure with
extractor E. Define bK(N,M) to be the first bit of EK(N, EK(N,M)). Let n be an integer. Let
m := maxK,N,M∈{0,1}n |EK(N,M)| and let len(k) denote a log2m-bit representation of k. Let Π̃
be defined as follows:

ẼK(N,M) = bK(N,M) ‖ EK(N, len(|EK(N,M)|)‖EK(N,M)‖M) ,

D̃K(N, b ‖ C) = M ′ ,

where M ′ is DK(N,C) with len(|C|)‖C removed. Then Π̃ is IND-CPA and PA1 with extractor
Ẽ(N, b ‖ C) outputting M ′ where M ′ is E(N,C) with len(|C|)‖C removed.

Furthermore, Π̃ is not IND-CCA because an IND-CCA adversary can query O1(N,M) =
b ‖ C, and then query D̃K(N, b ‖ C) to get a distinguishing event (here b is the complement of
b).

⊓⊔

Finally, although we can deduce separations between IND-CPA and PA1 via the above
theorems for the nonce and arbitrary IV cases, we need to separately prove the separations for
the random IV case.

Theorem 6 (IND-CPA 6⇒ PA1). Assume there exists a random IV IND-CPA-secure en-
cryption scheme. Then there exists an IND-CPA-secure encryption scheme that is not PA1
secure.

Proof. Let Π = (E ,D) denote a random IV encryption scheme that is IND-CPA. Let H0 be
some constant from the space of IVs of Π. Say that EK(H0,K) = (H0, CK) is the encryption of
K when the IV is H0, and that DK(H0, C0) = MK is the decryption of some constant C0 under
K and H0. Define Π̃ = (Ẽ , D̃) as

ẼK(H,M) =





(H0, CK) if H = H0 and M = MK ,

(H0, C0) if H = H0 and M = K ,

EK(H,M) otherwise ,

D̃K(H,C) =





K if H = H0 and C = C0 ,

MK if H = H0 and C = CK ,

DK(H,C) otherwise .

Claim. There exists an adversary D such that for every extractor E, PA1E
Π̃
(D) is non-negligible.

The adversary queries O2(H0, C0):

1. If O2 = D̃K , then D̃K(H0, C0) always equals K.

13



2. If O2 = E, then E must somehow output K. The probability of E doing this is upper
bounded by the CPA security of Π.

Claim. Let A be an IND-CPA adversary for Π̃. Then there exists an IND-CPA adversary B
for Π such that

CPA
Π̃
(A) ≤ CPAΠ(B) +

q

m
,

where m is the size of the set of IVs from which the random IV is chosen and q is the number
of queries that A makes to the encryption oracle.

Adversary B forwards A’s oracle queries to its own oracles. The simulation of IND-CPA for A
is perfect unless A queries K or MK under H0. The probability of H0 being used as an IV is
1/m. ⊓⊔

Theorem 7 (IND-CPA + PA1 6⇒ PA2). Assume there exists a random IV PA1 secure
and IND-CPA secure encryption scheme. Then there exists PA1 secure and IND-CPA secure
encryption scheme that is not PA2 secure.

The proof is similar to the one of Thm. 5.

Then we also have the equivalence between PA2 and DI.

Theorem 8 (PA2 ⇒ DI). Let Π be an encryption scheme that is PA2. Then Π is DI.

Proof. Let E be the PA2-extractor given with Π (the proof holds for any type of IV). Let D
be an adversary as in Def. 7. By the triangle inequality,

DIΠ(D) = ∆
D

(EK ,DK ; EK ,DL) ,

≤ ∆
D

(EK ,DK ; EK ,E) + ∆
D

(EK ,E ; EK ,DL) .

The first term is PA2EΠ(D). Furthermore, note that extractor E and DL are independent of EK ,
hence

∆
D

(EK ,E ; EK ,DL) ≤ ∆
D1

(E ; DL) ,

where D1 simulates D’s EK-queries using some random key K. Note that D1 can be viewed as
a PA2-adversary, hence

∆
D1

(E ; DL) ≤ PA2
E

Π(D1) .

Therefore

DIΠ(D) ≤ PA2
E

Π(D) + PA2
E

Π(D1) .

⊓⊔

Theorem 9 (DI ⇒ PA2). Let Π be an encryption scheme that is DI. Then Π is PA2.

Proof. Let Π be an encryption scheme that is DI (the proof holds for any type of IV). Let
E := DL for some random key L. Let D be an adversary as in Def. 6.

PA2
E

Π(D) = ∆
D

(EK ,DK ; EK ,DL) = DIΠ(D) .

⊓⊔
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5.2 Security of Verification

INT-RUP clearly implies INT-CTXT. The opposite is, however, not necessarily true.

Theorem 10 (INT-CTXT 6⇒ INT-RUP). Assume there exists an INT-CTXT secure en-
cryption scheme. Then there exists an INT-CTXT secure encryption scheme that is not INT-RUP
secure.

Proof. Let Π = (E ,D,V) be an authenticated encryption scheme that is INT-CTXT secure (the
proof holds for any type of IV). Let (N0,M0) be some IV and plaintext pair, and let (N1, C1, T1)
and (N2, C2, T2) be some IV, ciphertext, and tag tuples. Let EK(N0,M0) = (N0, C0, T0), and let
Π̃ = (Ẽ , D̃, Ṽ) be defined as follows:

ẼK(N,M) = EK(N,M)

D̃K(N,C, T ) =





(N1, C0) if (N,C, T ) = (N1, C1, T1) ,

(N2, T0) if (N,C, T ) = (N2, C2, T2) ,

DK(N,C, T ) otherwise ,

ṼK(N,C, T ) = VK(N,C, T ) .

The correctness condition is still satisfied by Π̃. Clearly, Π̃ is INT-CTXT. However, it is not
INT-RUP secure: a forger queries D̃K(N1, C1, T1) = (N1, C0) and D̃K(N2, C2, T2) = (N2, T0)
and uses these tuples to query VK(N0, C0, T0) so as to forge Π̃. ⊓⊔

6 Achieving Plaintext Awareness

6.1 Why Existing Schemes Do Not Achieve PA1

In conventional AE schemes such as OCB, GCM, SpongeWrap, CCM, COPA, and McOE-G,
a ciphertext is computed using some bijective function, and then a tag is appended to the
ciphertext. The schemes achieve AE because the tag prevents all ciphertexts from being valid.
But if the tag is no longer checked, then we cannot achieve PA1, as explained below.

Let Π = (EK ,DK) be a nonce or arbitrary IV encryption scheme, then we can describe Π
as follows,

EK(IV,A,M) = EK(IV,A,M) ‖ FK(IV,A,M) ,

where EK is length-preserving, i.e. |EK(IV,A,M)| = |M |. One can view FK(IV,A,M) as the
tag-producing function from a scheme such as GCM. In the following proposition we prove that
if Π is IND-CPA and PA1, then EK cannot be bijective for each (IV,A), assuming either a
nonce or arbitrary IV. Note that the proposition only holds if Π is a nonce or arbitrary IV
scheme.

Proposition 1. Say that EK is bijective for all (IV,A), then there exists an adversary D such
that for all extractors E, there exists an adversary D1 such that

1− CPAΠ(D1) ≤ PA1
E

Π(D) ,

where D makes one O1 query, one O2 query, and D1 is as efficient as D plus one query to E.

Proof. Since EK is bijective, we know that for all (K, IV,A,C),

EK(IV,A,DK(IV,A,C)) = C ′ ,

where C ′ is a prefix for C of length |DK(IV,A,C)|. Define D as follows. It generates C uniformly
at random from {0, 1}n and queries O2(IV,A,C), where IV and A are arbitrary constants,
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receiving M as output. Then D queries O1(IV,A,M) to receive C ′. The adversary D outputs
1 if the first |M | bits of C ′ equals C, and 0 otherwise.

Let E be an extractor for Π. The probability that D outputs 1 when O2 = E is equal to
the probability that E can output a message M such that EK(IV,A,M) = C without E ever
having been queried. This in turn is upper bounded by the probability that D1 wins the CPAΠ

game, where D1 is an IND-CPA adversary which runs D, answers D’s O2 queries using E, and
outputs 1 if E outputs the correct message M . ⊓⊔

We conclude that in order for a nonce or arbitrary IV scheme to be PA1 and IND-CPA, EK

must either not be bijective, or not be length-preserving.

6.2 PA1 Random IV Schemes

We illustrate Def. 5 and the idea of an extractor by considering the CTR mode with a random
IV. An extractor for CBC mode is described in App. A.

Example 1 (RIV-CTR Extractor). Let F : {0, 1}k × {0, 1}n → {0, 1}n be a PRF. For Mi ∈
{0, 1}n, 1 ≤ i ≤ ℓ, define RIV-CTR encryption as

EK(M1 · · ·Mℓ) = FK(C0 + 1)⊕M1 ‖ · · · ‖ FK(C0 + ℓ)⊕Mℓ ,

where C0 is selected uniformly at random from {0, 1}n for each encryption, and decryption as

DK(C0, C1 · · ·Cℓ) = FK(C0 + 1)⊕ C1 ‖ · · · ‖ FK(C0 + ℓ)⊕ Cℓ .

Note that we have suppressed the explicit IV input to EK and use C0 instead.
We can define an extractor E for RIV-CTR as follows. Initially, E generates a random key

K ′ which it will use via FK′ . Let (C0, C1 · · ·Cℓ) denote an input to E. Using C0, the extractor
searches its history for a ciphertext with C0 as IV.

1. If such a ciphertext exists, we let (C ′
1 · · ·C

′
m,M ′

1 · · ·M
′
m) denote the longest corresponding

EK query-response pair. Define κi := C ′
i ⊕ M ′

i for 1 ≤ i ≤ min{ℓ,m}. Notice that κi
corresponds to the keystream generated by FK for 1 ≤ i ≤ ℓ. For m < i ≤ ℓ we generate κi
by FK′(C0 + i).

2. If there is no such ciphertext, then we generate κi as FK′(C0 + i) for 1 ≤ i ≤ ℓ.

Then we set
E(C0, C1 · · ·Cℓ) = C1 ⊕ κ1, C2 ⊕ κ2 ‖ · · · ‖ Cℓ ⊕ κℓ .

Proposition 2. Let D be a PA1 adversary for RIV-CTR or RIV-CBC making queries whose
lengths in number of blocks sum up to σ, then

PA1
E

RIV-CTR(D) ≤ ∆
D1

(FK , FK ; FK , FK′) +
σ2

2n
,

where D1 is an adversary which may not make the same query to both of its oracles, and makes
a total of σ queries with the same running time as D.

The proof of this proposition can be found in App. A, along with CBC mode.
From Thm. 6 we know that IND-CPA does not imply PA1, but the example used in the proof

is pathological since the decryption algorithm leaks the key when queried with the appropriate
query. We do not know of a non-pathological example of a random IV scheme which does not
achieve PA1.

In the following subsections we discuss ways of achieving PA1 assuming a nonce and arbitrary
IV. Our basic building block will be a random IV PA1 scheme.
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6.3 PA1 Nonce IV Schemes

Nonce IV schemes are not necessarily PA1 in general. For example, CTR mode with a nonce
IV is not PA1 and Thm. 6 shows that IND-CPA is distinct from PA1. Furthermore, coming up
with a generic technique which transforms nonce IV schemes into PA1 schemes in an efficient
manner is most likely not possible.

If we assume that the nonce IV scheme, when used as a random IV scheme, is PA1, then
there is an efficient way of making the nonce IV scheme PA1. Note that we already have an
example of a scheme satisfying our assumption: nonce IV CTR mode is not PA1, but RIV-CTR
is.

Nonce Decoy. The nonce decoy method creates a random-looking IV from the nonce IV and
forces the decryption algorithm to use the newly generated IV. Note that we are not only
transforming the nonce into a random nonce: the solution depends entirely on the fact that the
decryption algorithm does not recompute the newly generated IV from the nonce IV.

Let Π = (E ,D,V) be a nonce-IV-based AE scheme. For simplicity assume IV := {0, 1}n, so
that IVs are of a fixed length n. We prepare a pseudo-random function GK′ : IV → IV with an
independent key K ′. We then construct an AE scheme Π∗ = (E∗,D∗,V∗) as follows.

E∗K,K′(IV,A,M):

IV ∗ ← GK′(IV )
(C, T )← EK

(
IV ∗, A,M

)

C∗ ← IV ∗‖C
return (C∗, T )

D∗
K,K′(IV,A,C∗, T ):

IV ∗‖C ← C∗

M ← DK(IV ∗, A, C, T )
return M

V∗K,K′(IV,A,C∗, T ):

ĨV
∗
← GK′(IV )

IV ∗‖C ← C∗

b← VK(IV ∗, A, C, T )

return (ĨV
∗

= IV ∗ and b =
⊤)?⊤ : ⊥

Note that the decryption algorithm D∗ does not make use of K ′ or IV . If the decryption
algorithm recomputes IV ∗ using K ′ and IV , then Π∗ will not be PA1. Furthermore, one can
combine D∗ and V∗ in order to create a scheme which rejects ciphertexts when the IV it receives
does not come from an encryption query.

First we show that Π with random IVs must be PA1 in order for Π∗ to be PA1 (assuming
G is a PRF).

Proposition 3 (If Π∗ is PA1, then Π with random IVs is PA1). Let E∗ be a PA1-
extractor for Π∗ with nonce IV. Then there exists an extractor E for Π with random IV such
that for all adversaries D there exist D1 and D2 such that

PA1
E

Π(D) ≤ PA1
E

∗

Π∗(D1) + PRFG(D2),

where D1 and D2 are as efficient as D, and E is as efficient as E∗.

Proof. Define E as follows. First E transforms its query history so that a query EK(A,M) =
(IV,A,C, T ) is turned into E∗K,K′(i, A,M) = (i, A, IV ‖C, T ), where i is a counter which is incre-
mented for each encryption query. Then on input (IV,A,C, T ),E responds withE∗(IV,A, IV ‖C, T ),
where E∗ is given E’s transformed query history.

We denote D’s oracles by O1 and O2, and D1’s oracles by O∗
1 and O∗

2. The adversary D1

runs D and maintains a counter i which is incremented for each query that D makes to O1.
The oracle queries O1(A,M) made by D are answered with (C, T ) := O∗

1(i, A,M) where the
first n bits are removed from C (so as to remove the IV ∗ value). The decryption oracle queries
O2(IV,A,C, T ) are answered with O∗

2(IV,A, IV ‖C, T ).
If D can distinguish GK′(i) from uniformly distributed random bits, then we can construct

an adversary D2 attacking the PRF advantage of G. Otherwise D1 simulates the PA1 game for
D perfectly. ⊓⊔
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Finally we show thatΠ being PA1 is sufficient in order to prove thatΠ∗ is PA1 (again, assuming
G is a PRF).

Proposition 4 (If Π with random IVs is PA1, then Π∗ with nonce IV is PA1). Let
E be a PA1-extractor for Π with random IV. Then there exists an extractor E∗ for Π∗ with
nonce IV such that for all adversaries D there exist D1 and D2 such that

PA1
E

∗

Π∗(D) ≤ PA1
E

Π(D1) + PRFG(D2),

where D1 and D2 are as efficient as D, and E∗ is as efficient as E.

Proof. Define E∗ as follows. First E∗ transforms its history so that a query E∗K,K′(IV,A,M) =
(C∗, T ) gets turned into EK(A,M) = (IV ∗, A, C, T ), where C∗ = IV ∗‖C and |IV ∗| = n. Then
on input (IV,A,C, T ), E∗ responds with E(IV ∗, A, C ′, T ), where C = IV ∗C ′ and |IV ∗| = n,
and E is run on the transformed query history.

Let O∗
1 and O∗

2 denote the oracles given to D, and O1 and O2 the oracles given to D1. The
adversary D1 runs D and answers a query O∗

1(IV,A,M) with (IV ‖C, T ), where (IV, C, T ) =
O1(A,M). A query O∗

2(IV,A,C, T ) is answered with O2(IV
∗, A, C ′, T ) where C = IV ∗C ′ and

|IV ∗| = n.

Again, D1 perfectly simulates the PA1 game for D as long as G is a PRF. ⊓⊔

In Sect. 7.2 we discuss what the nonce decoy does for INT-RUP.

6.4 PA1 Arbitrary IV Schemes.

PRF-to-IV. Using a technique similar to MAC-then-Encrypt [9], we can turn a random IV
PA1 scheme into an arbitrary IV PA1 scheme.

The idea behind the PRF-to-IV method is to evaluate a VIL PRF over the input to the
scheme and then to use the resulting output as an IV for the random IV encryption scheme.
Let Π = (E ,D,V) be a random IV PA1 scheme taking IVs from {0, 1}n, and let G : {0, 1}k ×
{0, 1}∗ → {0, 1}n be a VIL PRF.

E∗K,K′(IV,A,M):

IV ∗ ← GK′(IV ‖A‖M)
(C, T )← EK

(
IV ∗, A,M

)

return (C, IV ∗‖T )

D∗
K,K′(IV,A,C, IV ∗‖T ):

M ← DK(IV ∗, A, C, T )
return M

V∗K,K′(IV,A,C, IV ∗‖T ):

M ← D∗
K,K′(IV,A,C, IV ∗‖T )

ĨV ← GK′(IV ‖A‖M)

return ĨV = IV ∗ ? ⊤ : ⊥

The PRF-to-IV method is more robust than the nonce decoy since D∗ really only can use IV ∗

to decrypt properly.

First we show that Π with random IV must be PA1 in order for Π∗ to be PA1.

Proposition 5 (If Π∗ is PA1, then Π with random IVs is PA1). Let E∗ be a PA1-
extractor for Π∗ with arbitrary IV. Then there exists an extractor E for Π with random IV
such that for all adversaries D there exist D1 and D2 such that

PA1
E

Π(D) ≤ PA1
E

∗

Π∗(D1) + PRFG(D2),

where D1 and D2 are as efficient as D, and E is as efficient as E∗.

Proof. We define E as follows. On input (IV,A,C, T ), E first transforms its query history by
mapping EK(A,M) = (IV,A,C, T ) to E∗K(i, A,M) = (i, A, C, IV ‖T ), where i is a counter which
is incremented for each encryption query. Then it passes the transformed query history to E∗.
Finally E returns E∗(IV,A,C, IV ‖T ).
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Let O1 and O2 denote the oracles given to D, and O∗
1 and O∗

2 the oracles given to D1.
The adversary D1 runs D. On a query O1(A,M) made by D, D1 responds with (C, T ), where
(C, IV ∗‖T ) = O1(i, A,M), where i is a counter which D1 maintains and increments for each
query to O1. On a query O2(IV,A,C, T ) made by D, D1 responds with O2(IV,A,C, IV ‖T

∗).

Note that unless D distinguishes G from a uniform random function, D1 perfectly simulates
the PRF game for D. ⊓⊔

Finally, we show that Π being PA1 is sufficient as well.

Proposition 6 (If Π is PA1, then Π∗ with arbitrary IVs is PA1). Let E be a PA1-
extractor for Π with random IV. Then there exists an extractor E∗ for Π∗ with arbitrary IV
such that for all adversaries D there exist D1 and D2 such that

PA1
E

∗

Π∗(D) ≤ PA1
E

Π(D1) + PRFG(D2),

where D1 and D2 are as efficient as D, and E∗ is as efficient as E.

Proof. Define E∗ as follows. First E∗ transforms its query history by mapping E∗K,K′(IV,A,M) =
(IV,A,C, T ) to EK(A,M) = (IV ∗, A, C, T ∗), where T = IV ∗T ∗ and |IV ∗| = n. Then on input
(IV,A,C, T ), E∗ returns E(IV ∗, A, C, T ∗), where again T = IV ∗T ∗ and |IV ∗| = n.

The remainder of the proof is similar to the proof of Prop. 5. ⊓⊔

Note that the PRF-to-IV method is the basic structure behind SIV, BTM, and HBS. We
show that the PRF-to-IV method is INT-RUP in Sect.7.2.

Online Encryption. Since the PRF needs to be computed over the entire message before the
message is encrypted again, the PRF-to-IV method does not allow for online encryption. Recall
that an encryption scheme has online encryption if for all (K, IV,A), the resulting function is
online. Examples of such schemes include COPA and McOE-G.

If we want encryption and decryption to both be online in the arbitrary IV setting, then a
large amount of ciphertext expansion is necessary, otherwise a distinguisher similar to the one
used in the proof of Prop. 1 can be created.

An encryption scheme Π = (E ,D) is online if for some n there exist functions fi and f ′
i such

that

EK(M) = fn(M1) f2n(M1M2) · · · fjn(M1M2 · · ·Mj) f
′
|M |(M),

where j = ⌊(|M | − 1)/n⌋ and Mi is the ith n-bit block of M . If the encryption scheme has
online decryption as well, then the decryption algorithm can start decrypting each “block” of
ciphertext, or

DK(fn(M1) f2n(M1M2) · · · fin(M1M2 · · ·Mi)) = M1M2 · · ·Mi,

for all i ≤ j.

Proposition 7. Let Π = (E ,D) be an encryption scheme where E is n-online for all K, IV ,
and A, and D is online as well, then there exists a PA1-adversary D such that for all extractors
E there exists an IND-CPA adversary D1 such that

1− CPAΠ(D1) ≤ PA1
E

Π(D) ,

where D makes one O1 query, one O2 query, and D1 is as efficient as D plus one query to E.
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Proof. Following Def. 2, we write

EK(M) = fn(M1) f2n(M1M2) · · · fjn(M1M2 · · ·Mj) f
′
|M |(M).

Since decryption is online as well, each fin must be an injective function of Mi. Say that the ith
block does not contain any length-expansion, i.e. for all M ∈ {0, 1}m, |fin(M1 · · ·Mi)| = |Mi|.
Then fin is bijective.

Let C := fn(M1) f2n(M1M2) · · · f(i−1)n(M1 · · ·Mi−1), then for all K, Ci in the range of fin,
and C ′ we have

DK(CCiC
′) = M1 · · ·Mi−1MiM

′,

and so

EK(M1 · · ·Mi−1MiM
′) = fn(M1) · · · f(i−1)n(M1 · · ·Mi−1)fin(Mi)C

′′

= CCiC
′′

or
EK(DK(CCiC

′)) = CCiC
′′ . (2)

Equation (2) always holds in the real world, but is difficult to simulate by the plaintext extractor.
Therefore we define the adversary D as follows. The adversary picks Ci uniformly at random
from the range of fin. It queries O1(M) for some message M of length (i− 1)n and receives C0

from which it chops off bits from the end to create a string C of length (i−1)n. Then D queries
O2(CCi) = M ′ and finally O1(M

′) = C ′. If C ′ has CCi as a prefix then D outputs 1, otherwise
it outputs 0.

As in the proof of Prop. 1, any extractor which successfully finds an Mi such that CCi is a
prefix for EK(MMi) has broken the IND-CPA game for Π. ⊓⊔

Example 2. In certain scenarios, padding the plaintext is sufficient for PA1. Doing so makes
schemes such as McOE-G secure in the sense of PA1, while keeping encryption and decryption
online. The cost is a substantial expansion of the ciphertext. For the case of McOE-G, the length
of the ciphertext becomes roughly twice the size of its plaintext.

It is important to note that McOE-G is based on an n-bit block cipher, and each n-bit
message block is encrypted (after it is XORed with some state values) via the block cipher call.
Since the underlying block cipher is assumed to be a strong pseudo-random function (SPRP),
we can pad a message M = M1M2 · · ·Mℓ (each Mi is an n/2-bit string) as 0n/2M1

∥∥ 0n/2M2

∥∥
· · ·

∥∥ 0n/2Mℓ and then encrypt this padded message using McOE-G. So each block cipher

call processes 0n/2Mi for some i. This “encode-then-encipher” scheme [12] is PA1 as shown in
App. B.

Example 3. If we do not require the decryption to be online, then we can achieve PA1 without
significant ciphertext expansion. An example of a scheme that falls into this category is the
recently-introduced APE mode [2], whose decryption is backward (and hence not online). See
App. C for a statement and proof.

6.5 PA2 Schemes

Most AE schemes are proven to be IND-CPA and INT-CTXT, which allows one to achieve
IND-CCA [9] assuming verification works correctly. In order to be as efficient as possible, the
underlying encryption schemes in the AE schemes are designed to only achieve IND-CPA and
not IND-CCA, since achieving IND-CCA for encryption usually requires significantly more
operations. For example, GCM, SIV, BTM, and HBS all use CTR mode for encryption, yet
CTR mode is not IND-CCA. Since IND-CPA+PA2 is equivalent to IND-CCA′, none of these
schemes achieve PA2.
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A scheme such as APE also cannot achieve IND-CCA′ because its decryption is online “in
reverse”. If (EK ,DK) denotes APE, then an adversary can query EK(M1M2) = C1C2 and then
DK(C ′

1C2), which equals M ′
1M2. But if an adversary interacts with ($,DK) (see Def. 3), then

DK(C ′
1C2) will most likely not output M ′

1M2.

Existing designs which do achieve PA2 include those which are designed to be IND-CCA′,
such as the solutions presented by Bellare and Rogaway [12], Desai [21], and Shrimpton and
Terashima [41]. These solutions cannot be online, and they are usually at least “two-pass”,
meaning the input is processed at least twice.

7 Integrity in the INT-RUP Setting

7.1 INT-RUP Attack

Several AE schemes become insecure if unverified plaintext is released. In Proposition 8, we
explain that OCB [37] and COPA [3] are not secure in the RUP setting.

The strategy of our attack is similar to that of Bellare and Micciancio on the XHASH hash
function [8]. However, our attack is an improved version that solves a system of linear equations
in GF (2) with only half the number of equations and variables. Our attack is also related to
the attack by Saarinen [40] on the FSB [4] hash function, and the attack on the hash function
Maraca [29] by Indesteege and Preneel [26].

The attack works by first querying the encryption oracle under nonce N to get a valid
ciphertext and tag pair. Then, two decryption queries are made under the same nonce N . Using
the resulting plaintexts a system of linear equations is set up, which when solved will give the
a forgery with high probability.

Proposition 8. For OCB and COPA, for all ℓ ≥ n there exists an adversary A such that

INT-RUPΠ(A) ≥ 1− 2n−ℓ ,

where A makes one encryption query and two decryption queries, each consisting of ℓ blocks of
n bits. Then, the adversary solves a system of linear equations in GF (2) with n equations and
ℓ unknowns.

Proof. We start by describing OCB for messages which have a length which is a multiple of the
block size. For our purposes it suffices to describe OCB in terms of families of ideal permutations,
as the attack works when the block cipher is replaced by a random permutation (a random
permutation is a permutation chosen uniformly from a finite set of permutations).

Let Π = (E ,D,V) denote OCB operating only on full message blocks. Let {αN
i , βN

i , γNi } be
independent random permutations with domain {0, 1}n and range {0, 1}n, then

EK(N,M1M2 · · ·Mℓ) = (N,C1C2 · · ·Cℓ, T ) ,

where

Ci = αN
i (Mi) for 1 ≤ i < ℓ ,

Cℓ = βN
ℓ (len(n))⊕Mℓ ,

T = γNℓ

(
M1 ⊕ · · · ⊕Mℓ

)
,

and len(n) is the number n represented as an n-bit string.

Given a valid plaintext-ciphertext pair, our attack makes two queries to the decryption
oracle, and then solves a system of linear equations in GF (2) in order to obtain a forgery.
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Let ℓ ≥ n. Firstly, the adversary queries EK(N,M) = (N,C, T ) where M = M1M2 · · ·Mℓ

consists of ℓ blocks of n bits, and N is some fixed value. Let C = C1C2 · · ·Cℓ and let Z =
M1 ⊕ · · · ⊕Mℓ.

If the adversary can create another plaintext M ′ with the same checksum Z by changing
the message blocks M1,M2, ...,Mℓ, it has constructed a forgery because the checksum Z and
therefore the tag T will be the same. The adversary is not allowed to query two encryptions
under the same nonce N . However, we now show that it is possible to construct a forgery
by querying the decryption oracle twice with the same nonce N and observing the unverified
plaintext.

The adversary now chooses C0 = C0
1C

0
2 · · ·C

0
ℓ T

0 and C1 = C1
1C

1
2 · · ·C

1
ℓ T

1 uniformly at
random such that for each i, C0

i , C
1
i , Ci are all distinct. The corresponding unverified plain-

texts are DK(N,C0, T 0) = M0
1M

0
2 · · ·M

0
ℓ and DK(N,C1, T 1) = M1

1M
1
2 · · ·M

1
ℓ . To construct

a plaintext M ′ = Mx1

1 Mx2

2 · · ·M
xℓ

ℓ with the same checksum as M , the adversary has to find
x1, x2, · · · , xℓ ∈ GF(2) such that

Z = ⊕ℓ
i=1

(
M0

i xi ⊕M1
i (xi ⊕ 1)

)
,

where xi = 1 corresponds to selecting M0
i , and xi = 0 to selecting M1

i as the ith message block
of M ′. This expression can be converted into n equations, one for every bit j:

Z[j] = ⊕ℓ
i=1

(
M0

i [j]xi ⊕M1
i [j](xi ⊕ 1)

)
for j = 0, 1, . . . , n− 1 ,

where X[j] selects jth bit of X, with j = 0 corresponding to the least significant bit.
This is a system of linear equations in GF (2) with n equations and ℓ unknowns, for which a

solution can be found using Gaussian elimination. The probability that this system of equations
has a solution, is at least 1 − 2n−ℓ [8, App. A]. Because EK(N,M ′) = (N,C ′, T ) with C ′ =
Cx1

1 Cx2

2 · · ·C
xℓ

ℓ and C ′ 6= C, the adversary can output (N,C ′, T ) as a forgery.
Observe that for COPA [3], the tag is also generated as the XOR of the message blocks.

Therefore, the same attack strategy that we described for OCB in the INT-RUP setting also
applies to COPA. ⊓⊔

7.2 Nonce Decoy and PRF-to-IV

In Sect. 6 we introduced a way of turning a random IV PA1 scheme into a nonce IV PA1
scheme, the nonce decoy, and a way of turning a random IV PA1 scheme into an arbitrary IV
PA1 scheme, the PRF-to-IV method. Here we consider what happens to INT-RUP when the
two methods are applied.

The nonce decoy adds some integrity to the underlying random IV PA1 scheme. Using the
notation from Sect. 6.3, Π needs to be a slightly lighter form of INT-RUP in order for Π∗ to be
INT-RUP. Concretely, Π only needs to be INT-RUP against adversaries which use IVs which
are the result of an encryption query. Furthermore, this requirement on Π is sufficient to prove
that Π∗ is INT-RUP.

Proposition 9. Let D be an adversary which only makes queries to VK with an IV which is
the result of an EK query. Then there exist adversaries D1 and D2 such that

INT-RUPΠ(D) ≤ INT-RUPΠ∗(D1) + PRFG(D2),

where D1 and D2 are as efficient as D.

Proof. The adversary D1 runs D and answers D’s oracle queries as follows. The EK and DK

oracle queries are dealt with like in the proof of Prop. 3. On a VK(IV,A,C, T ) query, D1

responds with V∗K,K′(i, A, IV ‖C, T ), where i equals the counter value where E∗K,K′(i, A′,M ′) =
(IV,A′, C ′, T ′). ⊓⊔

22



Naturally if Π is INT-RUP, then Π∗ is INT-RUP as well. In fact, if Π is INT-RUP against
adversaries which use IVs which are the result of an encryption query, then Π∗ is INT-RUP

Proposition 10. Let D be an INT-RUP adversary for Π∗ with random IV. Then there exists
an INT-RUP adversary D1 for Π which only uses IVs from encryption queries, and an adversary
D2 such that

INT-RUPΠ∗(D) ≤ INT-RUPΠ(D1) + PRFG(D2) ,

where D1 and D2 are as efficient as D.

Proof. We transform D’s queries into the appropriate way as in the previous proofs, and notice
that if D uses an IV which is not the output of an encryption query and successfully forges,
then D has an attack on G. ⊓⊔

The PRF-to-IV method is a much stronger transform than the nonce decoy. Following the
notation from Sect. 6.4, we do not need to assume anything about the underlying random IV
scheme Π in order to prove that Π∗ is INT-RUP.

Proposition 11. Let D be an INT-RUP adversary for Π∗. Then there exists an adversary D1

such that
INT-RUPΠ∗(D) ≤ PRFG(D1),

where D1 is as efficient as D.

Proof. The adversary D1 runs D, generates a random key K, and simulates E∗K,K′ , D∗
K,K′ , and

V∗K,K′ using K and its own oracle. ⊓⊔

8 Another Look at the Privacy and Integrity Notions

Typically, the security of an AE scheme is examined under IND-CPA and INT-CTXT regarding
privacy and integrity, respectively. IND-CPA + INT-CTXT can alternatively be integrated into
of a single conventional AE security notion defined as ∆D(EK ,VK ; $,⊥) under our new syntax.

In this work, however, we examine the RUP situation where an AE adversary is endowed
with extended capabilities, namely observing the results of ciphertext decryptions and this
we model by giving the adversary additional access to a decryption only oracle. To capture
AE security under RUP we proposed the notions of IND-CPA+PA1 or IND-CPA+PA2 for the
privacy part, and INT-RUP for the integrity part. Overall, the security target for an AE scheme
in our extended RUP model becomes the fusion of these three notions IND-CPA + PA1/PA2
+ INT-RUP.

In what follows we give a notion AE-RUP1 which we show is exactly the gap between
conventional AE security and AE security in the RUP setting.

We introduce AE-RUP1 as a measure of the security loss resulting from the adversarial extra
access to DK in the RUP setting:

AE-RUP1Π(D) := ∆
D

(EK ,DK ,VK ; EK ,E,VK) ,

where E is the extractor used in the PA1 definition. As we show, similar results can be obtained
for AE-RUP2, where the extractor of the PA2 definition is used instead.

To understand why AE-RUP1 is the exact measure of the security gap that occurs be-
tween the conventional and RUP settings, we need to examine the impact of AE-RUP1 in its
combination with the integrity INT-CTXT notion.

– INT-CTXT + AE-RUP1 ⇒ INT-RUP + PA1.
We recall that INT-CTXT is defined as ∆D(EK ,∅,VK ; EK ,∅,⊥). Next, INT-RUP can be
defined as ∆D(EK ,DK ,VK ; EK ,DK ,⊥). Because INT-CTXT + AE-RUP1⇒ INT-RUP and
AE-RUP1 ⇒ PA1 are direct results from the definition of AE-RUP1, the statement follows.
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– INT-CTXT + AE-RUP1 ⇐ INT-RUP + PA1.
It is straightforward that INT-RUP ⇒ INT-CTXT. Also, INT-RUP+PA1 ⇒ AE-RUP1 is
a direct result from the respective definitions. The statement then follows.

As a result we get IND-CPA + INT-CTXT + AE-RUP1⇔ IND-CPA + PA1 + INT-RUP. Using
the same proof strategy, but changing the definition of the extractor, we have that IND-CPA
+ INT-CTXT + AE-RUP2 ⇔ IND-CPA + PA2 + INT-RUP.

9 Conclusions

In many practical applications, it is desirable that an AE scheme can securely output plaintext
before verification. We formalized this security under the release of unverified plaintext (RUP)
by separating decryption and verification.

Two notions of plaintext awareness (PA1 and PA2) were introduced to symmetric cryp-
tosystems. In the RUP setting, privacy is achieved as a combination of IND-CPA and PA1 or
PA2. For integrity, we introduced the INT-RUP notion as an extension of INT-CTXT, where a
forger may abuse unverified plaintext. We connected our notions of privacy and integrity in the
RUP setting to existing security notions, and saw that the relations and separations depended
on the IV type.

While the CTR and CBC modes with a random IV achieve IND-CPA+PA1, this turns out
to be non-trivial for nonce-based or deterministic encryption schemes. Our results showed that
many AE schemes such as GCM, CCM, COPA, and McOE-G are not secure in the RUP setting.
We provided remedies for both nonce-based and deterministic AE schemes. For the former case,
we introduced the nonce decoy technique, which allowed to transform a nonce to a random-
looking IV. The PRF-to-IV method converts random IV PA1 schemes into arbitrary IV PA1
schemes. We showed that deterministic AE schemes cannot be PA1, unless the decryption is
offline (as in APE) or there is significant ciphertext expansion.

Future Work. Given that our PRF-to-IV method is rather inefficient, we leave it as an open
problem to efficiently modify any encryption-only scheme into an AE scheme that is INT-RUP.
A related problem is to fix OCB and COPA to be INT-RUP in an efficient way. The PA1
solutions we provide all start with the assumption that the nonce IV or arbitrary IV scheme is
PA1 when a random IV is used instead. An interesting problem is to find alternative solutions
to constructing nonce IV and arbitrary IV PA1 schemes. A problem of theoretical interest is to
find a non-pathological random IV encryption scheme that is not PA1. In some applications,
formalizing security in the RUP setting as IND-CPA+PA1 and INT-RUP may be sufficient.
It is interesting to investigate how well this formalization reflects the problems encountered in
real-world implementations, to see where PA2 may also be necessary.
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A Random IV CTR and CBC Modes

CBC Mode Description. Let E : {0, 1}k × {0, 1}n → {0, 1}n be an SPRP. For Mi ∈ {0, 1}
n,

1 ≤ i ≤ ℓ, define RIV-CBC encryption as EK(M1 · · ·Mℓ) = C1 · · ·Cℓ, where C0 is selected
uniformly at random from {0, 1}n for each encryption, and

Ci = EK(Ci−1 ⊕Mi) for 1 ≤ i ≤ ℓ .

Note that we have suppressed the explicit IV input to EK and use C0 instead. Decryption is
similarly defined as DK(C0, C1 · · ·Cℓ) = M1 · · ·Mℓ, where

Mi = E−1
K (Ci)⊕ Ci−1 for 1 ≤ i ≤ ℓ .

We can define an extractor E for RIV-CBC as follows. Initially, E generates a random key
K ′ which it will use via FK′ . Let (C0, C1 · · ·Cℓ) denote an input to E. For all 1 ≤ i ≤ ℓ,
the extractor operates as follows: it searches its history for two adjacent ciphertext blocks
(C ′

i−1, C
′
i) = (Ci−1, Ci). If such couple exists, it defines Mi to be the corresponding M ′

i . Other-

wise, it generates Mi = E−1
K′ (Ci)⊕ Ci−1.
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Proposition 12. Let D be a PA1 adversary for RIV-CTR or RIV-CBC making queries whose
lengths in number of blocks sum up to σ, then

PA1
E

RIV-CTR(D) ≤ ∆
D1

(FK , FK ; FK , FK′) +
σ2

2n
,

or

PA1
E

RIV-CBC(D) ≤ ∆
D1

(EK , E−1
K ; EK , E−1

K′ ) +
σ2

2n − σ
,

where D1 is an adversary which may not make the same query to both of its oracles, and makes
a total of σ queries with the same running time as D.

Proof. We start with the proof for RIV-CTR. First we note that E behaves exactly the same
as DK unless it receives a query C0 · · ·Cm where

1. C0 has been returned as an IV by a previous query to EK and m is larger than the number
of blocks in all such queries, or

2. C0 has never been returned as an IV by a previous query to EK .

In both cases E must make queries to FK′ in order to generate randomness.
We construct adversary D1 which copies EK exactly with its first oracle and mimics E with

a combination of its first and its second oracle. Observe that E behaves exactly like DK if
K = K ′. As a result, we almost get a perfect simulation of PA1. The only problem is when D
induces D1 to make the same query on both its oracles; then we violate the definition of D1

(and D1 would be able to trivially win its game). The only time in which FK′ is called is in
the cases listed above. Hence the probability that FK and FK′ are queried on the same input
is upper bounded by the probability that the sequences of strings generated starting from the
IVs collide with each other: each EK query leads to a sequence of FK queries starting from the
IV, and each DK could lead to a sequence of FK′ queries starting from C0. Since the IVs are
generated independently and uniformly at random, this probability is upper bounded by σ2/2n,
where σ is the sum of the number of blocks of all the F -queries made by D′.

Now, for RIV-CBC we consider an SPRP EK and the response to every invocation is drawn
from a set of size at least 2n − σ instead of 2n. The remainder of the proof is in essence the
same, and we skip the details. ⊓⊔

B Adjusted McOE-G is PA1

Proposition 13. Let D be a PA1 adversary for the adjusted McOE-G (called aMcOE-G) mak-
ing queries whose lengths in number of blocks sum up to σ, then

PA1
E

aMcOE-G(D) ≤
σ

2n/2
+

σ2

2n+1
.

Proof. We consider the McOE scheme using n-bit ideal tweakable ciphers Et with tweaks t,
applying the zero-padding 0n/2M1‖0

n/2M2‖ · · · ‖0
n/2Mw to a message M (so it is divided into

n/2-bit message blocks) as shown in Fig. 3:

E(IV ,M):

τ ← E0(IV )
t1 ← IV ⊕ τ
for i = 1 to w do
Ci ← Eti(0

n/2Mi)
ti+1 ← 0n/2Mi ⊕ Ci

end for
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Fig. 3. The encryption part of the McOE Scheme with the zero padding calling an ideal tweakable cipher E.

To show that this scheme is PA1, we can construct a plaintext extractor E as follows. The
extractor E receives a ciphertext C1C2 · · ·Cw and a tag from adversary D. The extractor E then
checks in the query history Q and its own history S for the longest common prefix. Say E has
found the prefix C1C2 · · ·Cj . Then E returns the corresponding plaintext blocks M1M2 · · ·Mj

plus randomly generated suffix Mj+1 · · ·Mw.
There are only two kinds of events, E1 and E2, when the extractor fails to mimic the

decryption oracle. The event E1 is when the adversary D makes a query containing a new block
Ci (new relative to the tweak determined by the prefix) whose decrypted block happens to be of
the form 0n/2‖∗. The probability of this event happening is at most σ/2n/2, where σ is the query
complexity (in blocks) of the adversary. The other event E2 is when a collision of tweak values
occurs via the decryption oracle. Note that the extractor E does not take into account such an
event. The probability of the event E2 is at most

(
σ
2

)
/2n ≤ 0.5σ2/2n. Overall, the advantage

can be bounded as

PA1
E

E (D) ≤
σ

2n/2
+

0.5σ2

2n
.

⊓⊔

C APE is PA1

Proposition 14. Let D be a PA1 adversary for APE making queries whose lengths in number
of blocks sum up to σ, then

PA1
E

APE(D) ≤
σ2

2r+c
+

2σ(σ + 1)

2c
.

Proof. Let Π = (E ,D,V) denote the APE authenticated encryption scheme. E for integral
associated data and message blocks is given in Fig. 4; we refer to [2] for a formal specification.

The extractor E for Π operates as follows. Let (A,C1 · · ·Cℓ, T ) denote an input of E. For
the tag T , let (C ′

1 · · ·C
′
j−1Cj · · ·Cℓ′ ,M

′
1, · · ·M

′
ℓ′) denote the query-response pair (to either EK

or E) with the largest overlapping suffix in C. E sets Mi = M ′
ℓ′−ℓ+i for i = ℓ, . . . , j + 1

and Mj = M ′
ℓ′−ℓ+j ⊕ C ′

ℓ′−ℓ+j−1 ⊕ Cj−1 (where C0 = C ′
0 = IVr by definition), and generates

Mj−1, . . . ,M1
R

← R.
We focus on information-theoretic adversaries D with additional forward and inverse access

to the underlying primitives p, p−1. The proof borrows ideas from APE’s original privacy and
authenticity proof [2]. Particularly, we again perform a PRP-PRF switch to replace the permu-
tation by random functions (f, f−1), which provide a random answer from R×C to every new
query, and abort if this leads to a collision. We find:

PA1
E

Π(D) = ∆
D

(EK ,DK , p, p−1 ; EK ,E, p, p−1) ≤
σ2

2r+c
+∆

D

(EK ,DK , f, f−1 ; EK ,E, f, f−1) ,

where we recall that D makes queries whose lengths in number of blocks sum up to σ.
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Fig. 4. APE: processing of associated data (top) and APE encryption mode (bottom). Here, p is an (r + c)-bit
permutation. If A = ∅, set IV = 0rK.

If f is called by D then we call this a direct f -query, and similar for direct f−1-queries.
A call of f by EK or DK (as a result of D calling them) is called an indirect f -query, and
similar for indirect f−1-queries (via DK). Every indirect f -query has a sequence of associated
data blocks and/or message blocks leading up to it (from the EK- or DK-query calling it);
we call this sequence the message chain associated to the indirect f -query. Likewise, every
indirect f−1-query has a tag and a sequence of ciphertext blocks leading to it, and we refer
to it as the ciphertext chain. Let Qi denote the set of all prefixes of all queries made by D
to its EK-oracle before the ith (f, f−1)-query, where an EK-query (A,M) results in prefixes
{A1, A1A2, . . . , AM}. In this set, we also include {A1, . . . , A} for a DK-query (A,C, T ) (queries
to E do not add to Qi). Let Q

−1
i denote the set of all suffixes of all queries made by D to its

EK- or DK/E-oracle before the ith query, where a query tuple (A,M,C, T ) results in suffixes
{CℓT,Cℓ−1CℓT, . . . , CT}. Regarding all direct queries before the ith query, we denote by Xdir

i

the set of all capacity values input to f -queries or output of f−1-queries, and by Y dir
i the set of all

capacity values input to f−1-queries or output of f -queries. For example, a direct forward query
f(x)→ y adds [x]c to Xdir

i and [y]c to Y dir
i , and a direct inverse query f−1(y)→ x adds [x]c to

Xdir
i and [y]c to Y dir

i . The sets X ind
i and Y ind

i are defined similarly. We write Xi = Xdir
i ∪X ind

i

and Yi = Y dir
i ∪ Y ind

i , and initialize X ind
0 = Y ind

0 = {K}.
For this ith query to f , we define the following auxiliary events:

E
dir-X
i : direct f(x)→ y or f−1(y)→ x satisfies [x]c ∈ X ind

i ∪X ind
i ⊕ 1 ,

E
ind-X
i : indirect f(x) with message chain (A,M) /∈ Qi satisfies

[f(x)]c ∈ Xi ∪Xi ⊕ 1 ,

E
dir-Y
i : direct f(x)→ y or f−1(y)→ x satisfies [y]c ∈ Y ind

i ∪ Y ind
i ⊕ 1 ,

E
ind-Y
i : indirect f−1(y) with ciphertext chain (C, T ) /∈ Q−1

i satisfies

[f−1(y)]c ∈ Yi ∪ Yi ⊕ 1 or [y]c ∈ Y dir
i ⊕K .

We set Ei = Edir-X
i ∪ Eind-X

i ∪ Edir-Y
i ∪ Eind-Y

i , and furthermore define

Êi := Ei ∩
⋂i−1

j=1 Ej , and E :=
⋃σ

i=1 Êi ,

where Ej is the complement of Ej . In Lem. 1, we prove that (EK ,DK , f, f−1) and (EK ,E,
f, f−1) are indistinguishable as long as E does not occur. Following the analysis of [2], in the
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real world we have Pr[DEK ,DK ,f,f−1

sets E] ≤
2σ(σ + 1)

2c
. The proof is now completed via the

fundamental lemma of game playing [14].

Lemma 1. Given that E does not occur, (EK ,DK , f, f−1) and (EK ,E, f, f−1) are indistinguish-
able.

Proof. Clearly, direct queries to f or f−1, or indirect queries to f via EK , appear indistinguish-
able to D as long as they do not coincide with any queries coming from DK . This, indeed, never
happens due to Edir-X , Edir-Y , and Eind-X , respectively. It suffices to focus on decryption queries
(to DK or E). Let (A,C, T ) be a query made by D. Denote by ℓ the number of blocks of C.

Firstly, consider the case (Cj · · ·Cℓ, T ) ∈ Q
−1
i for some j ∈ {1, . . . , ℓ + 1} and assume j is

minimal (we will come back to the case of (∗, T ) 6∈ Q−1
i later in the proof). Let (A′,M ′, C ′, T ′) be

the corresponding earlier query and denote its block length by ℓ′, so Cj · · ·Cℓ = C ′
ℓ′−ℓ+j · · ·C

′
ℓ′ .

This tuple could have been defined via an encryption query (hence the adversary queried (A′,M ′)
to EK) or via a decryption query (hence the adversary queried (A′, C ′, T ′) to DK/E).

By construction, if D is conversing with E, we have Mi = M ′
ℓ′−ℓ+i for i = ℓ, . . . , j + 1,

Mj = M ′
ℓ′−ℓ+j ⊕ C ′

ℓ′−ℓ+j−1 ⊕ Cj−1, and Mi uniformly at random for i = 1, . . . , j − 1. We will
consider how these values are distributed for the real decryption algorithm DK . The values Mi

for i = ℓ, . . . , j+1 are as before (this follows clearly from the specification of DK), and we focus
on the remaining values. We distinguish between j > 1 and j = 1.

– j > 1. Write the indirect query corresponding to the computation of Mj as f−1(y). By
construction, f−1(y) is no new query: it has been queried in the evaluation of (A′,M ′, C ′, T ′),
and particularly satisfies [f−1(y)]c = M ′

ℓ′−ℓ+j ⊕ C ′
ℓ′−ℓ+j−1. In the current case, DK sets

Mj = [f−1(y)]c ⊕ Cj−1 by construction, hence following the same distribution as E.
The next query in the evaluation, write f−1(y′) where y′ = f−1(y)⊕Cj−1‖0

r, is new. Indeed,
suppose it was already made before. This could have happened in an indirect or direct query.
For the former case, then [f−1(y)]c, as range value input to f−1, is in Y dir. This would imply

that the query f−1(y) once hit a direct query (impossible by Eind-Y ) or vice versa (impossible

by Edir-Y ). For the latter case, by Eind-X and Eind-Y , this would imply (Cj−1 · · ·Cℓ, T ) ∈ Q
−1
i ,

contradicting minimality of j. Consequently, the response and thus also Mj−1 are randomly
drawn, and so forth until M1. Here, we rely that the last indirect query never matches a

direct query ⊕K (by Eind-Y
i ).

– j = 1. Denote the state coming from hash-data0,K(A) by IV (if A = ∅, IV = (0,K)).
Essentially the same reasoning implies that M1 = M ′

ℓ′−ℓ+1 ⊕ C ′
ℓ′−ℓ ⊕ IVr (note that ℓ′ ≥ ℓ

as j = 1).

Finally, if (∗, T ) 6∈ Qi, hence this is the first time a query for this particular tag T is made, the
above reasoning carries over for j = ℓ. ⊓⊔

⊓⊔
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