
On the Effective Prevention of TLS Man-In-The-Middle Attacks in Web
Applications

Nikolaos Karapanos, Srdjan Capkun
Department of Computer Science, ETH Zurich

{firstname.lastname}@inf.ethz.ch

Abstract
In this paper we consider TLS MITM attacks in the

context of web applications, where the attacker’s goal is
to impersonate the user to the legitimate server, and thus
gain access to the user’s online account. We describe in
detail why the recently proposed TLS Channel ID-based
client authentication, as well as client web authentication
in general, cannot fully prevent such attacks.

We then leverage TLS Channel ID-based authentica-
tion and combine it with the concept of sender invariance
to create a novel mechanism that we call SISCA: Server
Invariance with Strong Client Authentication. SISCA re-
sists user impersonation via TLS MITM attacks even if
the attacker has obtained the private key of the legitimate
server. We analyze our proposal and show how it can be
integrated in today’s web infrastructure.

1 Introduction

Web applications increasingly employ the TLS protocol
to secure HTTP communication (i.e., HTTP over TLS,
or HTTPS) between a user’s browser and the web server.
TLS enables users to securely access and interact with
their online accounts, and protects, among other things,
common user authentication credentials, such as pass-
words and HTTP cookies. Such credentials are consid-
ered weak, in the sense that they are transmitted over the
network and are susceptible to theft unless protected by
a secure connection.

Nevertheless, during TLS connection establishment, it
is essential that the server’s authenticity is verified. If an
attacker successfully impersonates the server to the user,
she is then able to steal the user’s credentials and subse-
quently use them to impersonate the user to the legitimate
server, thus gaining access to the user’s account. This at-
tack is known as TLS Man-In-The-Middle (MITM).

TLS server authentication is commonly achieved
through the use of X.509 server certificates. A server

certificate binds a public key to the identity of a server,
designating that this server holds the corresponding pri-
vate key. The browser accepts a certificate if it bears the
signature of any Certificate Authority (CA) that is trusted
by the browser. Nowadays, browsers are typically config-
ured to trust hundreds of CAs.

An attacker can thus successfully impersonate a legit-
imate server to the browser by presenting a valid certifi-
cate for that server, as long as she has access to the cor-
responding private key. In previous years, quite a few
incidents involving mis-issued certificates [1, 9, 51, 52,
54, 57] were made public.

In order to thwart such attacks, various proposals have
emerged. Some proposals focus on enhancing the certifi-
cate authentication model. Their objective is to prevent
an attacker possessing a mis-issued, yet valid certificate,
from impersonating the server (e.g., [16, 37, 56]).

Other proposals focus on strengthening client authen-
tication. Their goal is to prevent user credential theft or
render it useless, even if the attacker manages to success-
fully impersonate the server to the user. One such promi-
nent proposal is TLS Channel ID-based client authenti-
cation, introduced in 2012. TLS Channel IDs [4] are al-
ready experimentally supported in Google Chrome and
are planned to be used in the second factor authentication
standard U2F, proposed by the FIDO alliance [20, 21].

In this paper we show that TLS Channel ID-based ap-
proaches, as well as other web authentication approaches
that focus solely on client authentication are vulnerable
to an attack that we call Man-In-The-Middle Script-In-
The-Browser (MITM-SITB) attack. This attack bypasses
the protection offered by TLS Channel IDs by shipping
malicious JavaScript to the user’s browser within a TLS
session with the attacker, and then using this JavaScript
in a subsequent session to access the user’s account on
the legitimate server. Our attack is related to the Dy-
namic Pharming attack [34] that was introduced prior to
Channel ID-based solutions; we discuss this further in
Section 5. We also validate our attack through a proof of

concept implementation.
We therefore argue that effective TLS MITM attack

mitigation in the context of web applications requires
both client and server authentication1. Building on this
observation, we propose a solution called SISCA: Server
Invariance with Strong Client Authentication, that com-
bines TLS Channel ID-based client authentication and
the concept of sender invariance [14] to effectively de-
fend against MITM-SITB, as well as against conven-
tional MITM attacks.

In addition to addressing MITM attacks that are based
on mis-issued certificates, our solution is also robust
against MITM attacks where the attacker holds a private
key of the legitimate server; this attack has so-far not
been addressed in prior work.

In summary, in this work we analyze TLS MITM at-
tacks whose goal is user impersonation and make the
following contributions. (i) We show, by launching a
MITM-SITB attack, that TLS Channel ID-based client
authentication solutions do not fully prevent MITM at-
tacks. (ii) We further argue that effective prevention of
MITM-based impersonation attacks requires strong user
authentication and (at least) server invariance. (iii) We
propose a novel solution that prevents MITM-based user
impersonation under a stronger attacker than previously
considered. (iv) We implement a basic prototype of our
solution.

The rest of the paper is organized as follows. Section 2
discusses TLS Channel ID-based protocols and shows
how MITM attacks are possible using MITM-SITB. Sec-
tion 3 discusses known solutions for addressing MITM
attacks and introduces SISCA. Section 4 discusses how
SISCA can be integrated with other web technologies.
Finally, Section 5 discusses related work and Section 6
concludes the paper.

2 Analysis: TLS Channel IDs and MITM
Attacks

2.1 Attacker Model
The goal of the attacker in a MITM attack is usually to
impersonate the user (victim) to the legitimate server and
gain access to his online account. Alternatively, the at-
tacker could aim to impersonate the server such that she
serves the victim with fake content, or attempts to elicit
information through social engineering. In this paper, we
focus on the former scenario, where the adversary aims
to access the victim’s account on a target web server,
such as a social networking or e-banking website. We
consider a strong adversary, who is able to position her-
self suitably on the network and perform a TLS MITM

1We will show that for some types of attacks, server invariance suf-
fices.

attack between the user and the target web server. We
distinguish between two different types of MITM2 attack-
ers; we show later why this distinction is important and
which implications different MITM attackers have on the
security of authentication solutions.

The MITM+certificate attacker holds a valid certifi-
cate for the domain of the target web server, binding
the identity of the server to the public key, of which she
holds the corresponding private key. The attacker, how-
ever, has no access to the private key of the target web
server. This, for example, can happen if the attacker com-
promises a CA or is able to force a CA issue such a cer-
tificate. Such attacks have been reported in the recent
years [1, 9, 51, 57].

The MITM+key attacker holds the private key of the
legitimate server and can thus impersonate the server dur-
ing a MITM attack. While we are not aware of pub-
lic reports of incidents involving compromise of server
keys, such attacks can arguably be very stealthy and
remain unnoticed. Thus, they are well worth address-
ing [11, 30, 32, 35].

Even if the attacker does not hold a mis-issued certifi-
cated key or the private key of the server, a MITM at-
tack can still succeed if the user is not careful in verify-
ing the security indicators of the browser3. Such attacks
have the same implications as the MITM+certificate at-
tack and we don’t detail them further.

We therefore assume that by performing a MITM at-
tack or by some other means, the attacker is able to ob-
tain the user’s weak credentials, namely passwords and
HTTP cookies, but is not able to compromise the user’s
browser or his devices (e.g., mobile phones).

2.2 TLS Channel IDs

TLS Channel IDs is a recent proposal for enhancing
client authentication. It is a TLS extension, originally
proposed in [13] with the name Origin-Bound Certifi-
cates (OBCs). A refined version is currently submitted as
an IETF Internet-draft [4]. Currently, Channel IDs are ex-
perimentally supported by the Google Chrome browser.

In a nutshell, when the browser visits a TLS-enabled
web server for the first time, it creates a new private/pub-
lic key pair (on-the-fly and without any user interaction)
and proves possession of the private key, during the TLS
handshake. This TLS connection is subsequently identi-
fied by the corresponding public key, which is called the
Channel ID. Upon subsequent TLS connections to the
same web server, or more precisely, to the same web ori-
gin, the browser uses the same Channel ID. To protect

2We use the terms “TLS MITM” and “MITM” interchangeably.
3Throughout this paper, we use the term “browser” to refer to any

“user agent” in general.

2

Figure 1: Binding authentication tokens, such as HTTP
cookies, to the browser’s Channel ID (shown in green). If
an attacker manages to steal such a cookie, for example
via a MITM attack, she is not able to use it to impersonate
the user. This is because the attacker’s TLS connection
will have a different Channel ID (shown in red) than the
connection initially established by the client.

the user privacy, the browser uses a different Channel ID
to communicate with different web servers.

Channel IDs are not envisioned to be directly used by
the web server to authenticate the user or the browser.
They are instead used by the web server to identify the
same browser across multiple TLS connections, as the
browser will be using the same Channel ID for these
connections. The web server can further bind authentica-
tion tokens, such as HTTP cookies, to a specific Channel
ID, such that the token is considered valid only if it is
presented over that particular Channel ID. For example,
as proposed in [13], a web server may create a channel-
bound cookie as follows: 〈v, HMAC(k,v|cid)〉, where v
is the original cookie value, cid is client Channel ID and
k is a secret key, only known to the web server, used for
computing a message authentication code over the con-
catenation of v and cid.
MITM Prevention. TLS Channel IDs are designed to
resist both MITM+certificate and MITM+key attacker
types [4, §6] (assuming TLS forward-secret connections
for the latter type), due to the channel-binding property
described above. An attacker that manages to steal a
channel-bound cookie, e.g., through a MITM attack, can-
not reuse it to impersonate the user to the web server,
since she does not know the private key of the correct
Channel ID. Figure 1 illustrates this concept.

2.3 Channel ID-Based Authentication:
PhoneAuth and U2F

By Channel ID-based authentication we refer to the use
of Channel IDs throughout the user authentication pro-
cess. Specifically, when the user attempts to login to his

online account for the first time from a particular browser,
the web server requires that the user authenticates using
a strong second factor authentication device, such as in
PhoneAuth and FIDO U2F frameworks, described below,
that leverages Channel IDs to prevent MITM attacks.

After successful initial authentication the server sets
a channel-bound cookie to the user’s browser. Subse-
quent user interaction with the server from that particular
browser is protected by the channel-bound cookie, such
that even if the attacker steals the cookie she cannot use
it to impersonate the user (see Section 2.2). At this stage,
the second factor device is not required for authenticating
the user [10].

Whenever the channel-bound cookie is not present
(e.g., it expired, the user deleted it, or the user tries to
login from a new browser) or it is present but invalid (i.e,
presented over an incorrect Channel ID), the server once
again requires user authentication using the second factor
device.
PhoneAuth. PhoneAuth is a user authentication frame-
work, proposed in [11]. It leverages the user’s smart-
phone in order to provide a second, strong authentication
factor, and makes use of TLS Channel IDs in order to
detect and prevent MITM attacks.

In brief, PhoneAuth works as follows. The user’s
mobile phone holds a private/public key pair, which it
uses to enroll and generate a shared secret key with
the server. After successful enrollment, when the user
authenticates to the web server by providing his user-
name and password, the server issues an encrypted and
integrity-protected challenge, called login ticket, to the
browser. The browser is then instructed, via JavaScript
API calls, to interact with the user’s phone over blue-
tooth. During this interaction the browser sends to the
phone an assertion request which, among other things,
contains the login ticket.

Upon receiving the assertion request, the phone per-
forms a number of checks and, if they pass, creates an
identity assertion, by signing the login ticket with its
private key. The identity assertion is forwarded back to
the web server, which verifies the phone’s signature, and
signs the user in. The server finally sets a cookie and
binds it to the Channel ID of the user’s browser (as de-
scribed in Section 2.2).
U2F. Universal 2nd Factor (U2F) [24] is an initiative
started by Google that aims to provide strong second
factor web authentication. It is very similar to the
PhoneAuth protocol, described above. The major differ-
ence is that, instead of using the user phone, U2F lever-
ages a dedicated USB dongle. USB is a more ubiquitous
interface for connecting the browser and the second fac-
tor device. A dedicated dongle can provide higher secu-
rity assurances, given that mobile phone malware is be-
coming increasingly common [17, 18, 58], at the cost of

3

Figure 2: PhoneAuth/U2F. Leveraging TLS Channel IDs
for detecting MITM attacks during initial user authenti-
cation.

an extra token that the user has to carry.
In the spring of 2013, Google joined Fast IDentity

Online Alliance (FIDO) [20], which aims at providing
an open set of standards for stronger online authentica-
tion. Many companies, like Microsoft, PayPal, Master-
Card and RSA have also already joined the alliance, a
fact that significantly increases the possibility of global
adoption of standards and products proposed by FIDO in
the near future. One of the proposed standards by FIDO
is the Universal 2nd Factor (U2F) protocol. According
to the draft specifications [21] the FIDO U2F protocol
is similar to the Google U2F protocol and to PhoneAuth.
Thus, the results of this paper could also be relevant for
the design of FIDO U2F.
MITM Prevention. What is mostly of interest to us
in PhoneAuth and U2F, is the approach they follow to
address both types of MITM attackers presented in Sec-
tion 2.1 [11, §3]. Their basic idea, illustrated in Figure 2,
is to compare the TLS Channel ID of the user browser to
the one seen by the web server.

Specifically, the web server includes the Channel ID
that identifies the TLS connection with the browser in
the login ticket. In other words, the web server binds the
login ticket to that particular Channel ID. Furthermore,
the browser adds its own Channel ID in the assertion re-
quest, which also contains the login ticket. The assertion
request is forwarded to the second factor device, as pre-
viously described, and the device performs a number of
checks. One of these checks is the comparison of the two
Channel IDs contained in the assertion request. If the two
Channel IDs are equal, this implies that the user browser
is directly connected to the web server through TLS (be-
cause they share the same view of the connection), and
thus there is no MITM attack taking place. On the other
hand, if the two Channel IDs differ, it means that the web
server is not directly connected to the user browser. In-
stead, as shown in Figure 2, there is an attacker in the
middle that has established two TLS connections, one
with the browser and one with the web server. Upon de-
tecting such a mismatch, the device refuses to generate

the identity assertion.
To the best of our knowledge, the notion of comparing

the TLS sessions as seen by the client and the server in
order to prevent MITM attacks, was originally proposed
in the TLS Session Aware User Authentication (TLS-SA)
scheme [43, 44]. Channel ID-based solutions, are built
on top of this idea, but make important improvements
in order to be more user-friendly, practical and deploy-
able. In the following sections, we show that Channel
ID-Based authentication protocols fail to fully solve the
MITM problem, at least when applied to the context of
web applications.

2.4 MITM Attack on Channel ID-Based
Protocols

We show how the proposed Channel ID-based protocols
still allow the attacker to successfully impersonate the
user. This is due to the way web applications are run and
interact with the servers, which differs from other inter-
net client-server protocols like SMTP or IMAP over TLS.
In particular, we make the following key observations:

• Web servers are allowed to push scripting code to
the web browser, which the latter executes within
the context of the web application (according to the
rules defined by the same-origin policy [5]). In fact,
client-side scripting, and especially JavaScript, is
the foundation of dynamic, rich web applications
that vastly improve user experience, and its pres-
ence is ubiquitous.

• A web browser is able to establish multiple TLS con-
nections with the same server. In addition, a typi-
cal web application loads resources, such as images
and scripts, from multiple domains (cross-origin
network access [5]). Assuming that all communica-
tion is TLS-protected, this means that the browser
needs to be able to establish TLS connections with
multiple servers while loading a web page.

Given the above, there is a conceptually very simple
attack that a MITM attacker can perform in order to by-
pass the security offered by Channel IDs. The attack can
be realized by either MITM+certificate or MITM+key at-
tackers. We assume that the user tries to access the target
web server, say www.example.com. The attacker then
proceeds as follows:

1. She intercepts a single TLS connection attempt
made by the browser to www.example.com, and by
presenting a valid server certificate, she successfully
impersonates the legitimate server to the browser.

2. Through the established connection, the browser
makes an HTTP request to the server. The attacker

4

Figure 3: MITM-SITB attack on Channel ID-based au-
thentication. The user has previously logged in on
the target web server, www.example.com, and sub-
sequent requests are protected with a channel-bound
cookie. The attacker ships malicious JavaScript code
to the browser, which is executed within the origin of
www.example.com (shown by the dotted arrow).

replies with an HTTP response, which includes a
malicious piece of JavaScript code. This script will
execute within the origin of www.example.com.

3. The attacker closes the intercepted TLS connection.
This forces the browser to initiate a new TLS con-
nection in order to transmit subsequent requests, or
use another existing one, if any (this behavior con-
forms with the HTTP specification [22]). At the
same time, the attacker allows subsequent TLS con-
nection attempts to pass through, without interfer-
ing with them. As a result, after the attacker closes
that single intercepted connection, all other connec-
tions, existing and new, are directly established be-
tween the browser and the legitimate server.

4. From that point on, the attacker has gained full con-
trol over the web application with respect to this
particular user and can perform arbitrary malicious
requests to the target server, for example through
the use of the XMLHttpRequest object [3]. Such a
request could modify the user’s account, or extract
sensitive user information. In the latter case, the
malicious code can upload the extracted data to an
attacker-controlled server. As another example, if
the web application is Ajax-based, the attacker can
perform Prototype Hijacking [47]. This allows her
to eavesdrop and modify on-the-fly all the HTTP re-
quests made through XMLHttpRequest.

In summary, the MITM attacker manages to “trans-
fer” herself (via the malicious script) within the user’s
browser, and continue her attack from there. We call
this attack Man-In-The-Middle-Script-In-The-Browser,
or MITM-SITB for short.

Figure 3 shows how the attack works in the case when
TLS Channel IDs are used, the user has already logged

Figure 4: MITM-SITB attack on PhoneAuth/U2F authen-
tication protocols.

in on www.example.com in the past, and the server has
set a channel-bound cookie in the user’s browser. The
attacker pushes malicious JavaScript code to the browser
by intercepting a TLS connection to www.example.com.
Once this happens, the attacker terminates the inter-
cepted connection. This forces the browser to establish
a new TLS connection for subsequent HTTP requests.
This new connection will be established with the legiti-
mate server, i.e., the attacker will not hijack it. This is im-
portant, because it ensures that subsequent requests are
transmitted to the legitimate server over the correct chan-
nel ID. As a result, the attacker’s injected script is able to
submit arbitrary HTTP requests to www.example.com;
these requests will be approved by the server since they
will carry the channel-bound cookie, which authenticates
the user, over the correct Channel ID.

Figure 4 shows a high level description of the MITM
attack against PhoneAuth or U2F. Here, we consider the
case when the user authenticates to the server for the first
time. Like before, in this attack, the attacker intercepts
a TLS connection, pushes her code to the user’s browser,
and terminates the connection. The attacker thus ensures
that the browser authenticates to the web server over a
direct connection (not through the attacker), but with the
attacker’s code running in the browser. This way, the
view of the TLS channel will be the same for both the
browser and the server, and the Channel ID comparison
made by the second factor device, will pass successfully.

From the above attack description there are various
details that remain unclear. For example, which TLS
connection the attacker should intercept, whether to ”hit
and run” or attempt to persist as much as possible, etc.
Depending on the scenario, there are various alterna-
tives, which are mostly implementation decisions. For
example, assuming that the attacker wishes to be as
stealthy as possible, she can choose the following strat-
egy. She intercepts the very first TLS connection, i.e,
the one that the browser initiates once it is directed to
www.example.com. Depending on the situation, the

5

Figure 5: MITM-SITB attack on Channel ID-based
authentication, when cross-origin communication is in-
volved. Channel IDs for static.example.com are of
no use (there is nothing to bind). Hence, they are not
shown in the picture (the respective TLS connection is
colored in light grey).

attacker’s HTTP response could contain the expected
HTML document of the website’s starting page, together
with the appropriately injected malicious script, or it
could only contain the malicious script, which will take
care of loading the starting page in the browser. Then, as
described before, the attacker closes this first connection
and subsequent communication (malicious or not) takes
place through a direct connection to the legitimate server.
The Cross-Origin Communication Case. Visiting a sin-
gle web page typically involves cross-origin communica-
tion with different domains in the background. Consider,
for example, a typical network optimization technique,
which is to have the browser load the static resources
of the website, such as images, style sheets and scripts,
from so-called cookieless domains (e.g, Google websites
usually load static resources from gstatic.com [25]).
Those domains, as their name suggests, do not set any
cookies, in order to minimize network latency. As a mat-
ter of fact, on such domains, the concept of client au-
thentication does not even apply at all, as they are just
used to serve static resources, which anyone, including
the attacker, can access. Hence in those cases, the at-
tacker can perform a conventional MITM attack against
a cookieless domain, and inject its malicious code, at the
moment when the target web server requests a legitimate
JavaScript file from that domain.

Figure 5 illustrates the attack sequence. The attacker
lets all communication to www.example.com (the main
web server) pass through. Initially, the browser connects
to www.example.com in order to load some page. The re-
turned HTML document includes a JavaScript file from
the cookieless domain static.example.com. Assum-

ing that the resource is not cached, or the cached file
has expired, the browser initiates a TLS connection to
that domain, which is intercepted by the attacker. The
attacker fetches the script, and before forwarding it to
the browser, she injects her malicious code. This script
is then executed within the origin of www.example.com
and, like before, the attacker gains complete control of
the web application.

2.5 Proof of Concept Attack

We validate our attack against TLS Channel IDs through
a proof of concept implementation. We use two Apache
TLS-enabled servers, one for the attacker and one for the
legitimate server, and an interception proxy that can se-
lectively forward TLS connections to either server. The
legitimate server uses a patched OpenSSL version that
supports Channel IDs and leverages them for creating
channel-bound cookies. We use Google Chrome as the
user’s browser, since it supports Channel IDs, and make
sure the it accepts the certificates of both servers. We are
then able to inject JavaScript code to the user’s browser
from the attacker’s server and make HTTP requests that
are accepted and processed by the legitimate server.

2.6 Scope and Implications of the Attack

The MITM-SITB attack presented in Section 2.4 is not
specific to TLS Channel ID-based client authentication
protocols. In fact, it applies to any web client authentica-
tion method. This attack demonstrates that, in the context
of web applications, it does not seem possible to prevent
TLS MITM attacks via client authentication alone, no
matter how “strong” the latter is.

We provide the following informal reasoning for the
above claim. Client authentication alone does not pre-
vent an attacker from impersonating the target web server.
This allows her to intercept a server-authenticated (i.e.,
TLS) connection and ship malicious JavaScript code
to the user’s browser. The browser, treating the at-
tacker’s code as trusted (since it came through a server-
authenticated connection), executes it within the origin
of the target server. The attacker finally accesses the
user’s account through requests initiated by her code, and
transmitted over another, direct connection between the
browser and the legitimate server.

As a result, schemes such as traditional TLS client
authentication [12], TLS Session Aware User Authenti-
cation [43, 44], and Browser-based Mutual Authentica-
tion [23], are all still susceptible to TLS MITM attacks.
The attacker succeeds in impersonating the user to the
web server and thus accessing his account (recall that this
is the attacker’s goal).

6

On the other hand, the Phoolproof phishing prevention
system [48] is able to resist MITM+certificate attacks,
due to its use of a server certificate pinning approach (see
Section 3.1). However, this is true only if certificate pin-
ning applies to every TLS connection that the browser
establishes with the target web origin, as well as cross-
origin communication that imports JavaScript.

We stress that, even if MITM-SITB is similar to exist-
ing attacks, it is not the same as a Man-In-the-Browser
(MITB) attack [46, 53]. The latter implies that the at-
tacker is able to take full control of the browser by
exploiting some vulnerability, or installing a malicious
browser plugin. In MITM-SITB, the attacker runs nor-
mal JavaScript code within the target web origin and only
within the boundaries established by the JavaScript exe-
cution environment. Therefore, no browser exploitation
is required. Similarly, this attack is not the same as Cross-
Site-Scripting (XSS) [45, 55] either. Namely, there is no
vulnerability in the pages served by the target web server
that the attacker exploits in order to inject her code. Nev-
ertheless, the end result of arbitrary client-side code exe-
cution within the target web origin is the same.

3 Addressing TLS MITM Attacks

As we have shown in Section 2, client authentication
is not sufficient to prevent MITM attacks that lead to
user impersonation in web applications. Instead, we ar-
gue that in order to prevent such attacks, the client must
be able to identify the content coming from a legitimate
server.

In this section we discuss possible ways of effectively
addressing TLS MITM attacks (including MITM-SITB).
First, we briefly review existing techniques that address
forged server certificates and thus can be applied to de-
fend against MITM+certificate attacks. Then, we in-
troduce a new approach, orthogonal to existing propos-
als, that is designed to resist both MITM+certificate and
MITM+key attacks.

3.1 Existing Solutions

MITM+certificate attacks are feasible mainly due to the
fact that web browsers blindly trust hundreds of CAs to
sign certificates for any domain [27, 50] . A way to im-
prove the security of the CA trust model is therefore to re-
duce the level of trust placed in the CAs. In recent years
various proposals have emerged that follow this idea and
perform enhanced certificate verification. These propos-
als are mostly based on two techniques: pinning and
multi-path probing. We briefly mention some of the exist-
ing proposals below. We refer the interested reader to [8],
for a thorough survey on existing solutions.

Attacker Types

Defenses MITM+certificate MITM+key

Strong Client 7 7

Authentication (MITM-SITB) (MITM-SITB)

Enhanced Cert. 3 7

Verification (Conventional MITM,
or MITM-SITB)

SISCA 3 3

(our proposal)

Attacker’s goal: User impersonation (via MITM attacks)

Table 1: Overview on the prevention of TLS MITM at-
tacks in the context of web applications.

Pinning enables a web server to instruct browsers to
accept only a specific set of certificates when establish-
ing TLS connections to that server. Example solutions
include HTTP [16] and TLS [39] extensions. Multi-
path probing increases assurance about the legitimacy of
the certificate by consulting (several) external sources.
Prominent proposals include Perspectives [56], Con-
vergence [38], DoubleCheck [2] and Certificate Trans-
parency [37]. Besides pinning and multi-path solu-
tions, several hybrid solutions have also emerged, in-
cluding DNS-Based Authentication of Named Entities
(DANE) [31] and Sovereign Keys (SKs) [15].

All the aforementioned techniques thwart
MITM+certificate attacks, since they prevent the at-
tacker from impersonating the legitimate server through
the use of mis-issued certificates. In the presence of such
solutions, the browser would not establish a connection
or execute code from the rogue server. Moreover,
these techniques can be combined with strong client
authentication to protect the user in the best possible
way, i.e., prevent user impersonation not only via MITM
attacks, but also other attack vectors, such as phishing.

However, the above techniques were not designed to
address the compromise of the server key therefore, other
solutions are needed to address MITM+key attacks. We
propose such a solution in the following section.

3.2 Our Proposal: SISCA
As already mentioned, none of the existing techniques
were designed to address the MITM+key attacker. The
reason for that is simple. These techniques assume that
the attacker has a valid certificate for the target domain,
but that the private key of the legitimate server was not
compromised by the attacker. In other words, the pro-
posed techniques assume that the certificate used by the

7

attacker is different from the legitimate one.
In a MITM+key attack, however, the attacker uses the

legitimate server’s certificate, since she holds the corre-
sponding private key. As a result, it is not possible to
distinguish the attacker from the legitimate server based
on the presented certificate.

In this section we present a solution, called Server
Invariance with Strong Client Authentication (SISCA),
that mitigates both MITM+certificate and MITM+key at-
tacks, such that the attacker cannot impersonate the user
to the legitimate server. Our solution is based on the com-
bination of strong client authentication with the concept
of sender invariance [14]. It does not rely on external
trusted parties. It can also be independently deployed
alongside any of the solutions described in Section 3.1,
in order to further enhance the security against MITM at-
tacks. Table 1 shows a high level overview of existing
techniques and SISCA, with respect to preventing user
impersonation through TLS MITM attacks.

3.2.1 Main Concept

Our solution stems from the following observation. In
the context of web applications, a MITM attacker can use
two approaches to mount a user impersonation attack:

1. The conventional MITM attack, through which the
attacker compromises user’s credentials and uses
them for impersonation. This attack can be effec-
tively prevented with strong authentication e.g., us-
ing Channel ID-based protocols.

2. The MITM-SITB attack, presented in Section 2.4.
As discussed in Section 2.6, client authentication
alone cannot prevent this attack.

For the second attack to be successful, the user’s
browser needs to communicate with two different enti-
ties, namely the attacker and the target web server. Com-
municating with the attacker is, of course, necessary for
injecting the attacker’s script to the browser through the
intercepted TLS connection. In addition, communication
with the target server is essential, because this is how the
attacker, accesses the user’s account through her script.

As a result, we can detect and prevent this attack by
making sure that the browser communicates only with
one entity, either the legitimate server or the attacker,
but not with both, during the same browsing session (a
browsing session is terminated when the user closes the
browser). In other words, we need to enforce server in-
variance. When combined with strong client authentica-
tion solutions (e.g., based on Channel IDs), which elim-
inates the first attack option, this technique manages to
effectively thwart MITM attacks. The details of our solu-
tion follow below.

Figure 6: Basic SISCA protocol.

3.2.2 Assumptions

In our solution we assume the following. First, strong
client authentication, which prevents the traditional way
of implementing MITM attacks (see Figures 1 and 2),
is in place. Specifically, we assume that TLS Channel
ID-based client authentication is deployed. As men-
tioned before, Channel IDs are already experimentally
supported in Google Chrome. Moreover, FIDO U2F, ac-
cording to its draft specifications, also leverages Channel
IDs similarly to Google U2F and PhoneAuth protocols,
so it is likely that TLS Channel ID-based client authenti-
cation will become available in the foreseeable future.

Second, we assume that the legitimate web servers,
that implement SISCA, support TLS with forward se-
crecy by default [30, 32, 35]. As we discuss below this
is required for preventing MITM+key attacks (not rele-
vant for MITM+certificate attacks). Moreover, we as-
sume that TLS is secure and cannot be broken by attacks,
such as those surveyed in [8].

3.2.3 Basic Protocol

We begin describing how SISCA works, using
www.example.com as our running example. We follow
a structural approach, meaning that we start with a basic
version of our protocol, described in this section. Then,
in subsequent sections, we incrementally add features.

The protocol is implemented in the application layer,
over established TLS sessions, via a new HTTP header,
named X-Server-Inv, which is used for transmitting
the protocol messages. For the protocol to be secure,
on the client side this header is controlled solely by the
browser. It cannot be created or accessed programmati-
cally via scripts (similar to cookie-related headers [3]).

Figure 6 illustrates the protocol, assuming no at-
tack. Prior to the protocol execution, the server
(www.example.com) generates two keys ks1, ks2, which
are not disclosed to the client or to the attacker. More-
over, the server and client deploy TLS Channel ID-based
authentication. Each TLS session will therefore have a

8

Channel ID cidb that is created by the client’s browser.
The protocol consists of the following two phases.
Initialization. The first phase, called initialization, oc-
curs after the browser establishes a TLS connection to
www.example.com, for the first time in a browsing ses-
sion (upper connection in Figure 6). The browser picks
a random number rb. It then sends 〈‘Init’,rb〉 to the
server (‘Init’ is a string constant), within the first HTTP
request4 over that connection. Upon receiving this mes-
sage, the server chooses a random number rs and com-
putes the following message authentication tags:

t1 = MAC(ks1, ‘1’|rb|rs|cidb) (1)
t2 = MAC(ks2, ‘2’|rb|rs|cidb) (2)

where ‘1’ and ‘2’ are strings constants. Notice that the
server binds the computed tags to the Channel ID of the
browser cidb. rb, rs and the MAC tags will be used in
subsequent TLS connections for the verification of server
invariance.

Finally, the server sends 〈rs, t1, t2〉 to the browser
within its first HTTP response. The browser stores
〈rb,rs, t1, t2〉, while the server does not store any client-
specific information. At this point, the initialization
phase is complete. Subsequent HTTP requests and re-
sponses over that particular TLS connection do not in-
clude an X-Server-Inv header.
Invariance Verification. The second phase, called in-
variance verification, takes place upon every subsequent
TLS connection to www.example.com, which occurs
within the same browsing session (lower connection in
Figure 6). Like in the first phase, the protocol messages
are exchanged within the first HTTP request/response
pair. The browser sends 〈‘Veri f y’,rb,rs, t1〉 to the server,
as part of the first request. After receiving the request,
and before processing it, the server first checks if

t1
?
= MAC(ks1, ‘1’|rb|rs|cidb) (3)

. Here, cidb corresponds to the Channel ID of the
TLS session within which the protocol is being executed,
which, if under attack, might differ from the Channel ID
that was used in the initialization phase. If the check
passes, the server computes

t ′2 = MAC(ks2, ‘2’|rb|rs|cidb) (4)

processes the received request, and passes 〈t ′2〉 within the
HTTP response back to the browser. Finally, the browser
checks if t ′2

?
= t2. Assuming that the check succeeds, the

server and the browser conclude that they are not under
a MITM attack.

4Note that this is a request that browser would anyway submit, i.e.
required for loading the web page. It is not an extra request.

Analysis When Under Attack. Figure 7 illustrates how
the protocol detects and prevents MITM attacks. Recall
that, due to the usage of TLS Channel ID-based client
authentication, the attacker cannot perform the attack in
the traditional way (Figures 1 and 2) – the attacker’s
TLS sessions will have a different Channel ID than the
client’s and will thus be rejected. Instead, she has to exe-
cute the MITM-SITB attack, i.e., by shipping malicious
JavaScript code to the browser.

In Figure 7 we illustrate two possible attack scenar-
ios and we show why the attacker fails in both. In Fig-
ure 7a the attacker intercepts the verification phase of
SISCA. Since the attacker didn’t participate in the ini-
tialization phase of the protocol, she does not know the
correct MAC response t2 to the client’s challenge. More-
over, since she does not have access to ks2, she cannot
calculate the correct t2 either (Equation (4)). As a result,
the user’s browser rejects the attacker’s response and ter-
minates the session, notifying the user that a MITM at-
tack was detected. Even if the attacker attempts to push
a malicious script in her response, it will not get a chance
of being executed.

In the second scenario, depicted in Figure 7b,
the attacker intercepts the first TLS connection to
www.example.com. She executes the initialization
phase with the browser and injects her script, which is ex-
ecuted within the web origin of www.example.com. To
successfully complete her attack, the attacker needs to let
a subsequent TLS connection reach the legitimate server,
and access the user’s account via that connection.

After the browser establishes a connection with the le-
gitimate server, the two of them execute the invariance
verification phase, as part of the first HTTP request/re-
sponse pair. The server, before processing the HTTP
request (which might as well be malicious), checks
whether Condition (3) is true. Since the attacker does
not have access to key ks1, she could not have computed
the correct t1 (Equation (1)). Thus, during the initializa-
tion phase, she sends a t1 value to the browser that is
not the correct one. Consequently, Condition (3) will
not be satisfied. In this case the server does not pro-
cess the request, and instead notifies the browser by send-
ing an empty HTTP response containing 〈‘Alert’〉 in the
X-Server-Inv header. This indicates violation of the
server invariance and the browser aborts the session.

We remark that in the second scenario, it is the legit-
imate server that detects the ongoing MITM attack and
subsequently notifies the browser. This is important in
order to prevent any malicious requests from being ac-
cepted and processed by the server.

We conclude our analysis, with a few remarks that are
relevant for both of the scenarios described above. First,
note that the attacker cannot relay any of the necessary
MAC computations to the legitimate server. In other

9

(a) Attacker intercepts invariance verification phase. (b) Attacker intercepts initialization phase.

Figure 7: Resilience of SISCA to MITM (and SITB) attacks.

words, she cannot manipulate the server to compute for
her the values needed for cheating in the protocol. This is
because the server binds all its computations to the chan-
nel ID of the client with whom it communicates (the at-
tacker’s channel ID will be different from the user’s).

Second, note that the protocol is secure so long as the
attacker cannot “open” already established TLS connec-
tions between the browser and the legitimate server (i.e,
connections that she chose not to intercept). If she could
do that, she would be able to extract the correct values
of both t1 and t2 and successfully cheat. Recall that, the
MITM+key attacker holds the private key of the legiti-
mate server. Therefore, in order to prevent such an at-
tacker of eavesdropping on already established TLS con-
nections, it is essential that these connections have TLS
forward secrecy enabled.

Third, the attacker can choose not to reply at all, when
executing the protocol with the user. This essentially
leads to a Denial of Service (DoS) attack. However, such
attacks can already be achieved even by attackers less
powerful that those considered here. That is, attackers
that cannot perform TLS MITM attacks, but can block
network traffic between the browser and the server.
Different Origins. The SISCA protocol execution is
guided by the same-origin policy [5]. In particular,
SISCA is executed separately (i.e, different protocol in-
stances) for web pages and documents that belong to
different origins. For example, assume that the user
navigates to www.example.com for the first time in
the current browsing session. Then, a new instance of
SISCA will be created for this origin, i.e., initializa-
tion phase will be executed on the first TLS connec-
tion. If the user subsequently clicks on links pointing
to www.example.com, and this triggers the creation of
new TLS connections by the browser, then for those con-
nections, the browser will execute the invariance veri-
fication phase of the SISCA instance corresponding to

www.example.com (same origin). If the user clicks
on a link pointing to another website (different origin),
say www.another.com, or opens a new tab and navi-
gates to that site, then another new instance of SISCA
will be created and used for the loading of documents
from that origin (assuming that this is the first visit to
www.another.com in that browsing session).

3.2.4 Cross-Origin Communication

Until now we assumed that accessing the web pages of
the target server www.example.com involves communi-
cation only with that domain, i.e, web origin. However,
this is not a realistic scenario in today’s web applications.
Many websites perform cross-origin requests (e.g., to
load resources), either to subdomains, or even different
top level domains. SISCA can accommodate for such
scenarios so long as all the accessed domains belong to,
and are administered by the same entity, such that the re-
quired SISCA keys, ks1 and ks2, can be distributed across
all the relevant servers.

Therefore, for cross-origin communication, the
browser uses the SISCA instance corresponding to the
initiating origin. For example, assume that a page loaded
from www.example.com performs a cross-origin request
to static.example.com. Then, the browser will create
a TLS connection static.example.com and will per-
form the invariance verification phase of the SISCA pro-
tocol instance corresponding to www.example.com.
Different Channel IDs. The basic protocol we de-
scribed in the previous Section also works in the cross-
origin communication scenario, provided that the TLS
Channel ID used by the browser is the same. The
Channel ID specification draft already recommends us-
ing the same Channel ID for servers within the same
top-level domain [4] (to account for top-level domain
channel-bound cookies). This, for example, means

10

Figure 8: SISCA adapted for cross-origin communica-
tion (both origins belong to the same entity), when the
browser uses a different Channel ID for each origin. In
this example www.example.com performs a cross-origin
request to examplestatic.com.

that the browser should use the same Channel ID for
www.example.com and static.example.com. Nev-
ertheless, for privacy reasons, the specification recom-
mends using different Channel IDs for different top-level
domains. In such a case, SISCA has to account for the
usage of different Channel IDs across domains.

Figure 8 depicts how the protocol works in such a
scenario. The browser navigates to www.example.com,
and starts a new SISCA instance for that origin. The
browser uses Channel ID cidb (with public key pkb, and
private key skb). Afterwards, the page loaded from
www.example.com performs a cross-origin request to
examplestatic.com, which is controlled by the same
entity. Nevertheless, since it corresponds to a different
top-level domain, the browser uses a different Channel
ID, say cid′b (with pk′b, sk′b being the corresponding pub-
lic/private key pair). In this case, although the initializa-
tion phase of SISCA was executed using cidb, the invari-
ance verification phase will have to be executed over a
TLS connection with Channel ID cid′b.

As Figure 8 shows, the browser needs to tell the server
examplestatic.com to use cidb instead of cid′b, but do
so in a secure way. This can be achieved by having the
browser endorse cid′b, by signing it with skb, and thus
proving to the server that it owns the private keys of both
Channel IDs cidb and cid′b. As shown in the figure, the
browser extends the ‘Veri f y’ message by appending cidb
and a signature over cid′b (i.e., the Channel ID of that
TLS connection) and the rest of the message parameters
using skb. The server, before processing the request, ver-
ifies the signature on cid′b using the supplied cidb (i.e.,
pkb). If it passes, then the server uses Channel ID cidb for
the subsequent steps of the invariance verification phase,
which remain unchanged.

This modified version of the SISCA protocol adds
additional network and processing overhead due to the
transfer and use of public-key cryptographic material.
Channel IDs use elliptic curve cryptography [4], thus the
overhead is not expected to be significant. Moreover, this
can be further minimized, if the browser uses the same
Channel ID, not only for subdomains, but also for do-
mains that belong to the same entity. Although we do
not elaborate on this idea here, this could be heuristically
determined by the browser, based on which domains are
involved in the execution of the same SISCA instance.
Overlapping Cross-Origin Access. Browsers typically
send multiple HTTP requests over the same network con-
nection (persistent connections [22]). Due to the ex-
istence of cross-origin communication, a TLS connec-
tion to a particular domain, say static.example.com,
can be used by the browser to transmit cross-origin re-
quests to static.example.com made by different ini-
tiating origins. For example, the browser uses the same
TLS connection to static.example.com, to transmit,
first, a request originating from a document belong-
ing to www.example.com and then, a request originat-
ing from a document belonging to shop.example.com

(we still assume that all three domains belong to the
same entity). In this case, the TLS connection to
static.example.com has to be verified using SISCA
for both initiating domains, independently.

The browser executes the invariance verification phase
with the SISCA instance of www.example.com, upon es-
tablishing the TLS connection to static.example.com
and sending the first HTTP request, originating from
www.example.com. Subsequently, when the browser
wants to reuse this connection to send a cross-origin re-
quest from shop.example.com, it once again executes
the invariance verification phase, only this time with
the SISCA instance of shop.example.com. This takes
place upon transmitting the first HTTP request, which
originates from shop.example.com.
Origin Change. A web page is allowed to change
its own origin (effective origin) to a suffix of its
domain, by programmatically setting the value of
document.domain [41]. This allows two pages be-
longing to different subdomains, but presumably to
the same entity, to set their origin to a common
value and enable interaction between them5. For ex-
ample, a page from www.example.com and a page
from shop.example.com can both set their origin to
example.com. In such a case, the attacker can, for exam-
ple, attack the user account at shop.example.com, by
intercepting the first connection to www.example.com

(or any other example.com subdomain).
To prevent such an attack, the browser has to verify

5Both pages have to explicitly set document.domain.

11

that server invariance holds across each pair of origins,
that change their effective origin to a common value be-
fore allowing any interaction between them. Each origin
has its own SISCA instance established, and we must en-
sure that both SISCA instances were initialized with the
same remote entity. This can be achieved by running
the invariance verification phase of both instances over
the same TLS connection (established to either origin).
The browser can reuse an already established and veri-
fied connection with one origin, and just verify the con-
nection with the SISCA instance of the other origin. If
no such connection exists at that time, then the browser
can create a new one to either origin and execute the in-
variance verification phase of both SISCA instances. If
there is no actual HTTP request to be sent at that time,
the browser can make use the HTTP OPTIONS request.
Partial Support. Some websites may not support our
solution. Moreover, other websites might opt for partial
support. For example, a domain implements SISCA but
still needs to perform cross-origin requests to a domain,
called incompatible, that either does not support SISCA,
or supports it, but belongs to a 3rd party, i.e., it has dif-
ferent SISCA keys (we discuss on the security of such
design choices at the end of this section).

Partial support can be achieved by allowing excep-
tions. If a particular domain does not support SISCA (in-
cluding legacy servers that are not aware of SISCA at all),
then it can just ignore the X-Server-Inv header of the
request during the initialization phase, and reply without
including any SISCA-related information. This will be
received by the browser as an exception claim. Moreover,
if a domain supports SISCA but performs cross-origin
communication with one or more incompatible domains,
then it can append an exception list in its response, dur-
ing the initialization phase, designating the incompatible
domains. However, if the attacker intercepts the initial-
ization phase of the protocol, then she could perform a
protocol downgrade attack, by skipping the inclusion of
the X-Server-Inv header, or providing false exception
messages or exception lists, in her response.

To prevent this attack, SISCA protocol messages
should include (in the X-Server-Inv header) the origin
that corresponds to the corresponding SISCA instance.
This can help distinguish between genuine and attacker-
produced exception claims in the following way. Upon
subsequent TLS connections, the browser, instead of ex-
ecuting the invariance verification phase, sends a notifi-
cation of the exception claim it received during SISCA
initialization. The receiving server can leverage the sup-
plied origin information to check if the exception claim
is valid and act accordingly. This assumes that each do-
main is aware of the domains that is compatible to exe-
cute SISCA with (i.e, domains with which it shares the
same SISCA keys), which is not difficult to implement.

3rd Party Content Inclusion. As mentioned above, a
domain, say www.example.com, implementing SISCA
can still perform cross-origin requests to incompatible
3rd party domains as long as it designates those domains
as exceptions for the protocol. This of course means that
TLS connections to those domains will not be protected
by SISCA, and could be MITM-ed by the attacker to per-
form a user impersonation attack on www.example.com.
This is indeed the case if www.example.com includes ac-
tive content [40] (in particular, JavaScript and CSS) from
those domains. Embedding JavaScript from 3rd party
sites is generally not recommended, and usually there are
ways of avoiding it [42]. Furthermore, depending on the
use case, it may be possible to use iframes to include
active 3rd party content instead of directly embedding it
within the target origin, in order to mitigate the risk (the
sandbox attribute can help even further).

On the other hand, the embedding of passive content
only, such as images, does not give the attacker the abil-
ity to execute her code within the target origin. Hence,
with respect to user impersonation prevention, such em-
beddings are considered safe and do not undermine the
security offered by SISCA.

3.2.5 Key Rotation

In SISCA, the server has a pair of secret keys, ks1 and ks2.
To add robustness against key compromise (MITM+key
attackers), these keys, unlike the server’s private key, can
be easily rotated. The key transition, of course, has to
be performed such that it does not break the execution of
active SISCA instances that rely on the previous keys.

For domains served by a single machine, this is only a
matter of implementing the corresponding functionality
in the web server software (e.g., Apache). For multiple
domains controlled by the same entity and served by mul-
tiple machines, located in the same data center or even in
different data centers across the world, arguably more ef-
fort is required in order to distribute the ever-changing
keys and keep the machines in sync. Nevertheless, a sim-
ilar mechanism is needed for enabling TLS forward se-
crecy while supporting TLS session tickets [36]. Accord-
ing to Twitter’s official blog [32], Twitter engineers have
implemented such a key distribution mechanism.

3.2.6 Resource Caching

Caching of static resources, such as scripts and images,
helps reduce web page loading times as well as server
resource consumption. However, the way caching is cur-
rently implemented [22, 26] can give a MITM attacker
the opportunity to subvert SISCA.

In a nutshell, during one browsing session, the attacker
intercepts all TLS connections and ensures that a mali-

12

ciously modified, legitimate script that is required by the
target web server is cached by the browser. Then, dur-
ing a second browsing session, the attacker lets all con-
nections pass through. When the legitimate web page
asks for the inclusion of the aforementioned script, the
browser will load it from cache, essentially enabling the
execution of the attacker’s malicious code. The attacker
will thus be able to access the target web server.

To prevent the above attack, we need to change the
way caching is performed for active content that would
enable this attack (JavaScript and CSS files). We need to
make sure that the browser always communicates with
the server in order to verify that the cached version is
the most recent and also the correct one (i.e, not mali-
ciously modified). Thus, caching of such files should be
performed only using Entity Tags (ETags) [22], but in a
more rigorous way than specified in the current HTTP
specification. In particular, if a web server wishes to in-
struct a browser to cache a JavaScript or CSS file, the
server should use an ETag header which always contains
a cryptographic hash of the file. The browser, before us-
ing, and caching the file should verify that the supplied
hash is correct. Subsequently, before the browser uses
the cached version of the file, it first verifies (using the
If-None-Match header, as before) that the local version
matches the version of the server.

3.3 Prototype SISCA Implementation

We created a proof of concept implementation of the ba-
sic SISCA protocol, with additional support for cross-
origin communication, when the same Channel ID
is used. On the server side we use Apache 2.4.7
with OpenSSL 1.0.1f, patched for Channel ID support.
SISCA is implemented as an Apache module and con-
sists of 313 lines of C code. On the client side we imple-
ment SISCA by modifying the source code of Chromium
35.0.1849.0 (252194) and the WebKit (Blink) engine.
We make a total of 319 line modifications (insertion-
s/deletions) in existing files and we add 6 new files con-
sisting of 418 lines of C++ code.

We use base64 encoding for binary data transmis-
sion. When using 128-bit random values (rb and rs) and
HMAC-SHA256 (i.e, 256-bit tags, t1 and t2), the client’s
lengthiest message is 114 bytes long (excluding the ori-
gin of the SISCA instance that has to be sent as well).
The server’s lengthiest message is 132 bytes long.

Finally, we tested our implementation and verified that
it successfully detects and blocks our proof of concept
MITM-SITB attack.

4 Discussion

Interaction With Other Web Technologies

SPDY. SPDY protocol [6] multiplexes concurrent HTTP
requests over the same TLS connection to improve net-
work performance. In order for SISCA to be compat-
ible with the general SPDY functionality, the browser
must ensure that, before the SISCA protocol is com-
pleted successfully (i.e, the first request/response pair is
exchanged), no further requests should be pushed to the
SPDY connection.

Furthermore, SPDY offers a feature, called IP Pool-
ing, that allows, under certain circumstances, HTTP ses-
sions from the same browser to different domains (web
origins) to be multiplexed over the same connection. Ver-
sion 3 of SPDY is compatible with TLS Channel IDs (re-
call that different Channel IDs may need to be presented
to different origins, but now there is only one TLS con-
nection). SISCA is also compatible with IP Pooling, pro-
vided that the browser keeps track and manages the multi-
plexed HTTP sessions independently, with respect to the
execution of the SISCA protocol.
WebSocket. SISCA is compatible with the WebSocket
protocol [19], when the latter is executed over TLS. This,
of course assumes that (i) Channel IDs are used for the
WebSocket TLS connections, (ii) the SISCA protocol is
executed during the WebSocket handshake (i.e, first re-
quest/response pair), and (iii) JavaScript is not be able to
manipulate the X-Server-Inv header.
Web Storage. Web Storage [29] is an HTML5 feature
that allows a web application to store data locally in the
browser. SISCA does not prevent a MITM attacker from
accessing information stored in window.localStorage
(permanent storage), so non sensitive information should
be stored there. It protects code.sessionStorage

which stores data for one session (data is lost when the
tab is closed).
Offline Web Applications. HTML5 offers Offline Web
Applications [28] which allow a website to create an
offline version, stored locally in the browser through
caching. As with regular file caching discussed in Sec-
tion 3.2.6, this feature can be leveraged by the attacker to
bypass SISCA. Making this feature secure requires the
introduction of design concepts similar to what we pro-
posed for regular caching.
Other Client-Side Technologies. The attacker might at-
tempt to leverage various active client-side technologies
besides JavaScript, such as Flash, Java and Silverlight.
Such technologies allow the attacker to create direct TLS
connections to the legitimate server. Some of the APIs
offered by those technologies also allow the attacker to
forge and arbitrarily manipulate HTTP headers, includ-
ing cookie-related headers or the X-Server-Inv header.

13

However, provided that TLS Channel IDs and SISCA are
not integrated with these technologies6, the attacker will
not be able to impersonate the user and access his ac-
count on the legitimate server.

5 Related Work

A significant amount of research in the past years sur-
rounds the security of the TLS protocol, in the context of
web applications (i.e, HTTPS), as well as web server and
client authentication. A comprehensive overview is pro-
vided in [8], which, among others, surveys existing primi-
tives that enhance the CA trust model to more effectively
address MITM attacks. Some techniques focus on en-
hancing the server certificate verification process, while
others enhance client authentication in order to specifi-
cally deter user impersonation attacks.

The use of server impersonation for the compromise
of the user’s account by serving the attacker’s script to
the victim’s browser was first introduced in [34]. In this
attack, called Dynamic Pharming, the attacker exploits
DNS rebinding vulnerabilities in browsers, by dynami-
cally manipulating DNS records for the target web server
in order to force the user’s browser to connect either
to the attacker (to inject her script) or to the legitimate
server (to access the user’s account via her script).

MITM-SITB is very similar to Dynamic Pharming in
that it leverages server impersonation to serve the script
to the victim’s browser. However, since MITM-SITB at-
tacks are designed against Channel ID-based solutions
where the server’s certificate is miss-issued or its key is
compromised, the attack can be even simpler and does
not need to rely on DNS manipulation. Instead, it can
leverage any form of MITM where the attacker controls
the communication to the client (e.g., an attacker sitting
on a backbone) and rely only on the behavior of the
browser to re-establish a connection (with the legitimate
server) once the attacker closes the connection within
which she injected her script to the browser.

Since dynamic pharming attacks were published be-
fore the introduction of Channel ID-based solutions,
their implications to these solutions were not discussed
in [34]. Nevertheless, we note that dynamic pharm-
ing can equally be used to successfully attack Channel
ID-based solutions. Recently, the possibility of lever-
aging script injection via server impersonation against
TLS Client Certificate Authentication was also briefly
discussed in [49]. However, none of the prior works dis-
cuss or implement these types of attacks on Channel ID-
based solutions.

6This, for example, means that a TLS connection created by such
an API will have to create and use its own Channel IDs, and that the
browser will not execute SISCA over those connections

To prevent dynamic pharming, the authors of [34]
proposed the locked same-origin policy, which refines
the concept of origin by including the public key of
the server. Locked same-origin policy per se does not
prevent a MITM attacker from stealing weak user cre-
dentials (password, cookies) and using them to imper-
sonate the user. A strong client authentication solution
should be used in conjunction, as with SISCA. Moreover,
locked same-origin policy does not address cross-origin
active content inclusion and does not resist MITM+key
attacks. We note that SISCA prevents both dynamic
pharming attacks and other similar forms of MITM at-
tacks such as MITM-SITB, including under the assump-
tion of MITM+key attackers.

The current Channel ID specification [4] was re-
cently found to be vulnerable to a new class of attacks
known as “triple handshake attacks” [7], that affect TLS
client authentication in general. A MITM+certificate
or MITM+key attacker can exploit a protocol design
flaw during TLS session resumption in order to success-
fully trick the legitimate server into believing that the at-
tacker holds the private key that corresponds to the user
browser’s Channel ID. This flaw allows the attacker to
bypass the protection offered by Channel IDs and suc-
cessfully mount a conventional MITM attack in order to
impersonate the user to the server. A mitigation is pro-
posed in [7] that has already been implemented in the
version of Chromium that we used in this work. SISCA
assumes that Channel IDs work as expected and hence
eliminating triple handshake attacks is essential for its
security. However, the mitigation proposed in [7] is fo-
cused on ensuring that TLS Channel IDs work indeed
as expected and therefore does not prevent MITM-SITB
attacks.

The risks involved when a web page imports active
content, such as JavaScript, that can be intercepted and
modified by an attacker are discussed in [33]. SISCA
can protect such inclusions (either from the same origin
or cross-origin) as long as the involved domains belong
to the same entity and thus share the same SISCA keys.

The concept of sender invariance was formally defined
in [14]. SISCA is inspired by this notion, assuming that
the server’s authenticity cannot be established via con-
ventional server certificate verification and requiring that
the browser always communicates with the same entity
(either the legitimate server or the attacker, but not with
both) during the same browsing session.

6 Conclusion

In this paper we discussed the requirements to effectively
preventing TLS MITM attacks in the context of web ap-
plications, when the attacker’s goal is to impersonate
the user to the legitimate server and access his account.

14

We showed that the recently proposed TLS Channel ID-
based authentication cannot prevent such attacks. We
provided informal reasoning why such attacks can only
be thwarted by addressing the weaknesses of the server
authentication process. We proposed SISCA, a novel
technique that combines Channel ID-based client authen-
tication with the notion of sender invariance. SISCA
is able to resist MITM attacks, when the attacker holds
a mis-issued certified key, or the key of the legitimate
server. We showed how our solution can be integrated in
today’s web infrastructure, along with existing defenses
in order to further enhance the security against MITM
attacks.

References
[1] ADKINS, H. An update on attempted man-in-the-middle attacks.

http://googleonlinesecurity.blogspot.ch/2011/08/

update-on-attempted-man-in-middle.html, 2011.

[2] ALICHERRY, M., AND KEROMYTIS, A. D. DoubleCheck:
Multi-path verification against man-in-the-middle attacks. In
ISCC, 2009.

[3] AUBOURG, J., SONG, J., STEEN, H. R. M., AND VAN
KESTEREN, A. XMLHttpRequest (W3C Working Draft).
http://www.w3.org/TR/2012/WD-XMLHttpRequest-

20121206/, Dec. 2012.

[4] BALFANZ, D., AND HAMILTON, R. Transport Layer Security
(TLS) Channel IDs, v01 (IETF Internet-Draf).
http://tools.ietf.org/html/draft-balfanz-tls-

channelid-01, June 2013.

[5] BARTH, A. The web origin concept (RFC 6454).
http://tools.ietf.org/html/rfc6454, Dec. 2011.

[6] BELSHE, M., AND PEON, R. SPDY protocol (IETF
Internet-Draf). http://tools.ietf.org/html/draft-
mbelshe-httpbis-spdy-00, Feb. 2012.

[7] BHARGAVAN, K., DELIGNAT-LAVAUD, A., FOURNET, C.,
PIRONTI, A., AND STRUB, P.-Y. Triple handshakes and cookie
cutters: Breaking and fixing authentication over TLS. Submitted
for publication.

[8] CLARK, J., AND VAN OORSCHOT, P. C. SoK: SSL and HTTPS:
Revisiting past challenges and evaluating certificate trust model
enhancements. In IEEE SP (Oakland), 2013.

[9] COATES, M. Revoking trust in two TurkTrust certificates.
https://blog.mozilla.org/security/2013/01/03/

revoking-trust-in-two-turktrust-certficates/,
2013.

[10] CZESKIS, A., AND BALFANZ, D. Protected login. In USEC,
2012.

[11] CZESKIS, A., DIETZ, M., KOHNO, T., WALLACH, D., AND
BALFANZ, D. Strengthening user authentication through
opportunistic cryptographic identity assertions. In CCS, 2012.

[12] DIERKS, T., AND RESCORLA, E. The Transport Layer Security
(TLS) protocol, version 1.2 (RFC 5246).
http://tools.ietf.org/html/rfc5246, Aug. 2008.

[13] DIETZ, M., CZESKIS, A., BALFANZ, D., AND WALLACH,
D. S. Origin-bound certificates: A fresh approach to strong
client authentication for the web. In USENIX Security, 2012.

[14] DRIELSMA, P. H., MÖDERSHEIM, S., VIGANÒ, L., AND
BASIN, D. Formalizing and analyzing sender invariance. In
FAST, 2006.

[15] ECKERSLEY, P. The Sovereign Keys project.
https://www.eff.org/sovereign-keys, Nov. 2011.

[16] EVANS, C., PALMER, C., AND SLEEVI, R. Public key pinning
extension for HTTP (IETF Internet-Draf).
http://tools.ietf.org/html/draft-ietf-websec-

key-pinning-09, Nov. 2013.

[17] F-SECURE. Mobile threat report Q3 2013.
http://www.f-secure.com/static/doc/labs_global/

Research/Mobile_Threat_Report_Q3_2013.pdf, 2013.

[18] FELT, A. P., FINIFTER, M., CHIN, E., HANNA, S., AND
WAGNER, D. A survey of mobile malware in the wild. In SPSM,
2011.

[19] FETTE, I., AND MELNIKOV, A. The WebSocket protocol (RFC
6455). http://tools.ietf.org/html/rfc6455, Dec. 2011.

[20] FIDO ALLIANCE. http://fidoalliance.org/.

[21] FIDO ALLIANCE. Universal 2nd Factor (U2F) overview,
Version 1.0 (review draft).
http://fidoalliance.org/specs/fido-u2f-overview-

v1.0-rd-20140209.pdf, 2014.

[22] FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H.,
MASINTER, L., LEACH, P., AND BERNERS-LEE, T. Hypertext
Transfer Protocol – HTTP/1.1 (RFC 2616).
http://tools.ietf.org/html/rfc2616, June 1999.

[23] GAJEK, S., MANULIS, M., SADEGHI, A.-R., AND SCHWENK,
J. Provably secure browser-based user-aware mutual
authentication over TLS. In ASIACCS, 2008.

[24] GOOGLE. Universal 2nd Factor (U2F).
https://sites.google.com/site/oauthgoog/gnubby.

[25] GOOGLE DEVELOPERS. Minimize request overhead.
https://developers.google.com/speed/docs/best-

practices/request.

[26] GOOGLE DEVELOPERS. Optimize caching.
https://developers.google.com/speed/docs/best-

practices/caching.

[27] HAYES, J. M. The problem with multiple roots in web
browsers-certificate masquerading. In WETICE, 1998.

[28] HICKSON, I. Offline web applications (HTML 5 working draft).
http://www.whatwg.org/specs/web-apps/current-

work/multipage/offline.html.

[29] HICKSON, I. Web storage (W3C Recommendation).
http://www.w3.org/TR/webstorage/, July 2013.

[30] HIGGINS, P. Pushing for perfect forward secrecy, an important
web privacy protection. https:
//www.eff.org/deeplinks/2013/08/pushing-perfect-

forward-secrecy-important-web-privacy-protection,
2013.

[31] HOFFMAN, P., AND SCHLYTER, J. The DNS-Based
Authentication of Named Entities (DANE) Transport Layer
Security (TLS) protocol: TLSA (RFC 6698).
http://tools.ietf.org/html/rfc6698, Aug. 2012.

[32] HOFFMAN-ANDREWS, J. Forward secrecy at Twitter.
https://blog.twitter.com/2013/forward-secrecy-

at-twitter-0, 2013.

[33] JACKSON, C., AND BARTH, A. Beware of finer-grained origins.
In Web 2.0 Security and Privacy, 2008.

[34] KARLOF, C., SHANKAR, U., TYGAR, J. D., AND WAGNER,
D. Dynamic pharming attacks and locked same-origin policies
for web browsers. In CCS, 2007.

[35] LANGLEY, A. Protecting data for the long term with forward
secrecy. http://googleonlinesecurity.blogspot.ch/
2011/11/protecting-data-for-long-term-with.html,
2011.

15

http://googleonlinesecurity.blogspot.ch/2011/08/update-on-attempted-man-in-middle.html
http://googleonlinesecurity.blogspot.ch/2011/08/update-on-attempted-man-in-middle.html
http://www.w3.org/TR/2012/WD-XMLHttpRequest-20121206/
http://www.w3.org/TR/2012/WD-XMLHttpRequest-20121206/
http://tools.ietf.org/html/draft-balfanz-tls-channelid-01
http://tools.ietf.org/html/draft-balfanz-tls-channelid-01
http://tools.ietf.org/html/rfc6454
http://tools.ietf.org/html/draft-mbelshe-httpbis-spdy-00
http://tools.ietf.org/html/draft-mbelshe-httpbis-spdy-00
https://blog.mozilla.org/security/2013/01/03/revoking-trust-in-two-turktrust-certficates/
https://blog.mozilla.org/security/2013/01/03/revoking-trust-in-two-turktrust-certficates/
http://tools.ietf.org/html/rfc5246
https://www.eff.org/sovereign-keys
http://tools.ietf.org/html/draft-ietf-websec-key-pinning-09
http://tools.ietf.org/html/draft-ietf-websec-key-pinning-09
http://www.f-secure.com/static/doc/labs_global/Research/Mobile_Threat_Report_Q3_2013.pdf
http://www.f-secure.com/static/doc/labs_global/Research/Mobile_Threat_Report_Q3_2013.pdf
http://tools.ietf.org/html/rfc6455
http://fidoalliance.org/
http://fidoalliance.org/specs/fido-u2f-overview-v1.0-rd-20140209.pdf
http://fidoalliance.org/specs/fido-u2f-overview-v1.0-rd-20140209.pdf
http://tools.ietf.org/html/rfc2616
https://sites.google.com/site/oauthgoog/gnubby
https://developers.google.com/speed/docs/best-practices/request
https://developers.google.com/speed/docs/best-practices/request
https://developers.google.com/speed/docs/best-practices/caching
https://developers.google.com/speed/docs/best-practices/caching
http://www.whatwg.org/specs/web-apps/current-work/multipage/offline.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/offline.html
http://www.w3.org/TR/webstorage/
https://www.eff.org/deeplinks/2013/08/pushing-perfect-forward-secrecy-important-web-privacy-protection
https://www.eff.org/deeplinks/2013/08/pushing-perfect-forward-secrecy-important-web-privacy-protection
https://www.eff.org/deeplinks/2013/08/pushing-perfect-forward-secrecy-important-web-privacy-protection
http://tools.ietf.org/html/rfc6698
https://blog.twitter.com/2013/forward-secrecy-at-twitter-0
https://blog.twitter.com/2013/forward-secrecy-at-twitter-0
http://googleonlinesecurity.blogspot.ch/2011/11/protecting-data-for-long-term-with.html
http://googleonlinesecurity.blogspot.ch/2011/11/protecting-data-for-long-term-with.html

[36] LANGLEY, A. How to botch TLS forward secrecy.
https://www.imperialviolet.org/2013/06/27/

botchingpfs.html, 2013.

[37] LAURIE, B., LANGLEY, A., AND KASPER, E. Certificate
transparency (RFC 6992).
http://tools.ietf.org/html/rfc6962, June 2013.

[38] MARLINSPIKE, M. Convergence. http://convergence.io/,
2011.

[39] MARLINSPIKE, M., AND PERRIN, T. Trust Assertions for
Certificate Keys (TACK) (IETF Internet-Draft).
http://tack.io/draft.html, Jan. 2013.

[40] MOZILLA DEVELOPER NETWORK. Mixed content.
https://developer.mozilla.org/en-

US/docs/Security/MixedContent.

[41] MOZILLA DEVELOPER NETWORK. Same-origin policy.
https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Same_origin_policy_for_JavaScript.

[42] NIKIFORAKIS, N., INVERNIZZI, L., KAPRAVELOS, A.,
VAN ACKER, S., JOOSEN, W., KRUEGEL, C., PIESSENS, F.,
AND VIGNA, G. You are what you include: Large-scale
evaluation of remote Javascript inclusions. In CCS, 2012.

[43] OPPLIGER, R., HAUSER, R., AND BASIN, D. SSL/TLS
session-aware user authentication - Or how to effectively thwart
the man-in-the-middle. Computer Communications 29, 12 (Aug.
2006), 2238–2246.

[44] OPPLIGER, R., HAUSER, R., AND BASIN, D. SSL/TLS
session-aware user authentication revisited. Computers &
Security 27, 3-4 (2008), 64–70.

[45] OWASP. Cross-site Scripting (XSS).
https://www.owasp.org/index.php/Cross-

site_Scripting_(XSS).

[46] OWASP. Man-in-the-browser attack.
https://www.owasp.org/index.php/Man-in-the-

browser_attack.

[47] PAOLA, S. D., AND FEDON, G. Subverting Ajax. 23rd Chaos
Communication Congress, 2006.

[48] PARNO, B., KUO, C., AND PERRIG, A. Phoolproof phishing
prevention. In Financial Cryptography, 2006.

[49] PARSOVS, A. Practical issues with TLS client certificate
authentication. In NDSS, 2014.

[50] PERLMAN, R. An overview of PKI trust models. Network,
IEEE 13, 6 (1999), 38–43.

[51] SCHNEIER, B. New NSA leak shows MITM attacks against
major Internet services. https://www.schneier.com/blog/
archives/2013/09/new_nsa_leak_sh.html, 2013.

[52] SOGHOIAN, C., AND STAMM, S. Certified lies: Detecting and
defeating government interception attacks against SSL. In
Financial Cryptography, 2011.

[53] STONE-GROSS, B., COVA, M., CAVALLARO, L., GILBERT,
B., SZYDLOWSKI, M., KEMMERER, R., KRUEGEL, C., AND
VIGNA, G. Your botnet is my botnet: Analysis of a botnet
takeover. In CCS, 2009.

[54] TRUSTWARE SPIDERLABS. Clarifying The Trustwave CA
policy update.
http://blog.spiderlabs.com/2012/02/clarifying-

the-trustwave-ca-policy-update.html, 2012.

[55] VOGT, P., NENTWICH, F., JOVANOVIC, N., KIRDA, E.,
KRÜGEL, C., AND VIGNA, G. Cross Site Scripting prevention
with dynamic data tainting and static analysis. In NDSS,2007.

[56] WENDLANDT, D., ANDERSEN, D. G., AND PERRIG, A.
Perspectives: Improving SSH-style host authentication with
multi-path probing. In USENIX Annual Technical Conference,
2008.

[57] WOOD, M. Fraudulent certificates issued by Comodo, is it time
to rethink who we trust? http://nakedsecurity.sophos.

com/2011/03/24/fraudulent-certificates-issued-

by-comodo-is-it-time-to-rethink-who-we-trust/,
2011.

[58] ZHOU, Y., AND JIANG, X. Dissecting Android malware:
Characterization and evolution. In IEEE SP (Oakland), 2012.

16

https://www.imperialviolet.org/2013/06/27/botchingpfs.html
https://www.imperialviolet.org/2013/06/27/botchingpfs.html
http://tools.ietf.org/html/rfc6962
http://convergence.io/
http://tack.io/draft.html
https://developer.mozilla.org/en-US/docs/Security/MixedContent
https://developer.mozilla.org/en-US/docs/Security/MixedContent
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Man-in-the-browser_attack
https://www.owasp.org/index.php/Man-in-the-browser_attack
https://www.schneier.com/blog/archives/2013/09/new_nsa_leak_sh.html
https://www.schneier.com/blog/archives/2013/09/new_nsa_leak_sh.html
http://blog.spiderlabs.com/2012/02/clarifying-the-trustwave-ca-policy-update.html
http://blog.spiderlabs.com/2012/02/clarifying-the-trustwave-ca-policy-update.html
http://nakedsecurity.sophos.com/2011/03/24/fraudulent-certificates-issued-by-comodo-is-it-time-to-rethink-who-we-trust/
http://nakedsecurity.sophos.com/2011/03/24/fraudulent-certificates-issued-by-comodo-is-it-time-to-rethink-who-we-trust/
http://nakedsecurity.sophos.com/2011/03/24/fraudulent-certificates-issued-by-comodo-is-it-time-to-rethink-who-we-trust/

	Introduction
	Analysis: TLS Channel IDs and MITM Attacks
	Attacker Model
	TLS Channel IDs
	Channel ID-Based Authentication: PhoneAuth and U2F
	MITM Attack on Channel ID-Based Protocols
	Proof of Concept Attack
	Scope and Implications of the Attack

	Addressing TLS MITM Attacks
	Existing Solutions
	Our Proposal: SISCA
	Main Concept
	Assumptions
	Basic Protocol
	Cross-Origin Communication
	Key Rotation
	Resource Caching

	Prototype SISCA Implementation

	Discussion
	Related Work
	Conclusion

