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Abstract
In this paper we consider TLS Man-In-The-Middle

(MITM) attacks in the context of web applications,
where the attacker is able to successfully impersonate
the legitimate server to the user, with the goal of imper-
sonating the user to the server and thus compromising
the user’s online account and data. We describe in detail
why the recently proposed client authentication protocols
based on TLS Channel IDs, as well as client web authen-
tication in general, cannot fully prevent such attacks.

Nevertheless, we show that strong client authentica-
tion, such as Channel ID-based authentication, can be
combined with the concept of server invariance, a weaker
but easier to achieve property than server authentication,
in order to protect against the considered attacks. We
specifically leverage Channel ID-based authentication in
combination with server invariance to create a novel
mechanism that we call SISCA: Server Invariance with
Strong Client Authentication. SISCA resists user imper-
sonation via TLS MITM attacks, regardless of how the
attacker is able to successfully achieve server imperson-
ation. We analyze our proposal and show how it can be
integrated in today’s web infrastructure.

1 Introduction
Web applications increasingly employ the TLS pro-

tocol to secure HTTP communication (i.e., HTTP over
TLS, or HTTPS) between a user’s browser and the web
server. TLS enables users to securely access and inter-
act with their online accounts, and protects, among other
things, common user authentication credentials, such as
passwords and cookies. Such credentials are considered
weak; they are transmitted over the network and are sus-
ceptible to theft and abuse unless protected by TLS.

Nevertheless, during TLS connection establishment, it
is essential that the server’s authenticity is verified. If
an attacker successfully impersonates the server to the
user, she is then able to steal the user’s credentials and
subsequently use them to impersonate the user to the le-
gitimate server. This way, the attacker gains access to the
user’s account and data which can be abused for a vari-

ety of purposes, such as spying on the user [15, 50]. This
attack is known as TLS Man-In-The-Middle (MITM).

TLS server authentication is commonly achieved
through the use of X.509 server certificates. A server cer-
tificate binds a public key to the identity of a server, des-
ignating that this server holds the corresponding private
key. The browser accepts a certificate if it bears the signa-
ture of any trusted Certificate Authority (CA). Browsers
are typically configured to trust hundreds of CAs.

An attacker can thus successfully impersonate a legit-
imate server to the browser by presenting a valid certifi-
cate for that server, as long as she holds the correspond-
ing private key. In previous years, quite a few incidents
involving mis-issued certificates [1, 9, 50, 51, 56] were
made public. Even in the case where the attacker simply
presents an invalid (e.g., self-signed) certificate not ac-
cepted by the browser, she will still succeed in her attack
if the user defies the browser’s security warning.

In order to thwart such attacks, various proposals have
emerged. Some proposals focus on enhancing the certifi-
cate authentication model. Their objective is to prevent
an attacker possessing a mis-issued, yet valid certificate,
from impersonating the server (e.g., [17, 33, 36, 55]).

Other proposals focus on strengthening client authen-
tication. Strong client authentication prevents user cre-
dential theft or renders it useless, even if the attacker can
successfully impersonate the server to the user. One such
prominent proposal is TLS Channel ID-based client au-
thentication, introduced in 2012. TLS Channel IDs [4]
are experimentally supported in Google Chrome and are
planned to be used in the second factor authentication
standard U2F, proposed by the FIDO alliance [19, 20].

In this paper we show that Channel ID-based ap-
proaches, as well as other web authentication approaches
that focus solely on client authentication are vulnerable
to an attack that we call Man-In-The-Middle Script-In-
The-Browser (MITM-SITB). This attack bypasses the pro-
tection offered by Channel IDs by shipping malicious
JavaScript to the user’s browser within a TLS session
with the attacker, and then using this JavaScript in a sub-
sequent session to compromise the user’s account on the



legitimate server. Our attack is similar to dynamic pharm-
ing [32] (see Section 4).

Nevertheless, we show that TLS MITM attacks where
the attacker’s goal is user impersonation can still be pre-
vented by strong client authentication, such as Channel
ID-based authentication, provided that it is combined
with the concept of server invariance, that is, the re-
quirement that the client keeps communicating with the
same entity (either the legitimate server, or the attacker)
across multiple connections intended for the same server.
Server invariance is a weaker requirement than server au-
thentication, but at the same time, it is easier to achieve as
no initial trust is necessary. Building on this observation,
we propose a solution called SISCA: Server Invariance
with Strong Client Authentication, that combines Chan-
nel ID-based client authentication and server invariance.

SISCA can resist TLS MITM attacks that are based
on mis-issued valid certificates, as well as invalid certifi-
cates, requiring no user involvement in the detection of
the attack (i.e., no by-passable security warnings when
server invariance violation occurs). SISCA also thwarts
attackers that hold the private key of the legitimate server.
Contributions. In this work we analyze TLS MITM
attacks whose goal is user impersonation and make the
following contributions. (i) We show, by launching a
MITM-SITB attack, that Channel ID-based client authen-
tication solutions do not fully prevent TLS MITM at-
tacks. (ii) We further argue that effective prevention of
MITM-based user impersonation attacks requires strong
user authentication and (at least) server invariance. (iii)
We propose a novel solution that prevents MITM-based
user impersonation based on the combination of strong
client authentication and server invariance. (iv) We im-
plement and evaluate a basic prototype of our solution.

2 TLS Channel IDs and MITM Attacks

2.1 Attacker Model and Goals
Attacker Goals. The attacker’s goal in a MITM attack
is typically to impersonate the user (victim) to the legit-
imate server (e.g., a social networking, webmail, or e-
banking website) in order to compromise the user’s on-
line account and data. This is indeed the case where the
attacker wishes for example to spy on the user [15, 50],
or abuse his account for nefarious purposes, e.g., perform
fraudulent financial transactions. Alternatively, the at-
tacker could aim to only impersonate the server to the
user (and not the user to the server) such that she serves
the user with fake content (e.g., fake news). In this paper,
we focus on the first, more impactful, scenario.
Attacker Model. We adopt the attacker model consid-
ered by TLS Channel IDs [4]. The adversary is able to
position herself suitably on the network and perform a
TLS MITM attack between the user and the target web

server. In other words, the attacker is able to success-
fully impersonate the server to the user. We distinguish
between two types of MITM1 attackers.

The MITM+certificate attacker holds (i) a valid cer-
tificate for the domain of the target web server, binding
the identity of the server to the public key, of which she
holds the corresponding private key. The attacker, how-
ever, has no access to the private key of the target web
server. This, for example, can happen if the attacker com-
promises a CA or is able to force a CA issue such a cer-
tificate. Such attacks have been reported in the recent
years [1, 9, 50, 56]. Moreover, in this category we also
consider a weaker attacker that only holds (ii) an invalid
(e.g., self-signed) certificate. In this case, the attacker
will still succeed in impersonating the server to the user
if the latter ignores the security warnings of the browser2,
which is a common phenomenon [53].

The MITM+key attacker holds the private key of the le-
gitimate server. While we are not aware of public reports
of incidents involving server key compromise, such at-
tacks can arguably be very stealthy and remain unnoticed.
Thus, they are well worth addressing [11, 28, 30, 35].

From the above it follows that the attacker is able to ob-
tain the user’s weak credentials, namely passwords and
HTTP cookies. She is not, however, able to compromise
the user’s browser or his devices (e.g., mobile phones).

2.2 TLS Channel IDs
TLS Channel IDs is a recent proposal for strengthening

client authentication. It is a TLS extension, originally
proposed in [13] as Origin-Bound Certificates (OBCs).
A refined version has been submitted as an IETF Internet-
Draft [4]. Currently, Channel IDs are experimentally sup-
ported by Google’s Chrome browser and Google servers.

In brief, when the browser visits a TLS-enabled web
server for the first time, it creates a new private/public
key pair (on-the-fly and without any user interaction)
and proves possession of the private key, during the TLS
handshake. This TLS connection is subsequently iden-
tified by the corresponding public key, which is called
the Channel ID. Upon subsequent TLS connections to
the same web server, or more precisely, to the same web
origin, the browser uses the same Channel ID.

Channel IDs are not envisioned to be directly used by
the web server to authenticate the user or the browser.
They are instead used by the web server to identify the
same browser across multiple TLS connections, as the
browser will be using the same Channel ID for these
connections. The web server can further bind authentica-
tion tokens, such as HTTP cookies, to a specific Channel
ID, such that the token is considered valid only if it is
presented over that particular Channel ID. For example,

1We use the terms “TLS MITM” and “MITM” interchangeably.
2We use the term “browser” to refer to any “user agent” in general.
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Figure 1: Binding authentication tokens (e.g., cookies)
to the browser’s Channel ID (shown in green). A MITM
attacker who steals such a cookie, is not able to use it to
impersonate the user, because the attacker’s TLS connec-
tion will have a different Channel ID (shown in red).

as proposed in [13], a web server may create a channel-
bound cookie as follows: 〈v, HMAC(k,v|cid)〉, where v
is the original cookie value, cid is client Channel ID and
k is a secret key, only known to the web server, used for
computing a MAC over the concatenation of v and cid.
MITM Prevention. TLS Channel IDs are designed to
resist both MITM+certificate and MITM+key attacker
types [4, §6] (assuming TLS forward-secret connections
for the latter type), due to the channel-binding property
described above. An attacker that manages to steal a
channel-bound cookie, e.g., through a MITM attack, can-
not reuse it to impersonate the user to the web server,
since she does not know the private key of the correct
Channel ID. Figure 1 illustrates this concept.

2.3 Channel ID-Based Authentication
By Channel ID-based authentication we refer to the

use of Channel IDs throughout the user authentication
process, in order to protect against MITM attacks. Specif-
ically, when the user attempts to login to his online ac-
count for the first time from a particular browser, the
web server requires that the user authenticates using a
strong second factor authentication device, such as in
PhoneAuth and FIDO U2F frameworks, described below,
that leverages Channel IDs to prevent MITM attacks.

Upon successful initial authentication the server sets a
channel-bound cookie to the user’s browser. Subsequent
interaction with the server from that particular browser
is protected by the channel-bound cookie. Even if the
attacker steals the cookie she cannot use it to impersonate
the user (Figure 1). At this stage, the second factor device
is not required for authenticating the user [10].

Whenever the channel-bound cookie is absent (e.g., it
expired, the user deleted it, or the user tries to login from
a new browser) or it is present but invalid (i.e., presented
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Figure 2: PhoneAuth/U2F. Leveraging Channel IDs to
prevent MITM attacks during initial user authentication.

over an incorrect Channel ID), the server once again re-
quires user authentication using the second factor device.
PhoneAuth. PhoneAuth is a user authentication frame-
work, proposed in [11]. It leverages the user’s smart-
phone in order to provide a second, strong, unphishable
authentication factor, and makes use of Channel IDs in
order to detect and prevent MITM attacks.

PhoneAuth works as follows. The user’s mobile phone
holds a private/public key pair, which it uses to enroll
and generate a shared secret key with the server. After
successful enrollment, when the user authenticates to the
web server by providing his username and password, the
server issues an encrypted and integrity-protected chal-
lenge, called login ticket, to the browser. The browser
is then instructed, via JavaScript API calls, to interact
with the user’s phone over bluetooth. During this interac-
tion the browser sends to the phone an assertion request
which, among other things, contains the login ticket.

Upon receiving the assertion request, the phone per-
forms a number of checks and, if they pass, creates an
identity assertion, by signing the login ticket with its
private key. The identity assertion is forwarded back to
the web server, which verifies the phone’s signature, and
signs the user in. The server finally sets a cookie, binding
it to the Channel ID of the user’s browser (Section 2.2).
U2F. Universal 2nd Factor (U2F) [22] is an initiative
started by Google that aims to provide strong second
factor web authentication. It is very similar to the
PhoneAuth protocol, described above. The main differ-
ence is that, instead of using the user’s phone, U2F lever-
ages a dedicated USB dongle. In 2013, Google joined
Fast IDentity Online Alliance (FIDO) [19], which aims
at providing an open set of standards for stronger online
authentication. Many companies, like Microsoft, Pay-
Pal, MasterCard and RSA have also joined the alliance,
a fact that significantly increases the possibility of global
adoption of standards and products proposed by FIDO.
One of the proposed standards by FIDO is the Univer-
sal 2nd Factor (U2F) protocol. According to the draft
specifications [20], the FIDO U2F protocol is similar to
Google U2F and PhoneAuth. Thus, the results of this
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paper could also be relevant for the design of FIDO U2F.
MITM Prevention. What is mostly of interest to us in
PhoneAuth and U2F, is how they address both types of
MITM attackers presented in Section 2.1 [11, §3]. The
main idea, illustrated in Figure 2, is to compare the Chan-
nel ID of the user’s browser to the one seen by the server.

Specifically, the web server includes the Channel ID
that identifies the TLS connection with the browser in
the login ticket. In other words, the web server binds the
login ticket to that particular Channel ID. Furthermore,
the browser adds its own Channel ID in the assertion re-
quest, which also inlcudes the login ticket. The assertion
request is forwarded to the second factor device, as pre-
viously described, and the device performs a number of
checks. One of these checks is the comparison of the two
Channel IDs contained in the assertion request. If the
two Channel IDs are equal, this implies that the browser
is directly connected to the web server through TLS (be-
cause they share the same view of the connection), and
thus there is no MITM attack taking place. On the other
hand, if the two Channel IDs differ, then the web server
is not directly connected to the user’s browser. Instead,
as shown in Figure 2, there is an attacker in the middle
who has established two TLS connections, one with the
browser and one with the server. Upon detecting such a
mismatch, the device aborts the authentication protocol.

To the best of our knowledge, the notion of compar-
ing the TLS sessions as witnessed by the client and the
server in order to prevent MITM attacks, was originally
proposed in the TLS Session Aware User Authentication
(TLS-SA) scheme [42, 43]. Channel ID-based authenti-
cation builds on this idea and significantly enhances user-
friendliness, practicality and deployability.

2.4 MITM Attack on Channel ID-Based
Authentication Protocols

We show how Channel ID-based authentication still
allows a MITM attacker to successfully impersonate the
user. This is due to the way web applications are run
and interact with the servers, which differs from other
internet client-server protocols (e.g., IMAP over TLS).

In particular, web servers are allowed to push script-
ing code to the browser, which the latter executes within
the security context of the web application (according
to the rules defined by the same-origin policy [5]). In
fact, client-side scripting and especially JavaScript, is the
foundation of dynamic, rich web applications that vastly
improve user experience, and its presence is ubiquitous.

Moreover, a browser can establish multiple TLS con-
nections with the same server. In addition, a typical web
application loads resources, such as images and scripts,
from multiple domains (cross-origin network access [5]).
Assuming that all communication is TLS-protected, this
means that the browser needs to establish TLS connec-

tions with multiple servers while loading a web page.
Given the above, there is a conceptually simple attack

that a MITM+certificate or MITM+key attacker can per-
form, which bypasses the security offered by Channel
IDs. We assume that the user tries to access the target
web server, say www.example.com. The attacker then
proceeds as follows:

1. She intercepts a single TLS connection attempt
made by the browser to www.example.com, and by
presenting a valid certificate (or invalid with the user
ignoring the browser’s warning), she successfully
impersonates the legitimate server to the browser.

2. Through the established connection, the browser
makes an HTTP request to the server. The attacker
replies with an HTTP response, which includes a
malicious piece of JavaScript code. This script will
execute within the origin of www.example.com.

3. The attacker closes the intercepted TLS connection.
This forces the browser to initiate a new TLS con-
nection in order to transmit subsequent requests, or
use another existing one, if any (this behavior con-
forms with the HTTP specification [21]). At the
same time, the attacker allows subsequent TLS con-
nection attempts to pass through, without interfer-
ing with them. As a result, once the attacker closes
that single intercepted connection, all other connec-
tions, existing and new, are directly established be-
tween the browser and the legitimate server.

4. The attacker gains full control over the user’s ses-
sion in that particular web application. Her script
has unrestricted access over the web documents be-
longing to www.example.com and can monitor all
the client-side activity of the web application. More-
over, she can issue arbitrary malicious requests to
the target server using the XMLHttpRequest ob-
ject [3], in order to perform a desired action or
extract sensitive user information. The malicious
code can upload any extracted data to an attacker-
controlled server. As another example, if the web
application is Ajax-based, the attacker can perform
Prototype Hijacking [46]. This allows her to eaves-
drop and modify on-the-fly all the HTTP requests
made through XMLHttpRequest.

In summary, the MITM attacker “transfers” herself
(via the malicious script) within the user’s browser, and
continues her attack from there. We call this attack Man-
In-The-Middle-Script-In-The-Browser (MITM-SITB).

Figure 3 illustrates the MITM-SITB attack in the
case when the user is about to initially authenticate to
www.example.com using PhoneAuth or U2F. The at-
tacker intercepts a TLS connection, pushes her Javascript
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Figure 3: MITM-SITB attack on Channel ID-based
PhoneAuth/U2F (used for initial user authentication).

code to the user’s browser, and terminates the connec-
tion. The browser then establishes a new TLS connec-
tion for subsequent communication, only this time with
the legitimate server; the attacker will not hijack it. This
ensures that the user authentication is performed over a
direct connection between the browser and the server, but
with the attacker’s code running in the browser. Thus, the
view of the TLS channel will be the same for both the
browser and the server, and the Channel ID comparison
made by the second factor device will pass successfully.

Figure 4 shows how the attack works in the case when
the user has already logged in on www.example.com in
the past, and the server has set a channel-bound cookie
in the user’s browser. Like before, the attacker ships ma-
licious JavaScript code to the browser by intercepting a
TLS connection to www.example.com. She then termi-
nates the intercepted connection. This forces the browser
to establish a new TLS connection, which is not inter-
cepted by the attacker. This ensures that any subsequent
requests, either legitimate or malicious (issued by the
attacker’s script) are accepted by the legitimate server,
since they will carry the channel-bound cookie, which
authenticates the user, over the correct Channel ID.

From the above attack description there are various
details that remain unclear. For example, which TLS
connection the attacker should intercept, whether to
“hit and run” or persist as much as possible, etc. De-
pending on the scenario, there are various alternatives,
which are mostly implementation decisions. The at-
tacker can for example choose the following strategy.
She intercepts the very first TLS connection, i.e., the
one that the browser initiates once it is directed to
www.example.com. Depending on the situation, the
attacker’s HTTP response could contain the expected
HTML document of the website’s starting page, together
with the appropriately injected malicious script, or it
could only contain the malicious script, which will take
care of loading the starting page in the browser. Then, as
described before, the attacker closes this first connection

Channel ID Attack
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2. Push malicious script!
3. Close connection!
4. Gain control

Figure 4: MITM-SITB attack on Channel ID-based au-
thentication. In this case, the user has previously logged
in on the target web server, www.example.com, and
subsequent requests are protected with a channel-bound
cookie. The attacker ships malicious JavaScript code
to the browser, which is executed within the origin of
www.example.com (shown by the dotted arrow).

and subsequent communication (malicious or not) takes
place through a direct connection to the legitimate server.
The Cross-Origin Communication Case. Visiting a
single web page typically involves cross-origin commu-
nication with different domains in the background. For
example a typical network optimization technique is to
have the browser load the static resources of the web-
site, such as images, style sheets and scripts, from so-
called cookieless domains (e.g., Google websites usually
load static resources from gstatic.com [23]). These do-
mains, as their name suggests, do not set any cookies, so
as to minimize network latency. As a matter of fact, on
such domains, client authentication does not apply at all,
as they are just used to serve static resources, which any-
one, including the attacker, can access. Hence in those
cases, the attacker can perform a conventional MITM at-
tack against a cookieless domain, and inject its malicious
code at the moment when the target web server requests
a legitimate JavaScript file from that domain.

Figure 5 illustrates the attack. The attacker lets all
communication to www.example.com (the main web
server) pass through. Initially, the browser connects to
www.example.com to load some page. The returned
HTML document imports a JavaScript file from the cook-
ieless domain static.example.com. Assuming that
the script is not cached, the browser initiates a TLS con-
nection to that domain, which is intercepted by the at-
tacker. The attacker fetches the modified script, injects
her code and forwards the script to the browser, which is
executed within the origin of www.example.com.

2.5 Proof of Concept Attack
We validate our attack against Channel IDs through a

proof of concept implementation. We use two Apache
TLS-enabled servers (one for the attacker, one for the
legitimate server) and an interception proxy that can se-
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Figure 5: MITM-SITB attack on Channel ID-based
authentication leveraging cross-origin communication.
Channel IDs for static.example.com are of no use.

lectively forward TLS connections to either server. The
legitimate server uses a patched OpenSSL version that
supports Channel IDs and leverages them for creating
channel-bound cookies. We use Google Chrome as the
user’s browser, since it supports Channel IDs, and ensure
that it accepts the certificates of both servers. We are then
able to inject JavaScript code to the user’s browser from
the attacker’s server and issue HTTP requests that are ac-
cepted and processed by the legitimate server.

2.6 Scope and Implications of the Attack
The MITM-SITB attack presented in Section 2.4 is not

specific to Channel ID-based client authentication proto-
cols. In fact, it applies to any web client authentication
method. This attack demonstrates that, in the context of
web applications, it does not seem possible to prevent
TLS MITM attacks via client authentication alone.

We provide the following informal reasoning for the
above claim. Client authentication does not prevent an
attacker from impersonating the legitimate server. This
allows her to intercept a server-authenticated (i.e., TLS)
connection and ship her JavaScript code to the user’s
browser. The browser, treating the attacker’s code as
trusted (as it came through a server-authenticated connec-
tion), executes it within the target server’s origin. The at-
tacker accesses the user’s account through requests initi-
ated by her code and transmitted over another, direct con-
nection between the browser and the legitimate server.

As a result, schemes such as traditional TLS client au-
thentication [12] and TLS Session Aware User Authen-
tication [42, 43] are all still susceptible to TLS MITM
attacks. The attacker succeeds in impersonating the user
to the web server and thus compromising his account.

On the other hand, the Phoolproof phishing prevention
system [47] is able to resist MITM+certificate attacks,

due to its use of a server certificate pinning approach (see
Section 3.1). However, this is true only if certificate pin-
ning applies to every TLS connection that the browser
establishes with the target web origin, as well as cross-
origin communication that imports active content.

3 Addressing TLS MITM Attacks

3.1 Enforcing Server Authentication
As we have shown in Section 2, strong client authen-

tication alone is not sufficient to prevent MITM attacks
that lead to user impersonation in web applications. This
means that in order to effectively address MITM attacks
(including MITM-SITB) we cannot afford to completely
ignore server authentication. In this section, we briefly re-
view existing techniques that try to enforce proper server
authentication. These solutions focus on addressing the
issue of forged server certificates (and thus defeating
MITM+certificate attackers), essentially not relying on
client authentication at all.

More specifically, MITM+certificate attacks are fea-
sible mainly due to the fact that web browsers blindly
trust hundreds of CAs to sign certificates for any do-
main [25, 49]. A way to improve the security of the
CA trust model is therefore to reduce the level of trust
placed in the CAs. In recent years various proposals have
emerged that follow this idea and perform enhanced cer-
tificate verification. These proposals are mostly based
on two techniques: pinning and multi-path probing. We
briefly mention some of the existing proposals below. We
refer the interested reader to [8] for a thorough survey.

Pinning enables a web server to instruct browsers
to accept only a specific set of certificates when estab-
lishing TLS connections to that server. Example so-
lutions include HTTP [17] and TLS [38] extensions.
Multi-path probing increases assurance about the le-
gitimacy of the certificate by consulting (several) ex-
ternal sources. Prominent proposals include Perspec-
tives [55], Convergence [37], DoubleCheck [2], Certifi-
cate Transparency [36] and Accountable Key Infrastruc-
ture (AKI) [33]. Besides pinning and multi-path solu-
tions, several hybrid solutions have also emerged, in-
cluding DNS-Based Authentication of Named Entities
(DANE) [29] and Sovereign Keys (SKs) [16].

Each of the above techniques has its own strengths and
weaknesses (discussed in detail in [8]), but their com-
mon characteristic is that they focus on enforcing proper
server authentication. That is, for each TLS connection
to a particular web server, they strive to make sure that
the client can differentiate between the legitimate server
and a MITM attacker. In order to achieve that, they as-
sume that the certificate used by the attacker is differ-
ent from the legitimate one, which is indeed the case for
MITM+certificate (but not MITM+key) attackers.
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3.2 Our Proposal: SISCA
3.2.1 Main Concept

The fact that strong client authentication alone cannot
effectively prevent MITM attacks with the goal of user
impersonation in web applications, raises the following
question. Is there a way to somehow still benefit from
strong client authentication with respect to addressing
MITM attacks, or is server authentication (like the so-
lutions mentioned in Section 3.1) the only way to solve
this problem?

To answer, we first make the following observation.
In the context of web applications, a MITM attacker can
perform user impersonation via two approaches:

1. The conventional MITM attack, through which the
attacker compromises user’s credentials and uses
them for impersonation. This attack can be effec-
tively prevented with strong authentication e.g., us-
ing Channel ID-based protocols (Figures 1, 2).

2. The MITM-SITB attack, presented in Section 2.4
(Figures 3, 4, 5). As discussed in Section 2.6, client
authentication alone cannot prevent this attack.

For the MITM-SITB attack to be successful, the user’s
browser needs to communicate with two different enti-
ties, namely the attacker and the target web server. Com-
municating with the attacker is, of course, necessary for
injecting the attacker’s script to the browser through the
intercepted TLS connection. In addition, communication
with the target server is essential, so that the attacker ac-
cesses the user’s account and data, through her script.

As a result, we can detect and prevent this attack by
making sure that the browser communicates only with
one entity, either the legitimate server or the attacker, but
not with both, during a browsing session (a browsing
session is terminated when the user closes the browser).
In other words, we need to enforce server invariance.
When combined with strong client authentication (e.g.,
Channel ID-based), which stops the conventional attack
approach, this technique manages to effectively thwart
MITM attacks. Figure 6 illustrates the concept.

Even though server invariance is a weaker property
than server authentication, it is nonetheless easier to
achieve, as no a priori trust is required. In contrast, in
server authentication some form of initial trust is essen-
tial so that the client can properly authenticate the server.

From the above, it follows that by leveraging strong
client authentication, it suffices to enforce server invari-
ance, instead of server authentication, in order to protect
against MITM attacks, such that the attacker cannot im-
personate the user to the legitimate server.. In the remain-
ing section we present a novel solution, called Server
Invariance with Strong Client Authentication (SISCA),

MITM$SITB)prevented)by)
server)invariance

Conventional)MITM)prevented)by))
strong)client)authentication))
(e.g.,)Channel)ID$based)

Figure 6: TLS MITM attacks in web applications can be
thwarted by combining strong client authentication with
server invariance.

which stems from the above result. SISCA is able to re-
sist MITM+certificate attacks, offering advantages com-
pared to existing proposals (see Section 3.2.7), as well
as MITM+key attacks under the assumption that the at-
tacker does not persistently compromise the server (see
Section 3.2.2). The details of our solution follow below.

3.2.2 Assumptions

In SISCA we make the following assumptions. First,
strong client authentication, which prevents the conven-
tional way of implementing MITM attacks (Figures 1, 2),
is in place. Specifically, we assume that Channel ID-
based client authentication is deployed. As mentioned
before, Channel IDs are already experimentally sup-
ported in Google Chrome. Moreover, FIDO U2F lever-
ages Channel IDs, as described in Section 2.3, so it is
likely that Channel ID-based client authentication will
become available in the foreseeable future.

Second, we assume that the legitimate web servers,
that implement SISCA, support TLS with forward se-
crecy by default [28, 30, 35]. As we discuss below, this
is only required for preventing MITM+key attacks (not
relevant for MITM+certificate attacks). Moreover, we as-
sume that TLS is secure and cannot be broken by attacks,
such as those surveyed in [8].

We finally assume that the MITM+key attacker does
not gain persistent presence on the target web server’s
side. As we discuss later, this enables SISCA to re-
sist server key compromise (i.e., MITM+key attackers)
through frequent rotation of the server secrets that are
used in SISCA (Section 3.2.6). We also note that if an
attacker gained persistent control over the target server,
she would not need to resort to MITM attacks to compro-
mise the users’ accounts, but at the same time she would
increase the probability of being detected.

3.2.3 Basic Protocol

We begin describing how SISCA works, using
www.example.com as our running example. We follow
a structural approach, meaning that we start with a basic
version of our protocol, described in this section. Then,
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Figure 7: Basic SISCA protocol.

in subsequent sections, we incrementally add features.
We note that the presented protocol is simply one way of
realizing server invariance. In particular, it makes use of
symmetric cryptography (message authentication codes)
in order to avoid keeping per-client state on the server.

The protocol is implemented in the application layer
over established TLS sessions via a new HTTP header,
named X-Server-Inv, which is used for transmitting
the protocol messages. For the protocol to be secure,
on the client side this header is controlled solely by the
browser. It cannot be created or accessed programmati-
cally via scripts (similar to cookie-related headers [3]).

Figure 7 illustrates the protocol, assuming no at-
tack. Prior to the protocol execution, the server
(www.example.com) generates two keys ks1 and ks2,
called SISCA keys. The same SISCA keys are used for
all protocol executions (i.e., not for a specific client) and
are never disclosed to other parties. As discussed in sec-
tion 3.2.6, these keys can be frequently rotated, and this
is how SISCA can also resist MITM+key attackers (as-
suming no persistent server compromise). Moreover, re-
call that the server and client deploy Channel ID-based
authentication. Each TLS connection will therefore have
a Channel ID cidb, that is created by the client’s browser.
The protocol consists of the following two phases.
Initialization. The first phase, called initialization, oc-
curs once the browser establishes a TLS connection to
www.example.com, for the first time in a browsing ses-
sion (upper connection in Figure 7). The browser picks
a random number rb. It then sends 〈‘Init’,rb〉 to the
server (‘Init’ is a string constant), within the first HTTP
request3 over that connection. Upon receiving this mes-
sage, the server chooses a random number rs and com-
putes the following message authentication tags:

t1 = MAC(ks1, ‘1’|rb|rs|cidb) (1)
t2 = MAC(ks2, ‘2’|rb|rs|cidb) (2)

3Note that this is a request that browser would anyway submit, i.e.,
required for loading the web page. It is not an extra request.

where ‘1’ and ‘2’ are strings constants. Notice that the
server binds the computed tags to the browser’s Channel
ID cidb. rb, rs and the MAC tags will be used in subse-
quent TLS connections to verify server invariance.

Finally, the server sends 〈rs, t1, t2〉 to the browser
within its first HTTP response. The browser stores
〈rb,rs, t1, t2〉, while the server does not store any client-
specific information. At this point, the initialization
phase is complete. Subsequent HTTP requests and re-
sponses over that particular TLS connection do not in-
clude an X-Server-Inv header.
Invariance Verification. The second phase, called in-
variance verification, takes place upon every subsequent
TLS connection to www.example.com, which occurs
within the same browsing session (lower connection in
Figure 7). Like in the first phase, the protocol messages
are exchanged within the first HTTP request/response
pair. The browser sends 〈‘Veri f y’,rb,rs, t1〉 to the server,
as part of the first request. After receiving the request,
and before processing it, the server first checks if

t1
?
= MAC(ks1, ‘1’|rb|rs|cidb). (3)

Here, cidb corresponds to the Channel ID of the TLS
session within which the protocol is currently being exe-
cuted, which, if under attack, might differ from the Chan-
nel ID that was used in the initialization phase. If the
check passes, the server computes

t ′2 = MAC(ks2, ‘2’|rb|rs|cidb), (4)

processes the received request, and passes 〈t ′2〉 within
the HTTP response to the browser. Finally, the browser
checks if t ′2

?
= t2 and if it succeeds, the server and the

browser conclude that they are not under a MITM attack.
Analysis When Under Attack. Figure 8 illustrates how
the protocol detects and prevents MITM attacks. Recall
that, due to the usage of Channel ID-based authentica-
tion, the attacker cannot perform the conventional attack
(Figures 1, 2) – the attacker’s TLS sessions will have a
different Channel ID than the client’s and will thus be re-
jected. Instead, she has to execute a MITM-SITB attack.

In Figure 8 we illustrate two possible attack scenar-
ios and we show why the attacker fails in both. In Fig-
ure 8a the attacker intercepts the verification phase of
SISCA. Since the attacker didn’t participate in the ini-
tialization phase of the protocol, she does not know the
correct MAC response t2 to the client’s challenge. More-
over, since she does not have access to ks2, she cannot
calculate the correct t2 either (Eq. (4)). As a result, the
user’s browser rejects the attacker’s response and termi-
nates the session, notifying the user (no user decision is
required). Even if the attacker pushes a malicious script
in her response, it will not get a chance of being executed.
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Figure 8: Resilience of SISCA to MITM-SITB (conventional MITM is prevented by Channel-ID based authentication).

In the second scenario, depicted in Figure 8b,
the attacker intercepts the first TLS connection to
www.example.com. She thus executes the initialization
phase with the browser and injects her script, which is ex-
ecuted within the web origin of www.example.com. To
successfully complete her attack, the attacker needs to let
a subsequent TLS connection reach the legitimate server,
and access the user’s account via that connection.

After the browser establishes a connection with the le-
gitimate server, the two of them execute the invariance
verification phase, as part of the first HTTP request/re-
sponse pair. The server, before processing the HTTP
request (which might as well be malicious), checks
whether Condition (3) is true. Since the attacker does
not have access to key ks1, she could not have computed
the correct t1 (Eq. (1)). Thus, during the initialization
phase, she sends a t1 value to the browser that is not
the correct one. Consequently, Condition (3) will not
be satisfied. In this case the server does not process
the request, and instead notifies the browser by send-
ing an empty HTTP response containing 〈‘Alert’〉 in the
X-Server-Inv header. This indicates violation of the
server invariance and the browser aborts the session.

We remark that in the second scenario, it is the legit-
imate server that checks server invariance, detects the
ongoing MITM attack and notifies the browser. This is
important in order to prevent even a single malicious re-
quest from being accepted and processed by the server.

We conclude our analysis, with a few remarks that are
relevant for both of the scenarios described above. First,
note that the attacker cannot relay any of the necessary
MAC computations to the legitimate server. In other
words, she cannot manipulate the server to compute for
her the values needed for cheating in the protocol. This is
because the server binds all its computations to the chan-
nel ID of the client with whom it communicates (the at-
tacker’s channel ID will be different from the user’s).

Second, note that the protocol is secure so long as the
attacker cannot “open” already established TLS connec-
tions between the browser and the legitimate server (i.e.,
connections that she chose not to intercept). If she could
do that, she would be able to extract the correct values
of both t1 and t2 and successfully cheat. Recall that, the
MITM+key attacker holds the private key of the legiti-
mate server. Therefore, in order to prevent such an at-
tacker from eavesdropping on already established TLS
connections, it is essential that these connections have
TLS forward secrecy enabled.

Third, the attacker can choose not to reply at all, when
executing the protocol with the user. This essentially
leads to a Denial of Service (DoS) attack. However, such
attacks can already be achieved even by attackers less
powerful that those considered here. That is, attackers
that cannot perform TLS MITM attacks, but can block
network traffic between the browser and the server.
Different Origins. The SISCA protocol execution is
guided by the same-origin policy [5]. In particular,
SISCA is executed independently, i.e., different proto-
col instances, when loading web pages and documents
that belong to different origins. For example, assume
that the browser navigates to www.example.com for the
first time in the current browsing session. Then, a new
instance of SISCA will be created for this origin and
its initialization phase will be executed on the first TLS
connection. If the browser further navigates to pages
belonging to www.example.com, and this triggers the
creation of new TLS connections by the browser, then
for those connections the browser will execute the invari-
ance verification phase of the previously created SISCA
instance corresponding to www.example.com (same ori-
gin). When the browser navigates to another website
(different origin), say www.another.com, then a new in-
stance of SISCA will be created and used for the loading
of documents from that origin (assuming that this is the
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Figure 9: SISCA adapted for cross-origin communica-
tion (both origins belong to the same entity), when the
browser uses a different Channel ID for each origin. In
this example www.example.com performs a cross-origin
request to examplestatic.com.

first visit to www.another.com in that browsing session).
Also any HTTP redirections during navigation that lead
to different origins will cause the corresponding SISCA
instances for those origins to be created and used.

3.2.4 Cross-Origin Communication

Until now we assumed that accessing the web pages of
www.example.com involves communication only with
that domain, i.e., web origin. However, this is not a realis-
tic scenario in today’s web applications. Many websites
perform cross-origin requests (e.g., to load resources), ei-
ther to subdomains, or even different top-level domains.
SISCA can accommodate for such scenarios so long as
all the involved domains belong to, and are administered
by the same entity, such that the required SISCA keys,
ks1 and ks2, can be shared across all relevant servers.

Therefore, for cross-origin communication the
browser uses the SISCA instance corresponding to the
initiating origin. For example, assume that a page loaded
from www.example.com performs a cross-origin request
to static.example.com. The browser will create a
TLS connection to static.example.com and will
execute the invariance verification phase of the SISCA
instance that corresponds to www.example.com. Any
potential HTTP redirections will also use the SISCA
instance of the initiating origin, www.example.com.
Different Channel IDs. The basic protocol we de-
scribed in Section 3.2.3 also works in the cross-origin
communication scenario, provided that the TLS Channel
ID used by the browser is the same. The Channel ID spec-
ification draft already recommends using the same Chan-
nel ID for servers within the same top-level domain [4]
(to account for top-level domain channel-bound cookies).
For example, the browser should use the same Channel

ID for www.example.com and static.example.com.
Nevertheless, for privacy reasons, the specification rec-
ommends using different Channel IDs for different top-
level domains. In such cases, SISCA has to account for
using different Channel IDs across domains, when cross-
origin communication takes place.

Figure 9 depicts how the protocol works in such a
scenario. The browser navigates to www.example.com,
and starts a new SISCA instance for that origin. The
browser uses Channel ID cidb (with public key pkb, and
private key skb). At some later point in time, the page
loaded from www.example.com performs a cross-origin
request to examplestatic.com, which is controlled by
the same entity. Nevertheless, since it corresponds to a
different top-level domain, the browser uses a different
Channel ID, say cid′

b (with pk′b, sk′b being the correspond-
ing public/private key pair). In this case, although the
initialization phase of SISCA was executed using cidb,
the invariance verification phase will have to be executed
over a TLS connection with Channel ID cid′

b.
As Figure 9 shows, the browser needs to tell the server

(examplestatic.com) to use cidb instead of cid′
b, but

do so in a secure way. To achieve this, the browser en-
dorses cid′

b, by signing it with skb, and thus proving to
the server that it owns the private keys of both Channel
IDs cidb and cid′

b. The browser extends the ‘Veri f y’ mes-
sage by appending cidb and a signature over cid′

b (i.e., the
Channel ID of that TLS connection) and the rest of the
message parameters using skb. The server, before pro-
cessing the request, verifies the signature on cid′

b using
the supplied cidb (i.e., pkb). If it passes, then the server
uses cidb for the subsequent steps of the invariance veri-
fication phase, which remain unchanged.
Overlapping Cross-Origin Access. Browsers typically
send multiple HTTP requests over the same network con-
nection (persistent connections [21]). Due to the ex-
istence of cross-origin communication, a TLS connec-
tion to a particular domain, say static.example.com,
can be used by the browser to transmit cross-origin re-
quests to static.example.com made by different ini-
tiating origins. For example, the browser uses the same
TLS connection to static.example.com, to transmit,
first, a request originating from a document belong-
ing to www.example.com and then, a request originat-
ing from a document belonging to shop.example.com

(we still assume that all three domains belong to the
same entity). In this case, the TLS connection to
static.example.com has to be verified using SISCA
for both initiating domains, independently.

In the above scenario, the browser executes the in-
variance verification phase with the SISCA instance
of www.example.com, upon establishing the TLS con-
nection to static.example.com and sending the first
HTTP request, originating from www.example.com.
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Subsequently, when the browser wants to reuse the
same connection to send a cross-origin request from
shop.example.com to static.example.com, it once
again executes the invariance verification phase, only this
time with the SISCA instance of shop.example.com.
This takes place upon transmitting the first HTTP request,
which originates from shop.example.com.
Origin Change. A web page is allowed to change
its own origin (effective origin) to a suffix of its
domain, by programmatically setting the value of
document.domain [40]. This allows two pages be-
longing to different subdomains, but presumably to
the same entity, to set their origin to a common
value and enable interaction between them4. For ex-
ample, a page from www.example.com and a page
from shop.example.com can both set their origin to
example.com. In such a case, the attacker can attack
the user account at shop.example.com, by intercepting
the first connection to www.example.com (or any other
example.com subdomain), or vice versa.

To prevent such an attack, the browser has to verify
that server invariance holds across each pair of origins
that change their effective origin to a common value, be-
fore allowing any interaction between them. Each origin
has its own SISCA instance established, and we must en-
sure that both SISCA instances were initialized with the
same remote entity. This can be achieved by running
the invariance verification phase of both instances over
the same TLS connection (established to either origin).
The browser can reuse an already established and veri-
fied connection with one origin, and just verify the con-
nection with the SISCA instance of the other origin. If
no such connection exists at that time, then the browser
can create a new one to either origin and execute the in-
variance verification phase of both SISCA instances. If
there is no actual HTTP request to be sent at that time,
the browser can make use the HTTP OPTIONS request.
Partial Support and Downgrade Attacks. SISCA must
be incrementally deployable, which means that it must
maintain compatibility with legacy web servers, without
compromising the security of the SISCA-enabled servers.
Moreover, websites must be able to opt for partial sup-
port. As an example, a domain implements SISCA but
still needs to perform cross-origin requests to a another
domain, called incompatible, that either does not support
SISCA, or supports it but belongs to a 3rd party, i.e., it
has different SISCA keys (we discuss on the security of
such design choices at the end of this section).

The above can be achieved by allowing exceptions. If
a particular domain does not support SISCA (including
legacy servers that are not aware of SISCA at all), then
it can simply ignore the X-Server-Inv header, sent dur-

4Both pages have to explicitly set document.domain.
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Figure 10: Preventing downgrade attacks (same-origin
scenario).

ing the initialization phase, and reply without including
any SISCA-related information. This will be received by
the browser as an exception claim. Moreover, if a domain
supports SISCA but performs cross-origin communica-
tion with one or more incompatible domains, then it can
append an exception list in its response, during the initial-
ization phase, designating the incompatible domains.

However, if the attacker intercepts the initialization
phase of the protocol, then she could perform a protocol
downgrade attack, by providing false exception claims
or exception lists in her response.

To prevent downgrade attacks, the browser should ver-
ify any exception that was received during the initializa-
tion phase, upon every subsequent connection. If the
attacker intercepted the initialization phase and replied
with fake exception claims, then if any of the subsequent
connections reaches the legitimate server, the browser,
with the help of the legitimate server, would detect the
attack. This scenario is illustrated in Figure 10.

Regarding cross-origin communication, in order to
help SISCA-enabled legitimate servers detect fake excep-
tion lists previously received by the browser, SISCA pro-
tocol messages should include (in the X-Server-Inv

header) the origin associated with the SISCA instance.
Suppose for example, that the browser executes the
initialization phase with www.example.com which sup-
ports SISCA (executes the protocol normally), but also
includes an exception list stating that it performs cross-
origin requests to shop.example.com which does not
support SISCA. Whenever the browser connects to
shop.example.com to perform a cross-origin request
from www.example.com, the browser includes the ori-
gin of the SISCA instance (www.example.com) and asks
shop.example.com whether it indeed does not sup-
port SISCA with respect to that origin. Assuming that
the connection was not intercepted, shop.example.com
can leverage the supplied origin information to decide

11



whether the exception reported by the browser is valid.
If not, then it should abort processing the request and
notify the browser of the detected attack. Note that the
above assumes that each domain is aware of the domains
that is compatible to execute SISCA with (i.e., domains
with which it shares the same SISCA keys), which is not
difficult to implement.
3rd Party Content Inclusion. As mentioned above, a
domain, say www.example.com, implementing SISCA
can still perform cross-origin requests to incompatible
3rd party domains as long as it designates those domains
as exceptions for the protocol. This of course means that
TLS connections to those domains will not be protected
by SISCA, and could be MITM-ed by the attacker to per-
form a user impersonation attack on www.example.com.
This can be indeed the case if www.example.com in-
cludes active content [39] (in particular, JavaScript and
CSS) from those domains. Embedding JavaScript from
3rd party sites is generally not recommended, and usu-
ally there are ways of avoiding it [41]. Furthermore, de-
pending on the use case, it may be possible to use iframes
to isolate active 3rd party content instead of directly em-
bedding it within the target origin, in order to mitigate
the risk (the sandbox attribute can help even further).

The embedding of passive content only, such as im-
ages, does not give the attacker the ability to execute
her code within the target origin. Hence, with respect to
preventing user impersonation, such embeddings are safe
and do not undermine the security offered by SISCA.

3.2.5 Resource Caching

Caching of static resources, such as scripts and images,
helps reduce web page loading times as well as server
resource consumption. However, the way caching is cur-
rently implemented [21, 24] can give a MITM attacker
the opportunity to subvert SISCA.

In brief, during one browsing session, the attacker in-
tercepts all TLS connections and ensures that a legiti-
mate, yet maliciously modified script that is required by
the target web server is cached by the browser. Then, dur-
ing a second browsing session, the attacker lets all con-
nections pass through. When the legitimate web page
asks for the inclusion of the aforementioned script, the
browser will load it from cache, essentially enabling the
execution of the attacker’s malicious code. The attacker
will thus be able to access the target web server.

To prevent the above attack, we need to change the
way caching is performed for active content that would
enable this attack (JavaScript and CSS files). We need to
make sure that the browser always communicates with
the server in order to verify that the cached version is
the most recent and also the correct one (i.e., not mali-
ciously modified). Thus, caching of such files should be
performed only using Entity Tags (ETags) [21], but in a

more rigorous way than specified in the current HTTP
specification. In particular, if a web server wishes to in-
struct a browser to cache a JavaScript or CSS file, the
server should use an ETag header which always contains
a cryptographic hash of the file. The browser, before us-
ing, and caching the file should verify that the supplied
hash is correct. Subsequently, before the browser uses
the cached version of the file, it first verifies that the lo-
cal version matches the version of the server (using the
If-None-Match header, as currently done).

3.2.6 Key Rotation

In SISCA, the server has a pair of secret keys, ks1 and
ks2. To resist key compromise (i.e., MITM+key attack-
ers), these keys, unlike the server’s private key, can be
easily rotated. This is because the SISCA keys need not
undergo any certification process, and can thus be rotated
frequently, e.g., weekly, daily, or even hourly. The more
frequent the rotation the smaller the attacker’s window of
opportunity to successfully mount MITM attacks.

The key transition, of course, has to be performed such
that it does not break the execution of active browser
SISCA instances that rely on the previous keys. On a
high level, one way of achieving this, is to have the server
keep previous keys for a certain period of time (i.e., allow
partial overlap of keys). This can enable browsers with
active SISCA instances that rely on the previous keys
to securely transition to new protocol parameters, i.e., t1
and t2, computed using the new server SISCA keys.

For domains served by a single machine, this is only a
matter of implementing the corresponding functionality
in the web server software (e.g., Apache). For multiple
domains controlled by the same entity and served by mul-
tiple machines, located in the same data center or even in
different data centers across the world, arguably more ef-
fort is required in order to distribute the ever-changing
keys and keep the machines in sync. Nevertheless, a sim-
ilar mechanism is needed for enabling TLS forward se-
crecy while supporting TLS session tickets [34]. Accord-
ing to Twitter’s official blog [30], Twitter engineers have
implemented such a key distribution mechanism.

3.2.7 SISCA Benefits and Drawbacks

SISCA offers the following advantages regarding
MITM+certificate attack prevention. Compared to multi-
path probing solutions, SISCA does not rely on any third
party infrastructure, trusted or not. Since SISCA is built
on top of Channel ID-based authentication, it has to as-
sume that no MITM attack takes place during user en-
rollment. Nevertheless, after this step, no “blind” trust is
required when the user uses a new or clean browser, con-
trary to pinning solutions (except preloaded pins). More-
over, in SISCA no user decision is necessary whenever
server invariance violation is detected. This can occur

12



either due to an attack or due to an internal server fault,
thus the browser can abort (possibly after retrying) the
session. SISCA is scalable since it can be deployed incre-
mentally by web providers (assuming browser support).
Finally, SISCA resists MITM+key attacks, assuming that
the attacker does not persistently compromise the server.

The main disadvantage of SISCA is that it only pro-
tects against MITM attackers whose goal is to imperson-
ate the user to the server. This is arguably the most com-
mon and impactful attacker goal. SISCA, however, does
not protect against attackers whose objective is to pro-
vide fake content to the user. In such cases the attacker
can simply intercept all connections and interact with the
user by serving her own, fake content. In contrast, the
techniques that focus on ensuring proper server authen-
tication can protect against such attacks (when consider-
ing a MITM+certificate attacker). As a result, a recom-
mended strategy would be to use SISCA in conjunction
with any of these techniques. Finally, SISCA requires co-
ordination between an entity’s different domains, in the
sense they must have access to the same SISCA keys if
cross-origin communication between these domains is re-
quired. This, depending on the scale of the entity, can be
challenging from an engineering perspective.

3.2.8 SISCA as a TLS Extension

We chose to implement SISCA at the application layer,
using HTTP headers. Alternatively we could implement
it as a TLS extension, i.e., at the transport layer. Nev-
ertheless, the security of SISCA depends on the secure
channel established by TLS. Thus, if we were to imple-
ment SISCA as a TLS extension, the protocol messages
should be exchanged only after the TLS handshake is
completed and before the exchange of useful application
data (HTTP traffic) begins. This would incur additional
latency (one additional round trip per TLS connection).

Moreover, there may exist cases (e.g., in CDN and
cloud services) where the server-side of the TLS connec-
tion is handled by a TLS terminator which belongs to a
different entity (the service provider) than the actual web
server that is responsible for handling the incoming web
traffic (the service customer). The responsible entity for
executing the SISCA protocol is the web server and not
the TLS terminator. If SISCA were to be implemented at
the transport layer then there would have to be a commu-
nication protocol in place, such that the TLS terminator
receives the SISCA keys of the third web server, or that
the TLS terminator can communicate the SISCA proto-
col messages to the web server.

3.2.9 Interaction With Other Web Technologies

SPDY. SPDY [6] multiplexes concurrent HTTP requests
over the same TLS connection to improve network per-
formance. In order for SISCA to be compatible with

the general SPDY functionality, the browser must ensure
that before the SISCA protocol is completed successfully
(i.e., the first request/response pair is exchanged), no fur-
ther requests are pushed to the SPDY connection.

Furthermore, SPDY IP Pooling allows, under certain
circumstances, HTTP sessions from the same browser to
different domains (web origins) to be multiplexed over
the same connection. Version 3 of SPDY is compatible
with Channel IDs (recall that different Channel IDs may
need to be used for different origins, but now there is
only one TLS connection). SISCA is compatible with IP
Pooling, as long as the browser manages the multiplexed
HTTP sessions independently, with respect to the execu-
tion of the SISCA protocol.
WebSocket. SISCA is compatible with the WebSocket
protocol [18], when the latter is executed over TLS. This,
of course assumes that (i) Channel IDs are used for the
WebSocket TLS connections, (ii) the SISCA protocol is
executed during the WebSocket handshake (i.e., first re-
quest/response pair), and (iii) JavaScript is not be able to
manipulate the X-Server-Inv header.
Web Storage. Web Storage [27] is an HTML5 feature
that allows a web application to store data locally in the
browser. SISCA can protect code.sessionStorage

(temporary storage), but does not prevent a MITM
attacker from accessing information stored in
window.localStorage (permanent storage), so
no sensitive information should be stored there.
Offline Web Applications. HTML5 offers Offline Web
Applications [26] which allow a website to create an of-
fline version, stored locally in the browser. As with reg-
ular file caching (see Section 3.2.5), this feature can be
leveraged by the attacker to bypass SISCA. Making this
feature secure requires the introduction of design con-
cepts similar to what we proposed for regular caching.
Other Client-Side Technologies. The attacker might at-
tempt to leverage various active client-side technologies
besides JavaScript, such as Flash, Java and Silverlight.
Such technologies allow the attacker to create direct TLS
connections to the legitimate server. Some of the APIs
offered by those technologies also allow the attacker to
forge and arbitrarily manipulate HTTP headers, includ-
ing cookie-related headers or the X-Server-Inv header.
However, provided that Channel IDs and SISCA are not
integrated with these technologies5, the attacker will not
be able to impersonate the user and compromise his ac-
count on the legitimate server.

3.3 Prototype SISCA Implementation
We created a proof of concept implementation of the

basic SISCA protocol, with additional support for cross-

5This, for example, means that a TLS connection created by such
an API will have to create and use its own Channel IDs, and that the
browser will not execute SISCA over those connections.
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origin communication, provided that the same Channel
ID is used. On the server side we use Apache 2.4.7
with OpenSSL 1.0.1f, patched for Channel ID support.
SISCA is implemented as an Apache module and con-
sists of 313 lines of C code. On the client side we imple-
ment SISCA by modifying the source code of Chromium
35.0.1849.0 (252194) and the WebKit (Blink) engine.
We make a total of 319 line modifications (insertion-
s/deletions) in existing files and we add 6 new files con-
sisting of 418 lines of C++ code.

We use Base64 encoding for binary data transmis-
sion. When using 128-bit random values (rb and rs)
and HMAC-SHA256 (i.e., 256-bit tags, t1 and t2), the
client’s lengthiest message is 114 bytes long, plus the ori-
gin of the SISCA instance that has to be sent as well. The
server’s lengthiest message is 132 bytes long.

We finally verified that our implementation success-
fully blocks our proof of concept MITM-SITB attack.
Performance Evaluation. To assess the performance
overhead imposed by SISCA (the server invariance part,
not the overhead due to Channel IDs), we measured
the latency of HTTP request/response roundtrips, with
SISCA enabled and disabled. For the measurements we
used a 4KB HTML page, as well as an 84KB jQuery
compressed file, retrieved over a domain that we set up
as being “cookieless”. Chromium ran on a Macbook Pro
laptop (2.3GHz CPU, 8GB RAM) and Apache ran on
a typical server machine (six core Intel Xeon 2.53GHz,
12GB RAM), connected through the campus network.

We found that the overhead of the basic SISCA proto-
col is negligible, as no increase in latency was measured
(averaged over 300 repetitions). Moreover, the HTTP re-
quest to the cookieless domain was able to fit in a single
outgoing packet (a typically desired objective).

Regarding cross-origin communication over different
Channel IDs (see Section 3.2.4), approximately 180
bytes are further added to the request (one ECDSA pub-
lic key and signature in Base64 encoding), which can still
fit in a single packet (for cookieless domain requests).
Furthermore, the server has to perform one ECDSA sig-
nature verification. This overhead could be minimized,
if the browser used the same Channel ID, not only for
subdomains of the same top-level domain, but also for
domains belonging to the same entity. Although we do
not elaborate on this idea here, this could be heuristically
determined by the browser, based on which domains are
involved in the execution of the same SISCA instance.

Finally, recall that a SISCA instance is executed only
once per TLS connection and not with every HTTP re-
quest/response.

4 Related Work
A significant amount of research in the past years sur-

rounds the security of the TLS protocol, in the context

of web applications (i.e., HTTPS), as well as web server
and client authentication. A comprehensive overview is
provided in [8], which, among others, surveys existing
primitives that try to enhance the CA trust model in or-
der to more effectively address MITM attacks.

The use of server impersonation for the compromise
of the user’s account by serving the attacker’s script to
the victim’s browser was first introduced in [32]. In this
attack, called dynamic pharming, the attacker exploits
DNS rebinding vulnerabilities in browsers, by dynami-
cally manipulating DNS records for the target server, in
order to force the user’s browser to connect either to the
attacker (to inject her script) or to the legitimate server.

MITM-SITB is therefore very similar to dynamic
pharming in that it leverages server impersonation to
serve the script to the victim’s browser. Dynamic pharm-
ing focuses on the attacker’s ability to control the client’s
network traffic via DNS attacks, while in this paper we
do not make such assumptions. Instead, MITM-SITB
can leverage any form of MITM where the attacker con-
trols the communication to the client (e.g., an attacker sit-
ting on a backbone) and relies only on the behavior of the
browser to re-establish a connection (with the legitimate
server) once the attacker closes the connection within
which she injected her script to the browser. Dynamic
pharming can equally be used to successfully attack
Channel ID-based solutions. Recently, the act of leverag-
ing script injection via server impersonation against TLS
client authentication was also discussed in [48].

We note that MITM-SITB (as well as dynamic pharm-
ing) differs from Man-In-the-Browser (MITB) [45, 52].
The latter implies that the attacker is able to take full con-
trol of the browser by exploiting some vulnerability, or
installing a malicious browser plugin. In MITM-SITB,
the attacker runs normal JavaScript code within the target
web origin and only within the boundaries established
by the JavaScript execution environment. Therefore, no
browser exploitation is required. Similarly, MITM-SITB
is not the same as Cross-Site-Scripting (XSS) [44, 54], as
there is no vulnerability in the pages served by the target
server that the attacker exploits to inject her code. We
also stress that SISCA does not prevent MITB or XSS
attacks.

To prevent dynamic pharming, the locked same-origin
policy (SOP) was proposed [32]. Weak locked SOP
considers attackers with invalid certificates, while strong
locked SOP also defends against attackers with valid,
mis-issued certificates. Strong locked SOP refines the
concept of origin by including the public key of the
server and can also accommodate for multiple server
keys. It is a form of key pinning, with the particular-
ity that instead of rejecting TLS connections with not
endorsed server public keys, strong locked SOP isolates
web objects coming from such connections in a separate
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security context (i.e., different origin). Strong locked
SOP per se does not prevent a MITM attacker from
mounting a conventional MITM attack in order to imper-
sonate the user. A strong client authentication solution
should be used in conjunction, as with SISCA.

Locked SOP does not resist MITM+key attacks, as
SISCA does. More importantly, locked SOP is not able
to secure cross-origin active content inclusion. The risks
involved when a web page imports active content, such
as JavaScript, that can be intercepted and modified by an
attacker are discussed in [31]. SISCA can secure cross-
origin inclusions as long as the involved domains belong
to the same entity and thus share the same SISCA keys.

The current Channel ID specification [4] was recently
found to be vulnerable to so-called “triple handshake at-
tacks” [7], that affect TLS client authentication in gen-
eral. A MITM attacker can exploit a protocol flaw during
TLS session resumption in order to trick the legitimate
server into believing that the attacker holds the private
key that corresponds to the user browser’s Channel ID.
This allows the attacker to mount a conventional MITM
attack in order to impersonate the user to the server. The
mitigation proposed in [7] has already been implemented
in the version of Chromium that we used in this work.
SISCA assumes that Channel IDs work as expected and
hence eliminating triple handshake attacks is essential
for its security. However, we note that eliminating triple
handshake attacks does not prevent MITM-SITB attacks.

Server invariance is based on sender invariance which
was formally defined in [14]. SISCA is inspired by this
notion, assuming that the server’s authenticity cannot be
established via server certificate verification and instead
trying to enforce server invariance.

5 Conclusion
In this paper we discussed the requirements to effec-

tively preventing TLS MITM attacks in the context of
web applications, when the attacker’s goal is to imper-
sonate the user to the legitimate server and gain access to
the user’s account and data. Striving to defeat this type of
attack is essential, especially given the recent revelations
that government agencies (e.g., the NSA) mount such at-
tacks in order to perform mass surveillance against users
of major internet services [15, 50].

We showed that strong client authentication alone,
such as the recently proposed Channel ID-based authenti-
cation, cannot prevent such attacks. Instead, strong client
authentication needs to be complemented with the con-
cept of server invariance, which is a weaker, yet easier
to enforce requirement than server authentication. Our
solution, SISCA, shows that server invariance can be im-
plemented with minimal additional cost on top of the
proposed Channel ID-based approaches, and can be de-
ployed incrementally, thus making it a scalable solution.

Given its security benefits, we believe that SISCA can
act as an additional, strong protection layer in conjunc-
tion with existing proposals that focus on amending to-
day’s server authentication issues, towards the effective
prevention of TLS MITM attacks.
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