
A Statistics-based Fundamental Model for
Side-channel Attack Analysis?

Yunsi Fei, A. Adam Ding, Jian Lao, and Liwei Zhang

1 Yunsi Fei Department of Electrical and Computer Engineering
Northeastern University, Boston, USA

Telephone: (617) 373-2039, Fax: (617) 373-8970
yfei@ece.neu.edu

2 A. Adam Ding Department of Mathematics
Northeastern University, Boston, USA

a.ding@neu.edu
3 Jian Lao Department of Electrical and Computer Engineering

Northeastern University, Boston, USA
jlao@ece.neu.edu

4 Liwei Zhang Department of Mathematics
Northeastern University, Boston, USA

a.ding@neu.edu

Abstract. Side-channel attacks (SCAs) exploit leakage from the physi-
cal implementation of cryptographic algorithms to recover the otherwise
secret information. In the last decade, popular SCAs like differential
power analysis (DPA) and correlation power analysis (CPA) have been
invented and demonstrated to be realistic threats to many critical em-
bedded systems. However, there is still no sound and provable theoretical
model that illustrates precisely what the success of these attacks depends
on and how. Based on the maximum likelihood estimation (MLE) theory,
this paper proposes a general statistical model for side-channel attack
analysis that takes characteristics of both the physical implementation
and cryptographic algorithm into consideration. The model establishes
analytical relations between the success rate of attacks and the crypto-
graphic system. For power analysis attacks, the side-channel character-
istic of the physical implementation is modeled as signal-to-noise ratio
(SNR), which is the ratio between the single-bit unit power consumption
and the standard deviation of power distribution. The side-channel prop-
erty of the cryptographic algorithm is extracted by a novel algorithmic
confusion analysis. Experimental results of DPA and CPA on both DES
and AES verify this model with high accuracy and demonstrate effec-
tiveness of the algorithmic confusion analysis and SNR extraction. We
expect the model to be extendable to other SCAs, like timing attacks,
and would provide valuable guidelines for truly SCA-resilient system de-
sign and implementation.
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1 Introduction

Nowadays, cryptographic primitives have been employed widely in various com-
puter systems as the security engine. Despite the mathematical security strength
of algorithms, it was found a decade ago that cryptosystems can be broken
through exploiting system information leakage of their physical implementa-
tions, such as power consumption and timing information. These side channel
attacks (SCAs) utilizing various leakage have posed serious realistic threats to
many critical embedded systems. The most widely adopted SCAs are Differen-
tial Power Analysis (DPA) [1] and Correlation Power Analysis (CPA) [2]. They
exploit the correlation between the intermediate data in algorithms and the
power consumption of implementations to reveal sensitive information. Other
variants of power analysis attacks presented include Mutual Information Attack
(MIA) [3], Partitioning Power Analysis (PPA) [4], etc. Besides power consump-
tion, leakage information like electromagnetic emanations [5, 6] and timing in-
formation [7] have also been exploited. Meanwhile, effective countermeasures at
different design levels have been proposed [8–10].

Along with the research on side-channel attacks and countermeasures, com-
mon security metrics and standard evaluation methodology are another impor-
tant line of research. Several generic metrics are proposed to evaluate the SCA
resilience of a cryptosystem, including number of measurements, success rate [11,
12], guessing entropy [13] and information theoretic metric [13, 14]. Among them
success rate is the ultimate metric that incorporates the effects of all factors in-
cluding algorithms, implementations, and attacks. It is defined as the probability
that a specific SCA succeeds under a certain leakage complexity. A low success
rate for a SCA indicates the cryptosystem’s high resilience against such SCA.

Intuitively, both the cryptographic algorithm and the physical implementation
would affect the SCA resilience of a cryptosystem. Intrinsic features instilled in a
cryptographic algorithm determines mathematically whether there exists SCA-
related properties in the algorithm and to what extent. Physical implementation
leaks a certain amount of SCA-related information, and the leaky quantity de-
pends on how secure the system is designed and implemented. It is a challenging
issue to accurately evaluate the influence of both the cryptographic algorithm
and physical implementation on the system’s SCA resilience.

Related Work: Although there has been some research efforts attempting to
address the above issues, the effects of the algorithm and implementation on an
side-channel attack were not clearly revealed, and a better quantitative model is
needed to fully understand the interactions among algorithms, implementations,
and attacks. Lacking of common metrics and standard evaluation methodologies
has started to hinder the further development of side-channel attack research
and practices. An approach is presented in [15] to model the signal-to-noise ra-
tio (SNR) of DPA of a cryptographic system, without showing how the SNR
determines the SCA resilience. In [16], the DPA efficiency is improved by ana-
lyzing the relation between the difference-of-means power consumption and key
hypotheses, without considering the characteristics of the algorithm. In [17] and
[18], a statistical model for CPA is presented, which does not take the correlation
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between different keys into account and thus is inaccurate (see analysis in Sec-
tion 4). Rivain [19] derived the success rate formula that takes into account the
correlation among keys. However, his formula does not specify the relationship
between SCA characteristics of the implementation and the cryptographic algo-
rithm. A unified framework for SCA security evaluation based on information
theory is presented in [13] with a security metric, mutual information, proposed.
However, the framework lacks quantitative analysis between the security metric
and success rate. Our study has found that the mutual information is just one
factor affecting the success rate, and we have found other contributing factors
explicitly. Work in [20] discusses the DPA-related behavior of SBox at algorithm
level and introduces a new notion of transparency order of an SBox, without
considering the implementation aspect.

Our contributions: This paper proposes a general statistical model for
side-channel attack analysis, giving an explicit success rate formula based on
maximum likelihood (ML) estimation. The model will provide better under-
standing of side-channel attacks on cryptosystems, and therefore more effective
and efficient evaluation methods. The success rate formula is the first one to ex-
plicitly decouple contributions from physical implementation and cryptographic
algorithm on the leakage. The SCA characteristic of physical implementation is
represented by signal-to-noise ratio (SNR), which is the ratio between the single-
bit unit power consumption and the standard deviation of power leakage. The
SCA-related property of a cryptographic algorithm is characterized by confusion
coefficients. Algorithmic confusion analysis was first introduced by us in [21] to
obtain confusion coefficients for DPA model, and then used in [22] to derive the
relation between the success rate of DPA and the confusion coefficients. This pa-
per extends the definition of confusion coefficients for a general Gaussian leakage
model, with the popular DPA and CPA models just as special cases. Confusion
matrices are generated to measure the statistical correlation between different
key candidates. The success rate formula provides a bound on the effectiveness
of a side channel attack on a cryptosystem under a given leakage model. The
DPA and CPA attacks are shown to be equivalent to ML-attacks with unknown
system parameters. The explicit success rate formula facilitates application of
multi-stage procedures combining SCAs on subkeys to recover the full key [23],
and can also be useful for security analysis of leakage-resilience schemes where
the security bounds on the subkeys are needed to derive the overall security
metric for the total system.

The rest of the paper is organized as follows. Section 2.2 first reviews the
typical SCA procedure, then presents our basic algorithmic confusion analysis
for DPA, and extends the confusion analysis for general leakage models. Section
3 proposes our statistical model for success rate, and its application to DPA
and CPA. The model is verified with experimental results on DES and AES in
Section 4. Section 5 discusses more implications of the model and its possible
applications. Finally conclusions are drawn in Section 6.
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2 Preliminaries

This section will present background on SCAs first and then algorithmic confu-
sion analysis for DPA and more general leakage models.

2.1 SCA Procedure

All SCAs undergo a common hypothesis test procedure as shown in Fig. 1. We
next exemplify the procedure with the earliest discovered and fundamental DPA
practice.

Key 

Hypotheses

Select 

Function
TestingCorrelation

Leakage
Pre-

processing

Fig. 1. Hypothesis test of SCA

• Leakage refers to the physical side-channel measurements L, e.g., waveforms
of power consumption collected from the target device. Denote the leakage
population as L = {l1, . . . , ln}, where lm (m=1, 2, . . ., n) is a leakage trace
measurement with a certain input, and n is the number of measurements.
Denote NM as the size of the input space. Successful SCA is a sampling
process with n << NM . Each lm is a time series with number of p points,
lm = {lm,1, . . . , lm,p}.
• Key hypotheses enumerate all possible values of the subkey k under attack, i.e.,
Nk candidates. Many symmetric block ciphers feature parallel computation
over subkeys and plaintext blocks, and therefore SCAs on such algorithms
can take the divide-and-conquer method to recover the subkeys one by one.
Throughout the paper we assume that SCAs recover subkeys, and leave full
key recovery for complexity analysis later.

• Select function V is a function of intermediate data d which is dependent on
both the input (known plaintext or ciphertext), x, and the key, k, denoted as
V = ψ(d) = ψ(x, k). For example, the intermediate data d can be the output
of a selected SBox. In DPA, V is a single bit of d, bd, at value 1 or 0. In CPA,
V can be a h-bit subset of d, with possible value in the range of {0, . . . , h}.
The leakage population has to go through a pre-processing stage to align the
traces, reduce noises, and select the time points of interest (PoIs) on the trace
that correspond to the select function.

• Correlation between the leakage L and the select function V under each key
hypothesis is computed for a specific attack. The correlation for DPA is the
difference-of-means (DOM) δ, i.e., the difference between the average power
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consumption of the two waveform groups partitioned with V = 1 and 0 under
a key guess. DOM is defined as:

δ =

∑
LV=1

NV=1
−
∑
LV=0

NV=0
(1)

where NV=1 is the number of leakage measurements with V = 1, and NV=0

the number of measurements with V = 0, NV=1 +NV=0 = n and n is the total
number of measurements. If the pre-processing keeps the whole or part of the
power trace, the DOM for a key guess is also a time series. The correlation for
CPA is the Pearson correlation [2], which can be written as:

ρ =
E{[V − E(V )][L − E(L)]}√

D(V )
√
D(L)

(2)

where D(V ) and D(L) are the variance of the select function and measure-
ments, respectively, and E{[V − E(V )][L − E(L)]} is the covariance between
them.
• Testing with the maximum likelihood method chooses the key hypothesis with

the maximum correlation as the correct key. In DPA, given sufficient number
of measurements, the peak DOM δc for the correct key kc converges to the
unit physical power consumption ε related to the bit bd under attack, written
as lim

n→∞
δc = ε, while the DOMs for incorrect keys are all much smaller, and

therefore the correct key is distinguished. In CPA, the correlation used in
testing is the Pearson correlation factor ρ. The correct key guess should yield
the largest ρ, approaching 1.

2.2 DPA Algorithmic Confusion Analysis

As described above, a SCA utilizes the leakage related to the select function
V = ψ(x, k). Two key hypotheses ki and kj have two corresponding V |ki and
V |kj . The behavior of V = ψ(x, k) under different keys ki and kj affects how
difficult it is for SCA to distinguish the keys using the leakage measurements.
In DPA, the select function is a single bit and V has only two possible outcomes
0 and 1. The probability that V |ki is different or the same with V |kj reveals
DPA-related property of the cryptographic algorithm.

Our previous work [21] defines the confusion coefficient κ for DPA over two
keys (ki, kj) as:

κ = κ(ki, kj) = Pr [(V |ki) 6= (V |kj)] =
N(V |ki) 6=(V |kj)

Nt
(3)

where Nt is the total number of values for the input x, and N(V |ki) 6=(V |kj) is
the number of occurrences (inputs) for which key hypotheses ki and kj result in
different V values. For three keys kh, ki and kj , we further define a three-way
confusion coefficient :

κ̃ = κ̃(kh, ki, kj)
= Pr [(V |ki) = (V |kj), (V |kh) 6= (V |ki)] .

(4)
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The three-way confusion coefficients are related to the two-way confusion coef-
ficients by the following Lemma which is proven in Appendix A (note the proof
is for the generalized three-way and two-way confusion coefficients introduced
in the following section, and also applies to the specialized DPA confusion coef-
ficients).

Lemma 1

κ̃(kh, ki, kj) =
1

2
[κ(kh, ki) + κ(kh, kj)− κ(ki, kj)].

2.3 General Algorithmic Confusion Analysis

Here we first extend the confusion coefficients to more general settings. In Sec-
tion 3, we then show that under a Gaussian leakage model, how the success
rate of the strongest attack (ML-attack) is decided by the confusion coefficients
κ(ki, kj) and the system side-channel signal-to-noise-ratio (SNR). The popular
DPA and CPA models become two special cases in this general approach.

In the DPA model above, the V has only two possible outcomes 0 and 1, and
therefore the probability that V differs under two different keys ki and kj cap-
tures the confusion property. In general, V can take more than two values. We
measurer the difference between the V values under the two keys by the expec-
tation of their squared distance. That is, we define a general two-way confusion
coefficient as:

κ(ki, kj) = E[(V |ki − V |kj)2]. (5)

Under the DPA model, E[(V |ki−V |kj)2] becomes Pr[(V |ki) 6= (V |kj)], show-
ing that the generalized definition (5) agrees with the special definition (3).

Similarly, we define two generalized three-way confusion coefficients as:

κ̃(kh, ki, kj) = E[(V |kh − V |ki)(V |kh − V |kj)] (6)

κ̃∗(kh, ki, kj) = E[(V |kh − V |ki)2(V |kh − V |kj)2]. (7)

It is easy to prove that definitions (6) and (7) both reduce to (4) under the DPA
model.

For the nonlinear SBoxes in commonly used block ciphers such as DES and
AES, with each key, the output of the SBox follows the same uniform distribu-
tion for uniformly distributed plaintext input x. That is, the select function V
distribution is uniform and key-independent as stated below.

Assumption 1 (Symmetric Key Assumption) For randomly uniformly distributed
plaintext x, the intermediate variable V has the same distribution under all keys.

That is, V |kc
d
= V |kgi, i = 1, ..., Nk − 1, where

d
= denotes that the two random

variables follow the same probability distribution.

Under this assumption, our general three-way confusion coefficients κ̃(kh, ki, kj)
are related to two-way coefficients: κ̃(kh, ki, kj) = 1

2 [κ(kh, ki)+κ(kh, kj)−κ(ki, kj)],
in the same way as in DPA model. The other three-way confusion coefficients
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κ̃∗(kh, ki, kj), however, cannot be explicitly related to two-way coefficients due
to its higher-order definition. We will see the usage of the two different three-way
confusion coefficients in Section 3.

We now apply the algorithmic confusion analysis to check the SCA-related
property of SBoxes. We first take DES as an example. The DES SBox has a 6-bit
input and 4-bit output, and the subkey used is 6-bit. Therefore, there are a total
of 26×(26−1)/2 = 2016 confusion coefficients κ(ki, kj) for a select function on an
SBox. For DPA on the first bit of the first DES SBox, the confusion coefficients
fall into following nine values:

{0.25, 0.3125, 0.375, 0.4375, 0.5, 0.5625, 0.625, 0.6875, 0.75}.

We define these values as characteristic confusion values of a DES SBox. We
believe they manifest some important SCA-related properties of the SBoxes.
The distribution of confusion coefficients is shown in Fig. 2.
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Fig. 2. Distribution of confusion coeffi-
cients κ(ki, kj) of DPA on DES SBox.
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Fig. 3. Distribution of confusion coeffi-
cients κ(ki, kj) of CPA on DES SBox.

Large confusion coefficients κ(ki, kj) indicates that under keys ki and kj , the
V values are different for a large portion of the inputs. Therefore, it is easier to
distinguish keys ki and kj from the side-channel leakage measurements. Smaller
κ(ki, kj) value would make the two keys to be more resilient to side-channel
attacks. However, small κ(ki, kj) would mean that ψ(x, ki) = ψ(x, kj) for most
of the time. Therefore, ψ(x, k) loses the encryption (diffusion) value for the two
keys. For that reason, an ideal encryption algorithm should have κ(ki, kj) = 0.5
for DPA. We see that, for our select function, not all κ(ki, kj)are0.5. So DPA
would be more effective for distinguish some pairs of keys ki and kj with large
κ(ki, kj) than other pairs. The overall mean of all the confusion coefficients
κ(ki, kj) is 0.5.

Similarly, the distribution of confusion coefficients for a CPA on the first DES
SBox is shown in Fig. 3, which is over 17 distinct values. In CPA on DES, the
select function is the 4 bits of an SBox output and h=4. The overall mean of
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κ(ki, kj)’s is 2, which is the value corresponding to the case when ψ(x, ki) and
ψ(x, kj) are statistically uncorrelated Hamming weights. Again, certain pairs of
keys ki and kj are easier to distinguish by the CPA than other pairs.

We also apply the confusion analysis to AES. Fig. 4 and Fig. 5 show the dis-
tribution of confusion coefficients for DPA and CPA, respectively, on a targeted
AES SBox. The confusion coefficients for DPA on AES are also distributed over
9 values. We can see that these confusion coefficients are concentrated much
closer to their mean values compared to DES. For example, for CPA on AES,
the deviation of confusion coefficients is about 25% while that for CPA on DES is
about 40%. This means the key candidates behave more similarly and randomly
in AES than in DES, and therefore AES is harder to attack.
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Fig. 4. Distribution of confusion coeffi-
cients κ(ki, kj) of DPA on AES SBox.
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Fig. 5. Distribution of confusion coeffi-
cients κ(ki, kj) of CPA on AES SBox.

3 Statistical Model for SCAs Using Maximum Likelihood
Estimation

We first present a general statistical model for the maximum likelihood attack
and introduce notations for the success rate formula. We then reveal its con-
stituents of confusion coefficients and SNR under the Gaussian leakage model.

3.1 A General Statistic Model for Maximum Likelihood Attack

The target of side-channel attack is to distinguish the correct key kc from all
possible key hypotheses kg ∈ S based on n independent realizations of noisy
physical leakage l1, l2, . . . , ln ∈ L. According to the Neyman-Pearson lemma [24],
the most powerful distinguisher between two keys is the maximum likelihood
(ML) attack. The general ML-attack maximizes the log-likelihood as the test
statistic T :

k̂ = arg max
kg∈S

Tkg = arg max
kg∈S

1

n

n∑
m=1

log fL|kg (lm) (8)
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where fL|k is the probability density function of L under a key guess kg. MLE
takes kg as the estimated parameter if it yields the maximum probability of lm
under the probability density function fL|k.

Dependent on the system implementation and attack, there are different
power consumption models that correlate the leakage l with the select function
v. In general, the power consumption contains both deterministic v-dependent
components and random noise components. We will consider DPA and CPA
models specifically in the following Sections 3.2 and 3.3. Here we first derive the
general formula for the success rate of the ML-attack.

For the ML-attack to successfully distinguish the correct key kc from other
key hypotheses, it requires the log-likelihood of kc to be larger than all other
keys, written as

Tkc > {T〈kc〉)}

where 〈kc〉 denotes all the incorrect keys, i.e., {k0, ..., kNk−1} excluding kc, and
{T〈kc〉} denotes the test statistics for other incorrect keys, i.e., {Tk0 , . . . , TkNk−1

}
excluding Tkc . The success rate to recover the correct key, SR, is defined as the
probability that the test statistic for the correct key kc, Tkc , is larger than all
{T〈kc〉}, i.e.,:

SR = SR
[
kc, 〈kc〉

]
= Pr

[
Tkc > {T〈kc〉}

]
(9)

The success rate is (Nk−1)-dimensional. We next show the derivation of the
success rate starting from the simple one-dimension success rate.

1-dimension success rate. We first consider the 1-dimension success rate,
i.e., the success rate of kc over an incorrect key kg chosen out of 〈kc〉, written as:

SR1 = SR [kc, kg] = Pr
[
Tkc > Tkg

]
= Pr [∆(kc, kg) > 0]

Here
∆(kc, kg) = Tkc − Tkg

= 1
n

n∑
m=1

[log fL|kc(lm)− log fL|kg (lm)].
(10)

We denote ∆1(kc, kg) for ∆(kc, kg) with only one leakage observation l1, and
the mean and variance of ∆1(kc, kg) are given by:

µ∆1(kc,kg) = E[log fL|kc(l1)− log fL|kg (l1)], (11)

σ2
∆1(kc,kg) = V ar[log fL|kc(l1)− log fL|kg (l1)]. (12)

With n independently and identically selected power measurements, by the
Central Limit Theorem [25], [∆(kc, kg) − µ∆(kc,kg)]/σ∆(kc,kg) converges in law
to the standard Gaussian distribution N (0, 1), with µ∆(kc,kg) = µ∆1(kc,kg),

σ2
∆(kc,kg) = 1

nσ
2
∆1(kc,kg). Let Φ(x) = 1

2 [1 + erf( x√
2
)] denote the cumulative dis-

tribution function (cdf) of the standard normal distribution, where erf(x) is the

error function erf(x) = 2√
π

∫ x
−∞ e−t

2/2dt. Then,

SR1 = Pr [∆(kc, kg) > 0]

= 1− Φ(−µ∆(kc,kg)

σ∆(kc,kg)
) = Φ(

µ∆(kc,kg)

σ∆(kc,kg)
) (13)
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Note that the Gaussian distribution here is the asymptotic limit of ML attack
statistics coming from the Central Limit Theorem, and is independent of the
noise distribution in the system leakage.

From equation (13), the asymptotic success rate of the ML-attack is always
determined by the two quantities µ∆(kc,kg) and σ∆(kc,kg). Under a linear power
model with Gaussian noises, we will show how these two quantities are decided
by the confusion coefficients and the SNR in the following subsections 3.2 and
3.3.

2-dimension success rate. Next we consider the 2-dimension success rate,
i.e., the success rate of kc over any two chosen keys kg1 and kg2 out of 〈kc〉,
written as

SR2 = SR [kc, {kg1, kg2}] = Pr
[
Tkc > Tkg1 , Tkc > Tkg2

]
= Pr [y1 > 0, y2 > 0]

where

y1 = ∆(kc, kg1) = (Tkc − Tkg1),
y2 = ∆(kc, kg2) = (Tkc − Tkg2).

By the multivariate Central Limit Theorem, the random vector Y2 = [y1, y2]
T

converges in law to the two-dimension normal distribution N (µ2, Σ2), with

µ2 =

[
µy1
µy2

]
, Σ2 =

[
Cov(y1, y1) Cov(y1, y2)
Cov(y1, y2) Cov(y2, y2)

]
.

Here and below, T denotes the transpose of the vector.
Let Φ2(x) denote the cdf of the 2-dimensional standard normal distribution.

Then we have

SR2 = Φ2(Σ2
−1/2µ2). (14)

When Cov(y1, y2) = 0, the 2-dimension success rate is simply the product
of the two 1-dimension success rates SR1(kc, kg1)SR1(kc, kg2). This mistaken
assumption has been commonly used in prior work, for example, in [17] and [18].
However, generally the tests statistics ∆(kc, kg1) and ∆(kc, kg2) are correlated
and Cov(y1, y2) 6= 0.

(Nk − 1)-dimension success rate. The overall success rate is the success
rate of kc over all other (Nk − 1) keys 〈kc〉,

SR = SRNk−1 = SR
[
kc, 〈kc〉

]
= Pr

[
Tkc > {T〈kc〉}

]
= Pr [Y > 0]

where Y is the (Nk − 1)-dimension vector

Y = ∆ = [∆(kc, k0), . . . ,∆(kc, kc − 1), ∆(kc, kc + 1), . . . ,∆(kc, kNk−1)] (15)

with elements ∆(kc, kg) defined in (10). We denote ∆1 as ∆ with only one
leakage observation l1, and the mean and variance of ∆1 are a 1×(Nk−1) vector,
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µ, and a (Nk−1)× (Nk−1) matrix, Σ, respectively. With n independently and
identically selected power measurements, ∆ converges in law to the (Nk − 1)-
dimensional Gaussian distribution, N(µ,Σ/n). So the overall success rate of
the ML-attack can be defined as the probability that every element in Y = ∆
is non-negative with given n, which can be expressed as:

SR = ΦNk−1(
√
nΣ−1/2µ) (16)

where ΦNk−1(x) is the cumulative distribution function of the (Nk−1)-dimensional
standard Gaussian distribution. Note that this multivariate Gaussian distribu-
tion is the asymptotic limit of ML attack statistics coming from the Central
Limit Theorem, and is independent of the noise distribution in the system leak-
age. Equation (16) holds generally for any SCA, while the mean vector µ and
variance matrix Σ would be different for different power leakage models.

Formula (16) provides a general security metric against an SCA. With it, SCA
security evaluation is reduced to calculation of the mean vector µ and variance
matrix Σ. The element of µ, µ∆(kc,kg) = EL|kc{log[fL|kc(l1)]− log[fL|kg (l1)]}, is
the relative entropy (also called Kullback-Leibler divergence [26]) of the leakage
distribution under the correct key kc to the leakage distribution under a guessed
key kg. This is similar to the conditional entropy defined in [13]. The mutual
information analysis in [13] solely depends on the conditional entrioy, while our
security evaluation against SCA also includes the effect of the variance matrixΣ.
For side-channel attack analysis under a general leakage model, the conditional
density function fL|ki(·) has to be estimated for all keys ki. Next we show that
µ and Σ can be expressed in a closed form consisting of confusion coefficients
and system SNR under a Gaussian leakage model.

3.2 Statistical Model for DPA

We focus on a widely used power consumption model with additive Gaussian
noises for both DPA and CPA,

lm = εvm + c+ rm, m = 1, ..., n. (17)

where lm is the power leakage measurement, c and ε are unknown constants,
vm = ψ(xm, kc) is the select function, and rm is the random noise coming from
circuitry and measurement, following a Gaussian distribution N(0, σ2). Under
this power model, the fL|kg (lm) in (8) is the probability density function for
N(c+εψ(xm, kg), σ

2). Hence, the signal-noise-ratio (SNR) of the implementation
is defined as ε/σ.

For the DPA model, the select function vm in (17) is one single bit. Hence ε
is the differential power value of this bit, as discussed in Section 2.2. We will first
quantify the success rate of the ML-attack (16) in terms of SNR and confusion
coefficients. Then we show that the commonly used DPA, difference-of-means
(DOM) attack, is in fact a ML-attack with unknown SNR parameter values.
Furthermore, the DPA asymptotically achieves the same success rate as ML-
attack with known SNR value. This confirms that DPA is also asymptotically
the strongest attack under the DPA leakage model.



12 Yunsi Fei, A. Adam Ding, Jian Lao, and Liwei Zhang

For DPA, the entry of vector µ (the mean of ∆1) is:

µkg = E[∆1(kc, kg)] =
ε2

2σ2
E[(vc − vg)2] =

κ(kc, kg)

2
(
ε

σ
)2. (18)

The ij-th element in the (Nk − 1) × (Nk − 1) dimensional variance matrix, Σ,
is (See Appendix B for proof):

σ2
kgi,kgj

= κ̃(kc, kgi, kgj)(
ε
σ )2

+ 1
4 [κ̃(kc, kgi, kgj)− κ(kc, kgi)κ(kc, kgj)](

ε
σ )4 (19)

where κ̃(kc, kgi, kgj) = Pr(V |kgi = V |kgj , V |kc 6= V |kgi) is the three-way confu-
sion coefficient defined in Equation (4).

We can formalize the above results in matrix terms. Let κ denote a (Nk−1)-
dimension confusion vector for the correct key kc with entries κ(kc, kgi), i =
1, ..., Nk − 1; κT denotes the transpose of κ, and K is the (Nk − 1)× (Nk − 1)
confusion matrix of the cryptographic algorithm for kc, with elements {κij} as
κij = κ̃(kc, kgi, kgj). When i = j, κii = κ̃(kc, kgi, kgi) = κ(kc, kgi).

The confusion matrix K fully depicts the relation between all the key can-
didates (i.e., the algorithm) and how they affect the success rate. Summarizing
(18) and (19) in matrix form, we arrive at the following theorem.

Theorem 1 Under the DPA model,

µ =
1

2
(
ε

σ
)2κ; Σ = (

ε

σ
)2K +

1

4
(
ε

σ
)4(K− κκT ). (20)

The success rate of the ML-attack under DPA model is given by

SR = ΦNk−1{
√
n
ε

2σ
[K + (

ε

2σ
)2(K− κκT )]−1/2κ}. (21)

The detailed proof of the Theorem 1 is given in Appendix B.
The general ML-attack (8) under the DPA model uses the test-statistic Tk

assuming the parameters (c, ε, σ) known. In practice, the attacker does not know
the value of (c, ε, σ), and the common DPA instead uses the distance-of-means
(DOM) statistics δk in (1). That is, DPA selects the key guess maximizing the
DOM δk as the correct key.

For DPA to succeed, δkc > δkg holds for all kg 6= kc. We can define a (Nk−1)-
dimension vector for DPA similar to (15):

YDOM = [δkc − δkg0 , δkc − δkg1 , . . . , δkc − δkgNk−1
]. (22)

It is easy to see that the element of YDOM has mean that can be expressed by
the confusion coefficients:

µ̃kg = E[δkc − δkg ] = 2εκ(kc, kg). (23)

The variance of YDOM can also be expressed in terms of confusion coefficients.
Using the Central Limit Theorem, the asymptotic success rate of DPA can be
calculated from the mean and variance of YDOM . We summarize the relation
between the DPA attack and the ML attack in the following Theorem.
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Theorem 2 With the DPA model,

– (A) The DPA is asymptotically equivalent with the ML-attack with param-
eters (c, ε, σ) values unknown.

– (B) The asymptotic success rate of DPA also follows (21)

SR = ΦNk−1{
√
n
ε

2σ
[K + (

ε

2σ
)2(K− κκT )]−1/2κ}.

Our prior work in CHES 2012 [22] proved the success rate formula (21) for
DPA specifically. Instead of repeating the proof, we take an alternative general
approach here. Theorem 2 can be considered as a special case of Theorem 4
for CPA in the next subsection, and we will give the proof of Theorem 4 in
Appendix C. Since DPA (DOM attack) achieves the same success rate as the
ML-attack with known SNR value, it is the strongest attack under the DPA
leakage model (17).

The DPA success rate (21) is determined by two components. One is κ(kc, kg),
which is only related to the algorithm (and the select function in the attack);
and the other one is ε/σ, which is defined as the signal-to-noise ratio (SNR) of
the side-channel leakage and is only determined by the physical implementation.

3.3 Statistical Model for CPA

We now consider the Gaussian leakage model for CPA, lm = εvm+c+rm, where
the intermediate value V = ψ(x, k) is the Hamming distance (or Hamming
weight) of multiple SBox output bits in contrast to a single bit in the DPA
model, and c, ε, rm are the same parameters as in the leakage model for DPA.

Similar to the derivation of the statistical model for DPA above, we shall
first show that the ML-attack success rate under CPA model has a similar ex-
pression as Equation (21) with generalized confusion coefficients. We then study
the relationship between the ML-attack under the CPA model and the common
CPA attack.

We also define a confusion vector κ for CPA model, a (Nk − 1)-dimensional
vector with element κ(kc, kg) in (5) where ki = kc and kj = kg. We define two
(Nk−1)×(Nk−1) dimensional confusion matrices, K and K∗ with their elements
{κij} and {κ∗ij} as the three-way confusion coefficients in (6) and (7):

κij = κ̃(kc, kgi, kgj) (24)

κ∗ij = κ̃∗(kc, kgi, kgj) (25)

Theorem 3 Under the CPA model,

µ =
1

2
(
ε

σ
)2κ; Σ = (

ε

σ
)2K +

1

4
(
ε

σ
)4(K∗ − κκT ). (26)

The success rate of ML-attack is

SR = ΦNk−1{
√
n
ε

2σ
[K + (

ε

2σ
)2(K∗ − κκT )]−1/2κ}. (27)
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The proof of Theorem 3 is provided in Appendix B.
The success rate of the ML-attack above provides an asymptotic upper bound

for the leakage under the CPA power model (17). In practice, the parameters
(c, ε, σ) are not known. The realistic CPA attack chooses the key that maximizes
the Pearson correlation ρ [2]. This is in contrast to DPA which maximizes the
difference of means (DOM).

We then summarize the property of the common CPA attack in the following
Theorem.

Theorem 4 With the CPA power leakage model, we have:

– (A) The CPA is equivalent to the ML-attack with parameters (c, ε, σ) values
unknown.

– (B) Under the Symmetric Key Assumption, the asymptotic success rate of
CPA is given by

SR = ΦNk−1{
√
n
ε

2σ
[K + (

ε

2σ
)2(K∗∗ − κκT )]−1/2κ}. (28)

Here K∗∗ is another (Nk − 1)× (Nk − 1) dimensional confusion matrix with
elements:

κ∗∗ij = κ∗∗(kc, kgi, kgj)
= E[4(V |kc − E(V |kc))2(V |kc − V |kgi)(V |kc − V |kgj)].

(29)

The proof of Theorem 4 is provided in Appendix C.
Rivain et al. [19] showed that the CPA success rate also follows the general

formula ΦNk−1(
√
nΣ−1/2µ) in (16). However, there was no explicit analytic for-

mula for Σ and µ given. With our algorithmic confusion analysis, formula (28)
analytically specifies these quantities asymptotically.

While the DPA and the ML-attack under the DPA model achieve the same
success rate (21), the CPA’s success rate (28) is slightly different from the ML-
attack’s success rate under the CPA model (27). Note that for DPA model,
h = 1, E(V |kc) = 1/2. Therefore, 4[V |kc − E(V |kc)]2 = 1 always. This implies
that K∗∗ = K∗ = K under the DPA model.

However, when the SNR ε
σ is small (less than one), both success rate formulas

(27) and (28) can be simplified to:

ΦNk−1{
√
n
ε

2σ
K−1/2κ}. (30)

That is, for small SNR, CPA achieves the same success rate asymptotically as
the ML-attack with known (c, ε, σ). When the SNR is big, formula (28) for CPA
is different from (27) for ML-attack of the CPA power model. However, both
formulas are asymptotic with Central Limit Theorem and only hold for large
sample size n. With a large SNR, the success rates (27) and (28) both converge
to 1 rapidly as n increases. For small n, neither formula is meaningful for CPA
with the Gaussian distribution of the test statistic not holding.
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4 Experimental Results

We now evaluate the statistical models for DPA and CPA on both DES and
AES algorithms.

4.1 DPA and CPA on DES

With the DES data set from DPAcontest [27], secmatv1, we performed both
DPA and CPA on it. The select function for DPA involves the first output bit
of the first SBox in the last round, while CPA involves all the 4 bits of the first
SBox output. We take the maximum DOM value obtained from the DPA as ε,
and the corresponding key is the correct key kc, which is k60. Note that all the
attacks are on a single time point. Discussions on multi-point leakage are beyond
this paper, and will be investigated in future work.

The empirical success rate are generated with 1000 trials for both the DPA
and the CPA as in [11, 12]. 5 groups of key guesses are chosen to verify our model
under different dimensions, which are SR1 = SR(kc, k0), SR2 = SR(kc, {k0, k1}),
SR8 = SR(kc, {k0, . . . , k7}), and the overall SR63 = SR(kc, 〈kc〉). For each group
in DPA, a successful trial will be recorded only when the DOM value ε of kc is
larger than the DOM values of all other key guesses; while for CPA, a successful
trial occurs when the Pearson correlation factor of kc is the largest one.

To compute the theoretical success rate, we first calculate the physical imple-
mentation parameter SNR=ε/σ. σ is the standard deviation of the noise in the
power leakage, which is (lm − εvm − c) part in power measurements. Both DPA
and CPA share the same ε value here since ε is the power difference of one bit
transition of a real DES implementation. For DES, the attack is conducted on
the 15750-th time point of the power trace. For DPA, ε = 0.0016 and σ = 0.0046
so that SNR=0.347; while for CPA on DES σ = 0.0048 and SNR=0.333.

Second we find the confusion vector κ and confusion matrices K, K∗ de-
fined earlier. With the two-way confusion coefficients κ(kc, kg) and three-way
κ̃(kc, kgi, kgj) and κ̃∗(kc, kgi, kgj) all algorithm-dependent only, they are easily
calculated according to Equations (5), (6) and (7).

The confusion matrix K for DPA on the first bit of the first DES SBox, given
in Equation (20), is shown in Fig. 6; and K of CPA given in Equation (26) in
Fig. 8. By definition, the matrix K is a symmetric square matrix. Its diagonal
elements are confusion coefficients κ(kc, kgi), i.e., the confusion vector κ, whose
mean value is 0.5 and 2 for DPA and CPA, respectively. We also plot the diagonal
confusion vector in Fig. 7 and 9. The off-diagonal elements of the matrix K are
the three-way confusion coefficients κ(kc, kgi, kgj) whose mean value is 0.25 and
1, for DPA and CPA respectively.

Fig. 10 and Fig. 11 plot the empirical success rates (the solid curves) and
theoretical success rates (the dashed curves) of our model for DPA (21) and
CPA (27), respectively. We show the different dimensional success rates for kc =
k60. From top down, they are: SR1,SR2,SR8, and SR63. We can see that the
two curves for SR63 track each other very well, showing the accuracy of our
theoretical model. In this implementation, SNR is very small for DPA and CPA,
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Fig. 6. The confusion matrix K of DPA on
first bit of the first DES SBox.
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Fig. 7. The confusion vector κ of DPA on
first bit of the first DES SBox.
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Fig. 8. The confusion matrix K of CPA on
the first DES SBox.
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Fig. 9. The confusion vector κ of CPA on
the first DES SBox.

and therefore the asymptotic success rate for the ML attacks with the DPA and
CPA models agree with the empirical success rates.

We also plot the other existing explicit success rate formula in [17] and [18]
as the dotted curves:

SR =

(∫ ∞
0

1
1√

Nm−3

√
2π

exp

{
− (x− r)2

2
Nm−3

}
dx

)Nk−1

(31)

where r is the Pearson correlation of CPA for the correct key, Nk is the number
of key guesses in CPA, and Nm is the number of measurements. This formula
gives the correct 1-dimensional success rate, but the accuracy deteriorates for
higher dimensional success rates. That is due to the fact that formula (31) does
not account for correlations between attack statistics under different keys as
shown before.
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Fig. 10. Empirical and theoretical success
rates of DPA on DES.
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Fig. 11. Empirical and theoretical success
rates of CPA on DES.

4.2 DPA and CPA on AES

We next perform DPA and CPA on an AES implementation. The select function
for DPA is the Hamming distance of the third bit of the first state byte in the
last round, and for CPA it is the entire state byte (8 bits). We have measured
the power consumption data using the SASEBO GII board with AES implemen-
tation designated by DPAcontest [28]. The total number of measurements in the
data set is 100, 000.
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Fig. 12. Empirical and theoretical suc-
cess rates of DPA on AES.

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of measurements

S
uc

ce
ss

 r
at

e

 

 

Empirical
Theoretical
Theoretical using simple variance

SR255
SR255

SR8

SR2

SR1

Fig. 13. Empirical and theoretical success
rates of CPA on AES.

For AES, we conduct attacks on the 594-th time point of the power traces.
Fig. 12 and Fig. 13 show the empirical success rates (solid curves) and theoretical
success rates (dashed curves) of DPA and CPA on AES. The two 255-keys success
rate curves of empirical and theoretical track each other very well, demonstrating
that the model is also very accurate for AES.
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5 Discussions

We believe our statistical analysis is the first of its kind to build a quantita-
tive model for side-channel attack analysis on a cryptographic system, which is
composed by system-inherent parameters, including ε, σ and κ. Next we present
more SCA-related insights on implementation and algorithm from the model,
and discuss how to use the model to evaluate countermeasures and algorithms.

5.1 Signal and Noise of the Side Channel

Cryptographic algorithms can be implemented on different hardware systems,
including micro controller, Application Specific Integrated Circuit (ASIC), Field
Programmable Gate Array (FPGA), and general purpose microprocessors. For
any platform, we can always use the signal-to-noise ratio (SNR) defined as ε/σ
to uniformly represent the side channel leakage. SNR is an essential parameter
that affect the effectiveness of the ML attack, and Equations (21) and (27) show
how the SNR determines the success rate. It can be used as a metric to measure
the SCA resilience of the implementation of a cryptographic system. Our SNR
definition is similar to that in [15, 29], however with more explicit quantitative
implications in our model.

Common countermeasures against side-channel attacks include random mask-
ing [30–32], power-balanced logic and algorithm [33–35], and hiding (random de-
lay) [36–39]. The effect of power balance logic/algorithm and random delay is
straightforward with our model – reducing the implementation SNR, and the
effect of random masking is reducing the algorithmic confusion coefficients.

5.2 Confusion Property of Cryptographic Algorithms

Our algorithmic confusion analysis reveals the inherent side-channel property
of a cryptographic algorithm. Confusion coefficients are determined by both the
cryptographic algorithm and select function ψ, and they indicate how differently
the key candidates behave. Confusion coefficients have a direct effect on the
success rate, as been illustrated in Equation (21) and (27) that larger confusion
coefficients lead to higher success rates. For DPA, the select function in only one
bit, and the mean value of the confusion coefficients is 0.5; while for CPA, the
select function is 4 bits for DES and 8 bits for AES, so the mean values for the
confusion coefficients are 2 and 4, respectively. The larger confusion coefficients
coming from more bits in select function explain why CPA is more effective than
DPA for a common algorithm. However, for different algorithms, even though
CPA on AES has larger confusion coefficients than that of DES, the dimension
of key space dominates over κ on the overall success rate. AES has 256 key
candidates and the overall success rate is from the 255-dimension cumulative
Gaussian distribution, making it more resilient than the 63-dimension success
rate of DES.

Actually, the overall success rate can be evaluated in a pretty simple but
faster way under certain conditions. We take CPA on AES as example here. If



A Statistics-based Fundamental Model for Side-channel Attack Analysis 19

the SNR is much smaller than 1, which is the case in the real SASEBO imple-
mentation, the Σ in Equation(20) and (26) is approximately Σ = ( εσ )2K. The

success rate is then given by (30), ΦNk−1{
√
n ε

2σK−1/2κ}. Since the overall suc-
cess rate will involve all the key candidates; even though they will yield different
κ(kc, kg), we can expect that the overall effect of κ in the success rate approaches
its mean value. We next replace all the κ for CPA on AES with its mean value 4.
For matrix K, its diagonal values are the two-way coefficients with their means
at 4, and the off-diagonal values are three-way coefficients with their means at
2, according to Lemma 1. This simplified success rate curve without calculating
confusion coefficients (solid line) and the theoretical formula (30) (dash line)
are both shown in Fig. 14. They track each other closely, demonstrating that
statistical properties in AES algorithm have made its resilience to side-channel
attack pretty key-independent.
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Fig. 14. Simplified and theoretical success rates of CPA on AES.

The experiments in Section 4.2 define the select function ψ for AES as the
Hamming distance of two intermediate data due to the characteristics of ASIC
implementation. In micro-controller implementation, the select function is de-
fined directly as the Hamming weight of one intermediate data. A good se-
lect function for attacks gives larger confusion coefficient κ(kc, kg) and there-
fore larger success rate. The algorithmic confusion analysis can also serve as a
methodology to evaluate how good select functions are at distinguishing keys.

Our statistical model is built for linear power leakage model with Gaussian
noises, which holds generally in most systems. Under this assumption, confusion
coefficients are second moments of the distance between V values under a pair of
keys, as defined in (5). A Gaussian distribution is totally determined by its first
two moments. Therefore confusion coefficients contain all relevant information
for the leakage analysis. If the noises are not Gaussian, then the algorithmic
confusion analysis needs to take into the account of the joint distribution of
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V values under a pair of keys, which is much harder to formulate. We will
investigate this in the future work.

6 Conclusions

In this paper, a general theoretical model based on maximum likelihood esti-
mation (MLE) is presented to evaluate the success rate for side-channel attacks
on cryptographic systems. The model establishes the relation between the suc-
cess rate and an algorithm and its implementation over a multivariate Gaussian
distribution, with algorithmic confusion analysis illustrating the SCA-related
inherent properties of the algorithm, and signal-to-noise ratio (SNR) indicat-
ing how resilient the physical implementation is. Our experimental results from
DPA and CPA on DES and AES have verified this model. We believe that this
model is innovative, provides valuable insights on side-channel characteristics of
cryptosystems, and could significantly facilitate SCA-resilient design and imple-
mentations. The explicit formula is also useful for analyzing full-key recovery
that combines attacks on multiple subkeys, as been adopted by the nascent
CHES 2013 work [23].
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Appendix

A Proof for Lemma 1

We prove the Lemma for the general confusion coefficients defined in (5) and
(6). Then, of course, it also holds for the DPA confusion coefficients as a special
case.

κ(kh, ki) + κ(kh, kj)− κ(ki, kj)

=E[(V |kh − V |ki)2 + (V |kh − V |kj)2 − (V |ki − V |kj)2]

=E[2(V |kh)2 − 2(V |kh)(V |ki)− 2(V |kh)(V |kj) + 2(V |ki)(V |kj)]
=2E[(V |kh − V |ki)(V |kh − V |kj)]
=2κ̃(kh, ki, kj).

Therefore: κ̃(kh, ki, kj) = 1
2 [κ(kh, ki) + κ(kh, kj)− κ(ki, kj)].
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B Proof of Theorems 1 and 3

We shall make the derivation for the general leakage model (17) with Gaussian
noise. This would express the general success rate formula in confusion coeffi-
cients as in Theorem 3. Then Theorem 1 can be further derived as a special
case.

Since we already know the general success rate formula (16) for ML-attack,
the proof only needs to verify the formula (26)for the mean µ and variance Σ.
We shall do this by direction calculation.

We first find a simplified expression of ∆(kc, kg), the difference between ML-
attack statistic for the correct key and a guessed key. From model (17), we have
the likelihoods

fL|V (l|vc) = 1√
2πσ

e−
(l−εvc−c)2

2σ2

fL|V (l|vg) = 1√
2πσ

e−
(l−εvg−c)2

2σ2 .

Therefore, using equation (10),

∆(kc, kg) =
n∑

m=1

(lm−c−εvm,g)2−(lm−c−εvm,c)2
2nσ2

= 1
2nσ2

n∑
m=1
{[rm + ε(vm,c − vm,g)]2 − (rm)2}

= ε2

2nσ2

n∑
m=1

[(vm,c − vm,g)2 + 2
ε (vm,c − vm,g)rm].

(32)

We now calculate the mean and variance of the vector ∆ from this expression
to verify (26).

Since rm has mean zero and is independent of (vm,c − vm,g), E[(vm,c −
vm,g)rm] = 0. Hence the entry of vector µ (the mean of ∆) is:

µkg = E[∆(kc, kg)] =
ε2

2nσ2
nE[(v1,c − v1,g)

2] =
κ(kc, kg)

2
(
ε

σ
)2 (33)

with κ(kc, kg) defined as in (5). This verifies the first half of (26).

The entries in the (Nk − 1)× (Nk − 1) dimensional variance matrix, Σ, are:

Cov[∆(kc, kgi), ∆(kc, kgj)]

= ( ε2

2nσ2 )2
n∑

m=1

n∑
m∗=1

E{[(vm,c − vm,gi)2 + 2
ε (vm,c − vm,gi)rm]

[(vm∗,c − vm∗,gj)
2 + 2

ε (vm∗,c − vm∗,gj)rm∗ ]}
−E[∆(kc, kgi)]E[∆(kc, kgj)].
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Since E(rm) = E(rm∗) = E(rmrm∗) = 0 for rm 6= rm∗ , and E[(rm)2] = σ2, the
above expression becomes

Cov[∆(kc, kgi), ∆(kc, kgj)]

= ( ε2

2nσ2 )2{
n∑

m=1

n∑
m∗=1

E[(vm,c − vm,gi)2(vm∗,c − vm∗,gj)
2]

+
n∑

m=1
( 2
ε )2σ2E[(vm,c − vm,gi)(vm,c − vm,gj)]}

−µkgiµkgj
= ( ε2

2nσ2 )2{
n∑

m=1
E[(vm,c − vm,gi)2(vm,c − vm,gj)2]

+
∑

m 6=m∗
E[(vm,c − vm,gi)2]E[(vm∗,c − vm∗,gj)

2]

+
n∑

m=1
( 2σ
ε )2E[(vm,c − vm,gi)(vm,c − vm,gj)]}

−κ(kc,kgi)κ(kc,kgj)
4 ( εσ )4.

By the definition of the confusion coefficients κ(kc, kgi, kgj) = E[(V |kc−V |kgi)(V |kc−
V |kgj)] in (6), and κ∗(kc, kgi, kgj) = E[(V |kc−V |kgi)2(V |kc−V |kgj)2] in(7), we
have

Cov[∆(kc, kgi), ∆(kc, kgj)]
= 1

4n2 ( εσ )4{nκ∗(kc, kgi, kgj) + n(n− 1)κ(kc, kgi)κ(kc, kgj)

+n( 2σ
ε )2κ(kc, kgi, kgj)} − κ(kc,kgi)κ(kc,kgj)

4 ( εσ )4

= 1
4n ( εσ )4κ∗(kc, kgi, kgj)− 1

4n ( εσ )4κ(kc, kgi)κ(kc, kgj)
+ 1
n ( εσ )2κ(kc, kgi, kgj)

= 1
n{(

ε
σ )2κ(kc, kgi, kgj)
+ 1

4 ( εσ )4[κ∗(kc, kgi, kgj)− κ(kc, kgi)κ(kc, kgj)]}.

(34)

This verifies the second half of (26). The formula (26) is exactly the expression
(33) and (34) in vector and matrix forms. Plug these expressions of µ and Σ into
the success rate formula (16) for ML-attack, we arrives at the explicit formula
(27). This finishes the proof of Theorem 3.

Notice that for the DPA model, the V value is either 1 or 0, so that (V |kc −
V |kg)2 is always either 1 or 0. Hence, as explained after equations (5), (6) and (7),
the general confusion coefficients specialize to the confusion coefficients definition
for DPA. Hence all formulas (20) and (21) in Theorem 1 holds as the special
cases of the corresponding formulas in Theorem 3. Therefore, the Theorem 1
follows.

C Proof of Theorem 4

(A) Here we wish to show the ML-attack with unknown (c, ε, σ) parameters value
is equivalent to CPA. We will use direct calculation to find the ML-attack test

statistic with unknown (c, ε, σ). That is, we maximize Tg = 1
n

n∑
m=1

log fL|kg (lm)

over (c, ε, σ). Under model (17), this becomes maximizing Tg = − 1
n

n∑
m=1

(lm−εvm,g−c)2
2σ2 −



A Statistics-based Fundamental Model for Side-channel Attack Analysis 25

log(
√

2πσ) over (c, ε, σ). This is the same problem as finding maximization like-
lihood estimation under the linear regression model, and the solution is

σ̂2
g = 1

n

n∑
m=1

(lm − ε̂gvm,g − ĉg)2, ĉg = l̄ − ε̂g v̄g,

ε̂g =

n∑
m=1

(lm−l̄)(vm,g−v̄g)

n∑
m=1

(vm,g−v̄g)2
,

(35)

with l̄ = 1
n

n∑
m=1

lm and v̄g = 1
n

n∑
m=1

vm,g. Plug the solution of σ̂2
g , ĉg and ε̂g back

into the test statistics Tg, we get

Tg = − log(σ̂g) + constant.

Hence the ML-attack with unknown (c, ε, σ) will select key kg to minimize σ̂2
g .

From (35),

σ̂2
g = 1

n [
n∑

m=1
(lm − l̄)2 −

[
n∑

m=1
(lm−l̄)(vm,g−v̄g)]2

n∑
m=1

(vm,g−v̄g)2
]

= 1
n

n∑
m=1

(lm − l̄)2(1− ρ̂2
g),

where ρ̂g is the Pearson Correlation

ρ̂g =

n∑
m=1

(lm − l̄)(vm,g − v̄g)√
n∑

m=1
(lm − l̄)2

n∑
m=1

(vm,g − v̄g)2

.

Since
n∑

m=1
(lm − l̄)2 value does not change under different keys, σ̂2

g is minimized

when ρ̂2
g is maximized. Hence the attack select the same key as CPA.

(B). Rivain [19] has shown that CPA also have a success rate described by the
multivariate Gaussian distribution. Our task here is to express the success rate
in terms of SNR and the confusion coefficients. To achieve this, we first find an
asymptotically equivalent statistic, and then compute the mean and variance of
it.

First, we define some notations to simplify the calculations later. Under the
(Symmetric Keys) Assumption 1, V |kc has the same distribution as V |kg for
all kg. Hence the j-th moment of V is the same under all keys. That is, we
can denote cj = E(V j |kc) = E(V j |kg), j = 1, 2, .... W.l.o.g (without loss of
generality), let c1 = 0. This holds for CPA by subtracting h/2 from the Hamming
Weight/Distance.

Also, w.l.o.g., we assume that ε > 0 so that asymptotically the CPA succeeds
when ρ̂c > ρ̂g for all kg. To calculate the probability that ρ̂c > ρ̂g for all kg, let
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us denote

b̃c =

n∑
m=1

(lm−l̄)(vm,c−v̄c)√
n

n∑
m=1

(vm,c−v̄c)2

b̃g =

n∑
m=1

(lm−l̄)(vm,g−v̄g)√
n

n∑
m=1

(vm,g−v̄g)2
.

Then ρ̂c > ρ̂g is equivalent to b̃c > b̃g. Since
n∑

m=1
(vm,c − v̄c) = 0, we have

b̃c =

n∑
m=1

(rm+εvm,c)(vm,c−v̄c)√
n

n∑
m=1

(vm,c−v̄c)2
,

b̃g =

n∑
m=1

(rm+εvm,c)(vm,g−v̄g)√
n

n∑
m=1

(vm,g−v̄g)2
.

Using Central Limit Theorem, v̄c = Op(1/
√
n), v̄g = Op(1/

√
n),

n∑
m=1

(vm,c −

v̄c)
2 = nc2 +Op(

√
n) and

n∑
m=1

(vm,g − v̄g)2 = nc2 +Op(
√
n). We denote

bc = 1
n
√
c2

n∑
m=1

(rm + εvm,c)vm,c,

bg = 1
n
√
c2

n∑
m=1

(rm + εvm,c)vm,g,

so that b̃c = bc + Op(1/
√
n) and b̃g = bg + Op(1/

√
n). We shall calculate the

asymptotic success rate of CPA by finding the asymptotic probability that bc >
bg for all kg.

bc − bg =
1

n
√
c2

n∑
m=1

[rm(vm,c − vm,g) + εvm,c(vm,c − vm,g)].

What remains is to calculate the mean and variance of the vector with ele-
ments as bc − bg similar to the proof of Theorem 3.

The mean vector has elements

E(bc − bg) =
1

n
√
c2
nεE[v1,c(v1,c − v1,g)] =

εκ(kc, kg)

2
√
c2

. (36)

Here the second equality comes from the following Lemma whose proof is pro-
vided at the end.

Lemma 2 Under Assumption 1, E[(V |kc)(V |kc − V |kg)] = κ(kc, kg)/2.
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Now, the elements in the variance matrix are

Cov(bc − bg1, bc − bg2)
= E[(bc − bg1)(bc − bg2)]− E[(bc − bg1)]E[(bc − bg2)]

= ( 1
n
√
c2

)2
n∑

m1=1

n∑
m2=1

E[(rm1
+ εvm1,c)(rm2

+ εvm2,c)

(vm1,c − vm1,g1)(vm2,c − vm2,g2)]
−( ε

2
√
c2

)2κ(kc, kg1)κ(kc, kg2)

= 1
n2c2

n∑
m=1

E[(rm + εvm,c)
2(vm,c − vm,g1)(vm,c − vm,g2)]

+ 1
n2c2

∑
m1 6=m2

E[(rm1
+ εvm1,c)(rm2

+ εvm2,c)

(vm1,c − vm1,g1)(vm2,c − vm2,g2)]

− ε2

4c2
κ(kc, kg1)κ(kc, kg2).

(37)

For m1 6= m2, E(rm1
) = E(rm2

) = E(rm1
rm2

) = 0, using the independence
of noises rm1

and rm2
from vm1,c, vm1,g1, vm2,c, and vm2,g2, we have

E[(rm1 + εvm1,c)(rm2 + εvm2,c)(vm1,c − vm1,g1)
(vm2,c − vm2,g2)]

= E[εvm1,cεvm2,c(vm1,c − vm1,g1)(vm2,c − vm2,g2)]

=
ε2κ(kc,kg1)κ(kc,kg2)

4 .

(38)

The last step used the fact that vm1,c and vm1,g1 are independent from vm2,c

and vm2,g2, and Lemma 2.
For m1 = m2 = m, since E(rm) = 0, E(r2

m) = σ2, we have

E[(rm + εvm,c)
2(vm,c − vm,g1)(vm,c − vm,g2)]

= σ2E[(vm,c − vm,g1)(vm,c − vm,g2)]
+ε2E[(vm,c)

2(vm,c − vm,g1)(vm,c − vm,g2)]
= σ2κ(kc, kg1, kg2) + ε2κ∗∗(kc, kg1, kg2).

(39)

Hence using (38) and (39), (37) becomes

Cov(bc − bg1, bc − bg2)
= 1

n2c2
n[σ2κ(kc, kg1, kg2) + ε2κ∗∗(kc, kg1, kg2)]

+ 1
n2c2

n(n− 1)
ε2κ(kc,kg1)κ(kc,kg2)

4

− ε2

4c2
κ(kc, kg1)κ(kc, kg2)

= σ2

nc2
{κ(kc, kg1, kg2)

+( εσ )2[κ∗∗(kc, kg1, kg2)− 1
4κ(kc, kg1)κ(kc, kg2)]}.

(40)

Put (36) and (40) into matrix forms, the multivariate Central Limit Theorem
results in the success rate formula (28). This finishes the proof of Theorem 4.

Proof of Lemma 2.

κ(kc, kg) = E[(V |kc − V |kg)2]
= E[(V |kc)2]− 2E[(V |kc)(V |kg)] + E[(V |kg)2].
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By the Symmetric Keys Assumption, E[(V |kc)2] = E[(V |kg)2]. So this becomes

κ(kc, kg) = 2E[(V |kc)2]− 2E[(V |kc)(V |kg)]
= 2E[(V |kc)(V |kc − V |kg)].

That is, E[(V |kc)(V |kc − V |kg)] = κ(kc, kg)/2.


