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Abstract

We formalize the notion of Verifiable Oblivious Storage (VOS), where a client outsources
the storage of data to a server while ensuring data confidentiality, access pattern privacy, and
integrity and freshness of data accesses. VOS generalizes the notion of Oblivious RAM (ORAM)
in that it allows the server to perform computation, and also explicitly considers data integrity
and freshness.

We show that allowing server-side computation enables us to construct asymptotically more
efficient VOS schemes whose bandwidth overhead cannot be matched by any ORAM scheme,
due to a known lower bound by Goldreich and Ostrovsky. Specifically, for large block sizes
we can construct a VOS scheme with constant bandwidth per query; further, answering queries
requires only poly-logarithmic server computation. We describe applications of VOS to Dynamic
Proofs of Retrievability, and RAM-model secure multi-party computation.

1 Introduction

Oblivious RAM (ORAM) is a notion first proposed by Goldreich and Ostrovsky [21] in the context
of protecting software from piracy. They consider an application in which a trusted CPU wishes to
hide its memory-access patterns from an attacker who can view (and possibly modify) the entire
contents of memory. Recently, as cloud computing has gained in popularity, ORAM has been recast
as a means to securely outsource storage to an untrusted server, while hiding access patterns from
the server.

In this paper, we propose Verifiable Oblivious Storage (VOS), which generalizes the notion of
ORAM by allowing the storage medium to perform computation. In addition, it also explicitly in-
corporates notions of integrity and freshness. We will refer to integrity and freshness as verifiability
in this paper.

Formally defining VOS. Our first contribution is to formally define VOS, and to differentiate the
notion of VOS from ORAM. While we are the first to formalize the VOS notion, VOS has implicitly
been used by other researchers earlier, often being referred to as ORAM. For example, Williams
and Sion [36] recently proposed a scheme that improves round-complexity to O(1) — since their
scheme leverages server-side computation, it is implicitly a VOS scheme.

An important difference between VOS and ORAM schemes is that VOS schemes can be con-
structed to achieve asymptotically better bandwidth overhead than what can be achieved by any
ORAM scheme. This is because all ORAM schemes are subject to a well-known lower bound result
by Goldreich and Ostrovsky [21]. This result, however, does not apply to VOS.
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Several applications where ORAM was previously employed can immediately achieve asymptotic
bandwidth savings if we simply replace the ORAM with a VOS construction. For example, we
know from prior work that RAM-model secure multi-party computation [25] and Dynamic Proofs
of Retrievability [9] can be built using ORAM as a building block. In both these applications, the
party storing data (or a share of the data) can perform computation. By replacing the underlying
ORAM with a VOS in these constructions [9,25], we can immediately obtain asymptotic bandwidth
savings as illustrated in Section 5.

Asymptotically efficient VOS construction. We show that, by allowing server-side compu-
tation, VOS schemes can be constructed that beat the known logarithmic lower bound on the
bandwidth cost for any ORAM scheme [21]. Specifically, we show that there exists a VOS scheme
with block size β = Ω̃(λ) (where λ is the security parameter) having O(β) bandwidth cost for
reading or writing a block; this scheme has O(β) client-side storage, and uses only O(1) roundtrips
and requires only O(β ·poly log n) ·poly(λ) server-side computation per data access. This is asymp-
totically better than what any ORAM scheme can hope to achieve since, due to the lower bound
by Goldreich and Ostrovsky, any ORAM scheme must have bandwidth cost Ω(β log n) to read or
write a block of β bits. Note that this lower bound holds regardless of the block size β.

1.1 Technical Highlight

Generic ORAM-to-VOS compiler in the semi-honest model. To construct efficient VOS
schemes, we rely on fully homomorphic encryption (FHE) to encrypt and outsource the entire
ORAM memory, as well as the ORAM client’s secret state. The server can now perform computa-
tion on behalf of the client, without learning any secrets. The only occasion when the server needs
to contact the client is to seek the client’s help to decrypt the next physical address or sequence
of physical addresses to read or write. The use of FHE or PIR to outsource the ORAM client’s
computation has been mentioned in earlier works [17, 27]. The main challenge, however, is how
to ensure security when the server is malicious, and may arbitrarily deviate from the prescribed
computation.

Generic ORAM-to-VOS compiler in the malicious model. Achieving security against a
malicious server is much trickier in the VOS setting than in ORAM. While ORAM achieves integrity
and freshness in a straightforward way by employing standard storage integrity techniques such as
message authentication codes and Merkle hash trees, in VOS, we need to worry about a server that
can arbitrarily deviate from the prescribed computation.

Naive applications of well-known techniques such as SNARKS [2, 3, 16] result in server com-
putation that is linear in the size of the dataset. Instead, we leverage efficient Verifiable RAM
computation (VC-RAM) to enforce honest server behavior. This allows us to achieve sublinear
server computation. In VC-RAM, a client outsources a large memory array to a server in a prepro-
cessing step. Afterwards in an online stage, the client specifies a sequence of inputs, and asks the
server to compute a RAM program over the outsourced memory array and the inputs. Each query
made by the client can result in updates to the server’s memory array. VC-RAM allows a client to
verify the result of these RAM computations, and meanwhile, the server’s computation overhead
is sublinear (in the data size) for sublinear-time queries.

Although VC-RAM has been informally mentioned in earlier works [1, 3, 7], we make the con-
tribution of explicitly formalizing stateful VC-RAM (for repeated queries) and its security. We

2



also present an efficient VC-RAM scheme with constant proof size and prover computation that is
comparable to the run-time of the RAM program (as opposed to the dataset size).

Non-generic optimizations for specific schemes. We then apply these techniques to two
existing ORAM schemes, the Path ORAM [34] and the Hierarchical ORAM by Goodrich and
Mitzenmacher [22] that was later improved by Kushilevitz et al. [26]. The resulting VOS schemes
are referred to as Path VOS and Hierarchical VOS respectively.

Applying Verifiable RAM Computation (VC-RAM) straight out-of-the-box is not sufficient to
achieve the claimed asymptotic bounds for the Path VOS. We show how to tailor our VC-RAM
techniques for the Path VOS to shave a O(log n) factor off the server computation. Similarly,
for the hierarchical VOS, we propose rebalancing techniques that can shave poly log log n to log n
factors from the bandwidth cost, at increased (but still sublinear) server computation.

While the Path VOS is asymptotically better than the hierarchical VOS, the hierarchical VOS
is necessary for our dynamic PoR application, since the Path VOS does not satisfy the next-read
pattern hiding property [9].

1.2 Related Work

Oblivious RAM (ORAM) was first proposed by Goldreich and Ostrovsky [21], and later improved in
a series of works [13,14,17,20,22–24,26,28–31,33–37]. Recently, ORAM has been used in outsourcing
storage [22,35,37], and in secure two-party computation to achieve sublinear amortized cost [17,25].

ORAM with implicit server computation has appeared in several works [17,36], while still being
referred to as ORAM. Williams and Sion rely on server-side computation to achieve a single-round
ORAM scheme [36]. Their scheme ensures privacy against a malicious server but not integrity and
freshness and has an asymptotic bandwidth cost of Õ(β log2 n). In comparison, our VOS scheme is
asymptotically more efficient, and ensures both privacy and integrity/freshness against a malicious
server. Gentry et al. [17] proposed using homomorphic encryption to improve ORAM bandwidth
cost. However, their scheme is only secure in the semi-honest model, and is also asymptotically
more expensive in bandwidth than our construction. Mayberry et al. also proposed to leverage
PIR techniques in combination with ORAM [27]. They too are implicitly using VOS; their scheme
is not secure in the malicious model, and is asymptotically less efficient than our construction.

Private Information Retrieval (PIR) [6, 11, 12, 19] allows a client to access a dataset on the
server obliviously. Single-server PIR techniques can achieve O(β) bandwidth cost per query using
FHE techniques [6] for large enough block sizes β. However, single-server PIR requires server
computation that is linear in the size of the dataset. Also, PIR works for public datasets; in VOS,
we consider a private dataset owned by the client, which is not exposed to the server.

Recently, Mayberry et al. propose a scheme combining a binary tree ORAM and a PIR
scheme [27]. Their setting is effectively the VOS setting, since the server needs to perform compu-
tation. The Mayberry et al. scheme also does not achieve the standard notion of malicious security
even though it is claimed in one paragraph in the paper. An obvious attack is that the server can
leave out a block during the PIR computation. If the client does not abort, the server learns that
this block is not the one intended.
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2 Definitions of Verifiable Oblivious Storage

We use ((c out, c state), (s out, s state))← protocol((c in, c state), (s in, s state)) to denote a (state-
ful) protocol between a client and server, where c in and c out are the client’s input and output;
s in and s out are the server’s input and output; and c state and s state are the client and server’s
states before and after the protocol.

We define the notion of Verifiable Oblivious Storage (VOS), in which a client outsources the
storage of data to a server while ensuring privacy of the data and verifiability and obliviousness of
access to that data.

Definition 1 (Verifiable Oblivious Storage). A Verifiable Oblivious Storage (VOS) scheme consists
of the following interactive protocols between a client and a server.

((⊥, z), (⊥, Z)) ← Setup(1λ, (D,⊥), (⊥,⊥)): An interactive protocol where the client’s input is a
memory array D[1..n] where each memory block has bit-length β; and the server’s input is ⊥.
At the end of the Setup protocol, the client has secret state z, and server’s state is Z (which
typically encodes the memory array D).

((data, z′), (⊥, Z ′)) ← Access((op, z), (⊥, Z)): To access data, the client starts in state z, with an
input op where op := (read, ind) or op := (write, ind , data); the server starts in state Z, and
has no input. In a correct execution of the protocol, the client’s output data is the current
value of the memory D at location ind (for writes, the output is the old value of D[ind ] before
the write takes place). The client and server also update their states to z′ and Z ′ respectively.
The client outputs data := ⊥ if the protocol execution aborted.

We say that a VOS scheme is correct, if for any initial memory D ∈ {0, 1}βn, for any operation
sequence op1, op2, . . ., opm where m = poly(λ), an op := (read, ind) operation would always return
the last value written to the logical location ind (except with negligible probability).

2.1 Security Definition

We adopt a standard simulation-based definition of secure computation [8], requiring that a real-
world execution “simulate” an ideal-world (reactive) functionality F . At an intuitive level, our
definition captures the privacy and verifiability requirements for an honest client, in the presence
of a malicious server.

Ideal world. We define an ideal functionality F that maintains an up-to-date version of the data
D on behalf of the client, and answers the client’s access queries.

• Setup. An environment Z gives an initial database D to the client. The client sends D to an
ideal functionality F . F notifies the ideal-world adversary S (of the setup operation, but not of
the data contents D). The ideal-world adversary S says ok or abort to F . F then says ok or ⊥
to the client accordingly.

• Access. In each time step, the environment Z specifies an operation op := (read, ind) or op :=
(write, ind , data) as the client’s input. The client sends op to F . F notifies the ideal-world
adversary S (without revealing to S the operation op). If S says ok to F , F sends D[ind ] to
the client, and updates D[ind ] := data accordingly if this is a write operation. The client then
forwards D[ind ] to the environment Z. If S says abort to F , F sends ⊥ to the client.
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Real world. In the real world, an environment Z gives an honest client a database D. The honest
client runs the Setup protocol with the server A. Then at each time step, Z specifies an input
op := (read, ind) or op := (write, ind , data) to the client. The client then runs the Access protocol
with the server. The environment Z gets the view of the adversary A after every operation. The
client outputs to the environment the data fetched or ⊥ (indicating abort).

Definition 2 (Simulation-based security: privacy + verifiability). We say that a protocol ΠF
securely computes the ideal functionality F if for any probabilistic polynomial-time real-world ad-
versary (i.e., server) A, there exists an ideal-world adversary S, such that for all non-uniform,
polynomial-time environment Z, there exists a negligible function negl such that

|Pr [RealΠF ,A,Z(λ) = 1]− Pr [IdealF ,S,Z(λ) = 1]| ≤ negl(λ)

This definition is simulation-based [8] where the client is honest, and the server is corrupted.
(The client is never malicious in our setting.) The definition also simultaneously captures privacy
and verifiability. Intuitively, privacy ensures that the server cannot observe the data contents or
the access pattern. Verifiability ensures that the client is guaranteed to read the correct data from
the server — if the server happens to cheat, the client can detect it and abort the protocol.

3 ORAM to VOS: Generic Compilation Techniques

In this section, we describe how to generically transform any given ORAM scheme to an efficient
VOS scheme. In Section 4, we give two specific VOS schemes - Path VOS and Hierarchical VOS.
These are derived from the two classes of ORAM schemes, the hierarchical construction [21] and
its variants [22,24,26,30,35–37], and the binary-tree scheme [31] and its variants [13,17,34].

3.1 Preliminary: Oblivious RAM

In this paper, we use a slightly different formalization of ORAM from that of Goldreich-Ostrovsky [21]
to make notation simpler for our generic compiler.

An ORAM can be defined by a pair of algorithms ORAM := (Init,Next):

• (Do, st) ← Init(1λ, D): Takes in storage array D containing n blocks each of bit length β,
produces storage array Do, and initial ORAM client state st.

• (out, {raddr}, {waddr}, {data}, st)← Next(op, st, {fetched}): Each ORAM operation op := (read, ind)
or op := (write, ind , data) will proceed in multiple rounds. Each round will invoke the ORAM.Next
algorithm with the following inputs: 1) current read/write operation op; 2) the (secret) ORAM
client state st; and 3) a set of blocks {fetched} fetched from the last round. If this is the first
round for an operation op, this fetched set is empty by convention. The ORAM.Next function
in turn outputs a set of addresses to read in the next round denoted {raddr}; a set of addresses
{waddr} and data {data} to write in the next round; updates the client state st; and if this is
the last round, ORAM.Next also outputs the block read out.

The Next algorithm performs one round of the ORAM client computation.

Our notation is explained in the table below:
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st secret ORAM client state {raddr} physical addr to read from
ind logical index of a block {waddr} physical addr to write to

op := (read, ind) or
a read/write operation

{fetched} data blocks
op := (write, ind , data) fetched from storage

out the last logical block read {data} data blocks to be written
Security is defined in terms of the inability of any PPT adversary to distinguish the access

patterns generated by an honest execution of the ORAM client, from those output by a simulator
that does not see the sequence of logical operations.

Definition 3 (ORAM security). We say that an ORAM scheme is secure, if there exists a stateful
simulator Sim, such that for any PPT adversary A,∣∣∣Pr

[
AO[st](·)(1λ) = 1

]
− Pr

[
ASim(1λ,m)(1λ) = 1

]∣∣∣ ≤ negl(λ) (1)

where m is the number of oracle queries made by the adversary A; and O[st](·) denotes a stateful
oracle O, with secret state st. The oracle O takes in an operation op and outputs a sequence of
read and write physical addresses. Formally,

Oracle O:

Initialization. On input D containing n blocks each of β bits, initialize a storage array Do

containing no blocks each of size βo. Initialize the set {fetched} to be an empty set. Run st :=
ORAM.Init(1λ, n, β).

Data access. On the j-th input opj , j ∈ N, perform the following:

• First, initialize the output array Γ := ∅.

• For rnd = 1 to Rj where Rj is the total number of rounds for the j-th operationa:

– Run (out, {raddr}, {waddr}, {data}, st)← ORAM.Next(op, st, {fetched})
– Let Do[{waddr}] := {data}, and let {fetched} := Do[{raddr}].
– Append {raddr} and {waddr} to the output set Γ.

• Finally, output Γ.

aIn all known ORAM constructions, due to the obliviousness requirement, Rj is a public value determined by
the ORAM scheme description itself, and does not depend on the input sequence.

We use Do[{waddr}] := {data} and {fetched} := Do[{raddr}] to denote writing {data} to a set of
write addresses {waddr}, and reading from a set of read addresses {raddr} respectively. We assume
that {waddr} and {data} are ordered sets, and we simply write each block data into each waddr in
the specified order.

Deterministic vs. randomized ORAM. In general, the ORAM client algorithms Init and Next
can be randomized. However, the Next algorithm can be made deterministic by choosing a PRF
key k at random and including it in the client state st. Whenever Next requires random bits,
this can be generated pseudorandomly from key k. If the randomized ORAM is secure, then the
resulting ORAM with a deterministic Next algorithm is also secure due to the security of the PRF.
Therefore, without loss of generality, in our generic ORAM-to-VOS compiler, we will assume an
ORAM scheme with a deterministic Next algorithm.
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• Setup: Client runs (pk , sk)← FHE.KeyGen(1λ). Client runs (Do, st)← ORAM.Init(1λ, D).

For i = 1 to |Do|, the client computes Do[i] := FHE.Encpk (Do[i]). The client also computes
st := FHE.Encpk (st). Finally, the client sends

(
pk, {Do[i]}i∈|Do|, st}

)
to the server.

• Access: For the j-th operation op, let Rj denote the number of ORAM rounds necessary for
the j-th operation.

First, the client encrypts op := FHEpk (op) and sends it to the server.

For rnd = 1 to Rj :

– If this is not the first round, i.e., if rnd 6= 1, the server performs memory reads and writes:
Do[{waddr}] := {data}, and {fetched} := Do[{raddr}], where {raddr} and {waddr} are the
read and write addresses returned by the client in the previous round, and data is the
part of the FHE evaluation outcome in the previous round.

– The server homomorphically evaluates the ORAM.Next circuit oncea:
(out, {raddr}, {waddr}, {data}, st)← FHE.Eval(ORAM.Next(op, st , {fetched}))

– Server sends client {raddr}, {waddr}. The client decrypts them using sk , and sends the
clear-text {raddr}, {waddr} to the server.

Finally, server sends out to the client, and the client decrypts it.

aThe first round of the first operation does not depend on {fetched}. Therefore {fetched} need not be provided
as an input.

Figure 1: ORAM-to-VOS generic compiler: semi-honest model.

3.2 Compilation in the Semi-Honest Model

Intuition. The intuition is to have the client outsource the ORAM memory encrypted under an
FHE scheme to the server. The client can then outsource all its computation to the server as well,
since the server can homomorphically operate over the encrypted data. In this manner, the server
only contacts the client whenever it is necessary for interaction during the computation.

ORAM-to-VOS compiler in the semi-honest model. Figure 1 describes how to transform
an ORAM scheme to a VOS scheme that is secure under a semi-honest server.

Theorem 1. Let FHE = (KeyGen,Enc,Dec,Eval) be a semantically secure FHE scheme and let
ORAM = (Init,Next) be a secure ORAM scheme. Then, the generic compiler in Figure 1 gives a
Verifiable Oblivious Storage (VOS) construction secure under a semi-honest server.

The proof of Theorem 1 reduces to the security of the encryption scheme and the ORAM scheme
in a straightforward manner. We refer the reader to Appendix C for the proof.

Optimization: Handling addresses independent of secret information. In the construction
above, the server performs as much computation as possible and only seeks the client’s help when
it needs to decrypt the next set of physical addresses to read from or write to. In many ORAM
schemes, there are read/write operations whose physical addresses do not depend on secret client
state, memory contents, or the logical addresses accessed. Examples are the reshuffling operations of
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the hierarchical ORAM scheme [21] and its variants [22–24,26,35,37] and the eviction operations of
the binary-tree based ORAM [31] and its variants [34]. To achieve better efficiency, such reshuffling
and eviction operations, can be performed by the server (on its own) homomorphically, without
seeking the client’s help to decrypt the physical addresses.

3.3 Handling Malicious Servers

One way to handle a malicious server is to rely on a Succinct Non-Interactive Argument of Knowl-
edge (SNARK). However, if done naively, the circuit for the SNARK will have size that is at least
linear in n, i .e., the size of the outsourced memory D. This requires the server to perform a linear
amount of computation to produce a proof of correctness.

Instead, we rely on efficient Verifiable RAM Computation (VC-RAM) to enforce honest server
behavior. Verifiable RAM computation has been informally introduced in the literature by Ben-
Sasson et al. [1] and Bitansky et al. [3]. We, however, need a stateful version of verifiable RAM
computation. Braun et al. also informally proposed and implemented verifiable RAM computa-
tion [7].

We define a stateful version of verifiable RAM computation, where each query can result in
updates to the outsourced dataset. Below, we explicitly formalize this notion of stateful, multi-
query VC-RAM. Relying on the same ideas as Ben-Sasson et al. [1] and Bitansky et al. [3], we show
that verifying RAM computation can be done efficiently, resulting in server computation that is
comparable to the run-time of the RAM program (as opposed to the size of the memory); succinct
proofs of size O(λ); and efficient client verification time that is not too much worse than simply
reading the input and output.

3.3.1 Verifiable RAM Computation

Consider a scenario where a client outsources a memory array D to a server. Let f denote a RAM
program agreed upon by the client and the server. At each time step t, the client supplies a small
input xi, and the server computes the RAM program f over xi and the current state of memory
D. The RAM program produces an answer which is sent to the client. It may also update the
memory contents outsourced to the server – hence our notion of VC-RAM is stateful. Verifiability
requires that the client be able to check that the RAM computation results returned by the server
are correct.

Definition 4 (Verifiable RAM Computation). A (non-interactive) Verifiable RAM Computation
(VC-RAM) scheme consists of the following algorithms:

(z, Z) ← Setup(1λ, D, f): Given an initial memory arrary D[1..n] where each memory word has
bit-length `, a RAM program description f , output initial server state Z (which typically
encodes D), and the initial client state z.

(y, Z ′)← Compute(x, Z): Given a small input x to the RAM program f , the server’s current state
Z, output an encoded answer y, and updated server state Z ′. 1

1In the specific VC-RAM construction we describe, the encoded answer y includes the answer itself y, a proof
vouching for its correctness, and an updated digest of the outsourced memory.
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(y, b, z′) ← Verify(x, y, z): Given the input x, the client’s current state z, an encoded answer y,
output a decoded answer y, a bit b indicating whether to accept this answer, and updated
client state z′.

Correctness is defined as usual. We require that for any parameters n and `, for any initial memory
array D ∈ {0, 1}`n, for any polynomial-sized RAM program f which terminates in polynomial time,
for any query sequence x1, x2, . . . , xm where m = poly(λ),

Pr

∃i :
(yi 6= f(D,x1, x2, . . . , xi))
∨(bi = 0)

∣∣∣∣∣∣∣∣
(z, Z0)← Setup(1λ, D, f)
∀i ∈ {1, 2, . . . ,m} :

(yi, Zi)← Compute(xi, Zi−1)
(yi, bi, z)← Verify(xi, yi, z)

 ≤ negl(λ)

In particular, we use the notation yi := f(D,x1, x2, . . . , xi) to denote the outcome of the i-th query,
starting with an initial memory array of D, and after computing the RAM program f on queries
x1, x2, . . . , xi. Note that each query is stateful, i.e., may result in updates to the memory array D.

Definition 5 (Verifiability of VC-RAM). We say that a VC-RAM scheme is verifiable, if for any
polynomial time (stateful) adversary A the following holds.

Pr


∃i : (bi = 1)∧
(yi 6= f(D,x1, x2, . . . , xi))

∣∣∣∣∣∣∣∣∣∣∣∣

(D, f)← A(1λ)
(z, Z)← Setup(1λ, D, f)
(x1, y1)← A(Z)
∀i ∈ {1, 2, . . . ,m} :

(yi, bi, z)← Verify(xi, yi, z)
(xi+1, yi+1)← A(yi, bi)

 ≤ negl(λ)

Note again that the adversary A is stateful, and we do not write its state explicitly for simplicity.

Theorem 2. There exists a non-interactive VC-RAM scheme such that for each query: the server
runs in time Õ(τ log n)poly(λ) where τ is the run-time of the RAM program in the unauthenticated
setting; the verifier runs in time O((|x|+ |y|)λ); and the client-server bandwidth cost is |x|+ |y|+
O(λ).

Note that the client-server bandwidth cost has to be at least |x| + |y|, i.e., the number of bits
necessary to transmit the query x and the answer y. Therefore, the only additional cost is O(λ) for
transmitting an updated digest of the outsourced memory and a proof vouching for the correctness
of the result.

We explain the intuition for the VC-RAM construction. The full construction can be found in
Appendix A. The high level idea is to build a Merkle tree over all outsourced memory, such that
the client keeps the up-to-date root digest. To verify a RAM computation, we build a “verifier
circuit” which takes in a trace of the computation, including 1) the CPU states before and after
every computation step; 2) the memory contents fetched in every computation step; and 3) the
Merkle-tree digest before and after each computation step. This verifier circuit checks the trace of
the computation: 1) it checks that every memory read and write is correct using memory checking;
and 2) it checks that every CPU computation step is correct. The server then constructs a SNARK
for this “verifier circuit”. Since this verifier circuit has size that is roughly the time of the RAM
computation, we can achieve prover efficiency, i.e., the prover time is roughly the time of the RAM
computation rather than the size of the entire dataset.
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3.3.2 Relying on VC-RAM to Enforce Honest Server Behavior

In our semi-honest VOS construction described in Section 3.2, the client essentially outsources all
of its ORAM memory (encrypted under FHE) to the server, as well as the ORAM’s secret client
state (also encrypted under FHE).

During each data access operation, in every round of interaction, the server performs some RAM
computation on behalf of the client, and sends a message to the client to seek its help decrypting
certain physical addresses. Using VC-RAM, the server can attach a succinct proof along with
every message sent to the client, vouching for the correctness of the message. If the message sent
to the client deviates from correct message, the client will surely detect it (except with negligible
probability).

We state the theorem below, and give the formal presentation of the malicious-model ORAM-
to-VOS compiler in Appendix B.

Theorem 3. Assuming existence of SNARKs, collision resistant hash functions, and a semantically
secure FHE scheme, the VOS construction in Appendix B is secure against a malicious server.

Proof. (sketch.) Due to the proof of the semi-honest model compiler (Theorem 1), it suffices to
show that a malicious server cannot deviate from the protocol without being detected — this is
ensured by the security of the VC-RAM scheme.

4 Optimizations for Specific ORAM Schemes

4.1 Background on Path ORAM

Stefanov et al. recently proposed the Path ORAM [34]. They formally prove that to achieve n−α(n)

failure probability, the (recursive) Path ORAM construction achieves O(α(n)β log2 n/ logχ) client-
side storage, and O(β log2 n/ logχ) bandwidth cost — χ is a term related to the block size where
the block size β = χ log n bits. Specifically, to make the failure probability negligible, we can use
any α(n) := ω(1).

Of particular interest is the case when the block size is Ω(λ) — in practical storage outsourcing
applications, this is typically the case. Since n = poly(λ), the number of recursions would be O(1).

Lemma 1 (Path ORAM [34]). For reasonably large block sizes β = Ω(λ), Path ORAM achieves
bandwidth cost of O(β log n), a client-side storage of
O(α(n)β log n), and O(1) rounds, with a failure probability of n−α(n). Specifically, to achieve neg-
ligible failure probability, it suffices to use any α(n) := ω(1).

We briefly introduce the Path ORAM algorithm below.

Server data layout. The blocks on the server are organized into a binary tree. of height roughly
log n. Each node in the tree is a bucket of O(1) capacity. We use the notation P(x) to denote
the path from the leaf node x to the root node, containing all buckets on the path. Additionally,
P(x, `) denotes the bucket in P(x) at level ` in the tree.

Client data layout. The client holds a position map where pos[ind ] records the up-to-date
designated leaf node for block ind . A block ind ’s designated leaf node is x implies that the block
resides somewhere along the path P(x).
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Access(op):

Let op := (read, ind) or op := (write, ind , data) denote the current operation.

1. Set x := pos[ind ]. Pick a fresh new leaf xn. Store pos[ind ] = xn.

2. Request all blocks in the path P(x) from the server.

3. Set stash := stash ∪ P(x).

4. Let data∗ be the current block in stash with index ind .
If op is a write operation, set stash := (stash− {(ind , x, data∗)}) ∪ {(ind , xn, data)}. Else let
stash := (stash− {(ind , x, data)}) ∪ {(ind , xn, data)}.

5. For ` = L to 0 (where L is the leaf level, and 0 is the root), do:
Let S be the set of all {(ind ′, x′, data′)} ∈ stash such that P(x, `) = P(x′, `).
S := Select min(|S|, bucketsize) blocks from S.
Set stash := stash− S.
If |S| < bucketsize, pad S with dummy blocks to bucketsize.
Client sends S to the server to write in bucket P(x, `).

The output to the client is data∗, plus the updated position map pos.

Figure 2: Access protocol for Path ORAM (non-recursive).

The client also holds a small stash of size O(α(n) log n) for overflowing blocks, where any
α(n) := ω(1) allows us to achieve negligible failure probability.

Data access. To perform any data access operation op, where op := (read, ind) or op :=
(write, ind , data), the client runs the Access protocol described in Figure 2. At Step 1, the block
being read or written to is randomly remapped to a new leaf. At Step 2, the client requests a path
of data blocks from the server. At Step 3, the local is merged with the data received from the
server. At Step 4, the read/write operation is performed. At Step 5, the stash is written back into
the tree, greedily pushing data blocks as close to the leaves as possible.

Recursive Path ORAM. The Path ORAM construction above requires the client to store a
position map of O(n log n) bits. However, the client can store the position map on the server in a
smaller ORAM. This is called the recursive Path ORAM. Particularly, if the block size β := Ω(λ),
and n = poly(λ), then the depth of the recursion is constant.

4.2 Path VOS

We can use the generic compilation techniques described in Section 3 to compile Path ORAM to a
VOS scheme — henceforth referred to as the Path VOS algorithm.

The semi-honest version of the Path VOS protocol is described in Figure 3. We can use the
VC-RAM techniques described in Section 3.3.1 to compile the semi-honest protocol to one that is
secure against a malicious server.

Recursive Path VOS. In the above (non-recursive) Path VOS protocol, the client needs to store
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Path VOS (non-recursive, semi-honest model)

Setup. Given a memory array D, client lays out D into an initial ORAM-tree as in the Path
ORAM algorithm, and creates an initial position map accordingly. The client encrypts the initial
ORAM-tree under FHE, and an empty stash, and outsources both the FHE-encrypted ORAM-tree
and stash to the server. The client keeps the position map locally.

Access. Let op := (read, ind) or op := (write, ind , data) denote the current operation.

• Client: Looks up its local position map x := pos[ind ]. Pick a fresh random new leaf x′.
Compute op := FHE.Enc(op), x′ := FHE.Enc(x′). Send (op, x, x′) to the server.

• Server: Let WritePath(P, stash, op, x′) denote the circuit (Steps 3 to 5 in Figure 2) that on
inputting a path P, a stash stash, and the current operation op, returns the current value of
the requested block ind , overwrites the block ind ’s designated leaf tag to x′, overwrites the
block ind with new data if this is a write operation, and write back blocks in P∪stash to the
path P, greedily packing them as close to the leaf as possible. The server homomorphically
computes (out,P(x), stash)← FHE.Eval(WritePath(P(x), stash, op, x′)). The server sends to
the client the FHE-encrypted result of the read out.

Figure 3: Path VOS (non-recursive, semi-honest model).

a position map of size O(n log n) bits. This client-side storage may be avoided by recursively
outsourcing the position map to the server in a smaller VOS scheme. When the block size is
β = Ω(λ), the depth of recursion is O(1). The resulting recursive Path VOS scheme will therefore
have O(1) roundtrips for each data access.

Tailored VC-RAM techniques for Path ORAM. Based on the semi-honest protocol described
above, and the VC-RAM techniques described in Section 3.3.1, we immediately obtain a Path VOS
protocol with Õ(β log2 n)poly(λ) server computation per data access2, for block sizes β = Ω̃(λ).
(The small increase in block size is due to FHE.)

We observe that by overlaying the Path ORAM tree structure on top of the Merkle tree, we can
shave a logarithmic factor off the server computation. Recall that in our VC-RAM construction,
the client maintains a Merkle-hash tree digest of the ORAM-memory outsourced to the server. To
prove that any RAM computation is correct, the server computes a SNARK for a “verifier circuit”
which verifies 1) that every memory access is correct (through the Merkle tree); and 2) every step
of CPU computation is correct. In particular, the extra log n factor comes from the cost.

In the case of Path ORAM, since Path ORAM itself is a tree structure, we can overlay the
Merkle tree on top of Path ORAM’s tree structure. In this way, when Path ORAM accesses a path
from the root to a leaf, the underlying memory checking scheme can vouch for the correctness of
the entire path with O(log n) hashes. This can allow us to shave a O(log n) factor off the server
computation for Path VOS.

Theorem 4 (Path VOS). Assume collision resistant hash functions, the ring LWE assumption
with suitable parametrization [5,18], and the q-PDH and q-PKE assumptions [16]. Let α(n) denote
any function such that α(n) := ω(1).

2Throughout this paper, the notation Õ(f(n)) hides log(f(n)) factors.
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There exists a secure VOS scheme for reasonably large block size β = Ω̃(λ), with O(β) bandwidth
cost, Õ(α(n) · β log n)poly(λ) server computation per data access, O(βn) server-side storage, O(β)
client-side storage, and O(β + λ2) client computation per data access. Furthermore, the failure
probability is n−α(n), i.e., negligible in n for any α(n) := ω(1).

Proof of security follows in a similar manner as the security proof for the generic compiler in
the malicious model (Theorem 3).

4.3 The Hierarchical VOS

We propose a hierarchical VOS construction based on the Goodrich-Mitzenmacher ORAM (GM-
ORAM) scheme [22] and its variants [26]. Although this hierarchical VOS construction achieves
worse asymptotics than the Path VOS mentioned in the previous section, it is necessary later for
our dynamic proofs of retrievability scheme — since the Path VOS scheme does not satisfy the
next-read pattern hiding property (NRPH) proposed by Cash et al. [9]. (All of our VOS compilers
are NRPH-preserving since they do not alter the sequence of accesses as dictated by the underlying
ORAM.)

Although the basic idea is similar as before, to use FHE to outsource computation to the server,
and use SNARK to enforce honest server behavior, we propose a “read/write (un)balancing” trick
that allows us to reduce the bandwidth cost. The idea is that if we apply the generic ORAM-to-VOS
compiler on the GM-ORAM scheme, reads will require more bandwidth than writes, since write is
basically a homomorphic shuffling operation which the server can perform all on its own without
interacting with the client. Therefore, we adjust the scheme to penalize writes while reducing the
cost of reads. Note that in the traditional ORAM setting, writes cost more bandwidth, and that is
why Kushilevitz et al. [26] propose a read/write balancing trick where they penalize reads to save
on writes — our trick is the opposite of theirs since the read/write cost comparison is reverse in
the VOS setting. We only give our main theorem for the Hierarchical VOS below. The detailed
construction can be found in Appendix D.

Theorem 5. Let g(n) denote some function on n. Assume collision resistant hash functions, the
ring LWE assumption with suitable parametrization [5, 18], and the q-PDH and q-PKE assump-
tions [16]. Then, there exists a VOS scheme for a reasonably large block size β = Ω̃(λ), with
O(β log n/ log g(n)) bandwidth cost, and Õ(βg(n) log3 n/ log g(n))poly(λ) server computation (per
data access), where n is the total number of blocks and λ is the security parameter.

The following table shows some interesting special cases of Theorem 8.

g(n) server computation bandwidth overhead

nε for constant ε < 1 Õ(βnε log2 n)poly(λ) O(β)

log n Õ(β log4 n/ log logn)poly(λ) O(β log n/ log log n)

constant c > 1 Õ(β log3 n)poly(λ) O(β log n)

5 Applications: Efficient Dynamic Proofs of Retrievability

For applications such as Dynamic Proofs of Retrievability, and RAM-model secure multi-party
computation where the party storing the data (or a share of the data) can perform computation,
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often, just directly replacing the ORAM scheme with a VOS scheme can reduce the asymptotic
communication overhead.

We show how VOS can be useful in Dynamic Proofs of Retrievability, based on the results
of Cash et al. [9]. We note that two recent results have yielded more practical dynamic PoR
schemes [10, 32]. Our dynamic PoR description helps demonstrate why distinguishing between
VOS and ORAM can aid theoretical understanding. For a practical implementation, the recent
schemes by Shi et al. [32] and Chandran et al. [10] are recommended.

Recently Cash et al. [9] show how to leverage a blackbox ORAM scheme to construct a dynamic
proof of retrievability (PoR) scheme with O(βλ log2 n) cost (both in terms of bandwidth and server
computation) per data access. They require the underlying ORAM to have a special property
which they call “next-read pattern hiding” (NRPH).

In the dynamic PoR scheme by Cash et al., they assume a passive server which does not perform
any active computation. We observe that if we replaced the ORAM scheme in their construction
with a VOS scheme (which also needs to satisfy the NRPH property), we would be able to obtain
a dynamic PoR scheme (with server computation), which achieves smaller asymptotic bandwidth
cost than Cash et al. [9].

The Path ORAM algorithm (and hence Path VOS too), however, does not satisfy the NRPH
property, as pointed out by Cash et al. [9]. However, they showed that the GM-ORAM scheme
and its variants indeed satisfy the NRPH property. Therefore, we rely on the hierarchical VOS
described in Section 4.3 to build our dynamic PoR scheme.

Theorem 6. Let g(n) denote some function on n. Assume collision resistant hash functions, the
ring LWE assumption with suitable parametrization [5, 18], and the q-PDH and q-PKE assump-
tions [16]. Then, there exists a dynamic proof of retrievability scheme for reasonably large block
size β = Ω̃(λ), with O(β log n/ log g(n)) bandwidth cost and O(βg(n) log3 n/ log g(n))poly(λ) server
computation for each read operation; O(βλ log n/ log g(n)) bandwidth cost and O(βλg(n) log3 n/ log g(n))poly(λ)
server computation for each write or audit operation; with O(β) client-storage and O(βn) server
storage. In the above, n is the total number of blocks and λ is the security parameter.

Below are some interesting special cases of the above theorem. “R:” stands for read cost, and
“W/A:” stands for write/audit cost.

g(n) server computation bandwidth overhead

nε for constant ε < 1
R: Õ(βnε log2 n)poly(λ) R: O(β)

W/A: Õ(βλnε log2 n)poly(λ) W/A: O(βλ)

logn
R: Õ(β log4 n/ log logn)poly(λ) R: O(β logn/ log log n)

W/A: Õ(βλ log4 n/ log logn)poly(λ) W/A: O(βλ logn/ log logn)

constant c > 1
R: Õ(β log3 n)poly(λ) R: O(β logn)

W/A: Õ(βλ log3 n)poly(λ) W/A: O(βλ logn)

In comparison to Cash et al. [9], using Verifiable Oblivious Storage (VOS), we can reduce the
bandwidth cost to O(β log n/poly log log n) for reads, and
O(βλ log n/poly log log n) for writes, with poly-logarithmic server computation. Furthermore, we
can reduce the bandwidth cost to O(β) for reads, and O(βλ) for writes, with O(βnε)poly(λ) amount
of server computation for a constant ε < 1.

Other applications. Gordon et al. recently proposed to use ORAM to achieve amortized
sublinear-time secure two-party computation [25]. In their setting, Alice’s input is a large database,
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and Bob repeatedly makes queries over the database. Alice wishes to protect the privacy of her
database, while Bob wishes to protect the privacy of his query. Using ORAM, Gordon et al. show
that the cost of securely querying the database can be sublinear when amortizing the ORAM setup
cost over all future queries. Since both parties (each storing a share of the data) perform compu-
tation in this setting, we can simply replace the ORAM with VOS, and asymptotically, this gives
savings in terms of bandwidth overhead.

6 Conclusion and Open Problems

This paper separates VOS from ORAM, and shows that VOS need not be subject to ORAM’s
lower bounds, since it is a different model where server computation is allowed. The construc-
tions proposed in this paper use general primitives such as FHE and SNARKs. An interesting
open question is to see how to construct a practically efficient VOS scheme (potentially without
FHE or SNARKs) that outperforms the best known ORAM in terms of bandwidth overhead. It
would also be interesting to consider how to construct VOS schemes that are asymptotically more
bandwidth efficient than ORAM from weaker assumptions, e.g., without SNARKs or non-falsifiable
assumptions.
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Appendices

A VC-RAM Construction

Earlier works by Ben-Sasson et al. [1] and by Bitansky et al. [3] implicitly give rise to an efficient
VC-RAM construction. For the purpose of this paper, we formally recast the VC-RAM definition in
Section 3.3. In this section, sketch an efficient VC-RAM construction based on the ideas proposed
by Ben-Sasson et al. [1] and Bitansky et al. [3].

The VC-RAM construction described below is based on any publicly-verifiable memory-checking
scheme and SNARK. The construction is publicly verifiable if the underlying SNARK is publicly
verifiable; else it is secretly verifiable.
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A.1 Preliminiaries

Memory checking. We recast memory checking [4] in a form better suited for our purposes,
however it is clear that our definition is equivalent to that used in prior work. IfD is a memory array,
then the “instruction” I = (data,waddr, raddr) sets D[waddr] = data and returns fetched = D[raddr].
If a sequence of instructions I1 = (data1, waddr1, raddr1), . . ., Im = (datam, waddrm, raddrm)
is executed, the correct answer to the final instruction (i.e., the final value fetchedm) is defined
in the obvious way: if raddrm 6∈ {waddr1, . . . ,waddrm−1} then fetchedm = D[raddrm], i.e., the
contents of the original memory at location raddrm. Otherwise, let t < m be maximal such that
raddrm = waddrt; then fetchedm = datat.

Definition 6. A memory-checking scheme consists of algorithms (Setup,Prove,Vrfy) such that:

• Setup takes as input a security parameter 1λ and an array D, and outputs a transformed
array D̃ along with a digest d.

• Prove takes as input D̃ and an instruction I = (data,waddr, raddr). It outputs an updated
array D̃, a value fetched, and a proof π.

• Vrfy takes as input a digest d, an instruction I = (data,waddr, raddr), a value fetched, and a
proof π. It outputs a bit b and an updated digest d.

The correctness requirement is that for any initial arrayD, and any (adaptively chosen) sequence
of instructions I1, . . . , Im, if we run

(D̃0, d0)← Setup(1λ, D); ∀ i : (D̃i, fetchedi, πi)← Prove(D̃i−1, Ii); (bi, di)← Vrfy(di−1, Ii, fetchedi, πi),

then b1 = · · · = bm = 1 and fetched1, . . . , fetchedm are all correct (as defined above).
Security requires that for all poly-time A, any initial array D, and any (adaptively chosen)

sequence of instructions I1, . . . , Im, if we run

(D̃0, d0)← Setup(1λ, D); ∀ i : (D̃i, fetchedi, πi)← A(D̃i−1, Ii); (bi, di)← Vrfy(di−1, Ii, fetchedi, πi),

then the probability that b1 = · · · = bm = 1 but fetchedm is not the correct answer is negligible.
If the above holds even when A is given d0, then we say the scheme is publicly verifiable.

Succinct Non-Interactive Arguments of Knowledge (SNARKs). We present the standard
definition of SNARKs.

Definition 7 (SNARK). Algorithms (KeyGen,Prove,Verify,Extract) give a succinct non-interactive
argument of knowledge (SNARK) for an NP language L with corresponding NP relation RL if:

Completeness: For all x ∈ L with witness w ∈ RL(x):

Pr

[
Verify(sk , x, π) = 0

∣∣∣∣ (pk , sk)← KeyGen(1λ),
π ← Prove(pk , x, w)

]
= negl(λ)

Adaptive soundness: For any probabilistic polynomial-time algorithm A,

Pr

[
Verify(sk , x, π) = 1
∧ (x /∈ L)

∣∣∣∣ (pk , sk)← KeyGen(1λ),
(x, π)← A(1λ, pk)

]
= negl(λ)
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Succinctness: The length of a proof is given by |π| = poly(λ)poly log(|x|+ |w|).

Extractability. For any poly-size prover Prove∗, there exists an extractor Extract∗ such that for
any statement x, auxiliary information µ, the following holds:

Pr

 (pk , sk)← KeyGen(1λ)
π ← Prove∗(pk , x, µ)
Verify(sk , x, π) = 1

∧ w ← Extract∗(pk , sk , x, π)
w /∈ RL

 = negl(λ)

We say that a SNARK is publicly verifiable if sk = pk . In this case, proofs can be verified by
anyone with pk . Otherwise, we call it a secretly-verifiable SNARK, in which case only the party
with sk can verify.

Lemma 2 (Efficient SNARKs [16]). Assume that the q-PDH assumption and the q-PKE assumption
hold in an appropriately chosen bilinear group. There exists a publicly verifiable SNARK for Circuit-
SAT where circuits have size at most s, such that KeyGen takes Õ(s)·O(λ) time, prover computation
takes Õ(s) · O(λ) time, verifier computation is O(|x|λ), the size of pk is O(sλ), and proof size
is O(λ). Furthermore, assuming the q-PDH, d-PKE and q-PKEQ assumptions, there is a secretly
verifiable SNARK with the same asymptotic efficiency.

A.2 The Random Access Machine (RAM) Model

RAMs and RAM programs. We are interested in modeling computation on a von Neumann
architecture. Here, we have a CPU with random access to some memory D that stores n words each
of length `. We let NextIns denote the CPU’s next-instruction function, which takes as input some
small, local state cpustate along with the last-read word of memory, and outputs a write address
waddrt, a read address raddrt, and a value datat to be written to D[waddrt]. A RAM program f is a
sequence of instructions (i.e., executable code). With D initialized as described, we may then run
f on some small input x (also called a query) by setting.

fetched0 =⊥
For t = 1, 2, . . . :

(datat,waddrt, raddrt, cpustatet) := NextIns
(
fetchedt−1, cpustatet−1

)
fetchedt := D[raddrt]
D[waddrt] := datat

We assume that any program f we consider has associated with it a time bound τ such that
the program runs for exactly τ steps for all queries. Thus, the execution above ends when t = τ ,
at which point (by convention) the final output is dataτ .

Repeated queries. We are interested in the case where a RAM program is repeatedly executed
on multiple queries, with the contents of D possibly being updated as the queries are answered.
(E.g., some inputs might represent an update to the underlying database itself, or might update the
data during the course of computing the output.) If D denotes the initial contents of the memory
(including f itself, which we assume is not being modified), then we write ym ← fD(x1, x2, . . . , xm)
to denote that the result of answering the mth query in the sequence x1, . . . , xm is ym.
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A.3 VC-RAM Construction

A memory-checking scheme easily yields an interactive VC-RAM scheme. Say we want to execute
queries starting from initial data array D (recall that D includes both the program f as well as any
underlying data). The client simply outsources storage of D to a server using a memory-checking
scheme. To answer query x, the client begins running the RAM program, making read/write
requests to the server as needed during the course of this execution. Each time the server gives
a response, the client first verifies the response (halting execution if verification fails), and then
updates its digest appropriately. It is trivial to see that the resulting scheme satisfies verifiability.

The above approach can be made non-interactive if the memory-checking scheme is publicly
verifiable – by having the client simply send x to the server, and then having the server simulate
on its own the actions of the client and the server from the previous, interactive protocol. At the
end, the server sends the final result back to the client along with the entire sequence of proofs that
the client can verify all at once.

We describe this non-interactive scheme more formally since we will further modify it later
below. Let (Setup,Prove,Vrfy) be a memory-checking scheme. Given initial array D containing (in
addition to data) a program f that runs for exactly τ steps, the client runs (D̃0, d0)← Setup(1λ, D)
and sends D̃0, d0, τ to the server; the client stores only d0. The client also sends to the server a
description of the NextIns circuit. When the client later wants to compute the answer to some
query x, it sends x to the server. The server sets cpustate0 = x and fetched0 =⊥. Then for
t = 1, . . . , τ it does:

(datat,waddrt, raddrt, cpustatet) := NextIns
(
fetchedt−1, cpustatet−1

)
It := (datat,waddrt, raddrt)

(D̃t, fetchedt, πt)← Prove(D̃t−1, It)

Finally, it sends the result y = dataτ along with the sequence (fetched1, π1, . . . , fetchedτ , πτ ) to the
client. To verify, the client sets cpustate0 = x and fetched0 =⊥. Then for t = 1, . . . , τ it does:

(datat,waddrt, raddrt, cpustatet) := NextIns
(
fetchedt−1, cpustatet−1

)
It := (datat,waddrt, raddrt)
(bt, dt)← Vrfy(dt−1, It, fetchedt, πt)

If b1 = · · · = bτ = 1 and y = dataτ then the client accepts y as the correct result. The client
updates its local digest to dτ ; by doing so, the client and server are now ready to evaluate the RAM
program again on some other input x′ (with the memory array updated appropriately).

The above scheme allows the client to outsource storage, but not computation. We can address
this, however, using a SNARK. Define the following NP relation R:(

(x, y, d0, dτ ), (fetched1, π1, . . . , fetchedτ , πτ )
)
∈ R

iff the client verification described above succeeds, and furthermore the final state of the client’s
digest is dτ . We now modify the previous scheme as follows: Rather than having the server send
(fetched1, π1, . . . , fetchedτ , πτ ), and then having the client verify all these proofs, we instead have
the server prove (using a SNARK) that a valid proof sequence exists. Finally, the server sends
the client (y, dτ ), in addition to a succinct proof that a valid witness (fetched1, π1, . . . , fetchedτ , πτ )
exists for the NP statement (x, y, d0, dτ ). Using the SNARK from [16] and any memory-checking
scheme, we thus obtain:
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Theorem 7 (Efficient Verifiable RAM Computation). The above gives a verifiable (but not private)
VC-RAM where the server runs in time Õ(τ log n)·poly(λ), the verifier runs in time O((|x|+|y|)·λ),
and the proof size is O(λ).

The VC-RAM is publicly verifiable if the memory-checking scheme and SNARK are.

Proof. (sketch.) The correctness of the construction can be derived from the correctness of the
underlying SNARK and memory checking scheme in a straightforward manner.

Verifiability of the client-efficient construction follows from verifiability of the client-inefficient
construction plus extractability of the SNARK; namely, if there exists an adversary who can
break verifiability in the client-efficient version, then by extracting from that adversary a witness
fetched1, π1, . . . , fetchedτ , πτ we can break verifiability of the client-inefficient version.

B Generic ORAM-to-VOS Compiler in the Malicious Model

The RAM program f . Let f denote the RAM program that executes the server’s algorithm for
each round of the semi-honest VOS construction:

• Suppose the initial memory arrary is of the form D := (pk , Do[1..n], st).

• The input to f contains op, and (optionally) a set of read addresses {raddr} and write addresses
{waddr}. Note that corresponding to the first round of every data access operation, the input
contains only op, and no memory addresses.

• Unless the inputs are ⊥, perform memory reads and writes: Do[{waddr}] := {data}, and
{fetched} := Do[{raddr}].

• Homomorphically evaluate the ORAM.Next circuit:

(out, {raddr}, {waddr}, {data}, st)← FHE.Eval(ORAM.Next(op, st, {fetched}))

Note that the {fetched} is set to empty if this is the first round.

• Output (out, {raddr}, {waddr}) to the client.

ORAM-to-VOS compiler in the malicious model. The ORAM-to-VOS compiler in the
malicious model is described in Figure 4.

C Proofs of Security

C.1 Proof of Security for the Semi-honest Compiler

Proof. It suffices to prove security for a dummy adversary which simply passes messages to and
from the environment. We now show that for a dummy real-world adversary, there exists an ideal-
world simulator S such that no environment can distinguish whether it is in the real or ideal world.
The simulation is described as below.

• In Setup,
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• Setup: Client runs (pk , sk)← FHE.Setup(1λ). Client runs (Do, st)← ORAM.Init(1λ, D).

For i = 1 to |Do|, the client computes Do[i] := FHE.Encpk (Do[i]). The client also computes
st := FHE.Encpk (st).

The client calls (z, Z) ← VCRAM.Setup
(
1λ,
(
pk, {Do[i]}i∈|Do|, st}

)
, f
)

and sends Z to the
server. The client retains the local state z, and the FHE secret key sk .

• Access:

For the j-th operation op, let Rj denote the number of ORAM rounds necessary for the j-th
operation.

First, the client encrypts op := FHEpk (op) and sends it to the server.

For rnd = 1 to Rj :

– Let input x := ({op, {raddr}, {waddr}). Server evaluates (ans, Z) ←
VCRAM.Compute(x, Z). For rnd = 1, the sets of memory addresses {raddr}, {waddr} are
set to empty. Server sends ans back to the client.

– Client computes (ans, b, z) ← VCRAM.Verify(x, ans, z), and verifies that b = 1. In case
not, the client outputs ⊥.

Parse ans := (out, {raddr}, {waddr}).
If this is the last round, client uses sk to decrypt the fetched block out. This marks the
end of this operation. Otherwise, client decrypts {raddr} and {waddr} and sends back
{raddr} and {waddr} to the server.

Figure 4: ORAM-to-VOS generic compiler: malicious model.

1. Run (pk , sk)← FHE.KeyGen(1λ).

2. For i = 1 to |Do|, the client computes Do[i] := FHE.Encpk (0). The client also computes
st := FHE.Encpk (0). Finally, the client sends

(
pk, {Do[i]}i∈|Do|, st}

)
to the server.

• For each Access operation j = 1, . . . ,m,

1. Send op := FHEpk (0) to the server.

2. When the server sends {raddr}, {waddr} for decryption, Send plain-texts {raddr}, {waddr}
to the server that are returned by the ORAM simulator Sim(1λ,m) at step j.

It is not hard to see that due to the semantic security of the FHE encryption scheme and the
security of the ORAM, no PPT environment Z can distinguish the above ideal world from the real
world.

D The Hierarchical VOS

Here, we propose a hierarchical VOS construction based on the Goodrich-Mitzenmacher ORAM
scheme [22] and its variants [26]. Although this hierarchical VOS construction achieves worse
asymptotics than the Path VOS mentioned in Section 4, it is necessary later for our dynamic proofs
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of retrievability scheme — since the Path VOS scheme does not satisfy the next-read pattern hiding
property (NRPH) proposed by Cash et al. [9].

We first state the main theorem of this section before describing the construction.

Theorem 8. Let g(n) denote some function on n. Assume collision resistance hash functions,
the ring LWE assumption with suitable parametrization [5, 18], and the q-PDH and q-PKE as-
sumptions [16]. Then, there exists a VOS scheme for a reasonably large block size β = Ω̃(λ), with
O(β log n/ log g(n)) bandwidth cost, and Õ(βg(n) log3 n/ log g(n))poly(λ) server computation (per
data access), where n is the total number of blocks and λ is the security parameter.

The following table shows some interesting special cases of Theorem 8.

g(n) server computation bandwidth overhead

nε for constant ε < 1 Õ(βnε log2 n)poly(λ) O(β)

log n Õ(β log4 n/ log logn)poly(λ) O(β log n/ log log n)

constant c > 1 Õ(β log3 n)poly(λ) O(β log n)

Intuition. Our main idea is as follows:

• Rely on Fully Homomorphic Encryption (FHE) to outsource client computation to the server
whenever possible, and henceforth reduce communication overhead between the client and server.
One technicality here is that to preserve bandwidth overhead, we need to use FHE ciphertext
packing techniques such that we can encrypt each data block of size β using aO(β)-bit ciphertext,
and still maintain the ability to perform operations on each individual bit. This can be achieved
using techniques described in recent works, e.g. [5].

• Balance reads and writes to achieve better bandwidth overhead. If we apply the above FHE and
VC-RAM idea to the ORAM construction by Goodrich and Mitzenmacher [22], we can easily
obtain a VOS scheme with O(log n) overhead.

To achieve lower bandwidth overhead, we can use the the balancing trick proposed by Kushile-
vitz, Lu, and Ostrovsky [26]. The idea is that for a scheme where reads and writes are not of
equal cost, we can balance their cost to achieve better asymptotic bandwidth overhead. Inter-
estingly, while writes are typically more expensive than reads in the non-FHE setting [22], it
turns out that reads are more expensive (in terms of bandwidth overhead) under FHE, since the
writes correspond to shuffling operations which the server can homomorphically evaluate on its
own. Therefore, by balancing reads and writes under FHE, we are actually unbalancing them
in the traditional non-FHE setting.

To balance reads and writes, we will adjust the rate (denoted g(n)) at which adjacent levels
in the storage hierarchy grows. When the next level grows faster, we get schemes with better
bandwidth overhead – however, at the cost of more server computation.

• Enforcing honest server behavior and efficiency optimizations. Finally, we apply VC-RAM tech-
niques to enforce honest server behavior.
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D.1 Preliminary: The GM Hierarchical ORAM

As a starting point, consider the Oblivious RAM scheme by Goodrich and Mitzenmacher [22]. On
a high level, their scheme [22] works as follows. The server-side storage is divided into O(log n)
levels denoted Bk, Bk+1, . . . BL, where k is an appropriately chosen initial starting point for the
hierarchy. Each level Bi has capacity 2i.

For technical reasons related to proving inverse superpolynomial (i.e., negligible) failure proba-
bilities, levels k+ 1, . . . ,K are treated differently from levels K+ 1, . . . , L, where K = O(log log n).

• Bk is a table that the client scans through on every data access.

• For a lower level i ∈ {k + 1, . . . ,K}, Bi contains 2i+1 hash buckets, each of size O(log n).

• For an upper level i ∈ {K + 1, . . . , L}, Bi is a cuckoo hash table with (1 + ε) · 2i+2 cells, and
a stash of size s = O(log n).

The data access operations are sketched in Figure D.1. Each data access request has a read
and a write phase.

D.2 Hierarchical VOS

Step 1: Applying FHE. Suppose that all blocks are encrypted under FHE. Figure D.2 shows how
to execute the read and write phases more efficiently by leveraging server-side FHE evaluations.

Using FHE to delegate the ORAM client’s computation to the server, the read phase requires
sending a single FHE-encrypted block at every level, introducing O(β log n) bandwidth overhead,
and O(log n) rounds of interaction. The write phase requires no communication – other than the
client sending to the server the FHE-encrypted new block and the necessary FHE-encrypted hash
keys. Basically, the server is capable of performing reshuffling operations under FHE on its own.
The server has O(β log2 n)poly(λ) amortized computation overhead per data access in this scheme
— there will be an additional Õ(log n) factor after compilation to the malicious model with the
VC-RAM.

Step 2: Balance reads and writes. In the above scheme, the read phase requires O(β log n)
overhead, while the write phase requires O(β) overhead. To balance reads and writes, we can make
the next level grow faster than a constant rate than the previous level – however, while this reduces
bandwidth overhead, the tradeoff is server computation.

As an example, consider g(n) = 2 log n, i.e., we make level Bi+1 larger than level Bi by 2 log n
times. In this way, we have O(log n/ log logn) levels. Every time Bk, . . . , Bi are consecutively full,
they will be shuffled into a subsequent non-full level Bi+1. Starting from an empty Bi+1, levels
Bk, . . . , Bi will be shuffled into Bi+1 a total of log n times – at which point Bi+1 is deemed full as
well. Every time Bk, . . . , Bi are shuffled into Bi+1, all existing blocks inside level Bk, . . . , Bi and
Bi+1 are shuffled together, and written back to Bi+1.

It is easy to adjust the parameter K (separating the lower and upper levels) correspondingly
such that the same failure probability analysis holds as in the GM-ORAM scheme [22].

It is not hard to see that with this new rebalanced scheme, the read phase now requires only
O(β log n/ log log n) bandwidth overhead, while write phase requires constant bandwidth overhead.
The server has O(β log3 n)poly(λ) amortized computation overhead per data access in this rebal-
anced scheme. It is also not hard to apply a similar deamortization trick described in [29] and [26], to
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Read phase [22].

• Scan through Bk, if block ind is in there, found := true; else found := false.

• For each level i ∈ {k + 1, . . . ,K}: if found = true, read a random hash bucket; else look for
block ind in hash bucket Bi[hi(ind)] in level Bi. If found, mark found := true.

• For each level i ∈ {K + 1, . . . , L}:
If found = true: Read Bi[hi,0(nextdummyi)] Bi[hi,1(nextdummyi)], and let nextdummyi ←
nextdummyi + 1.

Else: Read Bi[hi,0(ind)] and Bi[hi,1(ind)], and if found, mark found := true.

No matter which case: read through the stash at level i. If found, mark found := true.

• For all of the above: after reading any block, the block is reencrypted and written back. If
the block is ind , mark the block as obsolete before reencryption.

Write phase [22].

• If Bk is not full: write the block ind back to level Bk, replace with updated block if necessary.

• If Bk is full, find consecutively full levels Bk, Bk+1, . . . , Bm, such that Bm+1 is the first empty
level. Reshuffle levels Bk, . . . , Bm into level Bm+1 – this involves obliviously rebuilding a
regular hash table or a cuckoo hash table at Bm+1 (see [22] for the detailed algorithm).

New hashes hm+1,0 and hm+1,1 are chosen every time for a level being rebuilt (by choosing
a new secret key freshly at random). nextdummym+1 is reset to 0.

Figure 5: Sketch of the GM-ORAM construction [22]. Each level has two secret hashes hi,0
and hi,1 that are freshly chosen every time a level is rebuilt. Each level also has a dummy block
counter denoted nextDummyi, which is reset to 0 every time the level is rebuilt.

spread out the reshuffling work over time, such that the server computation is O(β log3 n)poly(λ)
per data access in the worst-case. Note that our rebalancing is in the opposite direction of the
Kushilevitz, Lu, and Ostrovsky scheme [26]. In the FHE setting, reads are more expensive; while
in the standard ORAM setting they consider, writes are more expensive.

More generally, we can set g(n) to be other functions as shown in the table in Theorem 8.
For example, when g(n) =

√
n, the bandwidth overhead is O(1) – however, server computation is

O(β
√
n log n)poly(λ) per data access. The scheme for g(n) =

√
n is actually a variant of the Square-

Root construction [21] – with an adjusted hashing strategy to achieve inverse superpolynomial
failure probability.

Step 3: Applying VC-RAM to enforce honest server behavior. To force a malicious
server to adhere to the prescribed protocol, we can rely on VC-RAM techniques as introduce in
Section 3.3.1. Particularly, we will apply the VC-RAM techniques to the deamortized version of
our scheme.
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Read phase under FHE.

• Client: found := false. ind ← FHE.Enc(ind). Send ind to server.

• Level k:

Server: block ← FHE.Eval(find(ind ,Bk)). where find is the function that looks for a block ind in a
table, and returns the block found or ⊥ upon failure. Send block to client.

Client: Decrypt block and update found appropriately.

• For each level i ∈ {k + 1, . . . ,K}:
Client: if found = true, choose a at random; else choose a← hi(ind). Send a to server.

Server: block← FHE.Eval(find(ind ,Bi[a])). Send block to client.

Client: Decrypt block and update found appropriately.

• For each level i ∈ {K + 1, . . . , L}:
Client: if found = true, choose a0, a1 at random; else choose a0 ← hi,0(ind), a1 ← hi,1(ind). Send
a0, a1 to server.

Server: block← FHE.Eval(find(ind ,Bi[a0],Bi[a1],Bi[stashi])). Send block to client.

Client: Decrypt block and update found appropriately.

Write phase under FHE.

• Client: block ← FHE.Enc(ind , block). Choose one more more fresh random hash keys. keys ←
FHE.Enc(keys). Send block, keys to server.

• Server: If Bk is not full (the server can know this by keeping a counter of total data requests):
Bk ← FHE.Eval(insert(Bk, block)) where insert is the function that inserts a block into a table.

If Bk is full, find consecutively full levels Bk, Bk+1, . . . , Bm (the server knows this by keeping a
counter of total data requests), such that Bm+1 is the first empty level. Homomorphically evaluate
Bk, . . . , Bm+1 ← FHE.Eval(reshuffle(keys,Bk, . . . ,Bm)) where reshuffle is the function that empties
levels Bk through Bm, and reshuffles them into level Bm+1 – suppressing obsolete blocks in the
meanwhile.

Figure 6: Hierarchical VOS secure in the semi-honest model.

E Round Complexity

This paper focuses on reducing the bandwidth overhead of VOS, showing how allowing server-side
computation enables us to circumvent the ORAM lower bound on bandwidth cost.

Our constructions so far require that the server interacts with the client whenever it needs the
client to decrypt FHE ciphertexts to obtain the next read and write addresses. In the case of our
Path VOS scheme, we already achieve constant-round overhead, since the depth of the recursive
construction is O(1) for any poly(λ)-sized database. On the other hand, our Hierarchical VOS
scheme requires O(log(n)/ log(g(n))) rounds of communication (one for each level) per original
RAM instruction.

We sketch how to use a recent trick relying on Indistinguishability Obfuscation proposed by
Garg et al. [15] to reduce the round complexity of the Hierarchical VOS to a single round per
operation of the original RAM. (The same idea applied to Path VOS reduces the rounds-per-
operation from O(1) to 1 as well.) The idea is that the client can obfuscate the FHE decryption
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circuit with Indistinguishability Obfuscation (iO) and send it to the server, such that the server
can decrypt on its own. In order to prevent the “reset” attack where the server evaluates the iO
on arbitrary inputs of its choice, we need to use statistically sound NIZKs in a similar manner as
Garg et al. [15], to ensure that only one evaluation trace is acceptable. At first sight, it would seem
like virtual black-box obfuscation might be required to ensure security. However, as Garg et al.
showed, because there is only a single acceptable evaluation trace, in the proof, we can replace the
iO with another one that simply hardcodes this exact evaluation trace in the obfuscated program.

Also, note that Garg et al. considers a multi-party setting, and each party uses CCA-secure
encryption to commit to their inputs at the beginning of the protocol. In this way, the simulator
in the proof can extract inputs from malicious parties. In our setting, only the honest client has
input, and the potentially malicious server does not have input. Therefore, the proof does not have
to rely on extracting malicious party’s inputs.
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