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Abstract

Using recently developed techniques for program obfuscation, we show several constructions
of non-interactive cryptosystems in the random-access machine (RAM) model of computation
that are asymptotically more efficient than what would be obtained using generic RAM-to-
circuit compilation. In particular, let T denote the running time and n the memory size of
a RAM program. We show that using differing-inputs obfuscation, functional encryption for
arbitrary RAM programs can be achieved with evaluation time Õ(T + n).

Additionally, we provide a number of RAM-model constructions assuming the stronger no-
tion of virtual black-box (VBB) obfuscation. We view these as initial feasibility results and
leave instantiating similar protocols from weaker assumptions for future work. Specifically, us-
ing VBB obfuscation we show how to construct RAM-model functional encryption with function
privacy, fully homomorphic encryption, and stateful, privacy-preserving verifiable computation
in the memory-delegation model.

Keywords. random access machine; program obfuscation; functional encryption; fully homo-
morphic encryption; verifiable computation

1 Introduction

Most cryptographic feasibility results that apply to arbitrary (polynomial-time computable) func-
tions begin by modeling the function of interest as a polynomial-size circuit. In contrast, most
real-life computations are expressed in terms of programs working on a von Neumann architec-
ture, which resembles the random-access machine (RAM) model of computation. Working with a
circuit-based model of computation can reduce the efficiency of cryptographic constructions rela-
tive to their non-cryptographic counterparts. In particular, the running time T of a RAM program
can be sublinear in the length n of its memory array D, whereas the circuit corresponding to this
program (assuming the function it computes is non-trivial) must have size at least n. Even when
T = Ω(n), generic RAM-to-circuit compilation [41] results in a circuit of size O(nT ), a blowup
compared to the original running time T . Moreover, RAM programs may run in a different number
of steps on different inputs, while circuits must run in the worst-case time on all inputs.

To overcome the drawbacks of using a circuit-based representation, several recent works have
investigated cryptography based on alternative models of computation [31, 6, 7, 27, 15, 9, 36]. In
particular, the RAM model has attracted considerable attention, and a flurry of recent works have
demonstrated the feasibility of constructing SNARKs [6, 7, 9], verifiable computation (without
privacy) [6, 7, 15, 9], attribute-based encryption [26], and secure multi-party computation [31, 36]
in the RAM model.
∗Dept. of Computer Science, University of Maryland.
†Dept. of Computer Science, Virginia Commonwealth University.
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This line of research has left open the question of how to evaluate RAM programs non-
interactively over encrypted data; this is explicitly mentioned as an open question by Goldwasser
et al. [26]. What makes this problem challenging is the inherent tension arising from (1) the need
for data to remain encrypted, and (2) the need for the evaluator to securely “decrypt” intermediate
memory addresses during the evaluation. Relying on recently developed tools for program obfus-
cation [20, 14, 4], we show constructions for several cryptographic tasks related to this goal. We
summarize our results, as well as our techniques, below.

1.1 Functional Encryption in the RAM Model

In a functional encryption (FE) scheme [10], roughly speaking, secret keys correspond to functions;
a user in possession of a ciphertext ct = Enc(x) and a secret key skf for a function f can compute
f(x) but nothing else about x. In most prior work, the time required to compute f(x) depends
on the circuit size of f . Here, we explore constructions whose complexity depends instead on the
time to compute f in the RAM model. (We focus on indistinguishability-based security, though
techniques from De Caro et al. [19] could be used to achieve simulation-based security.)

We identify a RAM program with a memory arrayD; the program takes an input x, reads/writes
data from/to D, and eventually outputs a result. (The function computed by the program is
stored in the initial portion of D.) Relying on differing-inputs obfuscation1 (diO) [2], we show a
construction of functional encryption for RAM programs in which the evaluation time for a RAM
program that runs in time T and uses memory of size n is2 Õ(T + n) (omitting poly(λ) terms for
simplicity). Our scheme imposes no a priori bounds on T or n.

Techniques. We describe the high-level intuition of our construction. Given a RAM program
specified by its memory array D, we first use standard oblivious-RAM techniques to compile this
into a functionally equivalent program in which memory-access patterns are independent of the
input. Both the input x and the CPU states will be encrypted using a fully homomorphic encryption
(FHE) scheme. This way, the evaluator can homomorphically evaluate every step of the next-
instruction circuit, obtaining new (encrypted) CPU states, (encrypted) memory addresses, and
(encrypted) values to write to memory. The missing ingredient is that the evaluator must obtain
values of the next memory addresses to read and write in the clear. Our idea is to obfuscate
(using diO) homomorphic evaluation of the next-instruction function, followed by decryption of the
needed memory addresses. The evaluator can use this obfuscated function to generate the memory
addresses, one-by-one, without learning any additional information.

Intuitively, the above suffices as long as the evaluator behaves honestly. To prevent a dishonst
evaluator from feeding arbitrary inputs to the obfuscated program and learning additional infor-
mation, the obfuscated next-instruction circuit at time step τ will check that its inputs represent
results from an honest execution of the previous τ − 1 steps. To achieve this we use a succinct
proof—constructed using the idea of proof-carrying data (PCD) [9] combined with a Merkle-tree
construction to verify correctness of memory accesses—to verify that all previous steps of the eval-
uation were carried out correctly. Getting this high-level idea to work is non-trivial. One obstacle
is circular dependence: the obfuscated circuit must include a PCD verifier to check the legitimacy
of the inputs before evaluation; on the other hand, the PCD’s statement includes the requirement
that the obfuscated circuit itself was evaluated correctly in the previous step. To break this circular

1Although Garg et al. [21] show the implausibility of differing-inputs obfuscation in the presence of general auxiliary
inputs, there is no evidence that their attack on the differing-inputs property applies to the specific circuits considered
in our construction. In any case, we discuss further below how our construction can be adapted to be based on
indistinguishability obfuscation.

2Throughout the paper, Õ(f(·)) means O(f(·) · polylog(f(·))).
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dependence, we have the obfuscated circuit output a signature for the next-memory addresses it
outputs. (For technical reasons, this signature must be deterministic.)

Aside from resolving the circular dependence challenge, other technical challenges also arise in
our constructions. For example, we rely on the double-encryption and NIZK trick [20, 39, 37] to
ensure some form of non-malleability property in our construction. We further borrow ideas from
the randomized Functional Encryption construction by Goyal et al. [33] to handle the randomness
of ORAM.

Using indistinguishability obfuscation. We can adapt our construction so that it is based
on the (presumably) weaker assumption of indistinguishability obfuscation (iO) [20]. Instead of
using PCD proofs and Merkle trees, the obfuscated next-instruction circuit now takes the entire
previous evaluation trace as input and checks its correctness. The resulting construction, described
in Appendix D, has evaluation time Õ((T + n)2). Although this does not offer any asymptotic
improvement over what can be obtained by converting the RAM to a circuit, it still has the
advantage of having input-specific running time as defined by Goldwasser et al. for the case of
programs specified as Turing machines [26, 27]. (This leaks information, but may be acceptable in
some scenarios.) In comparison with the results of Goldwasser et al. [26], our iO-based construction
does not rely on non-falsifiable assumptions. We also remark that working in the RAM model is
inherently more challenging precisely because of the random memory accesses. It was previously
unknown how to construct a functional encryption scheme in the RAM model, even based on
non-falsifiable assumptions or in idealized models (without converting the RAM to a circuit).

1.2 Additional Results Using Virtual Black-Box Obfuscation

We view the preceding results as the main contributions of this paper. For completeness, however,
we also show how to realize additional tasks in the RAM model based on the stronger notion of
virtual black-box (VBB) obfuscation. Although VBB obfuscation is known not to exist for general
functions, recent results have demonstrated the feasibility of constructing general-purpose VBB
obfuscators in certain idealized models [14, 4] or in the real-world for restricted functions [3]. VBB
obfuscation can also be realized using hardware tokens [14, 16, 28]. Our results relying on VBB
obfuscation are subject to the same caveats as in those works, and can be viewed as initial feasibility
results secure against “generic” or “algebraic-only” attacks. A natural direction of future research
is to explore whether similar results can be achieved under weaker assumptions, akin perhaps to
our iO- or diO-based FE-RAM schemes.

Functional encryption with function privacy. Using VBB obfuscation we can add function
privacy to our functional encryption scheme while maintaining evaluation time Õ(T + n).

Fully homomorphic encryption for RAM programs. A fully homomorphic encryption (FHE)
scheme provides a public evaluation method that enables anyone holding a ciphertext ct = Enc(x)
to compute a ciphertext Enc(f(x)) for any desired function f . In existing schemes, the complexity
of this evaluation procedure depends on the size of the circuit computing f . Here, we give construc-
tions in which the complexity instead depends on the time to compute f on a RAM. Specifically,
if f can be computed by a RAM program in T time steps using memory of size n, then evaluation
takes time Õ(T +n) (again omitting terms that depend on the security parameter). As in the case
of our functional encryption schemes, our FHE scheme imposes no a priori bounds on T or n.

Similar to the Turing machine FHE of [26], this provides the option of FHE with input-specific
run-time, but also has the additional property of random access to working memory, which can
provide polynomial speed-ups for specific algorithms.
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Stateful verifiable computation of RAM programs, with privacy. In a stateful verifiable-
computation (VC) scheme, a client outsources some data D to an untrusted server. The client then
makes a series of queries to the server. The queries can include updates to the data (i.e., inserting,
deleting, or modifying entries in the database); other queries require the server to compute some
function over the current contents of the data. The challenge is to guarantee the integrity of the
computation performed by the server. We require privacy of the outsourced data as well. (Prior
work on verifiable computation in the RAM model [6, 7, 15, 9] does not achieve privacy.) To make
the problem interesting, the client should perform asymptotically less work per function evaluation
than the time to compute the function on its own, locally. In prior work, efficiency was measured in
terms of the circuit size of the function(s) being computed. Here, we focus on the time complexity
of the function(s) in the RAM model.

We show that a stateful VC scheme with nearly optimal online performance: for a function that
can be implemented by a RAM program in time T using memory of size n, the server’s online cost
for computing the function is Õ(T ), and the client’s overhead for verification is linear in the input
and output lengths only. (Once again, we omit dependence on the security parameter.)

2 Definitions

We present some definitions specific to our work, and refer the reader to Appendix A for general
background and various additional building blocks.

2.1 The RAM Model of Computation

We use the following notation to denote parameters associated with a random access machine
(RAM): NextIns is the next instruction circuit; n is the maximum number of memory words
consumed by the RAM; ` is the bit length of each memory word; and |cpustate| is the bit length of
the cpustate.

A random access machine RAM := D is defined by initial memory array D ∈ {0, 1}n`. Through-
out the paper, we assume that a RAM’s initial cpustate0 := 0. We assume that the RAM’s program f
is stored in the memory array D, and that the NextIns circuit is independent of the program text
size. We use the following notation to denote a RAM’s execution.

waddrt write address at time t datat memory word to write at time t
raddrt read address at time t fetchedt memory word fetched at time t
x input of RAM cpustatet CPU state at time t
y output of RAM T RAM’s execution time

Based on this notation, our RAM’s execution can be described as below. Without loss of
generality, we assume cpustate0 := 0 throughout the paper.

fetched0 = x
For t = 1, 2, . . . :

(datat,waddrt, raddrt, cpustatet) := NextIns
(
fetchedt−1, cpustatet−1

)
fetchedt := D[raddrt]
D[waddrt] := datat

For simplicity, we adopt the convention that in the final step t = T of the execution, the
NextIns circuit additionally outputs the final output value y. This assumes that the RAM always
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runs for exactly T steps on all inputs x. One can also allow input-specific run-time on a per-
application basis, under the condition that this information will leak to an adversary in any of our
cryptosystems, by modifying the above in the natural way.

We use the notation y := RAM(x) to denote that executing RAM on input x yields outcome
y. We use {(waddrt, raddrt)}1≤t≤T := addresses(RAM, x) to represent the memory address sequence
(both read and write addresses) accessed during the execution of RAM.

2.2 Oblivious RAM

An Oblivious RAM (ORAM) is a special random-access machine with a special, deterministic next
instruction circuit that takes in a random seed rk:

(datat,waddrt, raddrt, cpustatet) := NextIns
(
fetchedt−1, cpustatet−1, rk

)
Informally, an adversary who can observe the memory address sequence emitted during the ORAM’s
execution cannot gain any additional information about the input to the ORAM. Here we use the
notation y := ORAM[rk](x) denotes the outcome of the ORAM on input x and random seed rk.
We use {(waddrt, raddrt)}1≤t≤TORAM

:= addresses(ORAM, x; rk) to represent the memory address
sequence (both read and write addresses) accessed during the execution of ORAM on input x and
random seed rk.

As mentioned earlier, we assume that the initial CPU state of any RAM or ORAM is ~0. Therefore,
a RAM can be characterized by its initial memory array D. Any (non-oblivious) RAM := D can be
compiled into an equivalent oblivious RAM, denoted ORAM := D||~0. In particular, the ORAM’s
initial memory array is just the RAM’s initial memory array padded to the desired number of words,
and the desired bit-length for each memory word, which we denote with the short-hand D||~0. We
stress that the ORAM has different parameters, including memory word size, number of memory
words, and CPU state size than the original RAM. Further, note that the ORAM also has a different
next instruction circuit than that of the RAM.

Definition 2.1 (Secure ORAM). We say ORAM := D||~0 is a secure oblivious RAM for RAM := D,
if the following properties are satisfied:

• Correctness. For any input x, for any rk, it holds that ORAM[rk](x) = RAM(x).

• Address simulatability3. The security of ORAM states that there exists a simulator Sim such
that no PPT adversary can distinguish between a real address sequence (obtained by executing
ORAM on input x over a randomly-chosen seed rk) and a simulated address sequence. We
assume that both A and Sim know the parameters of the RAM and ORAM and their next in-
struction circuits. Note that the A does not see the random seed rk that used by the ORAM’s
next instruction circuit.

Real world:

(D,x)← A
Pick random rk ∈ {0, 1}λ

ORAM := D||~0
b← A (addresses(ORAM, x; rk))

Simulated world:

(D,x)← A
b← A(Sim())

3Our security definition does not stipulate the encryption of memory contents since memory contents will be
separately encrypted later in our construction.
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• Overhead. The new ORAM has number of memory words nORAM = Õ(n); word bit-length
`ORAM = max(`, c log T ) for some appropriate constant c > 2, and where T is the original
RAM’s maximum run-time; bit-length of CPU state |cpustateORAM| = O(|cpustate| + λ); and
|NextInsORAM| := O(|NextIns|) · poly(λ). Additionally, the new ORAM runs in Õ(T + n)
number of time steps if the original RAM runs in T number of time steps.

Lemma 2.2 (Restatement of [25, 35, 42, 44, 23, 18]). Assuming the existence of PRF, then for
any RAM := D, there exists a secure oblivious RAM ORAM := D||~0 with an appropriate next
instruction circuit.

Remark: Prevent correlated randomness of multiple executions of the same ORAM.
In our FE schemes, the same ORAM (defined by its initial memory array) will be used to evaluate
multiple ciphertexts. In order for the addresses of these multiple executions of the same ORAM to
be uncorrelated, we assume that the ORAM shuffles its entire memory prior to starting executing
the logic. More specifically, our ORAM does the following:

1. ORAM setup. At the start of the its execution, the ORAM first shuffles the entire memory. In
other words, the ORAM shuffles the original data array D and builds an ORAM data structure.
This takes Õ(n) time, and explains the added Õ(n) run-time on top of T in our FE-RAM.

2. Execution. The ORAM then executes the logic of the original RAM, reading and writing data
from and to the memory oblivious as needed.

Note also that in our construction, the seed rk is generated pseudorandomly by computing
PRF(K, ct); this will ensure that each ciphertext ct leads to a different seed, thus preventing corre-
lated randomness of multiple executions.

2.3 Functional Encryption

Syntax. A functional encryption scheme for RAM programs (FE-RAM) consists of the following
algorithms FE = FE.(Setup,KeyGen,Enc,Dec).

• Setup: FE.Setup(1λ) is a ppt algorithm that takes as input a security parameter 1λ and
outputs a pair of master public and secret keys (mpk,msk).

• Key Generation: FE.KeyGen(msk,RAM) is a ppt algorithm that takes as input the master
secret key msk and a RAM program RAM and outputs a corresponding secret key skRAM.

• Encryption: FE.Enc(mpk, x) is a ppt algorithm that takes as input the master public key
mpk and a message x and outputs a ciphertext ct.

• Decryption: FE.Dec(skRAM, ct) is a deterministic algorithm that takes as input the secret
key skRAM and a ciphertext ct = Enc(mpk, x) and outputs RAM(x).

Definition 2.3 (Correctness). A functional encryption scheme FE is correct if for every λ ∈ N,
RAM, x,

Pr

[
(mpk,msk)← FE.Setup(1λ);
FE.Dec(FE.KeyGen(msk,RAM),FE.Enc(mpk, x)) 6= RAM(x)

]
= negl(λ)

where the probability is taken over the coins of FE.Setup, FE.KeyGen, and FE.Enc.
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We consider both indistinguishability- and simulation-based notions of security for RAM-model
functional encryption, following [10, 38]. See Appendix B for a full treatment. Here, we state the
definition under which we prove security directly.

Definition 2.4 (Selective Indistinguishability, Multiple-Key). Let FE be a functional encryption
scheme for RAM programs computing a functionality class F . For every ppt stateful adversary A,
consider the following experiment.

ExptselectiveA (1λ)

1: (x0, x1)← A(1λ);
2: (mpk,msk)← FE.Setup(1λ);
3: b← {0, 1};
4: ct← FE.Enc(mpk, xb);

5: b′ ← AFE.KeyGen(msk,·)(mpk, ct);

Define an adversary to be non-trivial if RAM(x0) = RAM(x1), for every query RAM made to the
KeyGen oracle. We say that an FE-RAM scheme is selectively IND-secure if for all ppt stateful
non-trivial adversaries A, it holds that Pr[b′ = b] ≤ 1

2 + negl(λ) in the above experiment.

3 RAM-Model Functional Encryption from Differing-Inputs Ob-
fuscation

3.1 Intuition

As mentioned earlier in the introduction, the main idea is to 1) homomorphically encrypt the input
and the CPU state; and 2) create obfuscated next-instruction circuits that will emit next memory
addresses to read and write. When a token is being generated for a RAM, the RAM is first converted
into an ORAM. The ORAM’s memory contents are initially not encrypted (since function privacy is
not our goal here); however, contents newly written to memory will be homomorphically encrypted.
As a result, data fetched from memory can be a cleartext or ciphertext, depending on whether the
memory location has been written during the evaluation.

One key challenge is to secure against a malicious evaluator. For this reason, every obfuscated
next instruction circuit must only yield output if the evaluator is behaving correctly. We therefore
rely on Proof-Carrying-Data (PCD) [9] to ensure that all previous steps of the encrypted RAM
evaluation are done correctly. Unfortunately, if done naively, a circularity issue arises:

• We must check a PCD proof inside the obfuscated next-instruction circuit before releasing
any output; since otherwise an adversary can supply malicious inputs to the obfuscated next-
instruction circuit and learn additional information;

• The PCD proof must verify that the obfuscated next instruction circuit is evaluated correctly.

In order for us to fix the PCD verifier circuit to embed in the obfuscated next-instruction circuit,
we must fix the PCD predicate first, which requires fixing the obfuscated next-instruction circuit
first.

Ideas. To fix this problem, our idea is to have the obfuscated next instruction circuit additionally
output a signature for the (raddrτ ,waddrτ ) addresses it outputs. Therefore, in the PCD predicate,
we simply need to verify that this signature is correct, instead of having the entire obfuscated
next-instruction circuit in the PCD predicate.
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However, to leverage the properties of diO in our proof, this signature output by the diO must
be deterministic, such that at time step τ of evaluating the ciphertext ct, there is one unique proof
for a tuple (ct, τ, raddrτ ,waddrτ ). To construct this signature, we borrow ideas from the NIZK
construction of Sahai and Waters [40]. Although this scheme has only non-adaptive soundness, this
suffices for our setting because the space of possible (valid) statements has polynomial size.

3.2 Construction

Notational convention. We explain our notational conventions below.

var double-encrypted ciphertext based on cFHE, under public keys hpk
and hpk ′ respectively

var This variable (in particular fetchedt) is sometimes double-encrypted
and sometimes in cleartext. Memory contents fetched during the
RAM’s evaluation are in cleartext if this is the first time they are
accessed; otherwise, they are double-encrypted under hpk and hpk ′.

{var} or {var} or { var } We use {} to denote either that the variable has a Merkle proof or a
PCD proof vouching for its correctness.

We introduce the notation cFHE.Evalhpk ,hpk ′ as a short-hand to express simultaneously evaluating
two copies of the FHE ciphertexts, encrypted under hpk and hpk ′ respectively. Concretely, we use
w = cFHE.Evalhpk ,hpk ′(g( v )) to denote the homomorphic evaluation of function g(·) on double-
encrypted ciphertext v = (cv, c

′
v) to obtain a new double-encrypted ciphertext w = (cw, c

′
w),

where cv = cFHE.Enc(hpk , v) and c′v = cFHE.Enc(hpk ′, v)), and cw = cFHE.Eval(hpk , g(·), cv) and
c′w = cFHE.Eval(hpk ′, g(·), c′v).

Detailed construction. We now describe our diO-based FE-RAM construction. Besides the
differing-inputs obfuscation diO, we use an FHE scheme cFHE.(Gen,Enc,Dec,Eval), and a sim-
ulation sound NIZK scheme NIZK.(Setup,Prove,Verify). Further, we use a Proof-Carrying-Data
system [9, 17] and collision-resistant Merkle hash tree construction.

Setup. On input 1λ, compute (hpk , hsk) ← cFHE.Gen(1λ), (hpk ′, hsk ′) ← cFHE.Gen(1λ), crs ←
NIZK.Setup(1λ), and (rs, vrs)← PCD.G(1λ). Set public parameter mpk := (hpk , hpk ′, crs, rs, vrs),
and master secret key msk := hsk .

Key Generation. Convert the RAM into an ORAM, and denote ORAM := D. Compute the
initial Merkle digest denoted digest0 of ORAM i.e.,

digest0 := MerkleDigest(D)

Circuit V

Hardwired: PRF key Kv.

Inputs: ct, τ , raddrτ , waddrτ , στ .

Test if OWF(στ ) = OWF(PRF(Kv, (ct, τ, raddrτ ,waddrτ ))) where OWF is a one-way function. Out-
put accept if true, reject if false.

Figure 1: Circuit V to be obfuscated using iO. This verifier circuit will be used as part of the
predicate of the PCD system.
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Circuit C1

Hardwired: mpk, hsk , PRF key K, Kv.

Inputs: ct = ( x , π).

Outputs: raddr1, waddr1, σ1.

Computation:

1. Check. Parse ct := ( x , π), and verify the NIZK π. If verification fails, output ⊥.

2. Let rk := PRF(K, ct);

3. Decrypt, compute, and output next addresses. Use hsk to decrypt to obtain
fetched0 := x; and then compute the circuit NextIns(fetched0,~0, rk), and output the ad-
dresses raddr1, waddr1. Further, output σ1 := PRF(Kv, (ct, 1, raddr1,waddr1)).

Figure 2: Circuit C1 to be obfuscated using diO.

Sample random PRF key K ∈ {0, 1}λ to embed in the obfuscated next instruction circuits.
Let K :=

(
cFHE.Enc(hpk ,K), cFHE.Enc(hpk ′,K)

)
.

Circuit Cτ for time steps τ > 1

Hardwired: initial digest0, mpk, hsk , PRF key K, Kv, τ .

Inputs:

• {fetchedτ−1}, // carrying Merkle proofs w.r.t. digestτ−1

• {ct, τ − 1, digestτ−1, raddrτ−1, cpustateτ−1 }, // carrying a PCD proof

Outputs: raddrτ , waddrτ , στ and optionally y

Computation:

1. Check trace. If any of the checks fail, output ⊥.

• Check that {ct, τ − 1, digestτ−1, raddrτ−1, cpustateτ−1 } has a valid PCD proof.

• Check that {fetchedτ−1} is consistent with the Merkle digestτ−1 and raddrτ−1.

• Check that the input τ − 1 (when incremented) agrees with the hardwired τ .

2. Let rk := PRF(K, ct);

3. Decrypt, compute, and output next addresses. Use hsk to decrypt to obtain
fetchedτ−1, cpustateτ−1; then compute the circuit NextIns(fetchedτ−1, cpustateτ−1; rk),
and output the addresses raddrτ and waddrτ . Further, output στ :=
PRF(Kv, (ct, τ, raddrτ ,waddrτ )). If τ = TORAM, i.e., this is the final step of the ORAM, also
output the outcome y.

Figure 3: Circuit Cτ to be obfuscated using diO for τ > 1. Note that the PCD verifier algorithm
for each time step may be different, therefore, the circuit for each time step is different.
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Sample random PRF key Kv ∈ {0, 1}λ. Include iO(V ) in the token, where V is defined as in
Figure 1.

Generate TORAM = Õ(T ) obfuscated circuits: 1) An obfuscated circuit diO(C1)for the first
step of evaluation, this circuit is of size Õ(T ) as shown in Figure 2; and 2) an obfuscated
circuit diO(Cτ ) for each time step τ > 1 as described in Figure 3.

The token skORAM := (digest0, K , iO(V ), diO(C1), diO(C2), . . . , diO(CTORAM
)).

Encryption. Upon inputting the public parameter mpk and a message x, pick random ρ, ρ′ ∈
{0, 1}λ, and compute c = cFHE.Enc(hpk , x; ρ), c′ = cFHE.Enc(hpk ′, x; ρ′), then compute a
NIZK (denoted π) for the following statement parameterized by (c, c′):

∃x, ρ, ρ′ s.t. (c = cFHE.Enc(hpk , x; ρ)) ∧
(
c′ = cFHE.Enc(hpk ′, x; ρ′)

)
The ciphertext ct := ( x , π), where x := (c, c′).

Decryption. Parse the token skORAM := (digest0, K , iO(V ), diO(C1), diO(C2), . . . , diO(CTORAM
)).

Initialize D = D. Compute rk := cFHE.Evalhpk ,hpk ′
(
PRF( K , ct)

)
4.

Next, for τ ∈ [TORAM],

• Perform homomorphic evaluation.

If τ = 1, use homomorphic evaluation to obtain:(
data1 , cpustate1

)
:= cFHE.Evalhpk ,hpk ′(NextIns( x ,~0; rk ))

Else if τ > 1, use the homomorphic evaluation to obtain:(
dataτ , cpustateτ

)
:= cFHE.Evalhpk ,hpk ′(NextIns(fetchedτ−1, cpustateτ−1 ; rk ))

Here we ignore the encrypted addresses output by the homomorphic evaluations of the
NextIns.

• Use diO to evaluate next addresses. If τ = 1, compute

(waddr1, raddr1, σ1) := diO(C1)(ct)

Else if τ > 1, compute

(waddrτ , raddrτ , στ ) := diO(Cτ )({fetchedτ−1}, {ct, τ, digestτ−1, raddrτ−1, cpustateτ−1 })

If this is the final step of evaluation, an output y is additionally output from diO(Cτ ).

• Perform memory read and write. The evaluator maintains a Merkle-tree authen-
ticated data structure to efficiently compute the Merkle proofs for any memory location,
and to efficiently update the Merkle digest upon memory writes. At this moment, the
evaluator would update its Merkle-tree authenticated data structure to reflect the up-
dated dataτ , the updated cpustateτ , as well as the new time τ . Suppose that the new
Merkle digest is digestτ .

4For technical reasons in the proof, here we assume that PRF is the circuit that first checks whether input K is
a punctured key (which can be indicated by adding an indicator bit to the key), and if not, use real PRF evaluation
algorithm; if so, use the punctured PRF evaluation algorithm.
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Perform memory read and write:

fetchedτ := D[raddrτ ], D[waddrτ ] := dataτ

Construct the Merkle proofs for fetchedτ with respect to digestτ . Let {fetchedτ}, denote
the version that has been attached with its Merkle proof w.r.t digestτ .

• Compute a PCD proof for {ct, τ, digestτ , raddrτ , cpustateτ }.

3.2.1 PCD Proof Computation Details

©

{
ct, 1, digest1,
raddr1, cpustate1

}
-©

{
ct, 2, digest2,
raddr2, cpustate2

}
-©

{
ct, 3, digest3,
raddr3, cpustate3

}
-

↑ ↑ ↑
ct,
waddr1,
σ1,
data1 ,

{D[waddr1]},

{fetched1},
waddr2,
σ2,
data2 ,

{D[waddr2]}

{fetched2},
waddr3,
σ3,
data3 ,

{D[waddr3]}

,

Figure 4: Our Path PCD system.

Effectively we have a Path PCD system as depicted in Figure 4. In every time step of the evalua-
tion, a succinct proof is output vouching for the correctness of the terms {ct, τ, digestτ , raddrτ , cpustateτ }
which will serve as input to the next step.

Statement for τ > 1. At every node τ > 1, the statement being verified is the conjunction of
the following:

• The input has a valid PCD proof.

• The output ct agrees with the input ct.

• iO(V )(ct, τ, raddrτ ,waddrτ , στ ) = 1.

• {fetchedτ−1} has a Merkle proof consistent with digestτ−1 and raddrτ−1.

• Values cpustateτ and dataτ are correct homomorphic evaluations using the honest evalua-

tor’s algorithm based on fetchedτ−1, cpustateτ−1 , and rk := cFHE.Evalhpk ,hpk ′( K , ct).

• The new digest digestτ is updated correctly from digestτ−1, based on {D[waddrτ ]}, and the

new value dataτ .

Statement for τ = 1. At node τ = 1, the statement verified is the conjunction of the following:

• The output ct agrees with the local input ct.

• iO(V )(ct, 1, raddr1,waddr1, σ1) = 1.
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• Values cpustate1 and data1 are correct homomorphic evaluations using the honest evalua-

tor’s algorithm based on ct, ~0, and rk := cFHE.Evalhpk ,hpk ′( K , ct).

• The new digest digest1 is updated correctly from digest0, based on {D[waddr1]}, and the new
value data1 .

Theorem 3.1. Assuming that diO is a secure differing-inputs obfuscator, iO is a secure indistin-
guishability obfuscator, cFHE is a FHE scheme for circuits with perfect correctness and semantic
security, NIZK is a simulation sound NIZK scheme, the PCD system is a proof of knowledge, the
Merkle tree construction is collision-resistant, PRF is a correct and secure puncturable PRF, ORAM
is secure as in Definition 2.1 and OWF is a one-way function, then the above FE-RAM construction
is selectively IND-secure as in Definition 2.4.

The full proofs are deferred to Appendix C.

Lifting security. By a standard argument of complexity leveraging, we can achieve the (full, as
opposed to selective) indistinguishability security from the selective security at a cost of stronger
complexity assumptions. Then we can achieve a simulation-based security using the trapdoor circuit
technique from the work of De Caro et al. [19], who showed how to construct a (selective/full)
simulation secure FE from a (selective/full) indistinguishability secure one. Also, the construction
supports multiple key queries. Thus, we are able to achieve the following corollary:

Corollary 3.2 (Theorem 3.1 + (complexity leveraging) + [19]). Assume that diO is a secure
differing-inputs obfuscator, iO is a secure indistinguishablility obfuscator, cFHE is FHE scheme
for all circuits with perfect correctness and semantic security, NIZK is a simulation sound NIZK
scheme, the PCD system is a sound proof-of-knowledge system, the Merkle tree construction is
collision-resistant, PRF is a correct and secure puncturable PRF, ORAM is secure as in Defini-
tion 2.1, and OWF is a one-way function. In addition, assume that these primitives remain secure
when all polynomial-sized adversaries have sub-exponentially small advantages. Then the above
FE-RAM can be made fully SIM-secure as defined in Definition B.1.

Cost. Our IND-secure construction achieves poly(λ) ciphertext size and Õ(n+ T )poly(λ) evalua-
tion time. For the simulation-secure setting, our cost is preserved (same as the IND-secure setting),
for a scheme secure under a single key query. To support q key queries, the ciphertext size blows
up by a factor of q due to the use of De Caro et al. ’s compiler [19]. Again, recall that it has been
shown that in the standard model, it is impossible to achieve fully SIM-secure FE with succinct
ciphertexts [19]. In contrast, our IND-secure scheme can support unbounded polynomially many
key queries without blowups in ciphertext size.

In the above, we assume that the underlying diO scheme has linear blowup. We note that for the
weaker primitive of indistinguishable obfuscation, candidate iO schemes with linear blowup have
been proposed: Gordon et al. observe that for the construction of [20], the size of the obfuscated
circuit has only linear blowup, i.e. |iO(C)| = |C| · poly(λ). Therefore, if we conjecture that the iO
scheme is also a secure diO, then it will also be linear blowup. Please also see Remark A.6 for more
explanations.
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A General Background

A.1 Puncturable Pseudorandom Functions

Puncturable family of PRFs are a special case of constrained PRFs [11, 13, 34], where the PRF is
defined on all input strings except for a set of size polynomial in the security parameter. Below we
recall their definition, as given by [40].

Syntax. A puncturable family of PRFs is defined by a tuple of algorithms (Gen,Eval,Puncture)
and a pair of polynomials n() and m():

• Key Generation Gen(1λ) is a PPT algorithm that takes as input the security parameter λ
and outputs a PRF key K.

• Punctured Key Generation Puncture(K,S) is a PPT algorithm that takes as input a PRF
key K, a set S ⊂ {0, 1}n(λ) and outputs a punctured key KS .

• Evaluation Eval(K,x) is a deterministic algorithm that takes as input a key K (punctured
key or PRF key), a string x ∈ {0, 1}n(λ) and outputs y ∈ {0, 1}m(λ)

Definition A.1. A family of PRFs (Gen,Eval,Puncture) is puncturable if it satisfies the following
properties

• Functionality preserved under puncturing. Let K ← Gen(1λ) and KS ← Puncture(K,S).
Then for all x 6∈ S, Eval(K,x) = Eval(KS , x).

• Pseudorandom at punctured points. For every PPT adversary (A1,A2) such that A1()
outputs a set S ⊂ {0, 1}n(λ) and x ∈ S, consider an experiment K ← Gen(1λ) and KS ←
Puncture(K,S). Then∣∣Pr[A2(KS , x,Eval(K,x)) = 1]− Pr[A2(KS , x, Um(λ)) = 1]

∣∣ ≤ negl(λ)

where Um(λ) denotes the the uniform distribution over m(λ) bits.

Theorem A.2 ( [24, 11, 13, 34]). If one-way functions exist, then for all polynomial n() and m(),
there exists a puncturable PRF family that maps n() bits to m() bits.

A.2 Fully Homomorphic Encryption

A circuit-based fully homomorphic scheme cFHE.(Setup,Enc,Dec,Eval) is a tuple of algorithms
described as follows:

(hpk , hsk)← cFHE.Setup(1λ) takes in the security parameter λ, then outputs the public and secret
key pair (hpk , hsk).

c ← cFHE.Enc(hpk , x) takes in a plaintext message x and public key hpk , then outputs the
ciphertext c.
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x← cFHE.Dec(hsk , c) takes in a ciphertext c and secret key hsk , then outputs the plaintext x.

c′ ← cFHE.Eval(hpk , C, (c1, . . . , ck)) takes in a circuit description C, input ciphertexts c1, . . . , ck
and public key hpk , then outputs the ciphertext c′.

The definition of semantic security for cFHE.(Setup,Enc,Dec,Eval) follows the definition of public-
key encryption; we omit a formal statement.

Definition A.3. A circuit-based homomorphic encryption scheme cFHE.(Setup,Enc,Dec,Eval) is
(perfectly) correct if for all λ ∈ N, for all polynomial-size circuits C, for all honest (hpk , hsk) ←
Setup(1λ), for all honestly generated c1 := Enc(hpk , x1), . . . , ck := Enc(hpk , xk), it holds that
Dec(hsk ,Eval(hpk , C, c1, . . . , ck)) = C(x1, . . . , xk).

Definition A.4. A circuit-based homomorphic encryption scheme cFHE is compact, if there exists
a polynomial poly such that for all λ ∈ N, the ciphertexts output by Eval have size at most poly(λ).

A.3 Non-Interactive Proof Systems

A non-interactive proof system consists of three efficient algorithms (Gen,Prove,Verify). The gen-
eration algorithm crs ← Gen(1λ) produces a common random string crs. The proves algorithm
π ← Prove(crs, u, w) produces a proof π for a statement u using a witness w. The verification
algorithm Verify(crs, u, π) decides whether π is a valid proof for the statement u using common
reference string crs.

Definition A.5. We say that (Gen,Prove,Verify) is a non-interactive proof system for an NP
language L with a corresponding NP relation R, if it satisfies the following two properties:

Completeness : For all (u,w) ∈ R, it holds that:

Pr[Verify(crs, u, π) = 0|crs ← Gen(1λ), π ← Prove(crs, u, w)] = negl(λ)

Soundness : For all efficient Prove′, it holds that:

Pr[Verify(crs, u, π) = 1, u /∈ L|(crs)← Gen(1λ), π ← Prove′(crs, u, w)] = negl(λ)

Zero-Knowledge. We first define the syntax of the simulator: (crs, τ) ← Sim1 outputs a sim-
ulated crs and trapdoor τ , π ← Sim2(crs, u, τ) outputs a simulated proof. The proof system is
zero-knowledge if there exist a poly-time simulator (Sim1, Sim2) such for any adversary A, it holds:

Pr[A(π) = 1|crs ← Gen(1λ), π ← Prove(crs, u, w)] ≈ Pr[A(π) = 1|(crs, τ)← Sim1, π ← Sim2(crs, u, τ)]

where (u,w) ∈ R, (u,w)← A(crs).

A.4 Statistical Simulation-Sound NIZKs

Let R be a polynomial-time computable binary relation. For (stmt, w) ∈ R, we call stmt the
statement, and w the witness . Let L be the language consisting of all statements in R.

A Non-Interactive Zero-knowledge Proof system (NIZK) is a collection of three algorithms
NIZK = (Setup,Prove,Verify):

• crs ← Setup(1λ) : Takes in the security parameter λ, and generates a common reference string
crs.
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• π ← Prove(crs, stmt, w) : Takes in crs, a statement stmt, and a witness w such that (stmt, w) ∈
L, outputs a proof π.

• b← Verify(crs, stmt, π): Takes in the crs, a statement stmt, and a proof π, and outputs 0 or
1, denoting rejection or acceptance. stmt, and a witness w,

Perfect completeness. A NIZK system is said to be perfectly complete, if an honest prover
with a valid witness can always convince an honest verifier. More formally, for any (stmt, w) ∈ R,
we have

Pr
[
crs ← Setup(1λ), π ← Prove(crs, stmt, w) : Verify(crs, stmt, π) = 1

]
= 1

Statistical soundness. A NIZK system is said to be statistically sound, if there does not exist
a valid proof for any no false statement. More formally,

Pr
[
crs ← Setup(1λ), ∃(stmt, π): (stmt /∈ L) ∧ (Verify(crs, stmt, π) = 1)

]
= negl(λ)

Computational zero-knowlege. Informally, a NIZK system is computationally zero-knowledge,
if the proof does not reveal any information about the witness to any polynomial-time adversary.
More formally, a NIZK system is said to computationally zero-knowledge, if there exists a simulator
S = (SimSetup, SimProve), such that for all non-uniform polynomial-time adversary A, for any
stmt, w such that (stmt, w) ∈ R, it holds that∣∣∣∣∣∣ Pr

 crs ← Setup(1λ),
π ← Prove(crs, stmt, w) :
A(crs, stmt, π) = 1

 − Pr

 (c̃rs, trap)← SimSetup(1λ, stmt),
π̃ ← SimProve(crs, stmt, trap) :
A(c̃rs, stmt, π̃) = 1

∣∣∣∣∣∣ = negl(λ)

Statistical simulation soundness [20]. Informally, a NIZK system is statistically simulation
sound, if under a simulated c̃rs, no proof for a false statement exists, except for the simulated proof
for statement fed into the SimSetup algorithm to generate c̃rs. More formally, a NIZK system is
said to be statistically simulation sound, if

Pr

[
(c̃rs, trap)← SimSetup(1λ, stmt), π ← SimProve(crs, stmt, trap) :
∃(stmt′, π′) s.t. stmt′ 6= stmt) ∧ (Verify(c̃rs, stmt′, π′) = 1)

]
= negl(λ).

A.5 Indistinguishability Obfuscation

A uniform PPT machine iO is called an indistinguishable obfucastor [5, 29, 20], for a circuit family
{Cλ}, if the following conditions hold:

• Correctness. For all λ ∈ N, for all C ∈ Cλ, for all inputs x, we have

Pr
[
C ′ ← iO(λ,C) : C ′(x) = C(x)

]
= 1

• For any uniform or non-uniform PPT distinguisher D, for all security parameter λ ∈ N, for
all pairs of circuits C0, C1 ∈ Cλ such that C0(x) = C1(x) for all inputs x, then

|Pr [D(iO(λ,C0)) = 1]− Pr [D(iO(λ,C1)) = 1]| ≤ negl(λ)
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For simplicity, when the security parameter λ is clear, we write iO(C) in short.

Remark A.6. In a recent work [32], Gordon et al. observe that for the construction of [20], the size
of the obfuscated circuit has only linear blowup, i.e. |iO(C)| = |C| ·poly(λ). In the construction, in
order to obfuscate any poly-sized C, they consider another NC1 program P that checks the trace
of the computation of the FHE evaluation, and then decrypts. Essentially P is an “and” of |C|
local verifications (each of which has size poly(λ)), and then a decryption, which has size poly(λ).
Gordon et al. observe that each local verification can be written as a constant width, poly(λ)
length branching program by the Barrington’s theorem; also it takes an additive linear blow up to
“AND” multiple branching programs. Thus, P can be transformed to a branching program of size
O(|C|) · poly(λ). Then the construction of [20] blows up the branching program by poly(λ). Thus,
the obfuscated circuit has size O(|C|) · poly(λ).

A.6 Differing-Inputs Obfuscation for Circuits

Barak et al. [5] defined the notion of differing-inputs obfuscation. We present the notion of differing-
inputs circuit family as the formulation in the works of Ananth et al. and Boyle et. al [2, 12]

Definition A.7 ([4, 2, 12]). A circuit family C associated with a sampler Sampler is said to be a
differing-inputs circuit family if for every PPT adversary A there exists a negligible function negl
such that

Pr[C0(x) 6= C1(x) : (C0, C1, aux)← Sampler(1λ), x← A(1λ, C0, C1, aux)] ≤ negl(λ).

We now define the notion of differing-inputs obfuscation for a differing-inputs circuit family.

Definition A.8 (Differing-Inputs Obfuscators for circuits). A uniform PPT machine diO is called a
Differing-inputs Obfuscator for a differing-inputs circuit family C = {Cλ} if the following conditions
are satisfied:

• (Correctness): For all security parameter λ, all C ∈ C, all inputs x, we have

Pr[C ′(x) = C(x) : C ′ ← diO(λ,C)] = 1.

• (Polynomial slowdown): There exists a universal polynomial p such that for any circuit C,
we have |C ′| ≤ p(|C|) for all C ′ = diO(λ,C) under all random coins.

• (Differing-inputs): For any (not necessarily uniform) PPT distinguisher D, there exists
a negligible function negl such that the following holds: for all security parameters λ, for
(C0, C1, aux)← Sampler(1λ), we have that

|Pr[D(diO(λ,C0, aux)) = 1]− Pr[D(diO(λ,C1, aux)) = 1]| ≤ negl(λ).

A.7 Virtual Black-Box (VBB) Obfuscation

Definition A.9 ([5]). Let C = {Cn}n∈N be a family of polynomial-size circuits, where Cn is a set of
Boolean circuits operating on inputs of length n. And let O be a PPTM algorithm, which takes as
input an input length n ∈ N, a circuit C ∈ Cn, a security parameter λ ∈ N, and outputs a Boolean
circuit O(C) (not necessarily in C).
O is a black box obfuscator for the circuit family C if it satisfies:
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1. Preserving Functionality: For every n ∈ N, and every C ∈ Cn, and every ~x ∈ {0, 1}n, with all
but negl(λ) probability over the coins of O:

(O(C, 1n, 1λ))(~x) = C(~x)

2. Polynomial Slowdown: For every n, λ ∈ N and C ∈ C, the circuit O(C, 1n, 1λ) is of size at
most poly(|C|, n, λ).

3. Virtual Black Box: For every (non-uniform) polynomial-size adversary A, there exists a
(non-uniform) polynomial-size simulator S, such that for every n ∈ N and for every C ∈ Cn:∣∣∣∣Pr

O,A
[A(O(C, 1n, 1λ)) = 1]− Pr

S
[SC(1|C|, 1n, 1λ) = 1]

∣∣∣∣ = negl(λ)

A.8 Proof-Carrying Data

For completeness, we present the Proof-Carrying-Data (PCD) definition in exactly the same way
as Bitansky et al. [9].

We view a distributed computation as a directed acyclic graph G = (V,E) with node labels
linp : V → {0, 1}∗ and edge labels data : E → {0, 1}∗. The node label linp(v) of a node v represents
the local input (which may include a local program) used by v in his local computation. (Whenever
v is a source or a sink, we require that linp(v) = ⊥.) The edge label data(u, v) of a directed edged
(u, v) represents the message sent from node u to node v. Typically, a party at node v uses the local
input linp(v) and input messages (data(u1, v), . . . , data(uc, v)), where u1, . . . , uc are the parents of v
in lexicographic order, to compute an output message data(v, w) for a child node w; the party also
similarly computes a message for every other child node. We can think of the messages on edges
going out from sources as the “inputs” to the distributed computation, and the messages on edges
going into sinks as the “outputs” of the distributed computation; for convenience we will want to
identify a single distinguished output.

Definition A.10. A (distributed computation) transcript is a triple T = (G, linp, data), where
G = (V,E) is a directed acyclic graph G, linp : V → {0, 1}∗ are node labels, and data : E → {0, 1}∗
are edge labels; we require that linp(v) = ⊥ whenever v is a source or a sink. The output of T,
denoted out(T), is equal to data(ũ, ṽ) where (ũ, ṽ) is the lexicographically first edge such that ṽ is a
sink.

A proof-carrying transcript is a transcript where messages are augmented by proof strings, i.e.,
a function proof : E → {0, 1}∗ provides for each edge (u, v) an additional label proof(u, v), to be
interpreted as a proof string for the message data(u, v).

Definition A.11. A proof-carrying (distributed computation) transcript PCT is a pair (T, proof)
where T is a transcript and proof : E → {0, 1}∗ is an edge label.

Next, we define what it means for a distributed computation to be compliant, which is the notion
of “correctness with respect to a given local property”. Compliance is captured via an efficiently-
computable compliance predicate C, which must be locally satisfied at each vertex; here, “locally”
means with respect to a node’s local input, incoming data, and outgoing data. For convenience, for
any vertex v, we let children(v) and parents(v) be the vector of v’s children and parents respectively,
listed in lexicographic order.
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Definition A.12. Given a polynomial-time predicate C, we say that a distributed computation
transcript T = (G, linp, data) is C-compliant (denoted by C(T) = 1) if, for every v ∈ V and
w ∈ children(v), it holds that

C(data(v, w); linp(v); inputs(v)) = 1

where inputs(v) := (data(u1, v), . . . , data(uc, v)) and (u1, . . . , uc) := parents(v). Furthermore, we
say that a message z is C-compliant if there is T such that C(T) = 1 and out(T) = 1.

Proof-Carrying Data Systems. A proof-carrying data (PCD) system for a class of compliance
predicates C is a triple of algorithms (G,P,V) that works as follows:

• The (probabilistic) generator G, on input the security parameter λ, outputs a reference string
rs and a corresponding verification state vrs.

• For any C ∈ C, the (honest) prover PC := P(C, · · · ) is given a reference string rs inputs ~zi
with corresponding proofs ~πi, a local input linp, and an output zo, and then produces a proof
πo attesting to the fact that zo is consistent with some C-compliant transcript.

• For any C ∈ C, the verifier VC := V(C, · · · ) is given the verification state vrs, an output zo,
and a proof string πo, and accept if it is convinced that zo is consistent with some C-compliant
transcript.

After the generator G has been run to obtain rs and vrs, the prover PC is used (along with rs) at
each node of a distributed computation transcript to dynamically compile it into a proof-carrying
transcript by generating and adding a proof to each edge. Each of these proofs can be checked
using the verifier VC (along with vrs).

The formal definition. We now formally define the notion of PCD systems. We begin by
introducing the dynamic proof-generation process, which we call ProofGen. We define ProofGen
as an interactive protocol between a (not necessarily efficient) distributed-computation generator
S and the PCD prover P, in which both are given a compliance predicate C ∈ C and a reference
string rs. Essentially, at every time step, S chooses to do one of the following actions: add a new
unlabeled vertex to the computation transcript so far (this corresponds to adding a new computing
node to the computation), label an unlabeled vertex (this corresponds to a choice of local input
by a computing node), or add a new labeled edge (this corresponds to a new message from one
node to another). In case S chooses the third action, the PCD prover PC produces a proof for
the C-compliance of the new message, and adds this new proof as an additional label to the new
edge. When S halts, the interactive protocol outputs the distributed computation transcript T, as
well as T’s output and corresponding proof. Intuitively, the completeness property requires that if
T is compliant with C, then the proof attached to the output (which is the result of dynamically
invoking PC for each message in T, as T was being constructed by S) is accepted by the verifier.
Formally the interactive protocol ProofGen(C, rs, S,P) is defined as follows:

ProofGen(C, rs, S,P)

1. Set T and PCT to be “empty transcripts”.

2. Until S halts and outputs a message-proof pair (zo, πo), do the following:

(a) Give (C, rs,PCT) as input to S and obtain as output (b, x, y).
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(b) If b = add unlabeled vertex and x 6∈ V , then set V := V ∪ {x} and linp(x) := ⊥.

(c) If b = label vertex, x ∈ V , x is nor a source or sink, and linp(x) = ⊥, then linp(x) := y.

(d) If b = add labeled edge and x 6∈ E:

i. Parse x as (v, w) with v, w ∈ V
ii. Set E := E ∪ {(u, v)}
iii. Set data(v, w) := y.

iv. If v is a source, set π := ⊥
v. If v is not a source, set π := PC(rs, data(v, w), linp(v), inputs(v), inproofs(v)), where

inputs(v) := data(u1, v), . . . , data(uc, v), inproofs(v) := proof(u1, v), . . . , proof(uc, v),
and (u1, . . . , uc) := parents(v).

vi. Set proof(v, w) := π

Definition A.13. A proof-carrying data system for a class of compliance predicates C is a triple
of algorithms (G,P,V), where G is probabilistic and V is deterministic, such that:

1. Completeness:

For every compliance predicate C ∈ C and (possibly unbounded) distributed computation
generator S,

Pr

[
T is B bounded ∧ C(T) = 1 ∧ VC(vrs, zo, πo) 6= 1

: (rs, vrs)← G(B), (zo, πo,T)← ProofGen(C, rs, S,P)

]
≤ negl(λ)

2. Proof of Knowledge:

For every polynomial-size prover P∗ there exists a polynomial-size extractor EP∗ such that
for every compliance predicate C ∈ C, every large enough security parameter λ ∈ N, every
auxiliary input z ∈ {0, 1}poly(λ), and every time bound B ∈ N,

Pr

[
VC(rs, z, π) = 1 ∧ (out(T) 6= z ∨ C(T) 6= 1)

: (rs, vrs)← G(B), (zo, πo)← P∗(rs, z),T← EP∗(rs, z)

]
≤ negl(λ)

3. Efficiency:

There exists a universal polynomial p such that, for every compliance predicate C ∈ C, every
large enough security parameter λ ∈ N, every time bound B ∈ N, and every B-bounded
distributed computation transcript T,

• the generator G(1λ, B) runs in time

{
p(λ+B) for a fully-succinct PCD
p(λ+ logB) for a preprocessing PCD

• the prover PC(rs, data(v, w), linp(v), inputs(v), ~πi) runs in time{
p(λ+ |C|+ tT,C(v, w) + logB) for a fully-succinct PCD
p(λ+ |C|+B) for a preprocessing PCD

where tT,C(v, w) denotes the time to evaluate C(data(v, w), linp(v), inputs(v)) at an edge
(v, w);

• the verifier VC(vrs, z, π) runs in time p(λ+ |C|+ |z|+ logB)

• an honestly generated proof has size p(λ+ logB).

We shall also consider a restricted notion of PCD system: a path PCD system is a PCD system
where completeness is guaranteed to hold only for distributed computations transcripts T whose
graph is a line.
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B RAM-Model Functional Encryption Security Definitions

B.1 Simulation-Based Security

Simulation-based security for functional encryption has been defined in several prior works [10,
38, 30, 1]. Here we follow the definition in [38, 30], and define the simulation based security for
functional encryption in the RAM model. Note that the Setup and the pre-challenge KeyGen are
carried out honestly (not by the simulator). As demonstrated in [30], single message security defined
below implies multiple-message security where the adversary is allowed to provide many messages
in the challenging phase.

Definition B.1 (Full Simulation Security, Non-Adaptive/Adaptive, Multiple-Key, Single-Mes-
sage). Let FE be a functional encryption scheme for RAM programs computing a functionality
class F . For every ppt stateful adversary A and ppt stateful simulator S, consider the following
two experiments.

RealA(1λ)

1: (mpk,msk)← FE.Setup(1λ);

2: x← AFE.KeyGen(msk,·)(mpk);

3: ct← FE.Enc(mpk, x);

4: α← AO(msk,·)(mpk, ct);
5: output (α, x);

IdealA,S(1λ)

1: (mpk,msk)← FE.Setup(1λ);

2: x← AFE.KeyGen(msk,·)(mpk);
Let RAM1, ...,RAMq be A’s oracle queries,
skRAMi

be the oracle reply to RAMi, and
view := {yi = RAMi(x),RAMi, skRAMi

}i∈[q] .
3: ct← S(mpk, view, 1|x|);

4: α← AO′(msk,·)(mpk, ct);
5: output (α, x);

We consider two cases of the above experiments:

1. The non-adaptive case, where the oracles O(msk, ·) and O′(msk, ·) are both “empty oracles”
that return nothing.

2. The adaptive case, where

• the oracle O(msk, ·) = FE.KeyGen(msk, ·), and

• the oracle O′(msk, ·) is the (stateful) second stage of the simulator; namely,
O′(msk, ·) = SU(·,x)(msk, ·) where U(RAM, x) = RAM(x) for all RAM.

We call a simulator algorithm S admissible if, on each of A’s queries RAM to the second stage of
the simulator, the simulator makes just a single query to its oracle U(·, x) on RAM itself.

The functional encryption scheme FE is said to be fully SIM-secure against non-adaptive (resp.
adaptive) adversaries if there is an admissible ppt stateful simulator S such that for every ppt
stateful adversary A, the following two distributions are computationally indistinguishable:{

RealA(1λ)
}
λ

c
≈
{
IdealA,S(1λ)

}
λ

We can easily define the selective-simulation security by enforcing the adversary to reveal the
challenge messages before seeing the master public key mpk. We can also easily define the full
simulation security to support multiple messages.
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B.2 Indistinguishability-Based Security

Indistinguishability-based security for functional encryption has also been considered [10, 38]. We
provide a definition using our notation:

Definition B.2 (Full Indistinguishability, Multiple-Key). Let FE be a functional encryption scheme
for RAM programs computing a functionality class F . For every ppt stateful adversary A , consider
the following experiment.

ExptfullA (1λ)

1: (mpk,msk)← FE.Setup(1λ);

2: (x0, x1)← AFE.KeyGen(msk,·)(mpk);
3: b← {0, 1};
4: ct← FE.Enc(mpk, xb);

5: b′ ← AFE.KeyGen(msk,·)(mpk, ct);

Define an adversary to be non-trivial if RAM(x0) = RAM(x1), for every query RAM made to the
KeyGen oracle. We say that a FE-RAM scheme is fully IND-secure if for all ppt stateful non-trivial
adversaries A, it holds that Pr[b′ = b] ≤ 1

2 + negl(λ) in the above experiment.

We also consider selective security for indistinguishability. In the selective security game, the
adversary must reveal the challenge messages (x0, x1) before seeing the master public key mpk. To
be complete, we restate the details of Definition 2.4 here:

Definition B.3 (Selective Indistinguishability, Multiple-Key). Let FE be a functional encryption
scheme for RAM programs computing a functionality class F . For every ppt stateful adversary A,
consider the following experiment.

ExptselectiveA (1λ)

1: (x0, x1)← A(1λ);
2: (mpk,msk)← FE.Setup(1λ);
3: b← {0, 1};
4: ct← FE.Enc(mpk, xb);

5: b′ ← AFE.KeyGen(msk,·)(mpk, ct);

Define an adversary to be non-trivial if RAM(x0) = RAM(x1), for every query RAM made to the
KeyGen oracle. We say that an FE-RAM scheme is selectively IND-secure if for all ppt stateful
non-trivial adversaries A, it holds that Pr[b′ = b] ≤ 1

2 + negl(λ) in the above experiment.

Remark B.4. In the circuit model, selective-indistinguishability can be transformed into full-
indistinguishability by using a standard complexity leveraging argument but losing a factor of |M|
in the security reduction [20, 19] where |M| is the size of message space. Here we can also apply
the same argument in the RAM model to transform selective-indistinguishability as defined in
Definition 2.4 into full-indistinguishability in Definition B.2.

Furthermore, we consider a single challenge in the security games, but remark that it can be
generalized to multiple-message security by using a standard hybrid argument. Finally, we can lift
our indistinguishability security into simulation-based security as defined in Definition B.1 by using
similar techniques from the work [19].

C Security Proof for diO-based FE-RAM Construction

The security of our diO-based functional encryption scheme for RAMs is proven in two steps. First
we prove a technical lemma regarding “address unforgeability” or “trace correctness.” Given this,
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indistinguishability security, i.e. Theorem 3.1, is then shown through a sequence of hybrids.

C.1 Trace Correctness

For simplicity, we consider Hybrid X0 for the time being, which is a real world where the challenger
returns an honest encryption of x∗0 upon a challenge ciphertext query. However, the same lemma
below can also be proved in a similar manner for other hybrid games described later.

Lemma C.1. Assume that the PCD is a proof of knowledge system, the one-way function is secure,
the Merkle-tree is collision resistant, the diO is a secure differing-inputs obfuscation, the iO is a
secure indistinguishable obfuscation, the PRF is a correct and secure puncturable PRF, and that
the cFHE encryption scheme is perfectly correct and semantically secure.

Let ct∗ denote the challenge ciphertext. For any τ ∈ [TORAM], except with negligible probability,
no polynomial-time adversary is able to produce a tuple {ct∗, τ, digestτ , raddrτ , cpustateτ } with a

valid PCD proof, such that digestτ , raddrτ , and cpustateτ do not agree with correct values at time τ
obtained through an honest evaluation algorithm on the challenge ciphertext ct∗, and token skORAM.
The adversary is given mpk, skORAM, challenge ciphertext ct∗, and challenge plaintext x∗0; further
the adversary has oracle access to the key generation oracle.

Proof. If a tuple {ct, τ, digestτ , raddrτ , cpustateτ } has a valid PCD proof, then since PCD is a
sound proof of knowledge system, there exists a polynomial-time extractor that can extract an
evaluation trace (consistent with the ct, digestτ , raddrτ , and cpustateτ values included in the PCD

statement),

ct, ∀t ∈ [τ ] : {waddrt, raddrt, cpustatet , datat , {D[waddrt]}, digestt}
∀t ∈ [τ − 1] : fetchedt,

such that

• For all t ∈ [τ ]: all cpustatet , datat values are correct homomorphic evaluations using the hon-

est evaluator’s algorithm based on fetchedt−1, cpustatet−1 , and rk := cFHE.Evalhpk ,hpk ′( K , ct).

• For all t ∈ [τ ]: iO(V )(ct, t, raddrt,waddrt, σt) = 1.

• For all t ∈ [τ − 1]: the fetchedt value has a valid Merkle proof with respect to digestt.

• For all t ∈ [τ ]: digestt are updated from digestt−1 correctly according to the purported waddrt,

datat , and {D[waddrt]} values.

To complete proof of the lemma, it suffices to show that the extracted raddrt,waddrt values must
agree with that of an honest evaluation except with negligible probability. If we can show this,
then by the collision resistance of the Merkle tree, every memory read must reflect the last write,
or the correct initial value in D if this is the first time a memory cell is fetched from. Therefore,
we can conclude that the extracted trace agrees with the honest evaluation trace.

We now show that no polynomial-time time adversary can forge an incorrect (i.e., does not
agree with honest evaluation) tuple (ct∗, τ, raddr′τ ,waddr

′
τ , σ
′
τ ) that passes iO(V )’s check except

with negligible probability. We show this through an inductive argument, starting from t = 1 as
the base case, and then in an inductive step, showing it for t ≤ τ assuming it holds for t ≤ τ−1.
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Circuit V ′

Hardwired: PRF key K ′v, ct
∗, z′, τ ′, raddr′τ , and waddr′τ .

Inputs: ct, τ , raddrτ , waddrτ , στ .

• If ct = ct∗, τ = τ ′, raddrτ = raddr′τ , waddrτ = waddr′τ , test if OWF(στ ) = z′. Output accept
if true, reject if false.

• Test if OWF(στ ) = OWF(PRF(K ′v, (ct, τ, raddrτ ,waddrτ )) where OWF is a one-way function.
Output accept if true, reject if false.

Figure 5: Circuit V ′ to be obfuscated using iO.

Definition C.2. Let A denote an adversary. If the adversary can output tuple (ct∗, τ, raddr′τ ,waddr
′
τ , σ
′
τ )

such that iO(V )((ct∗, raddr′τ ,waddr
′
τ ), σ′τ ) = 1; however, tuple (raddr′τ ,waddr

′
τ , σ
′
τ ) is not the result

of honest evaluation for the τ -th time step of evaluating ciphertext ct∗, then we say that the adver-
sary succeeds in an address forgery for (ct∗, τ).

Claim C.3 (Base case). Assume that diO is a secure differing-inputs obfuscation, iO is a secure
indistinguishability obfuscation, PRF is a secure and correct puncturable PRF, the one-way function
is secure, and that cFHE encryption is perfectly correct.

For any polynomial-time adversary A the probability that it succeeds in an address forgery for
(ct∗, τ = 1) is negligible. As before, the adversary A is given mpk, skORAM, ct∗, the challenge
plaintext x0, and has oracle access to the key generation oracle.

Proof. Let denote the (raddr∗τ ,waddr
∗
τ , σ
∗
τ ) correct addresses and proof at time τ for the challenge

ciphertext ct∗.
If the forgery is for (raddr∗1,waddr

∗
1), obviously the only way for V to output 1 is to supply the

correct σ∗1.
Suppose the forgery is for some wrong (raddr1,waddr1) 6= (raddr∗1,waddr

∗
1). The simulator

guesses the forged (raddr′1,waddr
′
1). There are only polynomially many such pairs, therefore, the

simulator guesses correctly with non-negligible probability.
The rest of the proof folllows in a similar manner as the proof for the NIZK construction by

Sahai and Waters [40]. However, note that Sahai and Waters prove selective security, where the
adversary commits to the statement before the NIZK’s setup. In our case, we can prove adaptive
security simply because the space of statements is polynomial in size.

Hybrid A: Compute a punctured version K ′v := Puncture(K, (ct∗, 1, raddr′1,waddr
′
1)). Use this

K ′v in all Cτ for τ ∈ [TORAM].
Note that τ > 1, none of the Cτ ’s will need to query the PRF on the punctured point, since

Cτ checks that the input τ − 1 (when incremented) agrees with the hardwired τ > 1. Therefore,
due to the fact that the PRF preserves functionality under puncturing, using Kv or K ′v result in
functionally equivalent circuits. For C1, if the cFHE scheme is perfectly correct, it is obvious that
C1 will never query the PRF on the punctured point either. By the security of diO, Hybrid A is
computationally indistinguishable from Hybrid X0.

Hybrid B: Change V to V ′, where z′ = PRF(Kv, (ct
∗, 1, raddr′1,waddr

′
1)). Please refer to

Figure 5. .
It is not hard to see that due to the fact that the puncturable PRF preserves functionality

under puncturing, circuit V ′ is equivalent to V . By the security of iO, iO(V ′) is computationally
indistinguishable from iO(V ).
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Hybrid C: Change that z′ to a truly random string. If the puncturable PRF is pseudorandom
at the punctured point, it is obvious that Hybrid B is computationally indistinguishable from
Hybrid C.

Therefore, Hybrids X0, A, B, C are computationally indistinguishable. Now, if the adversary
can forge an incorrect address pair that passes verification in Hybrid C, it can break the one-wayness
of the OWF with non-negligible probability.

Claim C.4 (Base case). Lemma C.1 holds for τ = 1.

Proof. Due to the proof of Lemma C.1 and the above claim.

Claim C.5 (Inductive step). Assume that diO is a secure differing-inputs obfuscation, iO is a
secure indistinguishability obfuscation, PRF is a secure and correct puncturable PRF, the PCD is
a proof of knowledge system, the one-way function is secure, and that cFHE encryption is perfectly
correct.

If for all t < τ , no polynomial-time adversary can succeed in an address forgery for (ct∗, t) with
non-negligible probability, and Lemma C.1 holds for all t < τ , then no polynomial-time adversary is
able to succeed in an address forgery for (ct∗, τ) with more than negligible probability; and further,
Lemma C.1 holds for all t ∈ [τ ].

Proof. (sketch.) Let denote the (raddr∗τ ,waddr
∗
τ , σ
∗) correct addresses and proof at time τ for the

challenge ciphertext ct∗, obtained from an honest evaluation.
If the forgery is for (raddr∗τ ,waddr

∗
τ ), obviously the only way for V to output 1 is to supply the

correct σ∗τ .
Suppose the forgery is for some wrong (raddrτ ,waddrτ ) 6= (raddr∗1,waddr

∗
1). The simulator

guesses the forged (raddr′τ ,waddr
′
τ ). There are only polynomially many such pairs, therefore, the

simulator guesses correctly with non-negligible probability.
Hybrid A. Compute a punctured version K ′v := Puncture(K, (ct∗, τ, raddr′τ ,waddr

′
τ )). Use this

K ′v in all Cτ for τ ∈ [TORAM].
To show that Hybrid A is indistinguishable from the real world, we need to show that for any

polynomial time adversary who is given mpk and msk, except with negligible probability, it cannot
produce output an input in such that Cτ and C ′τ differ in output, where C ′τ denotes the circuit that
uses K ′v in place of Kv.

To show this, it suffices to show that if the program reaches the statement where Kv or K ′v is
used, then the input to the PRF cannot be the punctured point.

If the program reaches the point whereKv orK ′v is used, then we know that the checks all passed.
We can therefore use PCD extractor to extrace entire trace of length τ−1. By assumption, for τ−1,
the tuple (ct∗, τ−1, digestτ−1, raddrτ−1, cpustateτ−1 ) must agree with an honest evaluation. By the

collision resistance of the Merkle tree, the input value fetchedτ−1 must agree with honest evaluation
(otherwise a collision can be produced from the honest evaluation trace and the adversary-supplied
one). Because of this reason, and further, assuming that the cFHE scheme is perfectly correct, then
if the program reaches the point where Kv or K ′v is used, the (raddrτ ,waddrτ ) computed must be
the correct values. Therefore, the punctured point will not be evaluated — otherwise either the
security of the PCD or the security of the Merkle tree will be violated.

Hybrid B. Use V ′ instead of V , where K ′v := Puncture(Kv, (ct
∗, τ, raddr′τ ,waddr

′
τ )), and z′ =

OWF(PRF(K, (ct∗, τ, (raddr′τ ,waddr
′
τ )))). If ct = ct∗, K ′v would use z′ in the check.

Hybrid C. Replace z′ with a truly random string.
The proofs for the indistinguishability of Hybrid A, B, and C follow in the same manner as the

proof of Claim C.3.
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In a similar manner as Claim C.3, if an adversary can forge an incorrect address pair that pass
the verification in Hybrid C, we can break the one-wayness of the one way function.

Finally, by the proof of Lemma C.1, we obtain that Lemma C.1 holds for t = τ . This completes
the proof of the inductive step.

C.2 Sequence of Hybrids

Hybrid X0. Same as the real world where x∗0 is encrypted during the challenge phase.

Hybrid 0. The experiment modified the way to generate the token as follows. On receiving
challenge plaintext x∗0 and x∗1 such that RAM(x∗0) = RAM(x∗1):

1. Pre-compute the challenge ciphertext (c∗, c′∗) by honestly encrypting x∗0 under hpk and hpk ′

respectively.

Run the honest CRS generation algorithm of the NIZK scheme. Let ct∗ := (c∗, c′∗, π) where
π is an honest NIZK proof for the statement defined by (c∗, c′∗).

2. Pick rk∗ := PRF(K, ct∗).

3. Precompute the entire address sequence emitted by the challenge plaintext x∗0 by honestly
executing the ORAM on the input x∗0, using randomness rk∗. This address sequence is referred
to as the challenge address sequence, denoted addresses∗ := (raddr∗τ ,waddr

∗
τ )τ∈[TORAM]. Also,

for each τ ∈ [TORAM], precompute σ∗τ := PRF(Kv, (ct
∗, τ, raddr∗τ ,waddr

∗
τ )).

On a key generation query, compute a punctured PRF key K ′ := Puncture(K, ct∗) such that
input ct∗ will be punctured. Generate modified skORAM := { K , diO(Ĉτ )}τ∈[TORAM] where the

modified circuits Ĉτ ’s are as depicted in Figures 6 and 7.

Circuit Ĉ1

Hardwired: initial digest0, mpk, hsk , Kv, punctured PRF key K ′, waddr∗1, raddr
∗
1, σ

∗
1, and ct∗.

Inputs: ct = ( x , π).

Outputs: raddr1, waddr1.

Computation:

0. If ct = ct∗, output raddr∗1, waddr
∗
1, and σ∗1. Else proceed to the next step.

1. Check. Parse ct := ( x , π), and verify the NIZK π. If verification fails, then output ⊥.

2. Let rk := PRF(K ′, ct);

3. Decrypt, compute, and output next addresses. Same as in the real Cτ .

Figure 6: Circuit Ĉ1 to be obfuscated using diO.

Hybrid 1. When answering key generation queries, replace K with K ′ in the skORAM given
out.
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Circuit Ĉτ for time steps τ > 1

Hardwired: initial digest0, mpk, hsk , Kv, τ , punctured PRF key K ′, waddr∗τ , raddr∗τ , σ∗τ , ct∗,
and optionally y∗ if this is the final step.

Inputs:

• {fetchedτ−1}, // carrying Merkle proofs w.r.t. digestτ−1

• {ct, τ − 1, digestτ−1, raddrτ−1, cpustateτ−1 }, // carrying a PCD proof

Outputs: raddrτ , waddrτ , and optionally y

Computation:

1. Check trace. If any of the checks fail, output ⊥.

• Check that {ct, τ − 1, digestτ−1, raddrτ−1, cpustateτ−1 } has a valid PCD proof.

• Check that {fetchedτ−1} is consistent with the Merkle digestτ−1 and raddrτ−1.

• Check that the input τ agrees with the hardwired expected τ value.

2. If ct = ct∗, output raddr∗τ , waddr∗τ , and σ∗τ . If this is the final step, also output y∗. Else, let
rk := PRF(K ′, ct); and proceed to the next step.

3. Decrypt, compute, and output next addresses. Same as in the real Cτ .

Figure 7: Circuit Ĉτ to be obfuscated using diO for τ > 1. Note that the PCD verifier algorithm
for each time step may be different, therefore, the circuit for each time step is different.
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Hybrid 2. Replace rk∗ with a random string when computing the challenge address sequence.

Hybrid 3. The experiment is the same as Hybrid 2 except, in Step 1, replace the NIZK’s real
crs with simulated c̃rs, where the statement to be simulated is defined by (c∗, c′∗) — note that this
requires selective security. Simulate the NIZK for the challenge ciphertext ct∗.

Hybrid 4. The experiment is the same as Hybrid 3 except, it replaces the second copy of the
ciphertext to an encryption of x∗1. More specifically, in Step 1 above, upon receiving challenge
plaintext x∗0 and x∗1, compute

ct∗ :=
(
cFHE.Enc(hpk , x∗0; ρ), cFHE.Enc(hpk ′, x∗1; ρ

′), π̃
)
,

where π̃ is a simulated NIZK.

Hybrid 5. When answering key generation queries, create diOτ (Ĉ ′τ ) for τ ∈ [TORAM], where Ĉ ′τ
is exactly the same as Ĉτ except that now instead of using hsk to decrypt, Ĉ ′τ uses hsk ′ to decrypt.

Hybrid 6. Replace the first copy of the ciphertext with an encryption of x∗1. More specifically,
in Step 1 above, upon receiving challenge plaintexts x∗0 and x∗1, compute

ct∗ :=
(
cFHE.Enc(hpk , x∗1; ρ), cFHE.Enc(hpk ′, x∗1; ρ

′), π̃
)
,

where π̃ is a simulated NIZK.

Hybrid 7. When answering key generation queries, create diOτ (Ĉτ ) for τ ∈ [TORAM], i.e., use hsk
instead of hsk ′.

Hybrid 8. In Step 1 above, run the honest CRS generation algorithm of the NIZK scheme, and
compute the NIZK for the challenge ciphertext honestly.

Hybrid 9. In Step 3 above, instead of picking rk∗ at random and using x∗0 to compute the
challenge address sequence, pick rk∗ at random and using x∗1 to compute the challenge address
sequence.

Hybrid 10. Instead of picking rk∗ at random, pick them based on the true outcome of the PRF
at the punctured points, i.e., rk∗ := PRF(K, ct∗)).

Hybrid 11. Replace occurrences of K ′ back with K ,

Hybrid X1. Switch to using the real-world Cτ in computing the iO. This is the same as the
real-world where both encryptions encrypt x∗1.

Claim C.6. Assume that the PCD system is a sound proof of knowledge, the one-way function is
secure, the Merkle-tree is collision resistant, the diO is a secure differing-inputs obfuscation, the
iO is a secure indistinguishable obfuscation, the PRF is a correct and secure puncturable PRF, and
that the cFHE encryption scheme is perfectly correct and semantically secure, then Hybrids X0 and
0 are computationally indistinguishable.
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Proof. For C1 and Ĉ1, if the puncturable PRF preserves functionality under puncturing, it is obvious
that they are functionally equivalent. Therefore, by the security of differing-inputs obfuscation,
diO(C1) and diO(Ĉ1) are computationally indistinguishable.

For τ > 1, by the security of differing-inputs obfuscation, it suffices to show that a polynomial-
time adversary cannot find an input in such that Cτ (in) 6= Ĉτ (in) even when the adversary knows all
of mpk and msk. If such an adversary exists, the forged input in must contain ct = ct∗, and all the
checks must verify: since if ct 6= ct∗ by the fact that the puncturable PRF preserves functionality
under puncturing, Cτ (in) and Ĉτ (in) will yield the same output.

If the checks do not verify, then both Cτ (in) and Ĉτ (in) output ⊥.
If for some input in, its ct satisfies ct = ct∗, and all the checks verify, According to Lemma C.1

the input tuple (ct∗, τ −1, digestτ−1, raddrτ−1, cpustateτ−1 ) must agree with the honest evaluation.

We note that we can prove an equivalent of Lemma C.1 for Hybrid 0 too, using the same argument.
Further, assuming that the Merkle tree scheme is collision resistant, then the input fetchedτ−1
must agree with honest evaluation too. In this case, both Cτ (in) and Ĉτ (in) will output the same
outcome, raddr∗τ , waddr∗τ , and σ∗τ . Unless the adversary can break Merkle tree or Lemma C.1 it is
unable to find an input in such that the two circuits differ.

Claim C.7. Assuming that the cFHE encryption scheme is semantically secure and perfectly correct,
that the puncturable PRF preserves functionality under puncturing, that the NIZK is simulation
sound, that the PCD system is a sound proof of knowledge, that the Merkle tree is collision resis-
tant, and that the differing-inputs obfuscator is secure, Hybrid 0 and Hybrid 1 are computationally
indistinguishable.

Proof. This can be proven using a few inner Hybrid games.

• Hybrid 0a: When receiving key generation queries, change the second copy of encryption to
K ′. Hybrid 0a is computationally indistinguishable from Hybrid 0 due to a trivial reduction
to the semantic security of the cFHE encryption scheme.

• Hybrid 0b: Use key hsk ′ in the diO’s instead of hsk .

We now show that Hybrid 0a is computationally indistinguishable from Hybrid 0b. Due to the
security of the diO, it suffices to show that no adversary knowing mpk and msk can produce
an input in such that the two circuits (using hsk and hsk ′ respectively) differ in output.

There are two cases:

– When the input contains ct∗. In this case, neither circuit requires any decryption. They
are obviously functionally equivalent.

– When the input does not contain ct∗. If the input does not survive the checks, then
both circuits output ⊥. If the inputs survive the checks, due to Lemma C.8, using hsk
or hsk ′ in the circuits will give the same outcome except with negligible probability.

• Hybrid 0c: Change the first copy of encryption to encrypting K ′. This is clearly indistin-
guishable from Hybrid 0b assuming the semantic security of cFHE encryption.

• Hybrid 0d: Use hsk to decrypt inside the diO’s instead of hsk ′.

We show that Hybrid 0d is computationally indistinguishable from Hybrid 0c. By the security
of diO, it suffices to show that no polynomial-time adversary given msk and mpk can find an
input in such that the two circuits differ in output.
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If the input ct = ct∗, no decryption is needed. Otherwise, if input ct 6= ct∗, by Lemma C.8
(in particular, it is not hard to see that this lemma can be proven for Hybrids 0c and 0d
as well), a polynomial-time adversary with knowledge of mpk and msk cannot produce two
inputs such that the two circuits differ in output.

Observe also that Hybrid 0d is equivalent to Hybrid 1.

Lemma C.8. Assume that the PCD system is a sound proof of knowledge, that the Merkle tree is
collision resistant, that the NIZK is simulation sound, and that the cFHE scheme is perfectly correct.
In Hybrids 0a and 0b, no polynomial time adversary can produce with non-negligible probability
a tuple {ct, τ − 1, digestτ−1, raddrτ−1, cpustateτ−1 }, and {fetchedτ−1} such that 1) ct 6= ct∗; 2)

the PCD proof for {ct, τ − 1, digestτ−1, raddrτ−1, cpustateτ−1 } verifies; and 3) {fetchedτ−1} has

a Merkle digest consistent with digestτ−1; and 4) the following does NOT hold: the two copies of
encryption in cpustateτ−1 decrypt to consistent plaintexts, using hsk and hsk ′ respectively, and

further, fetchedτ−1 is either a cleartext value or decrypts to consistent plaintexts using hsk and hsk ′

respectively.

Proof. If a tuple {ct, τ−1, digestτ−1, raddrτ−1, cpustateτ−1 } has a valid PCD proof, then since PCD

is a sound proof of knowledge system, there exists a polynomial-time extractor that can extract an
evaluation trace (consistent with the ct, digestτ , raddrτ , and cpustateτ values included in the PCD

statement),

ct, ∀t ∈ [τ ] : {waddrt, raddrt, cpustatet , datat , {D[waddrt]}, digestt}
∀t ∈ [τ − 1] : fetchedt,

such that

• For all t ∈ [τ ]: all cpustatet , datat values are correct homomorphic evaluations using the hon-

est evaluator’s algorithm based on fetchedt−1, cpustatet−1 , and rk := cFHE.Evalhpk ,hpk ′( (K,K ′) , ct),

where (K,K ′) denotes that the two copies of encryption encrypt K and K ′ respectively.

• For all t ∈ [τ ]: iO(V )(ct, t, raddrt,waddrt, σt) = 1.

• For all t ∈ [τ − 1]: the fetchedt value has a valid Merkle proof with respect to digestt.

• For all t ∈ [τ ]: digestt are updated from digestt−1 correctly according to the purported waddrt,

datat , and {D[waddrt]} values.

Note that we cannot argue that this evaluation trace must agree with that of an honest evalu-
ation (since we are in the case where ct 6= ct∗). However, the PCD proof does guarantee that this
trace is almost correct, and the only thing the adversary can lie about are the memory addresses.
However, every memory fetch result is either the original value of the memory cell in D, or is the
previous value (double-encrypted ciphertext) written to a memory cell.

Assume that the cFHE scheme is perfectly correct. Since the puncturable PRF preserves func-
tionality under puncturing, using K ′ or K for ct 6= ct∗ result in the same outcome. Now examine
the homomorphic evaluation trace. Then if a derived pair of ciphertexts decrypt to different values
using hsk and hsk ′, the initial ct must encrypt two different plaintexts as well. However, the intial
ct has a NIZK proof that the plaintexts are consistent. This means that the adversary can forge a
NIZK proof.
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Claim C.9. Assume that the puncturable PRF is pseudorandom at the punctured point, then Hybrid
1 and Hybrid 2 are computationally indistinguishable.

Proof. By a straightforward reduction.

Claim C.10. Assuming that the NIZK is computationally zero-knowledge, then Hybrid 2 is com-
putationally indistinguishable from Hybrid 3.

Proof. By a straightforward reduction.

Claim C.11. Assuming the encryption scheme is semantically secure, then Hybrids 3 and 4 are
computationally indistinguishable.

Proof. By a straightforward reduction.

Claim C.12. Assuming the NIZK is simulation sound, and that the differing-inputs obfuscator is
secure, the PCD is a sound proof of knowledge, the Merkle tree is collision resistant, and that the
cFHE scheme is perfectly correct, then Hybrids 4 and 5 are computationally indistinguishable.

Proof. By the security of diO, it suffices to show that no polynomial-time adversary given msk and
mpk can find an input in such that the two circuits differ in output.

If the input ct = ct∗, no decryption is needed. Otherwise, if input ct 6= ct∗, by Lemma C.8
(in particular, it is not hard to see that this lemma can be proven for Hybrids 4 and 5 as well), a
polynomial-time adversary with knowledge of mpk and msk cannot produce two inputs such that
the two circuits differ in output.

Indistinguishability of Hybrids 5 through 8 can be proven in a similar manner as above.

Claim C.13. Assume that ORAM is oblivious RAM as defined in Definition 2.1, then Hybrids 8
and 9 are computationally indistinguishable.

Proof. In a similar manner as the Proof of Claim D.9 in the iO-based construction.

Claim C.14. Assuming that the puncturable PRF satisfies pseudorandomness at punctured points,
then Hybrid 9 and Hybrid 10 are computationally indistinguishable.

Proof. By a straightforward reduction.

Claim C.15. Assuming that the cFHE encryption scheme is semantically secure, that the punc-
turable PRF preserves functionality under puncturing, that the NIZK is simulation sound, that the
PCD system is a sound proof of knowledge, that the Merkle tree is collision resistant, that the cFHE
scheme is perfectly correct, and that the differing inputs obfuscator is secure, then Hybrid 10 and
Hybrid 11 are computationally indistinguishable.

Proof. The proof can be accomplished in a similar manner as that of Claim C.7, with the help of
a sequence of inner Hybrid games.

Claim C.16. Assuming that the puncturable PRF preserves functionality under puncturing, the
differing-inputs obfuscator is secure, the Merkle tree is collision resistent, and that the PCD system
is a secure proof of knowledge, , then Hybrids 11 and X1 are computationally indistinguishable.

Proof. Similar to the proof of Claim C.6.
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D RAM-Model Functional Encryption from Indistiguishability Ob-
fuscation

In this Section, we describe an iO-based construction for RAM-model functional encryption, achiev-
ing Õ((T + n)2) evaluation time. While in the worst-case scenario, this may not be better than
converting the RAM to a circuit, our construction still has the advantage of having input-specific
running time as Goldwasser et al. defined it for Turing Machines [26, 27]. Note also that achieving
input-specific running time for RAM is much more challenging that for Turing Machines [26, 27].
Therefore, our iO-based construction can be considered as a more powerful generalization of the
results by Goldwasser et al. [26, 27].

D.1 Construction

Notational convention. We explain our notational conventions below.

var double-encrypted ciphertext based on cFHE, under public keys hpk
and hpk ′ respectively

var This variable is sometimes double-encrypted and sometimes in clear-
text. In particular, initially the memory array D is all in cleartext;
however values written to memory will be double-encrypted under
hpk and hpk ′.

We recall the notation cFHE.Evalhpk ,hpk ′ as a short-hand to express simultaneously evaluating two
copies of the FHE ciphertexts, encrypted under hpk and hpk ′ respectively. Concretely, we use
w = cFHE.Evalhpk ,hpk ′(g( v )) to denote the homomorphic evaluation of function g(·) on double-
encrypted ciphertext v = (cv, c

′
v) to obtain a new double-encrypted ciphertext w = (cw, c

′
w),

where cv = cFHE.Enc(hpk , v) and c′v = cFHE.Enc(hpk ′, v)), and cw = cFHE.Eval(hpk , g(·), cv) and
c′w = cFHE.Eval(hpk ′, g(·), c′v).

Detailed construction. We now describe our iO-based FE-RAM construction. Besides the
indistinguishability obfuscation iO and secure oblivious RAM ORAM, we use an FHE scheme
cFHE.(Gen,Enc,Dec,Eval), a NIZK scheme NIZK.(Setup,Prove,Verify), and a puncturable PRF
scheme.

Setup. On input 1λ, compute (hpk , hsk) ← cFHE.Gen(1λ), (hpk ′, hsk ′) ← cFHE.Gen(1λ), and
crs ← NIZK.Setup(1λ). Set public parameter mpk := (hpk , hpk ′, crs), and master secret key
msk := hsk .

Encryption. Upon inputting the public parameter mpk and a message x, pick random ρ, ρ′ ∈
{0, 1}λ, and compute c = cFHE.Enc(hpk , x; ρ), c′ = cFHE.Enc(hpk ′, x; ρ′), then compute a
NIZK (denoted π) for the following statement parameterized by (c, c′):

∃x, ρ, ρ′ s.t. (c = cFHE.Enc(hpk , x; ρ)) ∧
(
c′ = cFHE.Enc(hpk ′, x; ρ′)

)
The ciphertext ct := ( x , π), where x := (c, c′).

Key Generation. Convert the queried RAM := D′ into an ORAM whose initial memory array
is D := D′||~0. Let TORAM denote the maximum run-time of the ORAM.

Sample a random PRF key K ∈ {0, 1}λ to embed in the obfuscated next instruction circuits.
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Produce TORAM number of indistinguishable obfuscations, iO1, iO2, . . . , iOTORAM
, for circuits

C1, C2, . . ., CTORAM
respectively. Please refer to Figure 8 for the description of each Cτ , where

τ ∈ [TORAM].

Define the evaluation trace Trτ up to time τ where 1 ≤ τ ≤ TORAM as:

Trτ :=
(
ct := ( x , π), ∀1 ≤ t ≤ τ : raddrt,waddrt, fetchedt, datat , cpustatet

)
where fetchedt is

• either a cleartext word if the fetched memory location has not been written before; or

• a pair of FHE ciphertexts, i.e., fetchedt = fetchedt := (c, c′) if the fetched memory
location has been written before.

Compute K :=
(
cFHE.Enc(hpk ,K), cFHE.Enc(hpk ′,K)

)
.

The token skORAM for ORAM is defined as skORAM :=
(
K , iO1, . . . , iOTORAM

)
Decryption. Initialize D = D. Compute rk := cFHE.Evalhpk ,hpk ′(PRF( K , ct))5.

For τ ∈ [TORAM],

• Perform homomorphic evaluation.

If τ = 1, use the homomorphic evaluation to obtain:(
data1 , cpustate1

)
:= cFHE.Evalhpk ,hpk ′(NextIns( x ,~0, rk ))

Else if τ > 1, use the homomorphic evaluation to obtain:6(
dataτ , cpustateτ

)
:= cFHE.Evalhpk ,hpk ′(NextIns(fetchedτ−1, cpustateτ−1 , rk ))

Here we ignore the encrypted addresses output by the homomorphic evaluations of the
NextIns.

• Use iO to evaluate next addresses. Collect the trace so far Trτ−1 and compute

(waddrτ , raddrτ ) := iOτ (Trτ−1)

If this is the final step of the evaluation, an output y is also output by the obfuscated
next instruction circuit iOτ .

• Perform memory read and write:

fetchedτ := D[raddrτ ], D[waddrτ ] := dataτ

5For technical reasons in the proof, here we assume that PRF is the circuit that first checks whether input K is
a punctured key (which can be indicated by adding an indicator bit to the key), and if not, use real PRF evaluation
algorithm; if so, use the punctured PRF evaluation algorithm.

6We use the notation cFHE.Evalhpk,hpk′(C( encrypted var , cleartext var)) as a short-hand to express simutaneously

performing homomorphic evaluation of circuit C on two copies of FHE ciphertexts, encrypted under hpk and hpk ′

respectively. The resulting ciphertexts are double-encrypted under hpk and hpk ′. Also, note that sometimes, one
input to the NextIns function is a constant, and the other is a double-encrypted ciphertext. Other times, both are
double-encrypted ciphertexts. In either case, the homomorphic evaluation happens for both copies encrypted under
hpk and hpk ′ respectively.
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Circuit Cτ

Hardwired: initial memory D, mpk, hsk , PRF key K, K .

Inputs:

Trτ−1 :=
(
ct := ( x , π), ∀1 ≤ t ≤ τ − 1 : raddrt,waddrt, fetchedt, datat , cpustatet

)
Outputs: raddrτ , waddrτ , (and optionally y)

Computation:

0. Compute rk := PRF(K, ct).

1. Check trace: computation. For each t < τ :

• Check that cpustatet and datat are obtained from correctly performing homomor-

phic evaluation of NextIns over cpustatet−1 (or cleartext cpustate0 := ~0 if t = 1),

fetchedt−1 (or ct if t = 1), and rk := cFHE.Evalhpk ,hpk ′(PRF( K , ct)). If the check
fails, output ⊥.

• Use hsk to decrypt and obtain cpustatet−1 and fetchedt−1, and check that waddrt and
raddrt in the trace Trτ−1 are the correct outcome of evaluating NextIns on cpustatet−1,
fetchedt−1, and rk, where rk is computed at the beginning of Cτ .

2. Check trace: memory consistencya.

Parse ct := ( x , π) where ct is part of the trace Trτ−1. Verify that the NIZK π is valid.

For each t < τ , perform memory consistency check:

• If this is the first time the memory location is read in Trτ−1, verify that fetchedt =
D[raddrt] where D is hard-coded in this circuit. If any check fails, output ⊥.

• Else, if memory location raddrt has been written previously in Trτ−1, check that fetchedt
is equal to the last written encrypted value in Trτ−1.

3. Decrypt, compute, and output next addresses. If the above checks all ver-
ify, use hsk to decrypt to obtain fetchedτ−1, cpustateτ−1, then compute the circuit
NextIns(fetchedτ−1, cpustateτ−1, rk), and output the addresses raddrτ and waddrτ . If
τ = TORAM, i.e., this is the final step of the ORAM, also output the outcome y.

aBen-Sasson et al. [6], Bitansky et al. [9], and Ben-Sasson et al. [7] show that this step can be done with an
O(t log t)-sized circuit.

Figure 8: Circuit Cτ to be obfuscated using iO.
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D.2 Cost

Our IND-secure construction achieves poly(λ) ciphertext size and Õ((n + T )2)poly(λ) decryption
time, since there are TORAM = Õ(n+T ) obfuscated circuits to run, where each circuit takes at most
O(n + TORAM log TORAM) · poly(λ). To achieve this, we require an iO scheme with linear blowup.
Gordon et al. [32] point out that the iO construction by Garg et al. [20] satisfies this property.
Assume T = Ω(n), this means we need Õ(T 2)poly(λ) time — roughly equivalent in cost to known
results for circuits, as the known conversion from RAM to circuit when T = Ω(n) incurs O(nT )
overhead [41].

For the simulation-secure setting, our cost is preserved (same as the IND-secure setting), for
a scheme secure under a single key query. To support q key queries, the ciphertext size blows
up by a factor of q due to the use of De Caro et al. ’s compiler [19]. Note also that it has been
shown that in the standard model, it is impossible to achieve fully SIM-secure FE with succinct
ciphertexts [19]. In contrast, our IND-secure scheme can support unbounded polynomially many
key queries without blowups in ciphertext size.

D.3 Security Proof

We can show the above construction is a secure functional encryption in the RAM model.

Theorem D.1. Assuming that iO is a secure indistinguishability obfuscator, ORAM is a secure
oblivious RAM scheme as defined in Definition 2.1, cFHE is a FHE scheme for circuits with perfect
correctness and semantic security, NIZK is a statistically simulation sound NIZK scheme, and
PRF is a correct and secure puncturable PRF, then the FE-RAM construction in Appendix D is
selectively IND-secure as defined in Definition B.2.

By a standard argument of complexity leveraging, we can achieve the (full, as opposed to
selective) indistinguishability security from the selective security at a cost of stronger complexity
assumptions. Then we can achieve a simulation-based security using the trapdoor circuit technique
from the work of De Caro et al. [19], who showed how to construct a (selective/full) simulation
secure FE from a (selective/full) indistinguishability secure one. Also, the construction supports
multiple key queries. Thus, we are able to achieve the following corollary:

Corollary D.2 (Theorem D.1 + (complexity leveraging) + [19]). Assume that iO is a secure in-
distinguishability obfuscator, ORAM is a secure oblivious RAM scheme as defined in Definition 2.1,
cFHE is FHE scheme for circuits with perfect correctness and semantic security, NIZK is a sta-
tistically simulation sound NIZK scheme, and PRF is a correct and secure puncturable PRF. In
addition, assume that these primitives remain secure when all polynomial-sized adversaries have
sub-exponentially small advantages. Then the above FE-RAM can be made fully SIM-secure as
defined in Definition B.1.

We begin the proof of Theorem D.1 with a sequence of hybrids:

Hybrid X0. This is exactly the real world where both encryptions encrypt x∗0.

Hybrid 0. The experiment modified the way to generate the token as follows. On receiving
challenge plaintext x∗0 and x∗1 such that RAM(x∗0) = RAM(x∗1):

1. Pre-compute the challenge ciphertext (c∗, c′∗) by honestly encrypting x∗0 under hpk and hpk ′

respectively.
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Circuit Ĉτ

Hardwired: initial memory D, K , mpk, hsk , punctured PRF key K ′, ct∗, rk∗,
{raddr∗t ,waddr∗t }t, and optionally the challenge outcome y∗ if τ = TORAM.

Inputs: Trτ−1

Outputs: raddrτ , waddrτ , (and optionally y)

Computation:

0. Compute rk := PRF(K ′, ct) if ct 6= ct∗; else rk := rk∗.

1. Check trace: computation. For each t < τ :

• Check that cpustatet and datat are obtained from correctly performing homomor-

phic evaluation of NextIns over cpustatet−1 (or cleartext cpustate0 = ~0 if t = 1),

fetchedt−1 (or ct if t = 1), and rk := cFHE.Evalhpk ,hpk ′(PRF( K , ct)). If the check
fails, output ⊥.

• If ct 6= ct∗: use hsk to decrypt and obtain cpustatet−1 and fetchedt−1 and check that
waddrt and raddrt in the trace Trτ−1 are the correct outcome of evaluating NextIns
on cpustatet−1, fetchedt−1, and rk.

Else if ct = ct∗, check if the sequence of {raddrt,waddrt}t in the trace Trτ−1 agree with
hardwired challenge address sequence {raddr∗t ,waddr∗t }t.

2. Check trace: memory consistency. Same as in the real Cτ .

3. If the ciphertext ct in Trτ is equal to ct∗, simply output (raddr∗τ ,waddr
∗
τ ). If τ = TORAM, also

output y∗.

If the ciphertext ct in Trτ is not equal to ct∗, proceed to the next step.

4. Decrypt, compute, and output next addresses. Same as in the real Cτ .

Figure 9: Circuit Ĉτ to be obfuscated using iO.
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Run the honest CRS generation algorithm of the NIZK scheme. Let ct∗ := (c∗, c′∗, π) where
π is an honest NIZK proof for the statement defined by (c∗, c′∗).

2. Pick rk∗ := PRF(K, ct∗).

3. Precompute the entire address sequence emitted by the challenge plaintext x∗0 by honestly
executing the ORAM on the input x∗0, using randomness rk∗. This address sequence is referred
to as the challenge address sequence, denoted addresses∗ := (raddr∗τ ,waddr

∗
τ )τ∈[TORAM].

4. Now, assuming that the addresses output from the iO’s in each step of the evaluation is
exactly the above challenge addresses, follow the honest evaluator’s algorithm to precompute
the correct trace Tr∗ for ct∗.

On a key generation query, compute a punctured PRF key K ′ := Puncture(K, ct∗) such that
input ct∗ will be punctured. Generate modified skORAM :=

(
K , {iO(Ĉτ )}τ∈[TORAM]

)
where the

modified circuits Ĉτ ’s are as depicted in Figure 9.

Hybrid 1. Replace any occurrence of K with K ′ , specifically, in the skORAM for any key
generation query, and in the hardwired values in all the iO’s.

Hybrid 2. The experiment is the same as Hybrid 1 except in Step 2 above, pick truly random
rk∗ for all τ ∈ [TORAM].

Hybrid 3. The experiment is the same as Hybrid 2 except, in Step 1, replace the NIZK’s real
crs with simulated c̃rs, where the statement to be simulated is defined by (c∗, c′∗) — note that this
requires selective security. Simulate the NIZK for the challenge ciphertext ct∗.

Hybrid 4. The experiment is the same as Hybrid 3 except, it replaces the second copy of the
ciphertext to an encryption of x∗1. More specifically, in Step 1 above, upon receiving challenge
plaintext x∗0 and x∗1, compute

ct∗ :=
(
cFHE.Enc(hpk , x∗0; ρ), cFHE.Enc(hpk ′, x∗1; ρ

′), π̃
)
,

where π̃ is a simulated NIZK.

Hybrid 5. When answering key generation queries, create iOτ (Ĉ ′τ ) for τ ∈ [TORAM], where Ĉ ′τ is
exactly the same as Ĉτ except that now instead of using hsk to decrypt, Ĉ ′τ uses hsk ′ to decrypt.

Hybrid 6. Replace the first copy of the ciphertext with an encryption of x∗1. More specifically,
in Step 1 above, upon receiving challenge plaintexts x∗0 and x∗1, compute

ct∗ :=
(
cFHE.Enc(hpk , x∗1; ρ), cFHE.Enc(hpk ′, x∗1; ρ

′), π̃
)
,

where π̃ is a simulated NIZK.

Hybrid 7. When answering key generation queries, create iOτ (Ĉτ ) for τ ∈ [TORAM], i.e., use hsk
instead of hsk ′.
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Hybrid 8. In Step 1 above, run the honest CRS generation algorithm of the NIZK scheme, and
compute the NIZK for the challenge ciphertext honestly.

Hybrid 9. In Step 3 above, instead of picking rk∗ at random and using x∗0 to compute the
challenge address sequence, pick rk∗ at random and using x∗1 to compute the challenge address
sequence.

Hybrid 10. Instead of picking rk∗ at random, pick them based on the true outcome of the PRF
at the punctured points, i.e., rk∗ := PRF(K, ct∗)).

Hybrid 11. Replace occurrences of K ′ back with K ,

Hybrid X1. Switch to using the real-world Cτ in computing the iO. This is the same as the
real-world where both encryptions encrypt x∗1.

We are going to show all the adjacent hybrids are indistinguishable by the following claims:

Claim D.3. Assuming that the puncturable PRF preserves functionality under puncturing, and
that the indistinguishable obfuscator is secure, then Hybrids X0 and 0 are computationally indistin-
guishable.

Proof. By the security of the indistinguishability obfuscator, it suffices to show that the circuits Cτ
and Ĉτ are functionally equivalent. There are three cases:

• When a trace Trτ−1 does not survive the computation and memory consistency checks. In
this case, both Cτ and Ĉτ output ⊥.

• For a trace Trτ−1 (surviving the checks) that contains ct∗, line 3 will be invoked in Ĉτ . But
since the trace survives the checks, it must be a correct trace derived by honest evaluation.
Therefore, the output raddr∗τ and waddr∗τ values (and optionally y∗) are exactly the same as
what Cτ would output.

• For a trace Trτ−1 (surviving the checks) that does not contain ct∗, the only difference between
Ĉτ and Cτ is whether K or K ′ is used. Since the puncturable PRF preserves functionality
under puncturing, Ĉτ and Cτ give exactly the same output.

Claim D.4. Assuming that the cFHE encryption scheme is semantically secure, that the puncturable
PRF preserves functionality under puncturing, that the NIZK is statistically simulation sound, that
the cFHE scheme is perfectly correct, and that the indistinguishable obfuscator is secure, then Hybrid
0 and Hybrid 1 are computationally indistinguishable.

Proof. This can be proven using a few inner Hybrid games.

• Hybrid 0a: When receiving key generation queries, change the second copy of encryption to
K ′. Hybrid 0a is computationally indistinguishable from Hybrid 0 due to a trivial reduction
to the semantic security of the cFHE encryption scheme.
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• Hybrid 0b: Use key hsk ′ in the iO’s instead of hsk .

We now show that Hybrid 0a is computationally indistinguishable from Hybrid 0b. Due to
the security of the iO, it suffices to show that whether using hsk or hsk ′ to decrypt inside the
iO result in functionally equivalent circuits. There are two cases:

– When the input trace Trτ−1 contains ct∗. In this case, neither circuit requires any
decryption. They are obviously functionally equivalent.

– When the input trace Trτ−1 does not contain ct∗. Due to the statistically simulation
soundness of the NIZK, and the fact that the puncturable PRF preserves functionality
under puncturing, and that the cFHE scheme is perfectly correct, it is not hard to see that
any trace that will survive the checks must decrypt to consistent plaintexts no matter
whether hsk or hsk ′ is used in decryption. Therefore, the two circuits are functionally
equivalent.

• Hybrid 0c: Change the first copy of encryption to encrypting K ′. This is clearly indistin-
guishable from Hybrid 0b assuming the semantic security of cFHE encryption.

• Hybrid 0d: Use hsk to decrypt inside the iO’s instead of hsk ′. It is not hard to see that
due to the statistical simulation soundness of NIZK, and the perfect correctness of cFHE
encryption scheme, whether or not we use hsk or hsk ′ to decrypt are functionally equivalent.
Therefore, by the security of iO, Hybrid 0c and Hybrid 0d are indistinguishable.

Observe also that Hybrid 0d is equivalent to Hybrid 1.

Claim D.5. Assuming that the puncturable PRF satisfies pseudo-randomness at punctured points,
then Hybrids 1 and 2 are computationally indistinguishable.

Proof. By a straightforward reduction.

Claim D.6. Assuming the NIZK is computational zero-knowledge, then Hybrids 2 and 3 are com-
putationally indistinguishable.

Proof. By a straightforward reduction.

Claim D.7. Assuming the encryption scheme is semantically secure, then Hybrids 3 and 4 are
computationally indistinguishable.

Proof. By a straightforward reduction.

Claim D.8. Assuming the NIZK is statistically simulation sound, and the security of the indistin-
guishable obfuscator, then Hybrids 4 and 5 are computationally indistinguishable.

Proof. By the security of the indistinguishability obfuscator, it suffices to show that the two circuits
Ĉτ and Ĉ ′τ are functionally equivalent on all inputs. There are three cases:

• When the input trace Trτ−1 fail the computation or memory consistency checks. In this case,
both circuits output ⊥.

• When the input trace Trτ−1 pass all the computation and memory consistency checks, and
contain the challenge ct∗. In this case both circuits output the same since in both circuits
line 3 is triggered.
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• When the input trace Trτ−1 pass all the computation and memory consistency checks, and
does not contain the challenge ct∗. In this case, due to the statistical simulation soundness
of the NIZK, both copies of encryption in the challenge ciphertext must encrypt the same
plaintext (otherwise we can easily construct an adversary to break the statistical simulation
soundness of NIZK). Therefore, using either decryption key hsk or hsk ′ to decrypt result in
the same output.

Using similar arguments as above, we can show that Hybrids 5-8 are indistinguishable.

Claim D.9. Assuming that the ORAM is secure by Definition 2.1, then Hybrids 8 and 9 are
computationally indistinguishable.

Proof. The only difference from Hybrid 8 and 9 comes from the computation of the challenge
address sequence which is computed at the beginning of the game (Step 3).

Define the following distributions where randomness comes from choice of rk∗: addresses(ORAM, x; rk∗)
and addresses(ORAM, y; rk∗).

By the security of ORAM,

addresses(ORAM, x0; rk
∗) ≡ Sim() ≡ addresses(ORAM, x1; rk

∗)

Therefore the Ĉτ to be obfuscated in Hybrid 8 and the Ĉτ in Hybrid 9 are indistinguishable even
in the clear. Thus, their obfuscated versions are indistinguishable, and so are the hybrids.

Claim D.10. Assuming that the puncturable PRF satisfies pseudorandomness at punctured points,
then Hybrid 9 and Hybrid 10 are computationally indistinguishable.

Proof. By a straightforward reduction.

Claim D.11. Assuming that the cFHE encryption scheme is semantically secure, that the punc-
turable PRF preserves functionality under puncturing, that the NIZK is statistically simulation
sound, that the cFHE scheme is perfectly correct, and that the indistinguishable obfuscator is se-
cure, then Hybrid 10 and Hybrid 11 are computationally indistinguishable.

Proof. The proof can be accomplished in a similar manner as that of Claim D.4, with the help of
a sequence of inner Hybrid games.

Claim D.12. Assume that the puncturable PRF preserves functionality under puncturing (per-
fectly), and that the indistinguishable obfuscator is secure. Then Hybrid 11 and Hybrid X1 are
computationally indistinguishable.

Proof. Similar to the proof of Claim D.3.

E RAM-Model Functional Encryption from VBB Obfuscation

E.1 Predictive-Memory ORAM

In our VBB-based construction, we not only need ORAM, but a special type of ORAM called
predictive-memory ORAM (or predictive ORAM for short)7, first defined by Lu and Ostrovsky [36].

7Instead of requiring the predictive-memory property, we can alternatively use a Merkle hash tree to ensure
freshness of memory reads. However, using a predictive ORAM makes our presentation simpler.
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Roughly speaking a predictive ORAM is an ORAM for which the CPU can decide when each read
location was last accessed (with a small cpustate). Below we formally define predictive ORAM.
While Lu and Ostrovsky show that the original ORAM construction by Goldreich and Ostrovsky is
a predictive ORAM, we show something a bit stronger, that any ORAM scheme can be transformed
into a predictive ORAM incurring only logarithmic overhead (see Appendix G.5).

In predictive ORAM, the NextIns circuit additionally outputs the last write time lastwrittent
for the next raddr emitted as defined below:

(datat,waddrt, raddrt, cpustatet, lastwrittent) := NextIns
(
fetchedt−1, cpustatet−1, rk

)
E.2 Function Privacy for Functional Encryption Schemes

We formally define function privacy below.

Definition E.1 (Function Privacy). We say an FE scheme FE for RAM programs computing a
functionality class F is function private if, for all RAM1, . . . ,RAMq for some polynomial q, for all
ppt adversaries A, there exists a simulator S such that∣∣∣Pr[A(mpk, skRAM1 , . . . , skRAMq) = 1]− Pr[SRAM1,...,RAMq(1λ) = 1]

∣∣∣ < negl(λ),

for some negligible function negl(·).
Remark E.2. Our definition of function privacy is related to, but distinct from, the notion of
composable obfuscation of [8], which requires that any attacker who has access to many obfuscated
programs can be simulated (even without knowledge of the functions computed by each program).
The key difference is the existence of the public parameters mpk in our definition, which can be
shared among all the skRAMi

’s. Thus, the function privacy is our setting is weaker than achieving
composable obfuscation, and can be achieved by the standard obfuscation.

E.3 Intuition

A straightforward but insecure idea is to create a virtual blackbox obfuscation O(NextIns) of the
ORAM’s next instruction circuit denoted NextIns (omitting the subscript ORAM for simplicity)
that would decrypt the current encrypted CPU state, encrypted variable fetched from memory,
and compute an encryption of the next CPU state, the value to write to memory, and cleartext
memory read and write addresses. However, the issue is that a malicious evaluator may feed this
obfuscated circuit O(NextIns) with arbitrary inputs to try to obtain additional information.

To enforce honest evaluation, our idea is to sign all legitimate inputs, such that our obfuscated
NextIns circuit will only output meaningful values if these signatures all verify, i.e., the inputs
are legitimate. Otherwise, the obfuscated NextIns circuit will simply output ⊥. More concretely,
in addition to encrypting the initial compiled ORAM := D, the key generator also signs every
encrypted memory location D [i]. Further, before the obfuscator O emits any value, including

raddrt, waddrt, cpustatet , and datat , all of these values will be signed inside O(NextIns) too.
We still need to prevent mix-and-match in two ways:

• To prevent the adversary from mixing and matching values from different time steps, all the
signatures will be tagged with the current time step.

• To prevent the adversary from mixing and matching values from different tokens, all the
signatures will be tagged with a nonce that is unique for each token.

In this way, we essentially enforce that given a token and a ciphertext, there is only a unique evalua-
tion trace that is legitimate, and will be accepted by the obfuscated NextIns circuit, O(NextIns).
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E.4 Construction

Notational conventions. In the following scheme description, we will use the following nota-
tional conventions.

var an encrypted variable

{var}, { var } a variable or encrypted variable, attached with a signature

Construction. Let O be a virtual black-box circuit obfuscator, E be a CCA-secure public-key
encryption scheme, Σ be a deterministic signature scheme existentially unforgeable under adaptive
chosen-message attack, and PRF be a pseudorandom function.

We construct the FE-RAM scheme FE = (Setup,KeyGen,Enc,Dec) as:

Setup. (mpk,msk)← Setup(1λ):

Run (ek , dk)← E .Gen(1λ), and (sk , vk)← Σ.Gen(1λ). Choose PRF keys k and K.

Create a VBB obfuscation O(Cfe
NextIns) for the circuit Cfe

NextIns as described in Figure 10.

Set mpk := (ek ,O(Cfe
NextIns)), and msk := (sk , k ,K).

Key Generation. skRAM ← KeyGen(msk,RAM):

Upon receiving RAM, choose uniform nonce ∈ {0, 1}λ, and define RAMnonce = D′, where

RAMnonce(x, ((v1, nonce1), . . . , (vq, nonceq)), b) =

{
RAM(x) if b = 0

vi if b = 1 ∧ nonce = noncei.

Next, let ORAM := D, be the compiled ORAM counterpart for RAMnonce, where D = D′||~0.

For i = 1 to nORAM, compute
{
D [i]

}
:=

(
D [i], Σ.Signsk ( D [i], (0, i, nonce, “mem”))

)
where D [i] := D[i]⊕ PRFk (0, i, nonce, “mem”).

The token for RAM is then the following tuple:

skRAM :=
(
nonce; ∀i ∈ [nORAM],

{
D [i]

})
Encryption . (See footnote 8):

Compute x ← Enc(mpk, x):

Run x ← E .Encek (x, ((0λ, 0λ), . . . , (0λ, 0λ)), 0).

Decryption. y ← Dec(skRAM, x ):

Given skRAM and a ciphertext x , parse skRAM :=

(
nonce,

({
D [i]

})
i∈[nORAM]

)
. Then, for

t = 1, 2, . . . , TORAM :

8We give a multi-key construction directly, where the ciphertext size is linear in q, the number of key queries.
De Caro et al. [19] show the impossibilility of succinct simulation secure functional encryption under multiple key
queries, we note that this lower bound still holds even assuming virtual black-box obfuscation.
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Cfe
NextIns:

Hardwired state: ek , dk , vk , sk , k ,K

Inputs:

t, nonce,

[
if t > 1 : {raddrt−1} , {lastwrittent−1} ,

{
fetchedt−1

}
,
{
cpustatet−1

}
,
{
rk
}

else (if t = 1) : x ,

]

Outputs: {raddrt}, {lastwrittent}, waddrt,
{
datat

}
,
{
cpustatet

}
.

For t = TORAM, the final outcome y is also output.

Circuit description:

1. Verify. If any verification fails, output ⊥. If t > 1, verify thata

• Σ.Verifyvk

({
cpustatet−1

}
, (t− 1, nonce, “cpu”)

)
= 1,

• Σ.Verifyvk

({
rk
}
, (t− 1, nonce, “prf”))

)
= 1,

• Σ.Verifyvk ({raddrt−1} , (t− 1, nonce, “raddr”)) = 1,

• Σ.Verifyvk ({lastwrittent−1} , (t− 1, nonce, “lastwritten”)) = 1,

• Σ.Verifyvk

({
fetchedt−1

}
, (lastwrittent−1, raddrt−1, nonce, “mem”)

)
= 1.

2. Decrypt. If t = 1, set cpustate0 := ~0, and decrypt fetched0 := E .Decdk ( x ), and compute

rk := PRFK( x ), and rk := rk⊕ PRFk (nonce, “prf seed”).

Else if t > 1, compute cpustatet−1 := cpustatet−1 ⊕ PRFk (t − 1, nonce, “cpu”), decrypt

fetchedt−1 := fetchedt−1 ⊕ PRFk (lastwrittent−1, raddrt−1, nonce, “mem”), and decrypt rk :=

rk ⊕ PRFk (nonce, “prf seed”).

3. Compute.

(datat,waddrt, raddrt, cpustatet, lastwrittent, y) := NextIns
(
fetchedt−1, cpustatet−1, rk

)
where the outcome y is only output if t = TORAM.

4. Encrypt. Compute datat := datat ⊕ PRFk (t,waddrt, nonce, “mem”), and cpustatet :=

cpustatet ⊕ PRFk (t, nonce, “cpu”).

5. Sign. {raddrt} := (raddrt, Σ.Signsk (raddrt, (t, nonce, “raddr”))),

{lastwrittent} := (lastwrittent, Σ.Signsk (lastwrittent, (t, nonce, “lastwritten”))){
datat

}
:=
(
datat , Σ.Signsk ( datat , (t,waddrt, nonce, “mem”))

)
{
cpustatet

}
:=
(
cpustatet , Σ.Signsk ( cpustatet , (t, nonce, “cpu”))

)
{
rk
}

:=
(
rk , Σ.Signsk ( rk , (t, nonce, “prf”))

)
aWe overload notation Σ.Verifyvk ({var}, tag) to mean the following: 1) Parse {var} as {var} := (var, σ); and 2) Compute

Σ.Verifyvk (var||tag, σ). In other words, Σ.Verifyvk ({var}, tag) verifies that the variable var is properly signed with the
specified tag.

Figure 10: Cfe
NextIns to be obfuscated using VBB obfuscation.45



(
{raddrt} , {lastwrittent} ,waddrt,

{
datat

}
,
{
cpustatet

})
:=

{
O(Cfe

NextIns) (t = 1, nonce, x )

O(Cfe
NextIns)

(
t > 1, nonce, {raddrt−1} , {lastwrittent−1} ,

{
fetchedt−1

}
,
{
cpustatet−1

}
,
{
rk
}){

fetchedt
}

:= { D [raddrt]}

{ D [waddrt]} :=
{
datat

}
The TORAM-th run ofO(Cfe

NextIns) also yields y. Output y as the decryption of x under skRAM.

E.5 Security Proof

We can show the above construction is a secure functional encryption in the RAM model.

Theorem E.3. Assume ORAM is a predictive oblivious RAM secure by Definition 2.1, O is a
VBB obfuscator, Σ is an unforgeable signature scheme, PRF is a secure PRF, E is a CCA-secure
public-key encryption scheme, then the above constructed FE-RAM scheme is simulation secure
against non-adaptive adversaries, under multiple non-adaptive key queries and a single message.

Handling adaptive key queries. We can use a similar technique of the trapdoor circuit as the
work [19] to handle adaptive key queries. The idea is that the simulator embeds the answers to
the adaptive key queries into the tokens. We can use the technique in a straightforward way. For
clarity of presentation, we present the non-adaptive version for exposition of our main ideas.

To prove that our scheme achieves the simulation-based security, we need to construct a simu-
lator S so that for all adversary A, the real experiment is computationally indistinguishable from
the ideal experiment. The simulator S interacts with an adversary A and operates as follows:

• The simulator S carries out the setup and key generation honestly for the adversary A.

• When the adversary A makes a ciphertext query on input x, the simulator S now is provided
with |x| and the values yi = RAMi(x) for all i ∈ [q]. Now the simulator generates a fake
ciphertext ct ← E .Encek (0λ, ((y1, nonce1), . . . , (yq, nonceq)), 1), for the adversary A. Here
noncei is the nonce used for RAMi in the key generation.

Based on the above simulator S, we can obtain the ideal experiment IdealA,S . In addition, based
on the FE construction, we can easily obtain the real experiment RealA. Given any key query for
RAM and challenge plaintext x, the distributions in the both experiments are:

DistIdeal =
(
ek , {skRAMj

}j∈[q], x, c̃t,O(Cfe
NextIns)

)
DistReal =

(
ek , {skRAMj

}j∈[q], x, ct,O(Cfe
NextIns)

)
.

Next, we modify the real and ideal experiments respectively and obtain Real′ and Ideal′.

Real′ and Ideal′. We define Real′ and Ideal′ the same as Real and Ideal except the experi-
ments exclude the obfuscated circuits. (We give the distinguisher an oracle Ofe

1 instead, providing
black box access to the circuit Cfe

NextIns.) In particular,

DistIdeal′ =
(
ek , {skRAMj

}j∈[q], x, c̃t
)

DistReal′ =
(
ek , {skRAMj

}j∈[q], x, ct
)
.
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Lemma E.4. Assume O is a VBB obfuscator. If there exists a RAM, a message x, a ppt algorithm
D and some non-negligible δ() such that Pr[D(DistReal) = 1] − Pr[D(DistIdeal) = 1] > δ(λ), then
there exists another ppt algorithm D̂ so that Pr[D̂Ofe

1 (DistReal′) = 1]− Pr[D̂Ofe
1 (DistIdeal′) = 1] >

δ(λ)− negl(λ).

Proof. Let α =
(
ek , {skRAMj

}j∈[q], x, ct
)

and let Dα denote algorithm D with α hardwired. Based
on the assumption that O is VBB obfuscator, for algorithm Dα, there exists a VBB simulator Sim
so that ∣∣∣Pr[Dα(O(Cfe

NextIns)) = 1]− Pr[SimOfe
1 () = 1]

∣∣∣ < negl(λ)

Now we can define D̂ as follows: upon input α, and oracle access to Ofe
1 , D̂ internally runs Sim,

providing Sim oracle access to Ofe
1 ; D̂ returns the bit that Sim returns. We can obtain

Pr[D̂Ofe
1 (DistReal′) = 1]− Pr[D̂Ofe

1 (DistIdeal′) = 1]

= Pr[SimOfe
1 () = 1 | Real′]− Pr[SimOfe

1 () = 1 | Ideal′]
> Pr[Dα(O(Cfe

NextIns)) = 1 | Real]− Pr[Dα(O(Cfe
NextIns)) = 1 | Ideal]− negl(λ)

= Pr[D(DistReal) = 1]− Pr[D(DistIdeal) = 1]− negl(λ)
> δ(λ)− negl(λ)

This completes the proof of the lemma.

Modified oracle O fe
2 . Here we consider a modified oracle Ofe

2 . Here, whenever there is an oracle
call for t = 1, decrypts the input, and precomputes all the “expected” inputs for all future time
steps and remembers them in a table Γ. Later, if there are queries for all t > 1, the circuit looks
into the table Γ, to find if it is one of the expected inputs. If so, output the correct outputs for
this time step. Else, output ⊥. The above modified oracle Ofe

2 is based on honest setup and key
generation in the real experiment. Similarly, we can define modified Ofe

2 based on the setup and
key generation in the ideal experiment.

Lemma E.5. If Σ is unforgeable, then for any ppt algorithm D, D cannot distinguish oracle Ofe
1

from Ofe
2 via black box queries, i.e. Pr[DOfe

1 (1λ) = 1] ≈ Pr[DOfe
2 (1λ) = 1].

Proof. The two oracles are the same except the following bad event occurs: the input vector can
be verified but such input vector is not computed by the circuit based on any input at t = 1. Note
that the computation by the circuit is deterministic and it has been decided by the input at t = 1
(and other initial state). For any vector which is not generated by the circuit, if it can be verified,
then we immediately obtain a forgery for the underlying digital signature. Under the assumption
the signature scheme is unforgeable, the event only occurs with negligible probability. Otherwise,
we can use D to make a forgery to the signature scheme.
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Ofe
2 :

Initial state: ek , dk , vk , sk , k ,K;
Store all information in the key generation stage for each RAMj , i.e., for all j ∈ [q], store RAMj .nonce,

RAMj . (D[i])i∈[nORAM], and RAMj .
({

D [i]
})

i∈[nORAM]
.

Inputs: same as in Cfe
NextIns

Outputs: same as in Cfe
NextIns

Oracle description:

Different from Σ.Verifyvk () used in Cfe
NextIns, here the circuit carries out verification through “book-

keeping” mechanism.

If t = 1, then the input vector is (nonce, x ), carry out the following:

• Compute x ← E .Decdk ( x ), and set fetched0 := x; set cpustate0 := ~0; compute rk :=

PRFK( x ), and rk := rk⊕ PRFk (nonce, “prf seed”).

• For t = 1, 2, . . . , TORAM:

(datat,waddrt, raddrt, cpustatet, lastwrittent, y) := NextIns
(
fetchedt−1, cpustatet−1, rk

)
fetchedt := D[raddrt]
D[waddrt] := datat

where the outcome y is only output if t = TORAM

• For t = 1, 2, . . . , TORAM:

datat := datat ⊕ PRFk (t,waddrt, nonce, “mem”).

cpustatet := cpustatet ⊕ PRFk (t, nonce, “cpu”).

• For t = 1, 2, . . . , TORAM:

{raddrt} := (raddrt, Σ.Signsk (raddrt, (t, nonce, “raddr”))),

{lastwrittent} := (lastwrittent, Σ.Signsk (lastwrittent, (t, nonce, “lastwritten”))){
datat

}
:=
(
datat , Σ.Signsk ( datat , (t,waddrt, nonce, “mem”))

)
{
cpustatet

}
:=
(
cpustatet , Σ.Signsk ( cpustatet , (t, nonce, “cpu”))

)
{
rk
}

:=
(
rk , Σ.Signsk ( rk , (t, nonce, “prf”))

)
• Create a table Γx as follows.

For t = 1, 2, . . . , TORAM,

in Γx[t], input vector Inputt and output vector Outputt are stored, where Inputt =(
nonce, {raddrt−1} , {lastwrittent−1} ,

{
fetchedt−1

}
,
{
cpustatet−1

}
,
{
rk
})

,

and Outputt =
(
{raddrt} , {lastwrittent} ,waddrt,

{
datat

}
,
{
cpustatet

}
,
{
rk
})

. Note

that for t = TORAM, the final outcome y is also included in OutputT .

• Finally return Output1 as the output.

If t > 1, if the input vector has not been stored in any table, then return ⊥. Otherwise, if the
input vector has been stored in a table, then return Outputt as the output.
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Real′′ and Ideal′′. We define Real′′ and Ideal′′ the same as Real′ and Ideal′ except that in
the key generation, for each RAMj , instead of using PRF to generate the one time pad, use random
strings to encrypt cpustate0 and (D[i])i∈[nORAM]. The key generation information will be stored as

initial state in oracle Ofe
3 . Concretely, generate skRAMj

:= RAMj .

(
nonce,

({
D [i]

})
i∈[nORAM]

)
,

where and D [i] := D[i]⊕Ri, for randomly chosen Ri’s. The distributions of the two experiments
are

DistIdeal′′ =
(
ek , {skRAMj

}j∈[q], x, c̃t
)

DistReal′′ =
(
ek , {skRAMj

}j∈[q], x, ct
)
.

Lemma E.6. If PRF is secure, for any ppt D, |Pr[D(DistReal′) = 1]− Pr[D(DistReal′′) = 1]| <
negl(λ) and |Pr[D(DistIdeal′) = 1]− Pr[D(DistIdeal′′) = 1]| < negl(λ).

Proof. This follows directly from the security of the PRF.

Modified oracle O fe
3 . Ofe

3 is the same as Ofe
2 except that in Encrypt step, a random string is

used as one time pad.

Ofe
3 :

Initial state: secret keys dk , sk , and a random string as one time pad.
Store all information in the key generation stage for each RAMj , i.e., for all j ∈ [q], store

RAMj .nonce, RAMj . (D[i])i∈[nORAM], and RAMj .
({

D [i]
})

i∈[nORAM]
. Here random strings are used

as one time pad for encrypting.

Inputs: same as in Cfe
NextIns

Outputs: same as in Cfe
NextIns

Oracle description:

Same as that in oracle Ofe
2 except that in Encrypt steps, instead of using PRF to generate a

pseudorandom string as the one-time pad, here a random string is used as the one time pad.

Similarly, we can define modified Ofe
3 based on the setup and key generation in the ideal

experiment.

Lemma E.7. If PRF is secure, for any ppt algorithm D, D cannot distinguish oracle Ofe
2 from

Ofe
3 via black box queries, i.e. Pr[DOfe

2 (1λ) = 1] ≈ Pr[DOfe
3 (1λ) = 1].

Proof. This follows directly from the security of the PRF.

Modified oracle O fe
4 . Ofe

4 is the same as Ofe
3 except on the query corresponding to t = 1, instead

of using real memory addresses, the new circuit will use simulated memory addresses generated by
predictive ORAM simulator Sim′.
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Ofe
4 :

Intial state: same as that in Ofe
3

Inputs: same as in Cfe
NextIns

Outputs: same as in Cfe
NextIns

Oracle description:

Same as that in oracle Ofe
3 except that for each input value x, the corresponding table Γx

is created in a different way. Instead of generating addresses honestly, now the ad-
dresses are simulated by running the predictive ORAM simulator Sim′(), i.e., comput-
ing

(
{waddrt, raddrt}t∈[TORAM]

)
← Sim′(). The circuit then computes lastwrittent for each

t ∈ [TORAM].

Similarly, we can define modified Ofe
4 based on the setup and key generation in the ideal

experiment.

Lemma E.8. Assume ORAM is secure as defined in Defintion 2.1. Then, for any ppt algorithm
D, D cannot distinguish oracle Ofe

3 from Ofe
4 via black box queries, i.e. Pr[DOfe

3 (1λ) = 1] ≈
Pr[DOfe

4 (1λ) = 1].

Proof. This directly follows by the transformation introduced in Defintion 2.1, Assume there is an
algorithm D who can distinguish Ofe

3 from Ofe
4 via black box access, then we can construct another

algorithm D′ who can break the computational security of the corresponding ORAM. D′ internally
simulates D and the oracle except that the addresses are generated by an external algorithm either
by addresses(ORAM, ·, rk) or by Sim′(). If the external algorithm is addresses(), then D’s view is the
same as that with Ofe

3 ; and if the external algorithm is Sim′, then D’s view is the same as that with
Ofe

4 . Since D can distinguish the two experiments with non-negligible probability, that means D′
can distinguish the real addressees generated by addresses() from the simulated addresses produced
by Sim′() with non-negligible probability. That means D′ can break the computational security of
ORAM, which contracts to the assumption.

Lemma E.9. Assume E is CCA-secure PKE, then no ppt distinguisher with oracle access to Ofe
4

can distinguish Real′′ from Ideal′′.

Proof. Assume there is an algorithm D̂ who can distinguish Real′′ from Ideal′′ with oracle access
to Ofe

4 . We now construct another algorithm D′ who can break the security of the underlying CCA
encryption scheme E . The construction of D′ is as follows. D′ internally simulates D̂ and Ofe

4 with
the following:

• Now D′ is provided the encryption key ek and decryption oracle, but not the decryption key
dk . In oracle Ofe

4 , the decryption key dk is not included. For any decryption queries of a CCA
ciphertext, D′ will send it to his own decryption oracle to get the corresponding plaintext.

• Whenever D̂ provides x in the challenging stage, D′ sends x′ to his own challenger to get the ci-
phertext ct, where x′ = (x, ((0λ, 0λ), . . . , (0λ, 0λ)), 0) or x′ = (0λ, ((y1, nonce1), . . . , (yq, nonceq)), 1),
yj = RAMj(x) for j ∈ [q].
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We note that, when D′ uses x′ = (x, ((0λ, 0λ), . . . , (0λ, 0λ)), 0), the view of the internally simulated
D̂ is the same as that of Real′′; and when D′ uses x′ = (0λ, ((y1, nonce1), . . . , (yq, nonceq)), 1), the
view of the internally simulated D̂ is the same as that of Ideal′′. Since DOfe

4 can distinguish Real′′

from Ideal′′ with non-negligible probability, and D′ faithfully simulates Ofe
4 , the algorithm D′ is

a successful attacker on the CCA encryption scheme E .

We can now complete the proof of security.

Proof of Theorem E.3. From Lemma E.4, assume that there exists a ppt algorithm D which can
distinguish RealA from IdealA with non-negligible probability, then we can construct a ppt
algorithm D̂ to distinguish Real′′ from Ideal′′ with non-negligible probability. Then from Lem-
mas E.5, E.6, E.7, and E.8, we know D̂Ofe

4 distinguishes Real′′ from Ideal′′. This is a contradiction
to Lemma E.9. That means, the real experiment and the ideal experiment are not distinguishable,
which completes the proof.

A Remark on Function Privacy. Our construction achieves the definition of function pri-
vacy. Intuitively this follows from the definition of VBB obfuscation, using a similar argument
to Lemma E.4. The reason is that the public parameters pp contain a single obfuscated universal
circuit, while the functions computed by RAMi are stored as encrypted code on the database, which
can only be accessed using the hardwired decryption key of the obfuscated universal circuit. The
only remaining function-dependent information in the view of an attacker is the input-specific run-
ning time. We can hide this as well by padding the running time of all computation to a common
upper bound. Thus, an attacker on function privacy can be used to construct an attacker on the
virtual black-box property of the obfuscated universal circuit.

F RAM-Model Fully Homomorphic Encryption from VBB Ob-
fuscation

F.1 Model

Let RAM := D denote a random access machine. The program text f can be regarded as part of
memory array D. A fully homomorphic encryption for RAM programs (FHE-RAM) consists of a
suite of algorithms FHE = FHE.(Setup,Enc,Dec,Eval) defined as follows.

• Setup: FHE.Setup(1λ) is a ppt algorithm that takes as input a security parameter 1λ and
outputs a pair of master public and secret keys (hpk, hsk).

• Encryption: FHE.Enc(hpk, x) is a ppt algorithm that takes as input the master public key
hpk and a message x and outputs a ciphertext ct.

• Decryption: FHE.Dec(hsk, ct) is a deterministic algorithm that takes as input the secret key
hsk and ciphertext ct and outputs a message x.

• Evaluation: FHE.Eval(hpk,RAM, ct1, ct2) is a deterministic algorithm that takes as input the
evaluation key hpk, a RAM program RAM, two ciphertexts ct1, ct2, and outputs a ciphertext
ct.
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Correctness The scheme described above is correct if and only if for arbitrary RAM, for every
sufficiently large security parameter λ, for every input x1, x2, we have:

Pr[FHE.Dec(hsk, c) 6= RAM(x1, x2)] = negl(λ)

where c← FHE.Eval(hpk,RAM, c1, c2), c1 ← FHE.Enc(hpk, x1), c2 ← FHE.Enc(hpk, x2) and (hpk, hsk)←
FHE.Setup(1λ).

Definition F.1. We say a homomorphic encryption scheme is semantically secure if for ppt
distinguisher D and any two messages x0, x1, we have:

|Pr[D(hpk,FHE.Enc(hpk, x0)) = 1]− Pr[D(hpk,FHE.Enc(hpk, x1)) = 1]| < negl(λ)

for some negligible function negl(·).

F.2 Intuition

Our idea is to encrypt a master key K under a circuit FHE scheme in the public parameters, and
have the evaluator homomorphically generate a (homomorphically encrypted) PRF key specific
to this RAM as well as the inputed ciphertexts during the evaluation. To do this, the evaluator
computes a Merkle digest of the initial memory contents, and homomorphically generates a PRF
key denoted rk based on this digest as well as the inputed ciphertexts – this operation will also be
checked later inside the obfuscation9.

To prevent mix-and-match, the obfuscator will sign all intermediate outcomes (encrypted or
non-encrypted) along with the Merkle digest of the RAM. While memory writes during the RAM’s
execution will be encrypted and signed, the initial memory contains non-encrypted data. As a
result, every time a memory is read for the first time (before it is ever written), the obfuscation
checks that the read is consistent with the declared Merkle digest.

F.3 Construction

Notational convention. We define the following notational conventions for clarity.

var encryption of the variable var under key chpk.

var This variable is sometimes encrypted and sometimes in cleartext. In
particular, initially the memory array D is all in cleartext; however
values written to memory will be encrypted (and signed).

{var} or { var } We use {} to denote either that the variable has a Merkle proof or
signature.

Let cFHE.(Setup,Enc,Dec,Eval) be a fully homomorphic encryption scheme for circuits, Merkle.(Hash,Verify)
be a collision-resistant Merkle hash tree scheme, O be a virtual black-box circuit obfuscator,
E .(Gen,Enc,Dec) be a CPA-secure public-key encryption scheme, Σ.(Gen, Sign,Verify) be a deter-
ministic signature scheme existentially unforgeable under adaptive chosen-message attack, and PRF
be a pseudorandom function. We construct the RAM-model fully homomorphic encryption scheme
FHE = FHE.(Setup,Enc,Dec,Eval) as:

9Alternatively, one could also just perform this operation inside the obfuscation.
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Cfhe
NextIns:

Initial hardcoded state: chpk , chsk , ek , dk , sk , vk , k , K

Inputs:

t, digest,

[
if t > 1 : {raddrt−1} , {lastwrittent−1} , {fetchedt−1},

{
cpustatet−1

}
,
{
rk
}

else (if t = 1) : { x1 }, { x2 },

]

Outputs: {raddrt}, {lastwrittent}, waddrt,
{
datat

}
,
{
cpustatet

}
,
{
rk
}

. For t = TORAM, the final

encrypted outcome y is also output.

Circuit description:

1. Verify. If any of the following verification fails, immediately output ⊥.

If t = 1, verify that { x1 } and { x2 } carry valid Merkle proofs w.r.t digest. If so, compute rk =

cFHE.Evalchpk (G, K ), where G(·) , PRF(·)(digest).

Else if t > 1, verify that

• Σ.Verifyvk

({
rk
}
, (t− 1, digest, “prf”))

)
= 1,

• Σ.Verifyvk

({
cpustatet−1

}
, (t− 1, digest, “cpu”)

)
= 1,

• Σ.Verifyvk ({raddrt−1} , (t− 1, digest, “raddr”)) = 1,

• Σ.Verifyvk ({lastwrittent−1} , (t− 1, digest, “lastwritten”)) = 1,

• If lastwrittent−1 > 0: parse {fetchedt−1} = { fetchedt−1 }, i.e., the memory variable is encrypted

and signed; verify that Σ.Verifyvk

({
fetchedt−1

}
, (lastwrittent−1, raddrt−1, digest, “mem”)

)
=

1 Otherwise, if lastwrittent−1 = 0: parse {fetchedt−1} = (fetchedt−1, σ) and verify that
Merkle.Verify (σ, fetchedt−1, raddrt−1, digest) = 1

2. Decrypt. Compute rk := cFHE.Decchsk ( rk ).

If t > 1: decrypt cpustatet−1 := cpustatet−1 ⊕PRFk (t−1, digest, “cpu”). Further, if lastwrittent−1 >

0, decrypt fetchedt−1 := fetchedt−1 ⊕ PRFk (lastwrittent−1, raddrt−1, digest, “mem”).

Else if t = 1, decrypt fetched0 :=
(
E .Decdk ( x1 ), E .Decdk ( x2 )

)
.

3. Compute. (datat,waddrt, raddrt, cpustatet, lastwrittent, y) := NextIns
(
fetchedt−1, cpustatet−1, rk

)
where the outcome y is only output if t = TORAM.

4. Encrypt. Compute datat := datat⊕PRFk (t,waddrt, digest, “mem”), and cpustatet := cpustatet⊕
PRFk (t, digest, “cpu”). If t = TORAM, use public-key encryption E to encrypt y, using randomness
seeded by rk.

5. Sign. {raddrt} := (raddrt, Σ.Signsk (raddrt, (t, digest, “raddr”))),

{lastwrittent} := (lastwrittent, Σ.Signsk (lastwrittent, (t, digest, “lastwritten”))){
datat

}
:=
(
datat , Σ.Signsk ( datat , (t,waddrt, digest, “mem”))

)
{
cpustatet

}
:=
(
cpustatet , Σ.Signsk ( cpustatet , (t, digest, “cpu”))

)
{
rk
}

:=
(
rk , Σ.Signsk ( rk , (t, digest, “prf”))

)
Figure 11: Circuit Cfhe

NextIns to be obfuscated using VBB obfuscation.
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Setup. (hpk, hsk)← Setup(1λ):

Run (chpk , chsk)← cFHE.Setup(1λ), (ek , dk)← E .Gen(1λ) and (sk , vk)← Σ.Gen(1λ).

Choose PRF keys K ∈ {0, 1}λ, k ∈ {0, 1}λ.

Compute K := cFHE.Encchpk (K).

Compute a VBB obfuscation O(Cfhe
NextIns) of the circuit Cfhe

NextIns as described in Figure 11,
where NextIns is the next-instruction circuit of an ORAM.

The public and secret keys are

hpk :=
(
O(Cfhe

NextIns), chpk , ek , K
)

hsk := dk

Encryption. Enc(hpk, x):

Parse hpk := (O, ek , chpk , K ). Compute x := E .Encek (x)

Decryption. Dec(hsk, x ):

Parse hsk := dk . Compute x := E .Decdk ( x ).

Evaluation. Eval(hpk,RAM, x1 , x2 ):

ORAM Setup:

Let ORAM := D be the complied ORAM counterpart for RAM = D′, where D = D′||~0.

Compute digest = Merkle.Hash(D, x1 , x2 ). Let { x1 } and { x2 } denote the input ciphertext
with their Merkle proofs w.r.t digest.

Make the initial memory contents attached with their respective Merkle proofs: For addr ∈
{1, . . . , |D|}, let σaddr be the Merkle hash proof that D[addr] is consistent with digest, tag
each memory word with its Merkle-Hash proof, i.e., D[addr] := (D[addr], σaddr).

Execution: Initialize D = D. For t = 1 to TORAM, compute:(
{raddrt} , {lastwrittent} ,waddrt,

{
datat

}
,
{
cpustatet

}
,
{
rk
})

:=

O(Cfhe
NextIns)

(
{ x1 }, { x2 }

)
if t = 1

O(Cfhe
NextIns)

(
{raddrt−1} , {lastwrittent−1} , {fetchedt−1},

{
cpustatet−1

}
,
{
rk
}
.
)

o.w.

Note that if t = TORAM, i.e. this is the final step of a query, the outcome
{
y
}

is additionally

output by O(Cfhe
NextIns) above.

If t = TORAM, output y as the homomorphic evaluation of RAM on x1 and x2 .

If t < TORAM, read and write to memory.

{fetchedt} := D[raddrt]

Note that the resulting {fetchedt} is either attached with a Merkle proof if the memory
location has not been written before, or it is attached with a time-dependent signature.
Further, perform memory write:

D[waddrt] := { datat }
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F.4 Security Proof

Theorem F.2. Assume ORAM is oblivious RAM as defined in Definition 2.1, O is a VBB obfusca-
tor, Σ is an unforgeable signature scheme, Merkle-Hash is collision resilient, PRF is a secure PRF,
E is a semantically secure encryption scheme, and cFHE is a semantically secure fully homomorphic
encryption scheme for circuits, then the construction FHE-RAM is a semantically secure scheme in
the RAM model.

For any two messages m0 and m1, we define the two distributions Distb := (hpk,Enc(hpk,mb))
for b ∈ {0, 1}, where hpk contains the obfuscated program O(Cfhe

NextIns). To show the theorem, we
argue that for any distinguisher D of the semantic security game of the FHE-RAM, and any two
messages m0,m1, we have

|Pr[D(Dist0) = 1]− Pr[D(Dist1) = 1]| < negl(λ)

for some negligible function negl(·).

Lemma F.3. Suppose that the obfuscator O is virtual-blackbox secure. If there exists a polynomial-
time distinguisher D such that |Pr[D(Dist0) = 1] − Pr[D(Dist1) = 1]| > δ for some non-negligible
δ, then there exists a distinguisher D̂ such that

|Pr[D̂Ofhe
1 (D̂ist0) = 1]− Pr[D̂Ofhe

1 (D̂ist1) = 1]| > δ − negl(λ)

where D̂ist0 and D̂ist1 are the same as Dist0 and Dist1, except for removing the obfuscated program
O(Cfhe

NextIns) from the adversary’s view. Furthermore, the distinguisher D̂ is given oracle access to
the circuit Cfhe

NextIns (also denoted as Ofhe
1 ) .

Proof. The proof of this lemma follows in a similar manner as Lemma E.4

Modified Oracle O fhe
2 . We now modify the oracle Ofhe

1 into Ofhe
2 in the following manner. At

a high level, Ofhe
2 changes the signature verification to a table look-up process.

More concretely, Ofhe
2 keeps track of one “thread” for every digest queried. Basically for every

digest, the oracle stores the next expected input

input :=
(
t, {raddrt−1} , {lastwrittent−1}

{
cpustatet−1

}
,
{
rk
})

and the current status of the memory array D (containing only information about locations that
have been written).

Upon any input corresponding to a digest: If t = 1, Ofhe
2 checks that x1 and x2 have valid

Merkle proofs with respect to digest. If t > 1, Ofhe
2 will check the inputs as follows: it first checks

that the raddrt−1, lastwrittent−1, cpustatet−1 , rk are the previously stored value using a one-step

look-ahead book-keeping mechanism (as mentioned later). Then, if lastwrittent−1 = 0, it checks
that the claimed fetchedt−1 is consistent with digest. Otherwise, lastwrittent−1 > 0, it checks that
the claimed fetchedt−1 matches with the previously stored value using the one-step look-ahead
book-keeping mechanism (as mentioned later). If any check fails, the input is rejected.

If not, go to the look-ahead book-keeping mechanism: The oracle now follows the honest algo-
rithm of the remainder of Cfhe

NextIns to compute the outputs of this step. It then uses the honest
evaluation to compute the correct inputs of the next step and stores them.
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Ofhe
2 :

Initial state: chpk , chsk , ek , dk , sk , k , K
Additionally, this oracle maintains a table where Γ[digest] is either ⊥ or is a pair (input, D). Initially,
Γ[digest] is ⊥ for every digest.
The oracle also stores a table of all previously made queries and answers.

Inputs: Same as in Cfhe
NextIns.

Outputs: Same as in Cfhe
NextIns.

Oracle description:

1. If the queried input has been seen before, just give exactly the same answer as before. Otherwise,
continue to the following steps.

2. If t = 1, the input is (t, digest, { x1 }, { x2 }, cpustate0). Verify that { x1 }, { x2 } have valid Merkle

proofs w.r.t digest. If verification fails, output ⊥. Otherwise, compute rk = cFHE.Evalchpk (G, K ),

where G(·) = PRF(·)(digest). Let D := ~0, i.e., no location in memory has been written yet.

3. Else, if t > 1, the input is
(
t, digest, {raddrt−1} , {lastwrittent−1} , {fetchedt−1},

{
cpustatet−1

}
,
{
rk
})

.

Let
input :=

(
t, {raddrt−1} , {lastwrittent−1}

{
cpustatet−1

}
,
{
rk
})

Check that input is consistent with the expected input saved in Γ[digest]. If the check fails, output
⊥.

If lastwrittent−1 = 0, check that {fetchedt−1} are consistent with Merkle digest. Else, let (. . . , D) :=
Γ[digest], check that {fetchedt−1} = D[raddrt−1].

4. Carry out the steps “Decrypt”, “Compute”, “Encrypt” and “Sign” as in Cfhe
NextIns. Perform the

corresponding memory write to D. Suppose that this gives us new D′, and that the correct input
for the next time step is input′:

input′ :=
(
t+ 1, {raddrt} , {lastwrittent}

{
cpustatet

}
,
{
rk
})

5. Set Γ[digest] := (input′, D′).

Lemma F.4. Assuming that the signature scheme is unforgeable, then no distinguisher can distin-
guish whether it is interacting with Ofhe

1 or Ofhe
2 .

Proof. There are two cases we need to consider: 1) If the adversary can find a different

input :=
(
t, {raddrt−1} , {lastwrittent−1}

{
cpustatet−1

}
,
{
rk
})

than what is stored in the one-step

look-ahead book-keeping mechanism, 2) If lastwrittent−1 > 0, and the adversary finds a different
{fetchedt} than what is stored in the one-step look-ahead book-keeping mechanism. Either will
constitute a signature forgery.

Modified Oracle O fhe
3 . We now modify the oracle Ofhe

2 into Ofhe
3 as in the following figure.
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Ofhe
3 :

Initial state: chpk , chsk , ek , dk , sk , K and a truly random function.

Inputs: Same as in Cfhe
NextIns.

Outputs: Same as in Cfhe
NextIns.

Oracle description:

Same as that in oracle Ofhe
2 except the following:

• upon receiving the input
(
t = 1, digest, { x1 }, { x2 }, cpustate0

)
, if
(
t = 1, digest, C1, C2, ·

)
has

been recorded in Γ[digest], and ( x1 , x2 ) 6= (C1, C2), then abort.

• upon receiving the input(
t, digest, {raddrt−1} , {lastwrittent−1} , {fetchedt−1},

{
cpustatet−1

}
,
{
rk
})

where t > 1 and lastwrittent−1 = 0, if in table Γ[digest], the following tuple has been recorded:(
t′, digest, {raddrt′−1} , {lastwrittent′−1} , {fetchedt′−1},

{
cpustatet′−1

}
,
{
rk
})

, where t′ > 1

and lastwrittent′−1 = 0, and in addition raddrt−1 = raddrt′−1, but fetchedt−1 6= fetchedt′−1,
then abort.

Lemma F.5. Assume that the hash function used to compute the Merkle digest is collision resistant,
then no PPT distinguisher can distinguish whether it is interacting with Ofhe

2 or Ofhe
3 .

Proof. Since the oracles differ only if the adversary can find a consistent input (other than the
stored one), which results in a collision of the Merkle digest. Thus, by the security of the collision
resistance of the Merkle digest, no PPT adversary can distinguish the two oracles.

Modified Oracle O fhe
4 . We now modify the oracle Ofhe

3 into Ofhe
4 in the following manner: Ofhe

4

replaces the PRF with a truly random function F . Everything else is the same as Ofhe
3 .

Ofhe
4 :

Initial state: chpk , chsk , ek , dk , sk , K and a truly random function.

Inputs: Same as in Cfhe
NextIns.

Outputs: Same as in Cfhe
NextIns.

Oracle description:

Same as that in oracle Ofhe
3 except that in Encrypt steps, instead of using PRF to generate a pseudorandom

string as the one-time pad, here a truly random function is used as the one time pad. The use of
PRF in computing or verifying the random seed rk is left unchanged.

Lemma F.6. Assume that the PRF is secure, then no PPT distinguisher can distinguish whether
it is interacting with Ofhe

3 or Ofhe
4 .

Proof. This follows directly from the security of the PRF.

Modified Oracle O fhe
5 . We now modify the oracle Ofhe

4 into Ofhe
5 in the following manner: We

store both K and its encryption K in the initial hardwired state, thus rk can be computed directly
from K instead of decryption of the homomorphic encryption.
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Ofhe
5 :

Initial state: chpk , ek , dk , sk , K, K and a truly random function

Inputs: Same as in Cfhe
NextIns.

Outputs: Same as in Cfhe
NextIns.

Oracle description:

Same as that in oracle Ofhe
4 except that now rk is computed as follows: rk = PRF(K)(digest).

Lemma F.7. Assume the correctness of cFHE, then no PPT distinguisher can distinguish whether
it is interacting with Ofhe

4 or Ofhe
5 .

Proof. This follows directly from the correctness of cFHE.

Modified Experiment. We now modify the experiment such that the simulator will encode 0
in the FHE ciphertext instead of K. Note that K is still hardwired in the oracle. We denote for

b ∈ {0, 1}: D̂ist
′
b to be the same as D̂istb except that the FHE ciphertext of K is now replaced with

a ciphertext of 0.

Lemma F.8. Assume that cFHE is semantically secure, no PPT distinguisher with oracle access

to Ofhe
5 can distinguish D̂istb from D̂ist

′
b for b ∈ {0, 1}.

Proof. We show this by contradiction. Suppose there exists a PPT distinguisher D such that

D distinguishes D̂istb from D̂ist
′
b with oracle access to Ofhe

5 , then we can show a reduction that
breaks the semantic security of FHE. The reduction simply simulates the distinguisher D and the
oracle Ofhe

5 , and embed the challenge ciphertext cFHE.Enc(mb) into D̂istb. Since the oracle Ofhe
5 is

independent of the message mb, the advantage of the reduction follows directly from the advantage
of DOfhe

5 . This is a contradiction.

Modified Oracle O fhe
6 . We now modify the oracle Ofhe

5 into Ofhe
6 in the following manner:

Instead of computing the random seed rk from K, we use a randomly chosen rk.

Ofhe
6 :

Initial state: chpk , ek , dk , sk

Inputs: Same as in Cfhe
NextIns.

Outputs: Same as in Cfhe
NextIns.

Oracle description:

Same as that in oracle Ofhe
5 except that for the computation of random seed rk, we use a randomly chosen

rk.

Lemma F.9. Assume the security of PRF, no PPT distinguisher can distinguish whether it is
interacting with Ofhe

5 or Ofhe
6 .

Proof. This follows directly from the security of the PRF.
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Modified Oracle O fhe
7 . We now modify the oracle Ofhe

6 into Ofhe
7 in the following manner:

Ofhe
7 replaces emitted memory addresses with simulated ORAM addresses. The simulated ORAM

addresses can be generated and saved the first time a digest is queried, such that if the same query
is made twice, the same answer will be given.

Ofhe
7 :

Initial state: chpk , ek , dk , sk and a truly random function.

Inputs: Same as in Cfhe
NextIns.

Outputs: Same as in Cfhe
NextIns.

Oracle description:

Same as that in oracle Ofhe
6 except that each table Γ[digest] is created in a different way. Instead of

generating addresses by running NextIns(), now the addresses are computed by running the pre-
dictive ORAM simulator Sim′(), i.e., compute

(
{waddrt, raddrt}t∈[TORAM]

)
← Sim′(). The circuit then

computes lastwrittent for each t ∈ [TORAM].

Lemma F.10. Assume that the ORAM is secure, then no PPT distinguisher can distinguish
whether it is interacting with Ofhe

6 or Ofhe
7 .

Proof. Assume there is an algorithm D who can distinguish Ofhe
6 from Ofhe

7 via black box access,
then we can construct another algorithm D′ who can break the computational security of the
corresponding ORAM. D′ internally simulates D and the oracle except that the addresses are
generated by an external algorithm either by addresses(ORAM, ·, rk) or by Sim′(). If the external
algorithm is addresses(), then D’s view is the same as that in Ofhe

6 ; and if the external algorithm
is Sim′, then D’s view is the same as that in Ofhe

6 . Since D can distinguish the two experiments
with non-negligible probability, that means D′ can distinguish the real addressees generated by
addresses() from the simulated addresses produced by Sim′() with non-negligible probability. That
means D′ can break the computational security of ORAM, as defined in Definition 2.1, which
reaches a contradiction.

Modified Oracle O fhe
8 . We now modify the oracle Ofhe

7 into Ofhe
8 as in the following figure.

Ofhe
8 :

Initial state: chpk , ek , sk and a truly random function.

Inputs: Same as in Cfhe
NextIns.

Outputs: Same as in Cfhe
NextIns.

Oracle description:

Same as that in oracle Ofhe
7 except in the decryption step, the oracle does not decrypt the input ciphertexts

( x1 , x2 ) for t = 1. Instead, it sets fetched0 := (0, 0), and then continue as Ofhe
7 . Thus, the oracle

does not need dk .

We have the following lemma immediately.

Lemma F.11. There is no PPT distinguisher can distinguish whether it is interacting with Ofhe
7

or Ofhe
8 .

Proof. We observe that the distributions of the outputs of the two oracle are identical. This follows
from the fact that all the data (i.e. data) and cpu states (i.e. cpustate), except the addresses,
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output by the oracle are encrypted under the truly random function as one-time pads. Therefore,
along the computations, of (x1, x2) and (0, 0), the distributions of the data and the cpu states are
identical. Thus, no adversary can distinguish the oracles from interactions with them.

Lemma F.12. Assume that the public-key encryption scheme is semantically secure, then no PPT

distinguisher with Ofhe
8 can distinguish D̂ist′0 from D̂ist′1.

Proof. We show this by contradiction. Assume there exists a PPT distinguisher D such that D
distinguishes D̂ist′0 from D̂ist′1 with oracle access to Ofhe

8 , then we can show a reduction that
breaks the semantic security of the public key encryption scheme. The reduction simply simulates
the distinguisher D and the oracle Ofhe

8 , and embeds the challenge ciphertext E .Encek (mb) into the

D̂ist′b. This is because Ofhe
8 is independent of the message mb. Recall that it uses a truly random

function to encrypt and the ORAM simulator to generate addresses. Both are independent of the
message. Thus, the advantage of the reduction follows directly from the advantage of DOfhe

8 . This
is a contradiction.

Recall that we have assumed that there exists a distinguisher D, and messages m0,m1, and
some non-negligible ε such that Pr[D(Dist0) = 1] − Pr[D(Dist1) = 1] > ε. Then by the above

lemmas, there exists a distinguisher D′ that with oracle Ofhe
8 can distinguish D̂ist′0 from D̂ist′1.

This contradicts the above lemmas, which completes the proof of the theorem that the FHE-RAM
is semantically secure.

G Non-Interactive Verifiable Computation from VBB Obfusca-
tion

Cloud computing allows users and organizations to outsource both their data and computation to
cloud servers. Imagine that a client C outsources a database DB (e.g., a SQL database, a key-value
store, a graph, etc.) to an untrusted cloud server S. The client will then make a series of queries to
the server. For example, the client can ask the server to compute a function over the outsourced
DB, and return the answer; the client can also make update queries such as inserting, deleting,
or modifying entries in the database. Since the cloud server is outside the client’s control, a big
challenge is how to guarantee the privacy of outsourced data, and the integrity of computation
performed by the server.

Using the circuit model of verifiable computation would require building a circuit that embeds
the entire database. Therefore, the server would have to run in at least linear time, even when
the query is sublinear-time in nature (e.g., binary search, range queries). The only known RAM-
model solution that ensures the privacy of the database is the Garbled RAM scheme by Lu and
Ostrovsky [36] – however, it requires the client to also compute in time linear in T for each query.

Stateful RAM for repeated queries. In this section, we consider an interesting new model of
stateful, RAM-model VC suitable for outsourcing a large database and performing repeated queries
over the database afterwards. Let RAM = (D, cpustate0) denote a RAM’s initial configuration,
then we write

ym ← RAM(x1, x2, . . . , xm)

to denote that the result of answering the m-th query of the sequence x1, . . . , xm is ym.
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Remark. We note that our VC-RAM notion is closely related to that of symetric-key, function
private FE-RAM. In particulary, a symetric-key, function private FE-RAM would give rise to
a stateless VC-RAM scheme. Based on our VC-RAM techniques, it is also straightforward to
construct a symetric-key, function private FE-RAM scheme.

G.1 Stateful VC-RAM Model

Definition G.1 (Verifiable RAM Computation). A Verifiable RAM Computation (VC-RAM)
scheme consists of the following algorithms:

(Z, z) ← Setup(1λ,RAM): The Setup algorithm is a one-time setup algorithm run by the client.
Setup takes in the security parameter 1λ, initial RAM configuration RAM = (D, cpustate0),
and outputs server initial state Z, and client state z. The client hands Z to the server, and
retains state z locally.

(x, z) ← ProbGen(x, z): Given input x, prepare the input and obtain the encoding x. The client
state z is updated10.

(y, Z)← Compute(x, Z): Given current server state Z and encoded input x, the server computes an
encoded answer y, which typically embeds the output as well as a proof of correct computation.
The server also updates its state Z as a result of Compute.

(y, b, z) ← Verify(y, z): Outputs the decoded answer y, a bit b ∈ {0, 1} indicating whether the
answer is accepted, and updates the client local state z.

Correctness is defined in the obvious way. We require that for any initial RAM configuration
RAM := (D, cpustate0), for any query sequence x1, x2, . . . , xm where m = poly(λ),

Pr

∃i :
(yi 6= RAM(x1, x2, . . . , xi))
∨(bi = 0)

∣∣∣∣∣∣∣∣∣∣
(Z0, z)← Setup(1λ,RAM)
∀i ∈ {1, 2, . . . ,m} :

(xi, z)← ProbGen(xi, z)
(yi, Zi)← Compute(xi, Zi−1)
(yi, bi, z)← Verify(yi, z)

 = negl(λ)

We give a simulation-based definition that incorporates both verifiability and privacy. Our
definition handles the selective abort issue which was not addressed by the GGP construction [22].
Particularly, a malicious server is allowed to choose potentially malformed answers and ask the
client to decode, and learn the corresponding outcome.

Definition G.2 (Simulation-based security: verifiability + privacy). We say that a VC-RAM
scheme is simulation secure, if there exists a polynomial-time algorithm S = (S.Setup,S.ProbGen,S.Verify)
such that for any params, no polynomial-time (stateful) adversary A can distinguish the following
real- and ideal-world games except with negligible probability. Particularly, in line [**] below, if
bi = 1, yi := RAM(x1, . . . , xi) represents the correct answer to the i-th query; otherwise yi := ⊥.

10We use the notation (output , state)← Alg(input , state) to denote that a party runs algorithm Alg, which results
in updating its local state.
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Real world:
RAM← A(1λ, params)
(Z0, z)← Setup(1λ,RAM)
x1 ← A(Z0)
∀i ∈ {1, 2, . . . ,poly(λ)} :

(xi, z)← ProbGen(xi, z)
yi ← A(xi)
(yi, bi, z)← Verify(yi, z)
xi+1 ← A(yi, bi)

{0, 1} ← A

Ideal world:
RAM← A(1λ, params)
(Z0, z)← S.Setup(1λ, params)
x1 ← A(Z0)
∀i ∈ {1, 2, . . . ,poly(λ)} :

(xi, z)← S.ProbGen(z)
yi ← A(xi)
(bi, z)← S.Verify(yi, z)
xi+1 ← A(yi, bi) [**] //see definition of yi above

{0, 1} ← A

G.2 Preliminary: Predictive-Memory Stateful ORAM for Multiple Inputs

Remark: No rewinding and one-time ORAM setup. Earlier in our FE-RAM construction,
we use an ORAM abstraction where the ORAM will start by shuffling memory prior to evaluating
the RAM program, thus incurring Õ(n) cost.

In our VC setting, our RAM is stateful. Even though the client submits multiple queries, the
stateful ORAM cannot be rewinded to the beginning state. Therefore, the ORAM setup only
needs to be performed once, when the client outsources the database to the server. Afterwards,
during the online query phase, the memory need not be reshuffled again. This is also important
for amortizing the setup time over multiple queries and achieving sublinear (in n) amortized cost
for database queries that take sublinear time (e.g., binary search and range queries).

In comparison, in our FE-RAM scheme, the shuffling must be done at evaluation time, because
the same ORAM can be “rewinded” to its initial state, and applied to multiple inputs. Unless
we re-perform the shuffling for each input using fresh (pseudo)-randomness, the address sequence
emitted can be correlated for multiple inputs.

We use OCompile to denote an ORAM compiler that takes a initial RAM configuraion RAM :=
(D′, cpustate′0), and performs ORAM setup. The resulting memory configuration is denoted ORAM :=
(D, cpustate0). In particular OCompile stores secret state (including a random seed) inside the
ORAM’s initial CPU state cpustate0

11.

Lemma G.3 (Stateful, predictive-memory ORAM compiler for multiple queries). There exists
a predictive oblivious compiler denoted OCompile, such that on given a RAM := (D′, cpustate′0),
it outputs a predictive-memory, stateful ORAM := (D, cpustate0) (where the ORAM’s cpustate0
contains a random pseudorandom key, and D is a shuffled version of the old D′) such that the
following conditions hold:

• Correctness. For any RAM, let ORAM := OCompile(RAM); then for any input x1, x2, . . . , xm,
it holds that Pr[ORAM(x1, . . . , xi) = RAM(x1, . . . , xi)] = 1 for any i ∈ [m], where probability
is taken over the randomness used by OCompile. Further, with probability 1, the last written
address lastwrittent emitted by the predictive ORAM’s NextIns function accurately repre-
sents the last time raddrt is written. If address raddrt has never been written, our convention
is to set lastwrittent := 0 in this case.

• Computational security. An ORAM compiler (for a stateful RAM) is secure, if there
exists a simulator Sim, such that no ppt adversary A can distinguish the following real and

11For simplicity, we assume that in this section, the ORAM’s next instruction circuit need not take a random
string, since the random seed needed is embedded in the ORAM’s initial CPU state.
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simulated worlds: We assume that both A and Sim knows the parameters of the RAM and
ORAM, and their next instruction circuits.

Real world:

– RAM← A

– ORAM← OCompile(RAM)

– b← Aaddresses(ORAM,·)

where addresses(ORAM, ·) is a stateful
oracle, where on a series of inputs
x1, x2, . . . , xm, the oracle outputs the mem-
ory address sequence accessed by the stateful
ORAM during the execution of each query
x1, x2, . . ., xm.

Simulated world:

– RAM← A

– ORAM← OCompile(RAM)

– b ← ASim where Sim is a state-
ful simulator that outputs a se-
quence of simulated addresses
upon each invocation (with no
input).

• Overhead. The compile ORAM has the following overhead: nORAM = Õ(n), `ORAM =
max(`, c log T ) for some appropriate constant c > 2, and where T is the original RAM’s maxi-
mum run-time, |cpustateORAM| = O(|cpustate|+λ), and |NextInsORAM| := O(|NextIns|)poly(λ).
Additionally, the transformed ORAM runs in Õ(T ) number of time steps if the original RAM
runs in T number of time steps.

Lu and Ostrovsky [36] are the first ones to define predictive ORAM, and show that a predictive
ORAM exists. In Section G.5, we give a more generic approach to convert any ORAM into a
predictive ORAM. In particular, if we use an ORAM scheme with polylogarithmic worst-case (as
opposed to amortized) cost, the resulting predictive ORAM will also have polylogarithmic cost.

G.3 Construction

Notational conventions. In the following scheme description, we will use the following nota-
tional conventions.

var an encrypted variable

{var}, { var } a variable or encrypted variable, attached with a signature

Detailed scheme. We describe the detailed scheme below.

Setup. (Z, z)← Setup(1λ,RAM).

Let ORAM := (D, cpustate0) := OCompile(RAM).

Generate secret PRF key k , and run the setup algorithm of a deterministic signature scheme
(sk , vk)← Σ.Gen(1λ).

Compute
{
cpustate0

}
:=
(
cpustate0 , Σ.Signsk ( cpustate0 , (0, “cpu”))

)
where cpustate0 :=

cpustate0 ⊕ PRFk (0, “cpu”).

For i = 1 to nORAM, compute
{
D [i]

}
:=
(
D [i], Σ.Signsk ( D [i], (0, i, “mem”))

)
where

D [i] := D[i]⊕ PRFk (0, i, “mem”).

Construct a VBB obfuscation O(Cvc
NextIns) of the circuit Cvc

NextIns as described in Figure 12
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Give the server the initial server state Z, consisting of the following:

Z :=

(
O(Cvc

NextIns),
{
cpustate0

}
,
({

D [i]
})

i∈[n]

)
The client retains the following state z := (k, sk , vk , q = 1).

Problem Generation. (x, z)← ProbGen(x, z).

Parse z := (k, vk , q). Let t := (q−1)TORAM+1. The client encrypts x := x⊕PRFk(t, “input”),
and signs it { x } := Σ.Signsk ( x , (t, “input”)). The client sends the resulting x := { x } to
the server. The new client state is z := (k, sk , vk , q).

Computation. (y, Z)← Compute(x, Z).

Parse x := { x }. Parse Z as Z :=

(
O(Cvc

NextIns),
{
cpustatet−1

}
,
({

D [i]
})

i∈[n]

)
.

For t = (q − 1)TORAM + 1 to qTORAM, compute:(
{raddrt} , {lastwrittent} ,waddrt,

{
datat

}
,
{
cpustatet

})

:=


O(Cvc

NextIns)
(
{ x }, { cpustate0 }

)
if t = 1

O(Cvc
NextIns)

(
{raddrt−1} , {lastwrittent−1} ,

{
cpustatet−1

}
, { x } ,

)
else if t = qTORAM + 1

O(Cvc
NextIns)

(
{raddrt−1} , {lastwrittent−1} ,

{
fetchedt−1

}
,
{
cpustatet−1

})
o.w.

Note that if t = qTORAM, i.e., this is the final step of a query, the outcome
{
y
}

is additionally

output by the above. The server now reads and writes to memory:{
fetchedt

}
:=
{
D [raddrt]

}
{
D [waddrt]

}
:=
{
datat

}
Finally, at the end of all TORAM time steps for this query, the server sends

{
y
}

back to the

client, and updates its state as

Z :=

(
O(Cvc

NextIns),
{
cpustatet

}
,
{
fetchedt

}
,
({

D [i]
})

i∈[n]

)
where t = qTORAM at the end of the q-th query.

Verification. (y, b, z)← Verify(y, z): Parse z := (k, sk , vk , q). Parse y :=
{
y
}

. The client verifies

the signature

b := Σ.Verifyvk

({
y
}
, (qTORAM, “output”)

)
The client decrypts y := y ⊕PRFk(qTORAM, “output”). The client outputs (y, b), and updates
its state to be z := (k, sk , vk , q + 1).
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Cvc
NextIns:

/* For the τ -th step in the q-th query, let t = TORAM(q − 1) + τ */

Hardwired state: k , sk , and vk ;

Inputs:

t,


if t = 1 : { x } ,

{
cpustate0

}
else if t = qTORAM + 1 : {raddrt−1} , {lastwrittent−1} ,

{
cpustatet−1

}
, { x } ,

else : {raddrt−1} , {lastwrittent−1} ,
{
fetchedt−1

}
,
{
cpustatet−1

}


Outputs: {raddrt}, {lastwrittent}, waddrt,
{
datat

}
,
{
cpustatet

}
. For t = qTORAM, the final (encrypted

and signed) outcome
{
y
}

is also output.

Circuit description:

Check. If any check fails, output ⊥.

Check that Σ.Verifyvk

({
cpustatet−1

}
, (t− 1, “cpu”)

)
= 1,

If t > 1, additionally check that

• Σ.Verifyvk ({raddrt−1} , (t− 1, “raddr”)) = 1,

• Σ.Verifyvk ({lastwrittent−1} , (t− 1, “lastwritten”)) = 1,

• Σ.Verifyvk

({
fetchedt−1

}
, (lastwrittent−1, raddrt−1, “mem”)

)
= 1.

If t = 1 mod TORAM, additionally check that Σ.Verifyvk ({ x } , (t, “input”)) = 1.

Decrypt. Decrypt cpustatet−1 := cpustatet−1 ⊕ PRFk (t− 1, “cpu”).

If t = 1 mod TORAM, decrypt fetchedt−1 := x ⊕ PRFk (t, “input”).

Else fetchedt−1 := fetchedt−1 ⊕ PRFk (lastwrittent−1, raddrt−1, “mem”)

Compute. Compute

(datat,waddrt, raddrt, cpustatet, lastwrittent, y) := NextIns
(
fetchedt−1, cpustatet−1

)
where the outcome y is only output if t = qTORAM.

Encrypt, sign, and output. Compute

{raddrt} := (raddrt, Σ.Signsk (raddrt, (t, “raddr”))),

{lastwrittent} := (lastwrittent, Σ.Signsk (lastwrittent, (t, “lastwritten”))){
datat

}
:=

(
datat , Σ.Signsk ( datat , (t,waddrt, “mem”))

)
where datat := datat ⊕

PRFk (t,waddrt, “mem”).{
cpustatet

}
:=

(
cpustatet , Σ.Signsk ( cpustatet , (t, “cpu”))

)
where cpustatet := cpustatet ⊕

PRFk (t, “cpu”).

If t = qTORAM, compute
{
y
}

:=
(
y , Σ.Signsk ( y , (t, “output”))

)
where y := y ⊕

PRFk (t, “output”).

Figure 12: Circuit Cvc
NextIns to be obfuscated using VBB-secure obfuscation.
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G.4 Security Proof

Theorem G.4. Assume OCompile is secure stateful predictive ORAM compiler as defined Sec-
tion G.2, O is a VBB obfuscator, Σ is an unforgeable signature scheme, PRF is a secure PRF, then
the above construction is a simulation-secure VC-RAM as defined in Defintion G.2.

The main proof idea is similar to that for simulation-based functional encryption in the RAM
model. To prove that our scheme achieves the simulation-based security, we need to construct a
simulator S so that for all adversary A, the real experiment is computationally indistinguishable
from the ideal experiment. The simulator S interacts with an adversary A and operates as follows:

• S.Setup. The simulator S does not know the original D′. So it uses a fake D̃′ := ~0 and
follows the rest of the honest Setup algorithm honestly. That is, let RAM := (~0,~0). Let

ORAM := (D̃, ˜cpustate0) := OCompile(RAM).

Generate secret PRF key k , and run the setup algorithm of a deterministic signature scheme
(sk , vk)← Σ.Gen(1λ).

Compute

{
˜cpustate0

}
:=

(
˜cpustate0 , Σ.Signsk ( ˜cpustate0 , (0, “cpu”))

)
where ˜cpustate0 :=

˜cpustate0 ⊕ PRFk (0, “cpu”).

For i = 1 to nORAM, compute
{
D̃ [i]

}
:=
(
D̃ [i], Σ.Signsk ( D̃ [i], (0, i, “mem”))

)
where

D̃ [i] := D̃[i]⊕ PRFk (0, i, “mem”).

Construct a VBB obfuscation O(Ovc
NextIns) of the following oracle Ovc

NextIns which hardwires
the keys k , sk , and vk .

• S.ProbGen. For each input, the simulator does not know the original input xj , where j ∈ [q].
Therefore, it uses a fake input x̃j := ~0 and follows the rest of the ProbGen algorithm honestly.

• S.Verify. Simulator S verifies the signature on the adversary supplied { y } under the tag
(qTORAM, “output”), where q denotes the number of the current query. If the signature verifies,
the simulator outputs b̃ = 1, otherwise, it outputs b̃ = 0 to the adversary.

Based on the above simulator S, we can obtain the ideal experiment IdealA,S . In addition,
based on the VC construction, we can easily obtain the real experiment RealA. Given any D′ and
inputs (x1, . . . , xm), the distributions in the both experiments are:

DistReal =

((
D′,O(Cvc

NextIns),
{
cpustate0

}
,
({

D [i]
})

i∈[nORAM]

)
,
(
xi, { xi }, yi, bi

)
i∈[m]

)

DistIdeal =

((
D′,O(Cvc

NextIns),

{
˜cpustate0

}
,
({

D̃ [i]
})

i∈[nORAM]

)
,
(
xi, { 0λ }, ỹi, b̃i

)
i∈[m]

)
.

Here b̃i is generated by S.Verify. When b̃i = 0, ỹi := ⊥. When b̃i = 1, ỹi := f(D′, x1, . . . , xi).
Next, we modify the real and ideal experiments respectively and obtain Real′ and Ideal′.

Real′ and Ideal′. We define Real′ and Ideal′ the same as Real and Ideal except the experi-
ments exclude the obfuscated circuits. (We give the distinguisher an oracle Ovc

1 instead, providing
black box access to the circuit Cvc

NextIns.) In particular,

DistReal′ =

((
D′,
{
cpustate0

}
,
({

D [i]
})

i∈[nORAM]

)
,
(
xi, { xi }, yi, bi

)
i∈[m]

)
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DistIdeal′ =

((
D′,

{
˜cpustate0

}
,
({

D̃ [i]
})

i∈[nORAM]

)
,
(
xi, { 0λ }, ỹi, b̃i

)
i∈[m]

)
.

Lemma G.5. Assume O is VBB obfuscator. If there exist a RAM, a message x, a ppt algorithm
D and some non-negligible δ() such that Pr[D(DistReal) = 1] − Pr[D(DistIdeal) = 1] > δ(λ), then
there exists another ppt algorithm D̂ so that Pr[D̂Ovc

1 (DistReal′) = 1]− Pr[D̂Ovc
1 (DistIdeal′) = 1] >

δ(λ)− negl(λ).

Proof. Let α =

((
D′,
{
cpustate0

}
,
({

D [i]
})

i∈[nORAM]

)
,
(
xi, { xi }, yi, bi

)
i∈[m]

)
and let Dα de-

note algorithm D with α hardwired. Based on the assumption that O is VBB obfuscator, for
algorithm Dα, there exists a VBB simulator Sim so that∣∣∣Pr[Dα(O(Cvc

NextIns)) = 1]− Pr[SimOvc
1 () = 1]

∣∣∣ < negl(λ)

Now we can define D̂ as follows: upon input α, and oracle access to Ovc
1 , D̂ internally runs Sim,

providing Sim oracle access to Ovc
1 ; D̂ returns the bit that Sim returns. We can obtain

Pr[D̂Ovc
1 (DistReal′) = 1]− Pr[D̂Ovc

1 (DistIdeal′) = 1]

= Pr[SimOvc
1 () = 1 | Real′]− Pr[SimOvc

1 () = 1 | Ideal′]
> Pr[Dα(O(Cvc

NextIns)) = 1 | Real]− Pr[Dα(O(Cvc
NextIns)) = 1 | Ideal]− negl(λ)

= Pr[D(DistReal) = 1]− Pr[D(DistIdeal) = 1]− negl(λ)
> δ(λ)− negl(λ)

This completes the proof of the lemma.

Modified oracle Ovc
2 . Here we consider a modified oracle Ovc

2 . Here, whenever there is an oracle
call for t = qTORAM + 1, the circuit verifies consistency, decrypts the input, and precomputes all
the “expected” inputs for all future time steps qTORAM + 2, qTORAM + 3, . . . , (q + 1)TORAM and
remembers them in a table Γ. Later, if there are queries for all t ∈ [qTORAM + 2, . . . , (q+ 1)TORAM],
the circuit looks into the table Γ, to find if it is one of the expected inputs. If so, output the correct
outputs for this time step. Else, output ⊥. The above modified oracle Ovc

2 is based on honest
setup and problem generation in the real experiment. Similarly, we can define modified Ovc

2 based
on the setup and problem generation in the ideal experiment.

Lemma G.6. If Σ is unforgeable, then for any ppt algorithm D, D cannot distinguish oracle Ovc
1

from Ovc
2 via black box queries, i.e. Pr[DOvc

1 (1λ) = 1] ≈ Pr[DOvc
2 (1λ) = 1].

Proof. The two oracles are the same except the following bad event occurs: the input vector can
be verified but such input vector is not computed by the circuit based on any input at t = 1. Note
that the computation by the circuit is deterministic and it has been decided by the input at t = 1
(and other initial state). For any vector which is not generated by the circuit, if it can be verified,
then we immediately obtain a forgery for the underlying digital signature. Under the assumption
the signature scheme is unforgeable, the event only occurs with negligible probability. Otherwise,
we can use D to make a forgery to the signature scheme.
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Ovc
2 :

Initial state: k , and sk , vk ;
In addition, information in setup and problem generation is stored in an adaptive fashion. That is, cpustate0
and (D[i])i∈[nORAM], as well as

{
cpustate0

}
,
({

D [i]
})

i∈[nORAM]
are stored. In addition, xj and { xj } for

j ∈ [m] are stored whenever they are used in problem generation.

Inputs and Outputs: same as in Cvc
NextIns

Oracle description: Different from Σ.Verifyvk () used in Cvc
NextIns, here the circuit carries out verifica-

tion through “book-keeping” mechanism.

• If t = 1, the input vector is
(
{ x } ,

{
cpustate0

})
. If { x } is different from the hardwired

{
x1

}
,

or
{
cpustate0

}
is different from the hardwired one, then return ⊥. Otherwise return Output1 stored

in table Γ as output. Table Γ will be defined below.

• If t = qTORAM + 1, then the input vector is
(
{raddrt−1} , {lastwrittent−1} ,

{
cpustatet−1

}
, { x }

)
. If(

{raddrt−1} , {lastwrittent−1} ,
{
cpustatet−1

}
, { x }

)
is different from Inputt in table Γ, or { x } is

different from the hardwired
{
xq

}
, then return ⊥. Otherwise return Outputt.

• If t = qTORAM + τ , where τ 6= 1 mod TORAM, if the input vector has not been stored in table Γ, then
return ⊥. Otherwise, return Outputt as the output.

The table Γ is generated as follows. If t = qTORAM + 1, the input vector has been verified, then carry out
the following:

• Compute fetchedt−1 := x ⊕ PRFk (t, “input”).

• For t = qTORAM + 1, qTORAM + 2, . . . , (q + 1)TORAM:

(datat,waddrt, raddrt, cpustatet, lastwrittent, y) := NextIns
(
fetchedt−1, cpustatet−1

)
fetchedt := D[raddrt]
D[waddrt] := datat

where the outcome y is only output if t = (q + 1)TORAM

• For t = qTORAM + 1, qTORAM + 2, . . . , (q + 1)TORAM:

datat := datat ⊕ PRFk (t,waddrt, “mem”).

cpustatet := cpustatet ⊕ PRFk (t, “cpu”).

{raddrt} := (raddrt, Σ.Signsk (raddrt, (t, “raddr”))),

{lastwrittent} := (lastwrittent, Σ.Signsk (lastwrittent, (t, “lastwritten”))){
datat

}
:=
(
datat , Σ.Signsk ( datat , (t,waddrt, “mem”))

)
{
cpustatet

}
:=
(
cpustatet , Σ.Signsk ( cpustatet , (t, “cpu”))

)
• Define Inputt =

(
{raddrt−1} , {lastwrittent−1} ,

{
fetchedt−1

}
,
{
cpustatet−1

})
,

and Outputt =
(
{raddrt} , {lastwrittent} ,waddrt,

{
datat

}
,
{
cpustatet

})
. Note that for t =

qTORAM, the final outcome y is also included in OutputqTORAM
. Store input vector Inputt and out-

put vector Outputt in Γ[t].

Real′′ and Ideal′′. We define Real′′ and Ideal′′ the same as Real′ and Ideal′ except that in
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setup stage, instead of generating cpustate0 := cpustate0 ⊕ PRFk (0, “cpu”), and D [i] := D[i] ⊕
PRFk (0, i, “mem”) for all i ∈ [nORAM], here compute . cpustate0 := cpustate0 ⊕ R0, and D [i] :=

D[i]⊕Ri where R0 and Ri are randomly chosen. Similarly, for each input xj , instead of generating
xj := xj ⊕ PRFk(t, “input”), compute xj := xj ⊕ R′j where R′j is randomly chosen. The setup

information and the problem generation information will be hardwired in oracle Ovc
3 below. The

distributions of two experiments are

DistReal′′ =

((
D′,
{
cpustate0

}
,
({

D [i]
})

i∈[nORAM]

)
,
(
xi, { xi }, yi, bi

)
i∈[m]

)

DistIdeal′′ =

((
D′,

{
˜cpustate0

}
,
({

D̃ [i]
})

i∈[nORAM]

)
,
(
xi, { 0λ }, ỹi, b̃i

)
i∈[m]

)
.

Lemma G.7. If PRF is secure, for any ppt D, |Pr[D(DistReal′) = 1]− Pr[D(DistReal′′) = 1]| <
negl(λ) and |Pr[D(DistIdeal′) = 1]− Pr[D(DistIdeal′′) = 1]| < negl(λ).

Proof. This follows directly from the security of the PRF.

Modified oracle Ovc
3 . Ovc

3 is the same as Ovc
2 except that in Encrypt steps, a random string is

used as one time pad.

Ovc
3 :

Initial state: secret keys vk , sk , and a random string as one time pad.
As in Ovc

2 , information in setup and problem generation is stored. But now in setup and problem
generation, instead of using PRF to generate one time pad, random keys are used.

Inputs: same as in Cvc
NextIns

Outputs: same as in Cvc
NextIns

Oracle description:

Same as that in oracle Ovc
2 except that in Encrypt steps, instead of using PRF to generate a

pseudorandom string as the one-time pad, here a random string is used as the one time pad.

Similarly, we can define oracle Ovc
3 based on setup and problem generation in the ideal experi-

ment.

Lemma G.8. If PRF is secure, for any ppt algorithm D, D cannot distinguish oracle Ovc
2 from

Ovc
3 via black box queries, i.e. Pr[DOvc

2 (1λ) = 1] ≈ Pr[DOvc
3 (1λ) = 1].

Proof. This follows directly from the security of the PRF.

Modified oracle Ovc
4 . Ovc

4 is the same as Ovc
3 except on the query corresponding to t = 1, instead

of using real memory addresses, the new circuit will use simulated memory addresses generated by
predictive ORAM simulator Sim′.
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Ovc
4 :

Initial state: same as that in Ovc
3

Inputs: same as in Cvc
NextIns

Outputs: same as in Cvc
NextIns

Oracle description:

Same as that in oracle Ovc
3 except that for each input value x, the corresponding ta-

ble Γx is created in a different way. Instead of generating addresses honestly, now
the addresses are computed by running the predictive ORAM simulator, i.e., compute(
{waddrt, raddrt}t∈[TORAM]

)
← Sim′(). The circuit then computes lastwrittent for each

t ∈ [TORAM].

Similarly, we can define oracle Ovc
4 based on setup and problem generation in the ideal experi-

ment.

Lemma G.9. If OCompile is secure predictive ORAM compiler as defined in Section G.2, for any
ppt algorithm D, D cannot distinguish oracle Ovc

3 from Ovc
4 via black box queries, i.e. Pr[DOvc

3 (1λ) =
1] ≈ Pr[DOvc

4 (1λ) = 1].

Proof. This directly follows by the security of stateful predictive ORAM defined in Section G.2.
Assume there is an algorithm D who can distinguish Ovc

3 from Ovc
4 via black box access, then we

can construct another algorithm D′ who can break the security of the predictive ORAM complier.
D′ internally simulates D and the oracle except that the addresses are generated by an external
algorithm either by addresses(ORAM, ·), or by Sim′(). If the external algorithm is by addresses(),
then D’s view is the same as that in Ovc

3 ; and if the external algorithm is Sim′, then D’s view
is the same as that in Ovc

4 . Since D can distinguish the two experiments with non-negligible
probability, that means D′ can distinguish the real addressees generated by addresses() from the
simulated addresses produced by Sim′() with non-negligible probability. That means D′ can break
the security of stateful predictive ORAM complier OCompile, which contracts the assumption.

Now we can easily see that Real′′ and Ideal′′ are identically distributed.

Lemma G.10. For any algorithm D, D cannot distinguish oracle Ovc
3 from Ovc

4 via black box
queries, i.e. Pr[DOvc

4 (DistReal′′) = 1] = Pr[DOvc
4 (DistIdeal′′) = 1].

We can now complete the proof of security.

Proof of Theorem G.4. From Lemma G.5, assume that there exists a ppt algorithm D which can
distinguish RealA from IdealA with non-negligible probability, then we can construct a ppt
algorithm D̂ to distinguish Real′′ from Ideal′′ with non-negligible probability. Then from Lem-
mas G.6, G.7, G.8, and G.9, we know D̂Ovc

4 distinguishes Real′′ from Ideal′′. This is a con-
tradiction to Lemma G.10. That means, the real experiment and the ideal experiment are not
distinguishable, which completes the proof.
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G.5 Predictive ORAM Construction

Lu and Ostrovsky [36] are the first to define predictive memory ORAM (or predictive ORAM for
short), and show that their ORAM construction is predictive memory.

We now show how to convert any RAM into a predictive RAM, where T is the total RAM
execution time. Our constructions also works for stateful RAMs.

We now give a constructive proof. First, given a RAM, we first convert it into an equivalent
ORAM using existing ORAM techniques.

Now, we show how to transform an ORAM to be a predictive ORAM. The idea is to store an
additional table Γ1 in memory, where entry i of the table Γ1[i] := lastwrittent(i), i.e., stores the last
time the i-th memory word is written to at the current time t. When the RAM needs to access the
i-th memory word, it first accesses this table to find out lastwrittent(i). It seems that this is circular
logic: how do you know when the memory location Γ1[i] is last accessed? Fortunately, observe
that since ` > c log T , the table Γ1 requires n∅/c words to store, a constant factor smaller than the
original number of words n∅. We can now divide entries of Γ1 into words of size `, and recursively
use another table Γ2 to store when each word of table Γ1 was last accessed. After k = O(logc n)
rounds of recursion, we end up with a table Γk whose size is O(1) (in terms of number of memory
words) – and the RAM can simply read the entire table Γk to access it. The RAM also keeps as
part its CPU state when this O(1)-sized table Γk is last accessed.

Whenever a memory address needs to be over-written, we recursively update the corresponding
entries in Γ1, Γ2, . . ., Γk with the new time of write. We also update the CPU states to remember
the new time of write for Γk.

This introduces logc(n) memory access overhead for reading each memory word, i.e., reading
a single memory word in the original RAM now requires reading logc(n) memory words in the
transformed, predictive memory RAM; and similarly for writing. In other words, if the original
RAM executes in T time, the transformed RAM executes in time T logc(n).

The additional memory addresses accessed during table lookup sequence depend only on the
physical memory address accessed during the original RAM’s execution. Clearly, if the original
RAM is oblivious, so is the transformed one.

It is not hard to see that transformed ORAM is oblivious, since we first applied the ORAM
compiler before we performed this predictive last-write transformation.

We note that a similar recursion trick has been used in some ORAM constructions [43, 42] to
recursively reduce the trusted metadata.
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