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Abstract. We define and analyze the security of a blockcipher mode of operation, CLOC, for prov-
ably secure authenticated encryption with associated data. The design of CLOC aims at optimizing
previous schemes, CCM, EAX, and EAX-prime, in terms of the implementation overhead beyond
the blockcipher, the precomputation complexity, and the memory requirement. With these features,
CLOC is suitable for handling short input data, say 16 bytes, without needing precomputation nor
large memory. This property is especially beneficial to small microprocessors, where the word size
is typically 8 bits or 16 bits, and there are significant restrictions in the size and the number of
registers. CLOC uses a variant of CFB mode in its encryption part and a variant of CBC MAC
in the authentication part. We introduce various design techniques in order to achieve the above
mentioned design goals. We prove CLOC secure, in a reduction-based provable security paradigm,
under the assumption that the blockcipher is a pseudorandom permutation. We also present our
preliminary implementation results.

Keywords: CLOC, blockcipher, authenticated encryption with associated data, security analysis,
efficiency analysis.

1 Introduction

Background. An authenticated encryption with associated data scheme (AEAD) is a symmetric key
cryptographic primitive that provides both confidentiality and integrity of plaintexts, and integrity of
associated data. There are several ways of designing AEADs, and we focus on a design based on a
blockcipher. CCM [39] was proposed by Whiting, Housley, and Ferguson for use within the IEEE 802.11
standard for Wireless LANs. It is adopted as NIST recommendation [17], and is broadly used in prac-
tice [21,22,9]. The mode is 2-pass, meaning that we run two algorithms, one for encryption and one for
authentication. It is provably secure [25], but CCM suffers from a number of limitations, most notably it
is not on-line; the encryption process cannot be started until knowing the whole input data. There are
other issues in CCM [35], and EAX was proposed by Bellare, Rogaway, and Wagner to overcome these
limitations [13]. EAX is included in ISO 19772 [9], and it has a number of attractive features; it is simple
as it uses CMAC and CTR mode in a black-box manner, and it was designed by taking provable security
into consideration. However, it has several implementation costs, and EAX-prime was designed by Moise,
Beroset, Phinney, and Burns [31] to reduce the costs. It was designed to reduce the number of blockcipher
calls both in precomputation and in processing the input data, to eliminate the key dependent constants,
also called masks, to reduce memory requirement to store them, and to unify the associated data and
the nonce, which contributes to reduce the memory requirement and the number of blockcipher calls as
well. However, a practical attack was pointed out against EAX-prime [30], showing that it is not a secure
AEAD. Later, Minematsu, Lucks, and Iwata proposed a variant of EAX called EAX+, which has similar
complexity as EAX-prime and is provably secure as EAX [29].

Presumably, though not clearly stated in the document [31], the most significant advantage of EAX-
prime over original EAX (and CCM) is its efficient handling of short input data with small memory. As
EAX-prime needs only one blockcipher call in precomputation whereas EAX needs three calls, EAX-
prime gains the performance for short (say 16 bytes) input data, in particular if precomputation is
difficult due to a limited amount of memory, or frequent key changes, or both. The performance for
short input data is important for many practical applications, most notably for low-power wireless sensor
networks, since messages are typically short to suppress the energy consumption of sensor nodes, which
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are usually battery-powered. For example, Zigbee [8] limits the maximum message length to be 127 bytes,
and Bluetooth low energy limits the length to 47 bytes [4]. Another example is Electronic Product Code
(EPC), which is a replacement of bar-code using RFID tags, and it typically has 96 bits [5].

Our Contributions. In this paper, we present a mode of operation, CLOC (which stands for Compact
Low-Overhead CFB, and is pronounced as “clock”), to meet the demand. The design of CLOC aims at
optimizing previous schemes, CCM, EAX, and EAX-prime, in terms of the implementation overhead be-
yond the blockcipher, the precomputation complexity, and the memory requirement. CLOC is sequential
and its asymptotic performance (i.e. for long input data) is comparable to CCM, EAX, and EAX-prime.
However, CLOC has a unique feature in its low overhead computation. CLOC works without any precom-
putation beyond the key scheduling of the blockcipher. Specifically, we do not need any blockcipher calls
nor generating a key dependent table. This contributes to the improvement of the performance for short
input data. For example, when the input data consists of 1-block nonce, 1-block associated data, and
1-block plaintext, CLOC needs 4 blockcipher calls, while we need 5 or 6 calls in CCM, 7 calls (where 3
out of 7 can be precomputed) in EAX, and 5 calls (where 1 out of 5 can be precomputed) in EAX-prime.
We focus on provably secure schemes, but for comparison, there are lightweight AE schemes including
ALE [16] and Fides [14], where ALE needs 44 AES rounds which amount to 4.4 AES calls (10 out of 44
AES rounds can be precomputed), and Fides needs 33 round function calls, where the round function is
similar to that of AES but has larger state. This property of CLOC is particularly beneficial for embed-
ded devices since the internal blockcipher is relatively slow due to limited computing power. Moreover,
CLOC can be implemented using only two state blocks, i.e. the working memory of 2n bits with an n-bit
blockcipher, except those needed for interfacing and blockcipher invocations. We do not aware of any
provably secure AE mode with on-line capability to work with such a small amount of memory, and this
property makes CLOC even suitable for small processors.

Important properties of CLOC can be summarized as follows.

1. It is a nonce-based authenticated encryption with associated data (AEAD).

2. It uses only the encryption of the blockcipher both for encryption and decryption.

3. It makes ⌈|N |/n⌉ + ⌈|A|/n⌉ + 2⌈|M |/n⌉ blockcipher calls for a nonce N , associated data A, and a
plaintext M , when |A| ≥ 1, where |X| is the length of X in bits and n is the block length in bits of
the blockcipher. No precomputation is needed. We note that in CLOC, 1 ≤ |N | ≤ n− 1 holds (hence
we always have ⌈|N |/n⌉ = 1), and when |A| = 0, it needs ⌈|N |/n⌉+ 1 + 2⌈|M |/n⌉ blockcipher calls.

4. It works with two state blocks (i.e. 2n bits).

We introduce various design techniques in order to achieve the above mentioned design goals. We introduce
tweak functions which are used to update the internal state at several points in the encryption and the
decryption. While bit-wise operations, such as a constant multiplication over GF(2n), are often employed
in majority of previous schemes, considering the performance for small devices, we completely eliminate
bit-wise operations. Instead, our tweak functions consist of word-wise permutations and xor’s. As a result,
each tweak function can be described by using a 4× 4 binary matrix.

The use of word-wise permutations and xor’s to update a mask or a key dependent constant was
discussed in [23,29], and the approach was applied on CMAC and EAX. Here we use them directly to
update the internal state, instead of updating a key dependent constant and xoring it to the state. This
was employed for example in designs of MACs [32,40] using bit shift operations. The techniques introduced
here seem to be worth for other areas, e.g., in designing MACs, and thus it may be of independent interest.

We also introduce bit-fixing functions. CFB mode leaks input and output pairs of the underlying
blockcipher, which may result in the loss of security. We use the functions to logically separate the
encryption part and the authentication part of CLOC.

With these techniques, we prove CLOC secure, in a reduction-based provable security paradigm,
under the assumption that the blockcipher is a pseudorandom permutation. For security notions, CLOC
fulfills the standard security notions for nonce-based AEADs, i.e., the privacy and the authenticity under
nonce-respecting adversaries [34]. Furthermore, we prove that the authenticity notion holds even for
nonce-reusing adversaries, where only a small number of schemes achieve this goal, and most of known
modes do fail to provide [19]. See Table 1 for a brief comparison of CLOC to other AEADs.
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Table 1. Comparison of AE modes, for a-block associated data and m-block message with
one-block nonce, where a ≥ 1

Property◦ CCM [17] GCM [18] EAX [13] EAX-prime [31] OCB3 [26] CLOC

Calls a+ 2m+ 2† m+ 1‡ a+ 2m+ 1 a+ 2m+ 1 a+m+ 1† a+ 2m+ 1
Setup 0 1 3 1 1 0

On-line No Yes Yes Yes Yes Yes
Static AD No Yes Yes Yes Yes Yes

Parallel No Yes No No Yes No
Primitive E E, GHASH E E E, D E

PRIV/AUTH⋆ O(2n/2)[25] O(2n/2)[24] O(2n/2)[13] O(1)[30] O(2n/2)[26] O(2n/2)

N-AUTH⋄ ≪ 2n/2[20,19] O(1)[19] O(1)[19] O(1)[30] O(1)[19] O(2n/2)

◦ “Setup” shows the number of blockcipher calls for setup, “Static AD” shows if efficient
handling of static associated data is possible, “Parallel” shows if the blockcipher calls are
parallelizable, and “Primitive” shows the components of the mode. E is the encryption of
the blockcipher and D is the decryption.

† May have additional one call
‡ Plus a+m multiplications over GF(2n)
⋆ Attack workload of nonce-respecting adversaries to break the privacy notion or the authen-
ticity notion

⋄ Attack workload of nonce-reusing adversaries to break the authenticity notion

2 Preliminaries

Let {0, 1}∗ be the set of all finite bit strings, including the empty string ε. For an integer ℓ ≥ 0, let
{0, 1}ℓ be the set of all bit strings of ℓ bits. For X,Y ∈ {0, 1}∗, we write X ∥Y , (X,Y ), or simply XY
to denote their concatenation. For ℓ ≥ 0, we write 0ℓ ∈ {0, 1}ℓ to denote the bit string that consists
of ℓ zeros, and 1ℓ ∈ {0, 1}ℓ to denote the bit string that consists of ℓ ones. For X ∈ {0, 1}∗, |X| is its
length in bits, and for ℓ ≥ 1, |X|ℓ = ⌈|X|/ℓ⌉ is the length in ℓ-bit blocks. For X ∈ {0, 1}∗ and ℓ ≥ 0
such that |X| ≥ ℓ, msbℓ(X) is the most significant (the leftmost) ℓ bits of X. For instance we have
msb1(1100) = 1 and msb3(1100) = 110. For X ∈ {0, 1}∗ and ℓ ≥ 1, we write its partition into ℓ-bit

blocks as (X[1], . . . , X[x])
ℓ← X, which is defined as follows. If X = ε, then x = 1 and X[1]

ℓ← X, where
X[1] = ε. Otherwise X[1], . . . , X[x] ∈ {0, 1}∗ are unique bit strings such that X[1] ∥ · · · ∥X[x] = X,
|X[1]| = · · · = |X[x− 1]| = ℓ, and 1 ≤ |X[x]| ≤ ℓ.

In what follows, we fix a block length n and a blockcipher E : KE × {0, 1}n → {0, 1}n, where KE is a
non-empty set of keys. Let Perm(n) be the set of all permutations over {0, 1}n. We write EK ∈ Perm(n)
for the permutation specified by K ∈ KE , and C = EK(M) for the ciphertext of plaintext M ∈ {0, 1}n
under key K ∈ KE .

3 Specification of CLOC

CLOC takes three parameters, a blockcipher E : KE × {0, 1}n → {0, 1}n, a nonce length ℓN , and a tag
length τ . We require 1 ≤ ℓN ≤ n − 1 and 1 ≤ τ ≤ n. We also require that n/4 is an integer. We write
CLOC[E, ℓN , τ ] for CLOC that is parameterized by E, ℓN , and τ , and we often omit the parameters if
they are irrelevant or they are clear from the context. CLOC[E, ℓN , τ ] = (CLOC-E ,CLOC-D) consists of
the encryption algorithm CLOC-E and the decryption algorithm CLOC-D.

CLOC-E and CLOC-D have the following syntax.{
CLOC-E : KCLOC ×NCLOC ×ACLOC ×MCLOC → CT CLOC

CLOC-D : KCLOC ×NCLOC ×ACLOC × CT CLOC →MCLOC ∪ {⊥}

KCLOC = KE is the key space, which is identical to the key space of the underlying blockcipher,
NCLOC = {0, 1}ℓN is the nonce space, ACLOC = {0, 1}∗ is the associated data space, MCLOC = {0, 1}∗
is the plaintext space, CT CLOC = CCLOC × TCLOC is the ciphertext space, where CCLOC = {0, 1}∗
and TCLOC = {0, 1}τ is the tag space, and ⊥ ̸∈ MCLOC is the distinguished reject symbol. We write
(C, T )← CLOC-EK(N,A,M) and M ← CLOC-DK(N,A,C, T ) or ⊥ ← CLOC-DK(N,A,C, T ).
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CLOC-E and CLOC-D are defined in Fig. 1. In these algorithms, we use four subroutines, HASH,
PRF, ENC, and DEC. They have the following syntax.

HASH : KCLOC ×NCLOC ×ACLOC → {0, 1}n

PRF : KCLOC × {0, 1}n × CCLOC → TCLOC

ENC : KCLOC × {0, 1}n ×MCLOC → CCLOC

DEC : KCLOC × {0, 1}n × CCLOC →MCLOC

These subroutines are defined in Fig. 2, and illustrated in Fig. 3, Fig. 4, and Fig. 5. We also present
equivalent figures in Fig. 6, Fig. 7, and Fig. 8, where it is easier to see that CLOC works with small state.
In the figures, i is the identity function, and i(X) = X for all X ∈ {0, 1}n. In the subroutines, we use the
one-zero padding function ozp : {0, 1}∗ → {0, 1}∗, the bit-fixing functions fix0, fix1 : {0, 1}∗ → {0, 1}∗,
and five tweak functions f1, f2, g1, g2, and h, which are functions over {0, 1}n.

The one-zero padding function ozp is used to adjust the length of an input string so that the total
length becomes a positive multiple of n bits. For X ∈ {0, 1}∗, ozp(X) is defined as ozp(X) = X if |X| = ℓn
for some ℓ ≥ 1, and ozp(X) = X ∥ 10n−1−(|X| mod n) otherwise. We note that ozp(ε) = 10n−1, and we also
note that, in general, the function is not invertible.

The bit-fixing functions fix0 and fix1 are used to fix the most significant bit of an input string to zero
and one, respectively. For X ∈ {0, 1}∗, fix0(X) is defined as fix0(X) = X ∧01|X|−1, and fix1(X) is defined
as fix1(X) = X∨10|X|−1, where ∧ and ∨ are the bit-wise AND operation, and the bit-wise OR operation,
respectively.

The tweak function h is used in HASH if the most significant bit of ozp(A[1]) is zero. We use f1 and f2
in HASH and PRF, where f1 is used if the last input block is full (i.e., if |A[a]| = n or |C[m]| = n) and f2 is
used otherwise. We use g1 and g2 in PRF, where we use g1 if the second argument of the input is the empty

string (i.e., |C| = 0), and otherwise we use g2. Now for X ∈ {0, 1}n, let (X[1], X[2], X[3], X[4])
n/4← X.

Then f1, f2, g1, g2, and h are defined as follows.

f1(X) = (X[1, 3], X[2, 4], X[1, 2, 3], X[2, 3, 4])

f2(X) = (X[2], X[3], X[4], X[1, 2])

g1(X) = (X[3], X[4], X[1, 2], X[2, 3])

g2(X) = (X[2], X[3], X[4], X[1, 2])

h(X) = (X[1, 2], X[2, 3], X[3, 4], X[1, 2, 4])

Here X[a, b] stands for X[a]⊕X[b] and X[a, b, c] stands for X[a]⊕X[b]⊕X[c].
Alternatively the tweak functions can be specified by a matrix. Let

M =


0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

 (1)

be a 4× 4 binary matrix, and let Mi for i ≥ 0 be exponentiations of M, where M0 denotes the identity
matrix. Then we have f1(X) = X ·M8, f2(X) = X ·M, g1(X) = X ·M2, g2(X) = X ·M, and h(X) = X ·M4,
where X = (X[1], X[2], X[3], X[4]) is interpreted as a vector.

The design rationale for the tweak functions is explained in Sect. 4.

4 Design Rationale

Overall Structure. At abstract level CLOC is a straightforward combination of CFB and CBC MAC,
where CBC MAC is called twice for processing associated data and a ciphertext, and CFB is called
once to generate a ciphertext. However, when we want to achieve low-overhead computation and small
memory consumption, we found that any other combination of a basic encryption mode and a MAC
mode did not work. For instance, we could not use CTR or OFB, as they require one state block in
processing a plaintext to hold a counter value or a blockcipher output. We then realized that combining
CFB and CBC MAC was not an easy task. Since we avoid using two keys or using blockcipher pre-calls,
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Algorithm CLOC-EK(N,A,M)

1. V ← HASHK(N,A)
2. C ← ENCK(V,M)
3. T ← PRFK(V,C)
4. return (C, T )

Algorithm CLOC-DK(N,A,C, T )

1. V ← HASHK(N,A)
2. T ∗ ← PRFK(V,C)
3. if T ̸= T ∗ then return ⊥
4. M ← DECK(V,C)
5. return M

Fig. 1. Pseudocode of the encryption and the decryption algorithms of CLOC

Algorithm HASHK(N,A)

1. (A[1], . . . , A[a])
n← A

2. SH[1]← EK(fix0(ozp(A[1])))
3. if msb1(ozp(A[1])) = 1 then
4. SH[1]← h(SH[1])
5. if a ≥ 2 then
6. for i← 2 to a− 1 do
7. SH[i]← EK(SH[i− 1]⊕A[i])
8. SH[a]← EK(SH[a− 1]⊕ ozp(A[a]))
9. if |A[a]| = n then

10. V ← f1(SH[a]⊕ ozp(N))
11. else // 0 ≤ |A[a]| ≤ n− 1
12. V ← f2(SH[a]⊕ ozp(N))
13. return V

Algorithm PRFK(V,C)

1. if |C| = 0 then
2. T ← msbτ (EK(g1(V )))
3. return T
4. (C[1], . . . , C[m])

n← C
5. SP[0]← EK(g2(V ))
6. for i← 1 to m− 1 do
7. SP[i]← EK(SP[i− 1]⊕ C[i])
8. if |C[m]| = n then
9. SP[m]← EK(f1(SP[m− 1]⊕ C[m]))

10. else // 1 ≤ |C[m]| ≤ n− 1
11. SP[m]← EK(f2(SP[m− 1]⊕ ozp(C[m])))
12. T ← msbτ (SP[m])
13. return T

Algorithm ENCK(V,M)

1. if |M | = 0 then
2. C ← ε
3. return C
4. (M [1], . . . ,M [m])

n←M
5. SE[1]← EK(V )
6. for i← 1 to m− 1 do
7. C[i]← SE[i]⊕M [i]
8. SE[i+ 1]← EK(fix1(C[i]))
9. C[m]← msb|M [m]|(SE[m])⊕M [m]

10. C ← (C[1], . . . , C[m])
11. return C

Algorithm DECK(V,C)

1. if |C| = 0 then
2. M ← ε
3. return M
4. (C[1], . . . , C[m])

n← C
5. SD[1]← EK(V )
6. for i← 1 to m− 1 do
7. M [i]← SD[i]⊕ C[i]
8. SD[i+ 1]← EK(fix1(C[i]))
9. M [m]← msb|C[m]|(SD[m])⊕ C[m]

10. M ← (M [1], . . . ,M [m])
11. return M

Fig. 2. Subroutines used in the encryption and decryption algorithms of CLOC

such as L = EK(0n) used in EAX, we could not computationally separate CFB and CBC MAC via
input masking, such as Galois-field doubling (2iL for the i-th block, where 2L denotes the multiplication
of 2 and L in GF(2n)) [13,33]. This implies that CFB leaks input and output pairs of the blockcipher
calls, which can be freely used to guess or fake the internal chaining value of CBC MAC, leading to
a break of the scheme. Lucks [28] proposed an AEAD scheme based on CFB, called CCFB. However,
the problem is not relevant to CCFB due to the difference in the global structure. To overcome this
obstacle in composition, we introduced the bit-fixing functions. Their role is to absolutely separate the
input blocks of CFB and the first input block of CBC MAC. This imposes the most significant one bit
of the input of CBC MAC being fixed to 0, implying one-bit input loss. The set of five tweak functions,
which is another tool we introduced in this paper, is used to compensate for this information loss. It also
works to compensate the information loss caused by padding functions applied to the last input block
to CBC MAC. A similar technique can be found in literature [32,40], however, the previous works only
considered MACs and the tweak functions required bit operations.

In the following we explain the specific requirements for the tweak functions.

Definition of f1, f2, g1, g2, and h. These functions are defined to meet the following properties. First, they
have the additive property. That is, for any z ∈ {f1, f2, g1, g2, h}, we have z(X⊕X ′) = z(X)⊕z(X ′) for all

5



A[1]

V

N

EK

i/h

fix0

ozpozp

f1/f2

A[2] A[a]

EK

· · · A[a− 1]

ozp

· · ·

A[1]

EK

i/h

fix0

EK EK

V

N

ozp

f1/f2

if |A[1]| = n, then f1, else f2

if msb1(ozp(A[1])) = 1, then h, else i

if |A[a]| = n, then f1, else f2

if msb1(A[1]) = 1, then h, else i

Fig. 3. V ← HASHK(N,A) for 0 ≤ |A| ≤ n (left) and |A| ≥ n+ 1 (right)

msb

fix1

EK

M [m]

C[m]

fix1

EK

V M [1]

C[1]

M [2]

C[2]

M [m− 1]

C[m− 1]

· · ·

fix1

EKEK

· · ·

· · ·

msb

fix1

EK

M [m]

C[m]

fix1

EK

V

M [1]

C[1]

M [2]

C[2]

M [m− 1]

C[m− 1]

· · ·

fix1

EKEK

· · ·

· · ·

Fig. 4. C ← ENCK(V,M) for |M | ≥ 1 (left), and DECK(V,C) for |C| ≥ 1 (right)

EK

· · ·

· · ·

EK EK

ozp

f1/f2

EK

msb

T

C[m]C[m− 1]C[1]V

g2

EK

msb

T

V

g1 if |C[m]| = n, then f1, else f2

Fig. 5. T ← PRFK(V,C) for |C| = 0 (left), and |C| ≥ 1 (right)

X,X ′ ∈ {0, 1}n. Next, these functions are invertible over {0, 1}n. For any z ∈ {f1, f2, g1, g2, h}, we have
z ∈ Perm(n). Finally, they satisfy the differential probability constraints specified in Fig. 9. Let z be a
function in Fig. 9. Then we require that, for any Y ∈ {0, 1}n, Pr[z(K) = Y ] = 1/2n, where the probability

is taken over K
$← {0, 1}n. When z is of the form z = z′⊕ z′′, then z(K) stands for z′(K)⊕ z′′(K). When

z is of the form z = z′z′′, then z(K) stands for z′(z′′(K)). Recall that we define i as i(K) = K.

Choosing Tweak Functions. Finding simple and word-wise tweak functions fulfilling all properties is not
a trivial task. We start with matrix M of (1), which is invertible and has order 15 (i.e. M15 = M0),
and test all combinations of the form (f1, f2, g1, g2, h) = (i1, . . . , i5) ∈ {1, . . . , 14}5, where i1 = 2 means
f1(X) = X ·M2, using a computer. There are 864 candidates out of 537,824 fulfilling the differential
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A[1]

V

N

EK i/h f1/f2fix0

ozpozp

if |A[1]| = n, then f1, else f2if msb1(ozp(A[1])) = 1, then h, else i

A[1] A[2] A[a]

V

N

EK EK

· · · A[a− 1]

EK f1/f2fix0

ozp

EK· · ·

if |A[a]| = n, then f1, else f2if msb1(A[1]) = 1, then h, else i

ozp

i/h

Fig. 6. V ← HASHK(N,A) for 0 ≤ |A| ≤ n (top) and |A| ≥ n+ 1 (bottom)

V EK fix1 EK · · · msbfix1 EK fix1 EK

M [1] M [2] M [m− 1] M [m]

C[1] C[2] C[m− 1] C[m]

· · ·

· · ·

V EK fix1 EK · · · msbfix1 EK fix1 EK

· · ·

· · ·M [1] M [2] M [m− 1] M [m]

C[1] C[2] C[m]C[m− 1]

Fig. 7. C ← ENCK(V,M) for |M | ≥ 1 (top), and DECK(V,C) for |C| ≥ 1 (bottom)

EK EK

· · ·

EK f1/f2

ozp

· · ·g2V msb T

C[1] C[m− 1] C[m]

EK

if |C[m]| = n, then f1, else f2

V msb TEKg1

Fig. 8. T ← PRFK(V,C) for |C| = 0 (top), and |C| ≥ 1 (bottom)

probability constraints of Fig. 9. The complexity increases as the index of M grows, when we implement
the tweak function by iterating M, which seems suitable for hardware. For software we would directly
implement Mi using a word-wise permutation and xor, and in this case we observe slight irregular, but
similar phenomena (e.g. M1 needs one xor while M3 needs three xor’s). Fig. 10 shows Mi and the Feistel-
like implementations using a word-wise permutation and xor. It shows that, except for M5 and M10, we
have a simple implementation using at most four xor’s. Based on these observations, we simply define
the cost of computing Mi as i, and define fcost(i1, . . . , i5) as(

i1 ×
1

16
+ i2 ×

15

16

)
× 2 + i4 + i5 ×

1

2
.
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i⊕ f1
i⊕ g1f1
i⊕ g1f1h
i⊕ g2f1
i⊕ g2f1h
i⊕ f1h
i⊕ f2
i⊕ g1f2
i⊕ g1f2h
i⊕ g2f2
i⊕ g2f2h

i⊕ f2h
i⊕ h
i⊕ g1
i⊕ g2
f1 ⊕ g1f1h
f1 ⊕ g2f1h
f1 ⊕ f2
f1 ⊕ g1f2
f1 ⊕ g1f2h
f1 ⊕ g2f2
f1 ⊕ g2f2h

f1 ⊕ f2h
f2 ⊕ g1f1
f2 ⊕ g1f1h
f2 ⊕ g2f1
f2 ⊕ g2f1h
f2 ⊕ f1h
f2 ⊕ g1f2h
f2 ⊕ g2f2h
g1 ⊕ g2
h⊕ f1
h⊕ g1f1

h⊕ g2f1
h⊕ f2
h⊕ g1f2
h⊕ g2f2
g1f1 ⊕ f1h
g1f1 ⊕ g2f1h
g1f1 ⊕ g2f2
g1f1 ⊕ g2f2h
g1f1 ⊕ f2h
g2f1 ⊕ g1f1h
g2f1 ⊕ f1h

g2f1 ⊕ g1f2h
g2f1 ⊕ f2h
g1f2 ⊕ g2f1
g1f2 ⊕ g2f1h
g1f2 ⊕ f1h
g1f2 ⊕ g2f2h
g1f2 ⊕ f2h
g2f2 ⊕ g1f1h
g2f2 ⊕ f1h
g2f2 ⊕ g1f2h
g2f2 ⊕ f2h

Fig. 9. Differential probability constraints of f1, f2, g1, g2, and h
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Fig. 10. Matrix exponentiations for the tweak functions

This corresponds to the expected total cost for given (i1, . . . , i5), where associated data and a plaintext
are assumed to be non-empty byte strings of random lengths (as we expect the standard use of CLOC is
AEAD, not MAC), and we also assume that the most significant bit of the associated data is random. Then
there remains only two candidates giving the minimum value of fcost, which are (i1, . . . , i5) = (8, 1, 2, 1, 4)
and (8, 1, 6, 1, 4). As smaller i3 is better, we choose the former as the sole winner. We also tested other
matrices, say the one replacing the forth column of M by the transposition of (1, 0, 1, 0), but no better
solution was found.

We note that M8 = M2 ⊕M0 and M4 = M1 ⊕M0 hold, implying that we have f1(X) = g1(X)⊕X
and h(X) = f2(X)⊕X = g2(X)⊕X, which may be useful in some implementations.

5 Security of CLOC

In this section, we define the security notions of a blockcipher and CLOC, and present our security
theorems.
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PRP Notion. We assume that the blockcipher E : KE × {0, 1}n → {0, 1}n is a pseudo-random permuta-

tion, or a PRP [27]. We say that P is a random permutation if P
$← Perm(n), and define

Advprp
E (A) def

= Pr
[
AEK(·) ⇒ 1

]
− Pr

[
AP (·) ⇒ 1

]
,

where the first probability is taken over K
$← KE and the randomness of A, and the last is over P

$←
Perm(n) and A. We write CLOC[Perm(n), ℓN , τ ] for CLOC that uses P as EK , and the encryption and
decryption algorithms are written as CLOC-EP and CLOC-DP . We also consider CLOC that uses a
random function as EK , which is naturally defined as the invertibility of EK is irrelevant in the definition
of CLOC. Let Rand(n) be the set of all functions from {0, 1}n to {0, 1}n, and we say that R is a

random function if R
$← Rand(n). We write CLOC[Rand(n), ℓN , τ ] for CLOC that uses R as EK , and its

encryption and decryption algorithms are written as CLOC-ER and CLOC-DR.

Privacy Notion. We define the privacy notion for CLOC[E, ℓN , τ ] = (CLOC-E ,CLOC-D). This no-
tion captures the indistinguishably of a nonce-respecting adversary in a chosen plaintext attack setting.
We consider an adversary A that has access to the CLOC encryption oracle, or a random-bits oracle.
The encryption oracle takes (N,A,M) ∈ NCLOC × ACLOC ×MCLOC as input and returns (C, T ) ←
CLOC-EK(N,A,M). The random-bits oracle, $-oracle, takes (N,A,M) ∈ NCLOC×ACLOC×MCLOC as

input and returns a random string (C, T )
$← {0, 1}|M |+τ . We define the privacy advantage as

Advpriv
CLOC[E,ℓN ,τ ](A)

def
= Pr

[
ACLOC-EK(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·) ⇒ 1

]
,

where the first probability is taken over K
$← KCLOC and the randomness of A, and the last is over the

random-bits oracle and A. We assume that A in the privacy game is nonce-respecting, that is, A does
not make two queries with the same nonce.

Privacy Theorem. Let A be an adversary that makes q queries, and suppose that the queries are
(N1, A1,M1), . . . , (Nq, Aq,Mq). Then we define the total associated data length as a1 + · · ·+ aq, and the
total plaintext length as m1 + · · · + mq, where (Ai[1], . . . , Ai[ai])

n← Ai and (Mi[1], . . . ,Mi[mi])
n← Mi.

We have the following information theoretic result.

Theorem 1. Let Perm(n), ℓN , and τ be the parameters of CLOC. Let A be an adversary that makes at
most q queries, where the total associated data length is at most σA, and the total plaintext length is at
most σM . Then we have Advpriv

CLOC[Perm(n),ℓN ,τ ](A) ≤ 5σ2
priv/2

n, where σpriv = q + σA + 2σM .

A proof overview is given in Sect. 6, and a complete proof is presented in Appendix A. If we use a
blockcipher E, which is secure in the sense of the PRP notion, instead of Perm(n), then the corresponding
complexity theoretic result can be shown by a standard argument. See e.g. [11]. We note that the privacy
of CLOC is broken if the nonce is reused.

Authenticity Notion. We next define the authenticity notion, which captures the unforgeability of an
adversary in a chosen ciphertext attack setting. We consider a strong adversary that can repeat the
same nonce multiple times. Let A be an adversary that has access to the CLOC encryption oracle and
the CLOC decryption oracle. The encryption oracle is defined as above. The decryption oracle takes
(N,A,C, T ) ∈ NCLOC ×ACLOC × CCLOC × TCLOC as input and returns M ← CLOC-DK(N,A,C, T ) or
⊥ ← CLOC-DK(N,A,C, T ). The authenticity advantage is defined as

Advauth
CLOC[E,ℓN ,τ ](A)

def
= Pr

[
ACLOC-EK(·,·,·),CLOC-DK(·,·,·,·) forges

]
,

where the probability is taken over K
$← KCLOC and the randomness of A, and the adversary forges

if the decryption oracle returns a bit string (other than ⊥) for a query (N,A,C, T ), but (C, T ) was
not previously returned to A from the encryption oracle for a query (N,A,M). The adversary A in
the authenticity game is not necessarily nonce-respecting, and A can make two or more queries with
the same nonce. Specifically, A can repeat using the same nonce for encryption queries, a nonce used for
encryption queries can be used for decryption queries and vice-versa, and the same nonce can be repeated
for decryption queries. Without loss of generality, we assume that A does not make trivial queries, i.e.,
if the encryption oracle returns (C, T ) for a query (N,A,M), then A does not make a query (N,A,C, T )
to the decryption oracle, and A does not repeat a query.
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Authenticity Theorem. Let A be an adversary that makes q encryption queries and q′ decryption queries.
Let (N1, A1,M1), . . . , (Nq, Aq,Mq) be the encryption queries, and (N ′

1, A
′
1, C

′
1, T

′
1), . . . , (N

′
q′ , A

′
q′ , C

′
q′ , T

′
q′)

be the decryption queries. Then we define the total associated data length in encryption queries as
a1 + · · ·+ aq, the total plaintext length as m1 + · · ·+mq, the total associated data length in decryption
queries as a′1+ · · ·+a′q′ , and the total ciphertext length as m′

1+ · · ·+m′
q′ , where (Ai[1], . . . , Ai[ai])

n← Ai,

(Mi[1], . . . ,Mi[mi])
n←Mi, (A

′
i[1], . . . , A

′
i[a

′
i])

n← A′
i, and (C ′

i[1], . . . , C
′
i[m

′
i])

n← C ′
i. We have the following

information theoretic result.

Theorem 2. Let Perm(n), ℓN , and τ be the parameters of CLOC. Let A be an adversary that makes
at most q encryption queries and at most q′ decryption queries, where the total associated data length
in encryption queries is at most σA, the total plaintext length is at most σM , the total associated data
length in decryption queries is at most σA′ , and the total ciphertext length is at most σC′ . Then we have
Advauth

CLOC[Perm(n),ℓN ,τ ](A) ≤ 5σ2
auth/2

n + q′/2τ , where σauth = q + σA + 2σM + q′ + σA′ + σC′ .

A proof overview is given in Sect. 6, and a complete proof is presented in Appendix A. As in the privacy
case, if we use a blockcipher E secure in the sense of the PRP notion, then we obtain the corresponding
complexity theoretic result by a standard argument in, e.g., [11].

6 Overview of Security Proofs

PRP/PRF Switching. The first step is to replace the random permutation P in CLOC[Perm(n), ℓN , τ ]
with a random function R, and use the PRP/PRF switching lemma [12] to obtain the following differences.{

Advpriv
CLOC[Perm(n),ℓN ,τ ](A)−Advpriv

CLOC[Rand(n),ℓN ,τ ](A)
Advauth

CLOC[Perm(n),ℓN ,τ ](A)−Advauth
CLOC[Rand(n),ℓN ,τ ](A)

Defining Q1, . . . , Q26 and CLOC2. We define twenty six functions Q1, . . . , Q26 : {0, 1}n → {0, 1}n based

on R, K1, K2, and K3, where K1,K2,K3
$← {0, 1}n are three independent random n-bit strings. We also

define a modified version of CLOC[Rand(n), ℓN , τ ] called CLOC2[ℓN , τ ], which uses Q = (Q1, . . . , Q26) as
oracles.Q and CLOC2 are designed so that CLOC-ER and CLOC2-EQ are the same algorithms, CLOC-DR

and CLOC2-DQ are the same algorithms (except that CLOC2-DQ is used for the verification only, and it
does not output a plaintext even if the verification succeeds), and Q1, . . . , Q26 are indistinguishable from
F1, . . . , F26, which are independent random functions. We then have{

Advpriv
CLOC[Rand(n),ℓN ,τ ](A) = Advpriv

CLOC2[ℓN ,τ ](A),
Advauth

CLOC[Rand(n),ℓN ,τ ](A) = Advauth
CLOC2[ℓN ,τ ](A),

and we show the distinguishing probability of Q = (Q1, . . . , Q26) and F = (F1, . . . , F26) in Lemma 1.
However, the indistinguishability does not hold for arbitrary adversaries. We formalize an input-respecting
adversary, and our indistinguishability result in Lemma 1 holds only for these adversaries.

The three random strings, K1,K2, and K3, are secret keys from the adversary’s perspective, and we
introduce them to show the indistinguishability between Q and F . For instance we know that the input
fix0(ozp(A[1])) to produce SH[1] in HASHK(N,A) (The 2nd line of HASHK(N,A) in Fig. 2) never collides
with the input fix1(C[i]) to produce SE[i+1] in ENCK(V,M) (The 8th line of ENCK(V,M) in Fig. 2), and
hence we can safely assume that they are independent. Likewise, we show that the collision probability
between fix0(ozp(A[1])) and, say, SH[i − 1] ⊕ A[i] in HASHK(N,A) (The 7th line of HASHK(N,A) in
Fig. 2) is low, and the three random strings are introduced to help this argument.

Defining CLOC3. We define another version of CLOC[Rand(n), ℓN , τ ] called CLOC3[ℓN , τ ]. It uses
F = (F1, . . . , F26) as oracles, and the encryption algorithm CLOC3-EF and the decryption algorithm
CLOC3-DF are obtained from CLOC2-EQ and CLOC2-DQ by replacing Q1, . . . , Q26 with F1, . . . , F26,
respectively. We use Lemma 1 to obtain the following differences.{

Advpriv
CLOC2[ℓN ,τ ](A)−Advpriv

CLOC3[ℓN ,τ ](A)
Advauth

CLOC2[ℓN ,τ ](A)−Advauth
CLOC3[ℓN ,τ ](A)

The simulations work with input-respecting adversaries, and hence Lemma 1 is sufficient for our purpose.
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Indistinguishability of (HASH3,HASH3′,HASH3′′). We then consider three subroutines HASH3, HASH3′,
and HASH3′′ in CLOC3[ℓN , τ ]. HASH3 roughly corresponds to a function that computes SE[1] from (N,A)
in CLOC[E, ℓN , τ ], i.e., EK(HASHK(N,A)). HASH3′ computes the tag T when |C| = 0, i.e., this function
roughly corresponds to msbτ (EK(g1(HASHK(N,A)))). HASH3′′ computes SP[0] from (N,A), which is
used when |C| ≥ 1, i.e., EK(g2(HASHK(N,A))). Then in Lemma 2, we show that these functions are
indistinguishable from three independent random functions HASH4, HASH4′, and HASH4′′.

Defining CLOC4. We define another version of CLOC[Rand(n), ℓN , τ ], called CLOC4[ℓN , τ ]. This is
obtained by replacing HASH3, HASH3′, and HASH3′′ in CLOC3 with HASH4, HASH4′, and HASH4′′,
respectively. We use Lemma 2 to obtain the following differences.{

Advpriv
CLOC3[ℓN ,τ ](A)−Advpriv

CLOC4[ℓN ,τ ](A)
Advauth

CLOC3[ℓN ,τ ](A)−Advauth
CLOC4[ℓN ,τ ](A)

Indistinguishability of PRF4. We then consider a subroutine called PRF4 in CLOC4. This function outputs
a tag T from (N,A,C), and internally uses HASH4′, HASH4′′, F24, F25, and F26. We show in Lemma 3
that this function is indistinguishable from a random function PRF5.

Defining CLOC5. We define our final version of CLOC[Rand(n), ℓN , τ ], called CLOC5[ℓN , τ ], which is
obtained from CLOC4 by replacing PRF4 with PRF5. This function is used in both encryption and
decryption, and we obtain the following differences from Lemma 3.{

Advpriv
CLOC4[ℓN ,τ ](A)−Advpriv

CLOC5[ℓN ,τ ](A)
Advauth

CLOC4[ℓN ,τ ](A)−Advauth
CLOC5[ℓN ,τ ](A)

Privacy and Authenticity of CLOC5. Finally, we analyze the privacy and the authenticity of CLOC5 in
Lemma 4. The privacy result shows the upper bound on Advpriv

CLOC5[ℓN ,τ ](A), and the proof is reduced

to bounding the collision probability among the input values of the random function which is used to
encrypt plaintexts. The authenticity result shows the upper bound on Advauth

CLOC5[ℓN ,τ ](A), and its proof
is simple and the result is obtained from the fact that the adversary, even if the nonce is reused, has to
guess the output of a random function PRF5 for the input that was not queried before.

We finally obtain the proofs of Theorem 1 and Theorem 2 by combining the above differences between
advantage functions.

7 Software Implementation

We first tested CLOC on a general-purpose CPU. It is interesting to note that the encryption process
and tag generation can be done in parallel, which could speed up the overall computation by a factor
close to 2 for long messages, then the final speed could be close to that of encryption only in serial mode.
To show that, we implemented CLOC instantiated with AES-128 using the AES new instruction set, and
tested against Intel processor, Core i5-3427U 1.80GHz [6]. It is known that Intel’s AES instruction allows
fast parallel processing (up to 4 or 8 blocks), and we used this technique for two parallel inputs to AES.
The tested speed is around 4.9 cycles per byte (cpb), while AES-128 encrypts at a speed of 4.3 cpb in
serial mode. In Table 2, we provide the test vectors.

We then tested CLOC on embedded software. We used an 8-bit microprocessor, Atmel AVR AT-
mega128 [2]. For comparison we also implemented EAX and OCB3 [26]. For OCB3 we used a byte-
oriented code from [7]. OCB3 needs relatively large precomputation for GF doublings, but we modify
the code so that the doublings are on-line, since large precomputation may not be suitable to handle
short input data for microprocessors. We also considered GCM for comparison, however, recent studies
show that GCM does not perform well on constrained devices (see e.g. [10,38]), hence we decided not
to include it. All modes are written in C and combined with AES-128. Our AES code is taken from [3],
which is written in assembler. AES runs at 156.7 cpb for encryption, 196.8 cpb for decryption, both
without key scheduling, and the key scheduling runs at 1,979 cycles. Our codes are complied with Atmel
Studio 6 available from [2]. Cycles counts are measured on the simulator of Atmel Studio 6. Table 3
shows the implementation result. ROM denotes the object size in bytes. The speed is measured based
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Table 2. Test vector of CLOC instantiated with AES-128

length (bytes) value (in hex)

Key 16 00102030405060708090a0b0c0d0e0f0

Associated data 14 ff0102030405060708090a0b0c0d

Nonce 12 00112233445566778899aabb

Plaintext 30 86012204ccebf09ad5305ea8967aebd0

0dd9c05cbde9407ff1ef52f043a2

Ciphertext 30 ebd908c23eac555dee406434fb2cffd4

e1bee4401002063e2d13cdf9df3b

Tag 16 6621dae27674aa6fbc303426824b2c05

Table 3. Software implementation on ATmega128

ROM RAM Init Speed (cycles/byte)
(bytes) (bytes) (cycles) Data 16 32 64 96 128 256

CLOC 2980 362 1999 750.1 549.0 448.4 404.9 398.2 373.0
EAX 3304 n/a 2617 1842.4 1094.1 719.8 595.1 532.7 439.1

OCB-E 5010 971 4956 1217.5 736.1 495.5 412.2 375.1 314.9
OCB-D 5010 971 4956 1252.2 773.4 534.0 451.2 414.3 354.4

on the scenario of non-static associated data, i.e., we excluded key setup and other computations before
processing associated data and nonce, defined as “Init”, and figures for Data b denote cycles per byte
to process a b-byte message with 16-byte associated data. For OCB3 we also measured the decryption
performance, whereas those of CLOC and EAX are almost the same as encryption. The result shows a
superior performance of CLOC for short input data, up to around 128 bytes, which would be sufficiently
long for low-power wireless networks, as we mentioned in Sect. 1. We also measure the RAM usage of the
AVR implementations, using a public tool [41], based on data of 16 bytes. It is clear to see that CLOC
requires much less RAM than OCB3. Due to an unknown reason, this tool is not able to tell the RAM
usage for EAX.

8 Hardware Implementation

Although the primary focus of CLOC is embedded software, we also implemented CLOC on hardware
to see basic performance figures. We used Altera FPGA, Cyclone IV GX (EP4CGX110DF31C7) [1], and
implemented CLOC using AES-128. AES implementation is round-based, and the S-box of AES is based
on a composite field [37]. For reference we also wrote EAX for the same device, using the same AES.
Both CLOC and EAX use one AES core for encryption and authentication. In EAX implementation,
all input masks are stored to registers. Table 4 shows the results. The size is measured by the number
of logic elements (LEs). Our implementation is not optimized. Still, these figures show that CLOC has
slightly smaller size and faster speed than EAX. Table 4 lacks other important modes, in particular OCB.
A more comprehensive comparison and optimized implementation for short input data are interesting
future topics.

9 Conclusions

We presented a blockcipher mode of operation called CLOC for authenticated encryption with associated
data. It uses a variant of CFB mode in its encryption part and a variant of CBCMAC in the authentication
part. The scheme efficiently handles short input data without heavy precomputation nor large memory,
and it is suitable for use in microprocessors. We proved CLOC secure, in a reduction-based provable
security paradigm, under the assumption that the blockcipher is a pseudorandom permutation. We also
presented our preliminary implementation results.

It would be interesting to see improved implementation results using possibly lightweight blockciphers.
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Table 4. Hardware implementation. Throughput figures of CLOC and EAX are measured for 8-block messages
with one-block associated data.

Size (LE) Max. Freq. (MHz) Throughput (Mbit/sec)

CLOC 5628 82.1 400.7
EAX 6453 61.3 342.2

AES Enc 3175 98.7 971.7
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A Security Proofs of CLOC

PRP/PRF Switching. We first replace P in CLOC[Perm(n), ℓN , τ ] with a random function R
$← Rand(n).

From the PRP/PRF switching lemma [12], we have

Advpriv
CLOC[Perm(n),ℓN ,τ ](A) ≤ Advpriv

CLOC[Rand(n),ℓN ,τ ](A) +
0.5σ2

priv

2n
, (2)

since for a query (Ni, Ai,Mi), we need ⌈|Ni|/n⌉+max{1, ⌈|Ai|/n⌉}+ 2⌈|Mi|/n⌉ ≤ 1 + ai + 2mi calls of
P in CLOC-EP , and we have

∑
1≤i≤q(1 + ai + 2mi) ≤ σpriv. For the authenticity notion, without loss of

generality, we assume that the decryption oracle, if A succeeds in forgery, returns a bit 1 instead of the
plaintext since the returned value has no effect on the success probability of A. Then for a decryption
query (N ′

j , A
′
j , C

′
j , T

′
j), CLOC-DP makes ⌈|N ′

j |/n⌉+max{1, ⌈|A′
j |/n⌉}+ ⌈|C ′

j |/n⌉ ≤ 1 + a′j +m′
j calls of

P , and from
∑

1≤i≤q(1 + ai + 2mi) +
∑

1≤j≤q′(1 + a′j +m′
j) ≤ σauth, we obtain

Advauth
CLOC[Perm(n),ℓN ,τ ](A) ≤ Advauth

CLOC[Rand(n),ℓN ,τ ](A) +
0.5σ2

auth

2n
. (3)

In what follows, we evaluate Advpriv
CLOC[Rand(n),ℓN ,τ ](A) and Advauth

CLOC[Rand(n),ℓN ,τ ](A).

Definition of Q1, . . . , Q26. Let R
$← Rand(n) be a random function, and let K1,K2,K3

$← {0, 1}n be
three independent random n-bit strings. We define twenty six functions Q1, . . . , Q26 : {0, 1}n → {0, 1}n
based on R, K1, K2, and K3 in Fig 11, and we write Q = (Q1, . . . , Q26).
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Q1(X) = R(fix0(X))⊕K1

Q2(X) = R(X ⊕K1)⊕K2

Q3(X) = R(h(X ⊕K1))⊕K2

Q4(X) = R(X ⊕K2)⊕K2

Q5(X) = R(g1(f1(X ⊕K1)))

Q6(X) = R(g1(f1(h(X ⊕K1))))

Q7(X) = R(g1(f2(X ⊕K1)))

Q8(X) = R(g1(f2(h(X ⊕K1))))

Q9(X) = R(g1(f1(X ⊕K2)))

Q10(X) = R(g1(f2(X ⊕K2)))

Q11(X) = R(f1(X ⊕K1))

Q12(X) = R(f1(h(X ⊕K1)))

Q13(X) = R(f2(X ⊕K1))

Q14(X) = R(f2(h(X ⊕K1)))

Q15(X) = R(f1(X ⊕K2))

Q16(X) = R(f2(X ⊕K2))

Q17(X) = R(fix1(X))

Q18(X) = R(g2(f1(X ⊕K1)))⊕K3

Q19(X) = R(g2(f1(h(X ⊕K1))))⊕K3

Q20(X) = R(g2(f2(X ⊕K1)))⊕K3

Q21(X) = R(g2(f2(h(X ⊕K1))))⊕K3

Q22(X) = R(g2(f1(X ⊕K2)))⊕K3

Q23(X) = R(g2(f2(X ⊕K2)))⊕K3

Q24(X) = R(X ⊕K3)⊕K3

Q25(X) = R(f1(X ⊕K3))

Q26(X) = R(f2(X ⊕K3))

Fig. 11. Definition of Q1, . . . , Q26

Algorithm CLOC2-EQ(N,A,M)

1. if |M | = 0 then
2. C ← ε
3. else // |M | ≥ 1
4. SE[1]← HASH2Q1,...,Q4,Q11,...,Q16(N,A)
5. C ← ENC2Q17(SE[1],M)
6. T ← PRF2Q1,...,Q10,Q18,...,Q26(N,A,C)
7. return (C, T )

Algorithm CLOC2-DQ(N,A,C, T )

1. T ∗ ← PRF2Q1,...,Q10,Q18,...,Q26(N,A,C)
2. if T ̸= T ∗ then return ⊥
3. return 1

Fig. 12. Pseudocode of the encryption and the decryption algorithms of CLOC2

Definition of CLOC2. We next define a version of CLOC[Rand(n), ℓN , τ ] which we write CLOC2[ℓN , τ ].
It is based on Q, and the encryption algorithm CLOC2-E and the decryption algorithm CLOC2-D are
presented in Fig. 12 and Fig. 13. We also show figures of some of the subroutines used in these algorithms
in Fig. 14, Fig. 15, Fig. 16, and Fig. 17. CLOC2-E and CLOC2-D take R,K1,K2, and K3 as a key, but
we write CLOC2-EQ and CLOC2-DQ, and we describe them using Q = (Q1, . . . , Q26) as subroutines.

We briefly describe the intuition how CLOC2 works. There are three main subroutines, HASH2, ENC2,
and PRF2.

– HASH2 takes N and A as input, and is used when |M | ≥ 1 to generate the first mask to encrypt
M [1], i.e., SE[1].

– ENC2 takes SE[1] and M as input and it returns the ciphertext C.

– PRF2 takes N , A, and C as input to return the tag T . This function is different from PRF in that,
PRF takes V as a part of the input, which is a value that can be computed from N and A and is
independent of C, but PRF2 directly computes the tag from N , A, and C. We use three functions in
PRF2, which we call HASH2′, HASH2′′, and PRF2′, and these functions are described below.

• HASH2′ is used when |C| = 0 to generate a tag T from N and A.

• HASH2′′ and PRF2′ are used when |C| ≥ 1 to generate a tag T . HASH2′′ takes N and A as input
and computes a value that roughly corresponds to EK(g2(V )) of CLOC. Then PRF2′ takes the
output of HASH2′′ and C as input to output the tag T .

We note that HASH2, HASH2′, and HASH2′′ are almost the same algorithms except for the functions
used to process the last input block (and hence they share a similar name). We use the name PRF2 as it
is used to generate a tag, while we use the name PRF2′ as it roughly corresponds to PRF.

Now with careful scrutiny, we can verify that CLOC-ER and CLOC2-EQ are exactly the same algo-
rithms, and furthermore, CLOC-DR and CLOC2-DQ are the same algorithms, since K1, K2, and K3 are

15



Algorithm HASH2Q1,...,Q4,Q11,...,Q16(N,A)

1. (A[1], . . . , A[a])
n← A

2. SH[1]← Q1(fix0(ozp(A[1])))
3. if 0 ≤ |A[1]| ≤ n− 1 then
4. if msb1(ozp(A[1])) = 0 then
5. SE[1]← Q13(SH[1]⊕ ozp(N))
6. else // msb1(ozp(A[1])) = 1
7. SE[1]← Q14(SH[1]⊕ h−1(ozp(N)))
8. if |A[1]| = n then
9. if msb1(A[1]) = 0 then

10. SE[1]← Q11(SH[1]⊕ ozp(N))
11. else // msb1(A[1]) = 1
12. SE[1]← Q12(SH[1]⊕ h−1(ozp(N)))
13. if |A| ≥ n+ 1 then
14. if msb1(A[1]) = 0 then
15. SH[2]← Q2(SH[1]⊕ ozp(A[2]))
16. else // msb1(A[1]) = 1
17. SH[2]← Q3(SH[1]⊕ h−1(ozp(A[2])))
18. if a ≥ 3 then
19. for i← 3 to a− 1 do // only for a ≥ 4
20. SH[i]← Q4(SH[i− 1]⊕A[i])
21. SH[a]← Q4(SH[a− 1]⊕ ozp(A[a]))
22. if |A[a]| = n then
23. SE[1]← Q15(SH[a]⊕ ozp(N))
24. else // 1 ≤ |A[a]| ≤ n− 1
25. SE[1]← Q16(SH[a]⊕ ozp(N))
26. return SE[1]

Algorithm ENC2Q17(SE[1],M) // |M | ≥ 1

1. (M [1], . . . ,M [m])
n←M

2. for i← 1 to m− 1 do // only for m ≥ 2
3. C[i]← SE[i]⊕M [i]
4. SE[i+ 1]← Q17(fix1(C[i]))
5. C[m]← msb|M [m]|(SE[m])⊕M [m]
6. C ← (C[1], . . . , C[m])
7. return C

Algorithm PRF2Q1,...,Q10,Q18,...,Q26(N,A,C)

1. if |C| = 0 then
2. T ← HASH2′Q1,...,Q10

(N,A)
3. else // |C| ≥ 1
4. SP[0]← HASH2′′Q1,...,Q4,Q18,...,Q23

(N,A)
5. T ← PRF2′Q24,Q25,Q26

(SP[0], C)
6. return T

Algorithm PRF2′Q24,Q25,Q26
(SP[0], C) // |C| ≥ 1

1. (C[1], . . . , C[m])
n← C

2. for i← 1 to m− 1 do // only for m ≥ 2
3. SP[i]← Q24(SP[i− 1]⊕ C[i])
4. if |C[m]| = n then
5. SP[m]← Q25(SP[m− 1]⊕ C[m])
6. else // 1 ≤ |C[m]| ≤ n− 1
7. SP[m]← Q26(SP[m− 1]⊕ ozp(C[m]))
8. T ← msbτ (SP[m])
9. return T

Algorithm HASH2′Q1,...,Q10
(N,A)

1. (A[1], . . . , A[a])
n← A

2. SH[1]← Q1(fix0(ozp(A[1])))
3. if 0 ≤ |A[1]| ≤ n− 1 then
4. if msb1(ozp(A[1])) = 0 then
5. T ← msbτ (Q7(SH[1]⊕ ozp(N)))
6. else // msb1(ozp(A[1])) = 1
7. T ← msbτ (Q8(SH[1]⊕ h−1(ozp(N))))
8. if |A[1]| = n then
9. if msb1(A[1]) = 0 then

10. T ← msbτ (Q5(SH[1]⊕ ozp(N)))
11. else // msb1(A[1]) = 1
12. T ← msbτ (Q6(SH[1]⊕ h−1(ozp(N))))
13. if |A| ≥ n+ 1 then
14. if msb1(A[1]) = 0 then
15. SH[2]← Q2(SH[1]⊕ ozp(A[2]))
16. else // msb1(A[1]) = 1
17. SH[2]← Q3(SH[1]⊕ h−1(ozp(A[2])))
18. if a ≥ 3 then
19. for i← 3 to a− 1 do // only for a ≥ 4
20. SH[i]← Q4(SH[i− 1]⊕A[i])
21. SH[a]← Q4(SH[a− 1]⊕ ozp(A[a]))
22. if |A[a]| = n then
23. T ← msbτ (Q9(SH[a]⊕ ozp(N)))
24. else // 1 ≤ |A[a] ≤ n− 1
25. T ← msbτ (Q10(SH[a]⊕ ozp(N)))
26. return T

Algorithm HASH2′′Q1,...,Q4,Q18,...,Q23
(N,A)

1. (A[1], . . . , A[a])
n← A

2. SH[1]← Q1(fix0(ozp(A[1])))
3. if 0 ≤ |A[1]| ≤ n− 1 then
4. if msb1(ozp(A[1])) = 0 then
5. SP[0]← Q20(SH[1]⊕ ozp(N))
6. else // msb1(ozp(A[1])) = 1
7. SP[0]← Q21(SH[1]⊕ h−1(ozp(N)))
8. if |A[1]| = n then
9. if msb1(A[1]) = 0 then

10. SP[0]← Q18(SH[1]⊕ ozp(N))
11. else // msb1(A[1]) = 1
12. SP[0]← Q19(SH[1]⊕ h−1(ozp(N)))
13. if |A| ≥ n+ 1 then
14. if msb1(A[1]) = 0 then
15. SH[2]← Q2(SH[1]⊕ ozp(A[2]))
16. else // msb1(A[1]) = 1
17. SH[2]← Q3(SH[1]⊕ h−1(ozp(A[2])))
18. if a ≥ 3 then
19. for i← 3 to a− 1 do // only for a ≥ 4
20. SH[i]← Q4(SH[i− 1]⊕A[i])
21. SH[a]← Q4(SH[a− 1]⊕ ozp(A[a]))
22. if |A[a]| = n then
23. SP[0]← Q22(SH[a]⊕ ozp(N))
24. else // 1 ≤ |A[a] ≤ n− 1
25. SP[0]← Q23(SH[a]⊕ ozp(N))
26. return SP[0]

Fig. 13. Subroutines used in the encryption and decryption algorithms of CLOC2
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A[1] N

fix0

ozpozp

Q11 or Q12 or Q13 or Q14

Q1

h−1

SE[1]

A[1]

fix0

ozpozp

Q1

h−1

Q2 or Q3

Q4

A[2] A[3] A[a]· · · A[a− 1]

ozp

· · ·

N

ozp

Q4 Q4

SE[1]Q15 or Q16

Fig. 14. SE[1]← HASH2Q1,...,Q4,Q11,...,Q16(N,A) for 0 ≤ |A| ≤ n (left) and |A| ≥ n+ 1 (right). The functions in
parenthesis may not be executed depending on the input.

A[1] N

fix0

ozpozp

Q1

h−1

A[1]

fix0

ozpozp

Q1

h−1

Q2 or Q3

Q4

A[2] A[3] A[a]· · · A[a− 1]

ozp

· · ·

N

ozp

Q4 Q4

Q5 or Q6 or Q7 or Q8 Q9 or Q10
msb

T

msb

T

Fig. 15. T ← HASH2′Q1,...,Q10
(N,A) for 0 ≤ |A| ≤ n (left) and |A| ≥ n + 1 (right). This function is used as a

subroutine in PRF2 to generate a tag T when |C| = 0.

A[1] N

fix0

ozpozp

Q1

h−1

A[1]

fix0

ozpozp

Q1

h−1

Q2 or Q3

Q4

A[2] A[3] A[a]· · · A[a− 1]

ozp

· · ·

N

ozp

Q4 Q4

Q18 or Q19 or Q20 or Q21 Q22 or Q23SP[0] SP[0]

Fig. 16. T ← HASH2′′Q1,...,Q4,Q18,...,Q23
(N,A) for 0 ≤ |A| ≤ n (left) and |A| ≥ n+1 (right). This function is used

in PRF2 when |C| ≥ 1.

msb

fix1

M [m]

C[m]

fix1

M [1]

C[1]

M [2]

C[2]

M [m− 1]

C[m− 1]

· · ·

fix1

· · ·

· · ·

Q17 Q17 Q17

SE[1]
· · ·

· · ·

ozp

msb

T

C[m]C[m− 1]C[1]SP[0] C[2]

Q24

Q25 or Q26

Q24 Q24

Fig. 17. C ← ENC2Q17(SE[1],M) for |M | ≥ 1 (left), and PRF2′Q24,Q25,Q26
(SP[0], C) for |C| ≥ 1 (right). PRF2′ is

used as a subroutine in PRF2, together with HASH2′′, to generate a tag T when |C| ≥ 1.
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all canceled. We therefore have{
Advpriv

CLOC[Rand(n),ℓN ,τ ](A) = Advpriv
CLOC2[ℓN ,τ ](A),

Advauth
CLOC[Rand(n),ℓN ,τ ](A) = Advauth

CLOC2[ℓN ,τ ](A).
(4)

Indistinguishability of Q. Next, let F1, . . . , F26
$← Rand(n) be twenty six independent random func-

tions, and we write F = (F1, . . . , F26). We show that Q = (Q1, . . . , Q26) is indistinguishable from
F = (F1, . . . , F26). For an adversary B, we define Advind

Q (B) as

Advind
Q (B) def

= Pr
[
BQ1(·),...,Q26(·) ⇒ 1

]
− Pr

[
BF1(·),...,F26(·) ⇒ 1

]
,

where the first probability is taken over R
$← Rand(n), K1,K2,K3

$← {0, 1}n, and the randomness

of B, and the last is over F1, . . . , F26
$← Rand(n) and B. The adversary makes queries of the form

(j,X) ∈ {1, . . . , 26}×{0, 1}n, and receives Qj(X) or Fj(X). We say that the adversary is input-respecting
if msb1(X) = 0 holds for all queries with j = 1, and msb1(X) = 1 holds for all queries with j = 17.
Without loss of generality, we assume that B does not repeat a query. We have the following lemma.

Lemma 1. Let B be an input-respecting adversary that makes at most q queries. Then Advind
Q (B) ≤

0.5q2/2n.

A proof is in Appendix B.

Definition of CLOC3. We define another version of CLOC[Rand(n), ℓN , τ ] which we write CLOC3[ℓN , τ ].
It is based on F , and the encryption algorithm CLOC3-E and the decryption algorithm CLOC3-D are the
same as CLOC2-E and CLOC2-D, except that we use F1, . . . , F26 instead of Q1, . . . , Q26, respectively.
Therefore, CLOC3-E and CLOC3-D take F = (F1, . . . , F26) as a key, and we write CLOC3-EF and
CLOC3-DF . We write the subroutines in CLOC3-EF and CLOC3-DF as HASH3, HASH3′, HASH3′′,
ENC3, PRF3, and PRF3′, instead of HASH2, HASH2′, HASH2′′, ENC2, PRF2, and PRF2′. From Lemma 1,
we obtain {

Advpriv
CLOC2[ℓN ,τ ](A) ≤ Advpriv

CLOC3[ℓN ,τ ](A) + 0.5σ2
priv/2

n,

Advauth
CLOC2[ℓN ,τ ](A) ≤ Advauth

CLOC3[ℓN ,τ ](A) + 0.5σ2
auth/2

n,
(5)

since otherwise we can construct an input-respecting adversary B that contradicts Lemma 1.

Indistinguishability of (HASH3,HASH3′,HASH3′′). Let HASH4, HASH4′, and HASH4′′ be three indepen-
dent random functions, where HASH4,HASH4′′ : NCLOC × ACLOC → {0, 1}n, and HASH4′ : NCLOC ×
ACLOC → TCLOC. We show that (HASH3,HASH3′,HASH3′′) is indistinguishable from random functions
(HASH4,HASH4′,HASH4′′). For an adversary B, define Advind

HASH3,HASH3′,HASH3′′(B) as

Advind
HASH3,HASH3′,HASH3′′(B)

def
= Pr

[
BHASH3(·,·),HASH3′(·,·),HASH3′′(·,·) ⇒ 1

]
− Pr

[
BHASH4(·,·),HASH4′(·,·),HASH4′′(·,·) ⇒ 1

]
,

where the first probability is taken over F1, . . . , F16, F18, . . . , F23
$← Rand(n) and the randomness of B,

and the last is over the randomness of HASH4, HASH4′, HASH4′′, and B. The adversary makes queries
of the form (j,N,A) ∈ {1, 2, 3} ×NCLOC ×ACLOC, and receives HASH3(N,A) or HASH4(N,A) if j = 1,
HASH3′(N,A) or HASH4′(N,A) if j = 2, and HASH3′′(N,A) or HASH4′′(N,A) if j = 3. If B makes q
queries and the queries are (j1, N1, A1), . . . , (jq, Nq, Aq), then we define the total associated data length as
a1+ · · ·+aq, where (Ai[1], . . . , Ai[ai])

n← Ai. Without loss of generality, we assume that B does not repeat
a query, but the same nonce can be repeated across different queries. We show the following lemma.

Lemma 2. Let B be an adversary that makes at most q queries, where the total associated data length
is at most σA. Then we have Advind

HASH3,HASH3′,HASH3′′(B) ≤ σ2
A/2

n.

A proof is in Appendix C.
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Definition of CLOC4. We define yet another version of CLOC[Rand(n), ℓN , τ ] called CLOC4[ℓN , τ ]. The
encryption algorithm CLOC4-E and the decryption algorithm CLOC4-D are the same as CLOC3-E and
CLOC3-D, respectively, except that we use random functions HASH4, HASH4′, and HASH4′′, instead of
HASH3, HASH3′, and HASH3′′. Therefore, CLOC4-E and CLOC4-D take HASH4, HASH4′, HASH4′′, F17,
F24, F25, and F26 as a key, and we write their subroutines as ENC4, PRF4, and PRF4′, instead of ENC3,
PRF3, and PRF3′. From Lemma 2, we obtain{

Advpriv
CLOC3[ℓN ,τ ](A) ≤ Advpriv

CLOC4[ℓN ,τ ](A) + 4σ2
A/2

n,

Advauth
CLOC3[ℓN ,τ ](A) ≤ Advauth

CLOC4[ℓN ,τ ](A) + 4(σA + σA′)2/2n.
(6)

To see this, for privacy, suppose that A makes a query (Ni, Ai,Mi). If |Mi| = 0, then B makes a query
(2, Ni, Ai). If |Mi| ≥ 1, then B makes a query (1, Ni, Ai), and then (3, Ni, Ai). For authenticity, B behaves
as above for encryption queries. For a decryption query (N ′

j , A
′
j , C

′
j , T

′
j), if |C ′

j | = 0, then B makes a query
(2, N ′

j , A
′
j). Otherwise B makes a query (3, N ′

j , A
′
j). Therefore, the total associated data length of B is no

more than the twice of that of A.

Indistinguishability of PRF4. Recall that PRF4 : NCLOC × ACLOC × CCLOC → TCLOC takes HASH4′,
HASH4′′, F24, F25, and F26 as a key. Let PRF5 be a random function from NCLOC × ACLOC × CCLOC

to TCLOC. We show that PRF4 is indistinguishable from PRF5. Let B be an adversary, and we define
Advind

PRF4(B) as

Advind
PRF4(B)

def
= Pr

[
BPRF4(·,·,·) ⇒ 1

]
− Pr

[
BPRF5(·,·,·) ⇒ 1

]
,

where the first probability is taken over the randomness of HASH4′,HASH4′′, F24, F25, F26, and B, and
the last is over the randomness of PRF5 and B. Suppose that B makes q queries, and if the queries
are (N1, A1, C1), . . . , (Nq, Aq, Cq), then we define the total ciphertext length as m1 + · · · + mq, where
(Ci[1], . . . , Ci[mi])

n← Ci. The same nonce can be repeated across different queries, but without loss of
generality, we assume that B does not repeat a query. We show the following lemma.

Lemma 3. Let B be an adversary that makes at most q queries, where the total ciphertext length is at
most σC . Then we have Advind

PRF4(B) ≤ 0.5q2/2n + σ2
C/2

n.

A proof is in Appendix D.

Definition of CLOC5. We define our final version of CLOC[Rand(n), ℓN , τ ], which we write CLOC5[ℓN , τ ].
The encryption algorithm CLOC5-E and the decryption algorithm CLOC5-D are the same as CLOC4-E
and CLOC4-D, respectively, except that we use a random function PRF5 instead of PRF4. We write
HASH5 and ENC5 for HASH4 and ENC4. Then CLOC5-E and CLOC5-D take HASH5, PRF5, and F17

as a key, where HASH5 : NCLOC × ACLOC → {0, 1}n, PRF5 : NCLOC × ACLOC × CCLOC → TCLOC, and
F17 : {0, 1}n → {0, 1}n are all random functions. For reference, we present the specification in Fig. 18.
From Lemma 3, we obtain{

Advpriv
CLOC4[ℓN ,τ ](A) ≤ Advpriv

CLOC5[ℓN ,τ ](A) + 0.5q2/2n + σ2
M/2n,

Advauth
CLOC4[ℓN ,τ ](A) ≤ Advauth

CLOC5[ℓN ,τ ](A) + 0.5(q + q′)2/2n + (σM + σC′)2/2n.
(7)

Privacy and Authenticity of CLOC5. We have the following lemma on the privacy and the authenticity
of CLOC5.

Lemma 4. We have Advpriv
CLOC5[ℓN ,τ ](A) ≤ σ2

M/2n and Advauth
CLOC5[ℓN ,τ ](A) ≤ q′/2τ .

A proof is in Appendix E.

Proof (of Theorem 1). We are now ready to show our proof of Theorem 1. From (2), (4), (5), (6), (7),
and Lemma 4, we obtain

Advpriv
CLOC[Perm(n),ℓN ,τ ](A) ≤

σ2
priv

2n
+

4σ2
A

2n
+

0.5q2

2n
+

2σ2
M

2n
≤

5σ2
priv

2n
,

since σpriv = q + σA + 2σM . ⊓⊔
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Algorithm CLOC5-EHASH5,PRF5,F17(N,A,M)

1. if |M | = 0 then
2. C ← ε
3. else // |M | ≥ 1
4. SE[1]← HASH5(N,A)
5. C ← ENC5F17(SE[1],M)
6. T ← PRF5(N,A,C)
7. return (C, T )

Algorithm ENC5F17(SE[1],M) // |M | ≥ 1

1. (M [1], . . . ,M [m])
n←M

2. for i← 1 to m− 1 do // only for m ≥ 2
3. C[i]← SE[i]⊕M [i]
4. SE[i+ 1]← F17(fix1(C[i]))
5. C[m]← msb|M [m]|(SE[m])⊕M [m]
6. C ← (C[1], . . . , C[m])
7. return C

Algorithm CLOC5-DHASH5,PRF5,F17(N,A,C, T )

1. T ∗ ← PRF5(N,A,C)
2. if T ̸= T ∗ then return ⊥
3. return 1

Fig. 18. Pseudocode of the encryption and the decryption algorithms of CLOC5

Proof (of Theorem 2). We finally show our proof of Theorem 2. From (3), (4), (5), (6), (7), and Lemma 4,
we obtain

Advauth
CLOC[Perm(n),ℓN ,τ ](A) ≤

σ2
auth

2n
+

4(σA + σA′)2

2n
+

0.5(q + q′)2

2n
+

(σM + σC′)2

2n
+

q′

2τ

≤ 5σ2
auth

2n
+

q′

2τ
,

since σauth = q + σA + 2σM + q′ + σA′ + σC′ . ⊓⊔

B Proof of Lemma 1

Without loss of generality, assume that B makes exactly q queries, and let (j1, X1), . . . , (jq, Xq) be the
queries made by B. Suppose that B interacts with Q1, . . . , Q26 oracles. We say that a bad event occurs and
write BQ1(·),...,Q26(·) sets bad, if there exist two distinct queries (j,X), (j′, X ′) ∈ {(j1, X1), . . . , (jq, Xq)}
such that I(j,X) = I(j′, X ′), where I(j,X) denotes the input value of R in Qj(X). See Fig. 19 for the
concrete descriptions of I(1, X), . . . , I(26, X). In the figure, we let

J1 = {2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 18, 19, 20, 21},
J2 = {4, 9, 10, 15, 16, 22, 23},
J3 = {24, 25, 26},
J4 = {1, 17}.

If j ∈ J1, then we use the xor of K1 in computing Qj(X). Similarly, we use K2 when j ∈ J2, and K3 when
j ∈ J3. The input value of R when j ∈ J4 is directly determined by the input value of the function itself.
The absence of the bad event implies that the responses that B receives from the oracles are uniform and
independent random bit strings, since the output values of R are all independent. Therefore, we have

Advind
Q (B) ≤ Pr

[
BQ1(·),...,Q26(·) sets bad

]
. (8)

We also see that, from the argument above, the adaptivity does not help in increasing the probability of
the bad event. Therefore, we may fix all queries (j1, X1), . . . , (jq, Xq) made by B, and evaluate the right
hand side of (8) based on the randomness of K1,K2, and K3. Let (j,X), (j′, X ′) ∈ {(j1, X1), . . . , (jq, Xq)}
be two distinct queries. If j = j′, then we have X ̸= X ′, and hence we never have I(j,X) = I(j′, X ′) from
the invertibility of f1, f2, g1, g2, and h. In what follows, suppose that 1 ≤ j < j′ ≤ 26, and we evaluate
Pr[I(j,X) = I(j′, X ′)].
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j ∈ J1 j ∈ J2 j ∈ J3 j ∈ J4

I(2, X) = X ⊕K1

I(3, X) = h(X ⊕K1)
I(5, X) = g1(f1(X ⊕K1))
I(6, X) = g1(f1(h(X ⊕K1)))
I(7, X) = g1(f2(X ⊕K1))
I(8, X) = g1(f2(h(X ⊕K1)))
I(11, X) = f1(X ⊕K1)
I(12, X) = f1(h(X ⊕K1))
I(13, X) = f2(X ⊕K1)
I(14, X) = f2(h(X ⊕K1))
I(18, X) = g2(f1(X ⊕K1))
I(19, X) = g2(f1(h(X ⊕K1)))
I(20, X) = g2(f2(X ⊕K1))
I(21, X) = g2(f2(h(X ⊕K1)))

I(4, X) = X ⊕K2

I(9, X) = g1(f1(X ⊕K2))
I(10, X) = g1(f2(X ⊕K2))
I(15, X) = f1(X ⊕K2)
I(16, X) = f2(X ⊕K2)
I(22, X) = g2(f1(X ⊕K2))
I(23, X) = g2(f2(X ⊕K2))

I(24, X) = X ⊕K3

I(25, X) = f1(X ⊕K3)
I(26, X) = f2(X ⊕K3)

I(1, X) = fix0(X)
I(17,X) = fix1(X)

Fig. 19. Descriptions of I(1,X), . . . , I(26, X)

j′ j = 2 j = 3 j = 5 j = 6 j = 7 j = 8

3
5
6
7
8

11
12
13
14
18
19
20
21

i⊕ h
i⊕ g1f1
i⊕ g1f1h
i⊕ g1f2
i⊕ g1f2h
i⊕ f1
i⊕ f1h
i⊕ f2
i⊕ f2h
i⊕ g2f1
i⊕ g2f1h
i⊕ g2f2
i⊕ g2f2h

h⊕ g1f1
i⊕ g1f1
h⊕ g1f2
i⊕ g1f2
h⊕ f1
i⊕ f1
h⊕ f2
i⊕ f2
h⊕ g2f1
i⊕ g2f1
h⊕ g2f2
i⊕ g2f2

i⊕ h
f1 ⊕ f2
f1 ⊕ f2h
g1 ⊕ i
g1f1 ⊕ f1h
g1f1 ⊕ f2
g1f1 ⊕ f2h
g1 ⊕ g2
g1f1 ⊕ g2f1h
g1f1 ⊕ g2f2
g1f1 ⊕ g2f2h

f1h⊕ f2
f1 ⊕ f2
g1f1h⊕ f1
g1 ⊕ i
g1f1h⊕ f2
g1f1 ⊕ f2
g1f1h⊕ g2f1
g1 ⊕ g2
g1f1h⊕ g2f2
g1f1 ⊕ g2f2

i⊕ h
g1f2 ⊕ f1
g1f2 ⊕ f1h
g1 ⊕ i
g1f2 ⊕ f2h
g1f2 ⊕ g2f1
g1f2 ⊕ g2f1h
g1 ⊕ g2
g1f2 ⊕ g2f2h

g1f2h⊕ f1
g1f2 ⊕ f1
g1f2h⊕ f2
g1 ⊕ i
g1f2h⊕ g2f1
g1f2 ⊕ g2f1
g1f2h⊕ g2f2
g1 ⊕ g2

Fig. 20. Analysis of Case j, j′ ∈ J1 (j ∈ {2, 3, 5, 6, 7, 8})

Case j, j′ ∈ J1. There are 14 elements in J1, and hence we have 91 combinations of (j, j′) with j < j′.
See Fig. 20 and Fig. 21 for the analysis. In the figures, we use the same notation as in Fig. 9. That is,
if z is a function in Fig. 20 or Fig. 21 which is of the form z = z′ ⊕ z′′, then this stands for a function
z′(K1)⊕ z′′(K1). When z is of the form z = z′z′′, then this stands for a function z′(z′′(K1)). Recall that
we define i as i(K1) = K1. As an example, consider the case j = 3 and j′ = 6. In this case we are
interested in the event h(X ⊕ K1) = g1(f1(h(X

′ ⊕ K1))), where X and X ′ are n-bit constants. We see
that the event is equivalent to K1 ⊕ g1(f1(K1)) = Y for some constant Y , and Fig. 20 and Fig. 21 show
the left hand side of the event. From the discussions in Sect. 4, the probability of this event is at most
1/2n. One can verify that all these events, I(j,X) = I(j′, X ′), are covered in Fig. 9, and we thus have
Pr[I(j,X) = I(j′, X ′)] ≤ 1/2n in this case.

Case j ∈ J1 and j′ ∈ J2 ∪ J3 ∪ J4. We have Pr[I(j,X) = I(j′, X ′)] ≤ 1/2n from the randomness of K1

and the invertibility of f1, f2, g1, g2, and h.

Case j, j′ ∈ J2. We have Pr[I(j,X) = I(j′, X ′)] ≤ 1/2n with exactly the same reasoning in the analysis
of Case j, j′ ∈ J1.

Case j ∈ J2 and j′ ∈ J3 ∪ J4. We have Pr[I(j,X) = I(j′, X ′)] ≤ 1/2n from the randomness of K2 and
the invertibility of f1, f2, g1, and g2.

Case j, j′ ∈ J3. We have Pr[I(j,X) = I(j′, X ′)] ≤ 1/2n form the analysis of Case j, j′ ∈ J1.
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j′ j = 11 j = 12 j = 13 j = 14 j = 18 j = 19 j = 20

12
13
14
18
19
20
21

i⊕ h
f1 ⊕ f2
f1 ⊕ f2h
i⊕ g2
f1 ⊕ g2f1h
f1 ⊕ g2f2
f1 ⊕ g2f2h

f1h⊕ f2
f1 ⊕ f2
f1h⊕ g2f1
i⊕ g2
f1h⊕ g2f2
f1 ⊕ g2f2

i⊕ h
f2 ⊕ g2f1
f2 ⊕ g2f1h
i⊕ g2
f2 ⊕ g2f2h

f2h⊕ g2f1
f2 ⊕ g2f1
f2h⊕ g2f2
i⊕ g2

i⊕ h
f1 ⊕ f2
f1 ⊕ f2h

f1h⊕ f2
f1 ⊕ f2 i⊕ h

Fig. 21. Analysis of Case j, j′ ∈ J1 (j ∈ {11, 12, 13, 14, 18, 19, 20})

Algorithm HASH3∗F1,...,F4
(N,A)

1. (A[1], . . . , A[a])
n← A

2. SH[1]← F1(fix0(ozp(A[1])))
3. if 0 ≤ |A[1]| ≤ n then
4. if msb1(ozp(A[1])) = 0 then
5. Y ← SH[1]⊕ ozp(N)
6. else // msb1(ozp(A[1])) = 1
7. Y ← SH[1]⊕ h−1(ozp(N))
8. if |A| ≥ n+ 1 then
9. if msb1(A[1]) = 0 then

10. SH[2]← F2(SH[1]⊕ ozp(A[2]))
11. else // msb1(A[1]) = 1
12. SH[2]← F3(SH[1]⊕ h−1(ozp(A[2])))
13. if a ≥ 3 then
14. for i← 3 to a− 1 do // only for a ≥ 4
15. SH[i]← F4(SH[i− 1]⊕A[i])
16. SH[a]← F4(SH[a− 1]⊕ ozp(A[a]))
17. Y ← SH[a]⊕ ozp(N)
18. return Y

Fig. 22. Definition of HASH3∗ used in the proof of Lemma 2

Case j ∈ J3 and j′ ∈ J4. We have Pr[I(j,X) = I(j′, X ′)] = 1/2n from the randomness of K3 and the
invertibility of f1 and f2.

Case j, j′ ∈ J4. This case corresponds to (j, j′) = (1, 17), and Pr[I(j,X) = I(j′, X ′)] = 0 holds.
Finally, we evaluate the probability of the bad event. For any two distinct queries (j,X), (j′, X ′) ∈

{(j1, X1), . . . , (jq, Xq)}, we have Pr [I(j,X) = I(j′, X ′)] ≤ 1/2n. Therefore, we obtain

Pr
[
BQ1(·),...,Q26(·) sets bad

]
≤

∑
1≤j<j′≤q

1

2n
≤ 0.5q2

2n

as claimed. ⊓⊔

C Proof of Lemma 2

We consider the following partition of ACLOC = {0, 1}∗, where (A[1], . . . , A[a])
n← A.

A(1)
CLOC = {A | A ∈ ACLOC, 1 ≤ |A| ≤ n− 1,msb1(ozp(A[1])) = 0}
A(2)

CLOC = {A | A ∈ ACLOC, 0 ≤ |A| ≤ n− 1,msb1(ozp(A[1])) = 1}
A(3)

CLOC = {A | A ∈ ACLOC, |A| = n,msb1(A[1]) = 0}
A(4)

CLOC = {A | A ∈ ACLOC, |A| = n,msb1(A[1]) = 1}
A(5)

CLOC = {A | A ∈ ACLOC, |A| ≥ n+ 1, |A[a]| = n}
A(6)

CLOC = {A | A ∈ ACLOC, |A| ≥ n+ 1, 1 ≤ |A[a]| ≤ n− 1}
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Without loss of generality, assume that the adversary B makes exactly q queries. We write the q queries
as (j1, N1, A1), . . . , (jq, Nq, Aq). Suppose that B interacts with HASH3, HASH3′, and HASH3′′, and we

say that a bad event occurs and write BHASH3(·,·),HASH3′(·,·),HASH3′′(·,·) sets bad, if there exist two distinct
queries (j,N,A), (j′, N ′, A′) ∈ {(j1, N1, A1), . . . , (jq, Nq, Aq)} such that

– j = j′,

– A,A′ ∈ A(ℓ)
CLOC for some 1 ≤ ℓ ≤ 6, and

– HASH3∗(N,A) = HASH3∗(N ′, A′),

where HASH3∗ is defined in Fig. 22. It takes N and A as input, and HASH3∗ is designed to output the
input value of the last invocation of the random function in HASH3, HASH3′, or HASH3′′. The absence
of the bad event implies that the responses that B receives from the oracles are uniform and independent
random bit strings. Therefore, we have

Advind
HASH3,HASH3′,HASH3′′(B) ≤ Pr

[
BHASH3(·,·),HASH3

′(·,·),HASH3′′(·,·) sets bad
]
. (9)

We also see that, from the argument above, the adaptivity does not help in increasing the probabil-
ity of the bad event. Therefore, we may fix all queries (j1, N1, A1), . . . , (jq, Nq, Aq) made by B, and
evaluate the right hand side of (9) based on the randomness of F1, . . . , F4. Let (j,N,A), (j′, N ′, A′) ∈
{(j1, N1, A1), . . . , (jq, Nq, Aq)} be two distinct queries such that j = j′ and A,A′ ∈ A(ℓ)

CLOC for some
1 ≤ ℓ ≤ 6. We evaluate

Pr [HASH3∗(N,A) = HASH3∗(N ′, A′)] (10)

in the following six cases depending on the value of 1 ≤ ℓ ≤ 6.

Case A,A′ ∈ A(1)
CLOC. If A = A′, then we have ozp(N) ̸= ozp(N ′) from N ̸= N ′. Therefore,

F1(fix0(ozp(A[1])))⊕ ozp(N) ̸= F1(fix0(ozp(A
′[1])))⊕ ozp(N ′)

holds, and thus (10) = 0. If A ̸= A′, then we have

Pr[F1(fix0(ozp(A[1])))⊕ ozp(N) = F1(fix0(ozp(A
′[1])))⊕ ozp(N ′)] =

1

2n

from fix0(ozp(A[1])) ̸= fix0(ozp(A′[1])), implying that (10) = 1/2n.

Case A,A′ ∈ A(2)
CLOC. If A = A′, then we have h−1(ozp(N)) ̸= h−1(ozp(N ′)) from N ̸= N ′. Therefore,

F1(fix0(ozp(A[1])))⊕ h−1(ozp(N)) ̸= F1(fix0(ozp(A
′[1])))⊕ h−1(ozp(N ′)),

and we have (10) = 0. If A ̸= A′, then we have (10) = 1/2n from fix0(ozp(A[1])) ̸= fix0(ozp(A′[1])).

Case A,A′ ∈ A(3)
CLOC. By following the analysis of Case A,A′ ∈ A(1)

CLOC, we have (10) = 0 if A = A′, and
(10) = 1/2n if A ̸= A′.

Case A,A′ ∈ A(4)
CLOC. Similarly, by following the analysis of Case A,A′ ∈ A(2)

CLOC, we have (10) = 0 if
A = A′, and (10) = 1/2n if A ̸= A′.

Case A,A′ ∈ A(5)
CLOC. This case is more involved to analyze, and we first introduce a lemma to analyze this

case. Let M,M ′ ∈ {0, 1}∗ be two distinct strings such that |M | = mn and |M ′| = m′n for m,m′ ≥ 1. Let

(M [1], . . . ,M [m])
n←M and (M ′[1], . . . ,M ′[m′])

n←M ′ be the partition. Let F
$← Rand(n) be a random

function. We define CBCF (M) as S[m], where S[i]← F (S[i− 1]⊕M [i]) for i = 1, . . . ,m and S[0] = 0n.
CBCF (M

′) is defined analogously. Let COLLF (M,M ′) be the event defined as CBCF (M) = CBCF (M
′).

We make use of the following lemma shown by Black and Rogaway [15].

Lemma 5 ([15]). Pr [COLLF (M,M ′)] ≤ mm′/2n +max{m,m′}/2n, where the probability is taken over

F
$← Rand(n).
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Recall that (j,N,A), (j′, N ′, A′) ∈ {(j1, N1, A1), . . . , (jq, Nq, Aq)} are the two distinct queries we are
analyzing, and let (A[1], . . . , A[a])

n← A and (A′[1], . . . , A′[a′])
n← A′ be the partition, where |A[a]| =

|A′[a′]| = n. For N and A = (A[1], . . . , A[a]), we consider M = (M [1], . . . ,M [m]) defined as

M ←


SH[2]⊕ ozp(N) if a = 2,

(SH[2]⊕A[3], ozp(N)) if a = 3,

(SH[2]⊕A[3], A[4], . . . , A[a], ozp(N)) if a ≥ 4,

where SH[1] = F1(fix0(A[1])), SH[2] = F2(SH[1] ⊕ A[2]) if msb1(A[1]) = 0, and SH[2] = F3(SH[1] ⊕ A[2])
if msb1(A[1]) = 1. We note that m = a − 1 holds, and we define M ′ = (M ′[1], . . . ,M ′[m′]) from N ′

and A′ = (A′[1], . . . , A′[a′]) analogously. It is not hard to see that if HASH3∗(N,A) = HASH3∗(N ′, A′)
holds, then we have COLLF (M,M ′), which is CBCF (M) = CBCF (M

′), by setting F ← F4. However, the
converse may not be true since we may have COLLF (M,M ′) even if HASH3∗(N,A) ̸= HASH3∗(N ′, A′).
Now we evaluate (10) in two cases, Case (A[1], A[2]) = (A′[1], A′[2]), and Case (A[1], A[2]) ̸= (A′[1], A′[2]).

Case (A[1], A[2]) = (A′[1], A′[2]). In this case, we arbitrarily fix F1, F2, and F3. We have M ̸= M ′ since
the last n(a− 1) bits of (A[1], . . . , A[a], ozp(N)) and the last n(a′ − 1) bits of (A′[1], . . . , A′[a′], ozp(N ′))
are distinct, and by using Lemma 5 with F ← F4, we obtain

(10) ≤ Pr [COLLF (M,M ′)] ≤ (a− 1)(a′ − 1)

2n
+

max{a− 1, a′ − 1}
2n

.

Case (A[1], A[2]) ̸= (A′[1], A′[2]). We have

(10) ≤ Pr [COLLF (M,M ′) and M [1] = M ′[1]] + Pr [COLLF (M,M ′) and M [1] ̸= M ′[1]]

≤ Pr [M [1] = M ′[1]] + Pr [COLLF (M,M ′) |M [1] ̸= M ′[1]] ,

and we also have Pr [COLLF (M,M ′) |M [1] ̸= M ′[1]] ≤ (a− 1)(a′ − 1)/2n +max{a− 1, a′ − 1}/2n from
Lemma 5. It remains to evaluate Pr [M [1] = M ′[1]], and we evaluate the probability in three cases, Case
A[1] = A′[1] and A[2] ̸= A′[2], Case A[1] ̸= A′[1] and msb1(A[1]) ̸= msb1(A

′[1]), and Case A[1] ̸= A′[1]
and msb1(A[1]) = msb1(A

′[1]).

Case A[1] = A′[1] and A[2] ̸= A′[2]. We arbitrarily fix F1, and from SH[1]⊕A[2] ̸= S′
H[2]⊕A′[2], we have

Pr [M [1] = M ′[1]] = 1/2n.

Case A[1] ̸= A′[1] and msb1(A[1]) ̸= msb1(A
′[1]). We arbitrarily fix F1, and since the random functions

used to compute M [1] and M ′[1] are independent, we have Pr [M [1] = M ′[1]] = 1/2n.

Case A[1] ̸= A′[1] and msb1(A[1]) = msb1(A
′[1]). We proceed as follows.

Pr [M [1] = M ′[1]] ≤ Pr [M [1] = M ′[1] and SH[1]⊕A[2] = S′
H[1]⊕A′[2]] (11)

+ Pr [M [1] = M ′[1] and SH[1]⊕A[2] ̸= S′
H[1]⊕A′[2]] (12)

We see (11) ≤ Pr [SH[1]⊕A[2] = S′
H[1]⊕A′[2]] = 1/2n from fix0(A[1]) ̸= fix0(A′[1]). For (12), we have

(12) ≤ Pr [M [1] = M ′[1] | SH[1]⊕A[2] ̸= S′
H[1]⊕A′[2]] = 1/2n, since the condition ensures that two

independent output values of the random function are used to compute M [1] and M ′[1]. We have covered

all cases, and in Case A,A′ ∈ A(5)
CLOC, we have

(10) ≤ 2

2n
+

(a− 1)(a′ − 1)

2n
+

max{a− 1, a′ − 1}
2n

.

Case A,A′ ∈ A(6)
CLOC. Similarly to the case above, we define M = (M [1], . . . ,M [m]) from N and A =

(A[1], . . . , A[a]) as

M ←


SH[2]⊕ ozp(N) if a = 2,

(SH[2]⊕ ozp(A[3]), ozp(N)) if a = 3,

(SH[2]⊕A[3], A[4], . . . , A[a− 1], ozp(A[a]), ozp(N)) if a ≥ 4,

where SH[1] = F1(fix0(A[1])), SH[2] = F2(SH[1] ⊕ ozp(A[2])) if msb1(A[1]) = 0, and SH[2] = F3(SH[1] ⊕
ozp(A[2])) if msb1(A[1]) = 1. We define M ′ = (M ′[1], . . . ,M ′[m′]) from N ′ and A′ = (A′[1], . . . , A′[a′])
analogously, and we evaluate (10) in two cases, Case (A[1], A[2]) = (A′[1], A′[2]), and Case (A[1], A[2]) ̸=
(A′[1], A′[2]).
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Case (A[1], A[2]) = (A′[1], A′[2]). We fix F1, F2, and F3, and use Lemma 5 to obtain

(10) ≤ Pr [COLLF (M,M ′)] ≤ (a− 1)(a′ − 1)

2n
+

max{a− 1, a′ − 1}
2n

.

Case (A[1], A[2]) ̸= (A′[1], A′[2]). We further split the case into four cases, Case A[1] = A′[1], A[2] ̸= A′[2],
and ozp(A[2]) = ozp(A′[2]), Case A[1] = A′[1], A[2] ̸= A′[2], and ozp(A[2]) ̸= ozp(A′[2]), Case A[1] ̸= A′[1]
and msb1(A[1]) ̸= msb1(A

′[1]), and Case A[1] ̸= A′[1] and msb1(A[1]) = msb1(A
′[1]).

Case A[1] = A′[1], A[2] ̸= A′[2], and ozp(A[2]) = ozp(A′[2]). In this case, we necessary have a = 2 and
a′ ≥ 3, or a ≥ 3 and a′ = 2. We arbitrarily fix F1, F2, and F3 to conclude

(10) ≤ Pr [COLLF (M,M ′)] ≤ (a− 1)(a′ − 1)

2n
+

max{a− 1, a′ − 1}
2n

from M ̸= M ′. The analyses of the remaining three cases are similar to the last three cases of Case

A,A′ ∈ A(5)
CLOC. We evaluate Pr [M [1] = M ′[1]], and use

(10) ≤ Pr [M [1] = M ′[1]] + Pr [COLLF (M,M ′) |M [1] ̸= M ′[1]]

and Pr [COLLF (M,M ′) |M [1] ̸= M ′[1]] ≤ (a− 1)(a′ − 1)/2n +max{a− 1, a′ − 1}/2n from Lemma 5.

Case A[1] = A′[1], A[2] ̸= A′[2], and ozp(A[2]) ̸= ozp(A′[2]). We arbitrarily fix F1, and from SH[1] ⊕
ozp(A[2]) ̸= S′

H[2]⊕ ozp(A′[2]), we have Pr [M [1] = M ′[1]] = 1/2n.

Case A[1] ̸= A′[1] and msb1(A[1]) ̸= msb1(A
′[1]). We arbitrarily fix F1, and since the random functions

used to compute M [1] and M ′[1] are independent, we have Pr [M [1] = M ′[1]] = 1/2n.

Case A[1] ̸= A′[1] and msb1(A[1]) = msb1(A
′[1]). We have

Pr [M [1] = M ′[1]] ≤ Pr [M [1] = M ′[1] and SH[1]⊕ ozp(A[2]) = S′
H[1]⊕ ozp(A′[2])] (13)

+ Pr [M [1] = M ′[1] and SH[1]⊕ ozp(A[2]) ̸= S′
H[1]⊕ ozp(A′[2])] , (14)

(13) ≤ Pr [SH[1]⊕ ozp(A[2]) = S′
H[1]⊕ ozp(A′[2])] = 1/2n from fix0(A[1]) ̸= fix0(A′[1]), and (14) ≤

Pr [M [1] = M ′[1] | SH[1]⊕ ozp(A[2]) ̸= S′
H[1]⊕ ozp(A′[2])] = 1/2n from the independence of the output

values of the random function used to compute M [1] and M ′[1]. Therefore, in Case A,A′ ∈ A(6)
CLOC, we

have

(10) ≤ 2

2n
+

(a− 1)(a′ − 1)

2n
+

max{a− 1, a′ − 1}
2n

.

Finally, we evaluate the probability of the bad event. From the analyses above, for any two distinct
queries (j,N,A), (j′, N ′, A′) ∈ {(j1, N1, A1), . . . , (jq, Nq, Aq)}, we have (10) ≤ aa′/2n+max{a, a′}/2n for
all cases, since we have 1/2n ≤ aa′/2n +max{a, a′}/2n when a = a′ = 1, and

2

2n
+

(a− 1)(a′ − 1)

2n
+

max{a− 1, a′ − 1}
2n

≤ aa′

2n
+

max{a, a′}
2n

when a, a′ ≥ 2. By writing the partition of Ai as (Ai[1], . . . , Ai[ai]), we obtain

Pr
[
BHASH3(·,·),HASH3′(·,·),HASH3′′(·,·) sets bad

]
≤

∑
1≤i<i′≤q

aiai′

2n
+

max{ai, ai′}
2n

≤ σ2
A

2n
,

where the last inequality follows from the proof of [15, Theorem 4]. ⊓⊔
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Algorithm PRF4HASH4′,HASH4′′,F24,F25,F26
(N,A,C)

1. if |C| = 0 then
2. T ← HASH4′(N,A)
3. else // |C| ≥ 1
4. SP[0]← HASH4′′(N,A)
5. T ← PRF4′F24,F25,F26

(SP[0], C)
6. return T

Algorithm PRF4′F24,F25,F26
(SP[0], C) // |C| ≥ 1

1. (C[1], . . . , C[m])
n← C

2. for i← 1 to m− 1 do // only for m ≥ 2
3. SP[i]← F24(SP[i− 1]⊕ C[i])
4. if |C[m]| = n then
5. SP[m]← F25(SP[m− 1]⊕ C[m])
6. else // 1 ≤ |C[m]| ≤ n− 1
7. SP[m]← F26(SP[m− 1]⊕ ozp(C[m]))
8. T ← msbτ (SP[m])
9. return T

Fig. 23. Definition of PRF4

D Proof of Lemma 3

For reference, we present the specification of PRF4 in Fig. 23.

Without loss of generality, we assume that B makes exactly q queries, and we write the queries as
(N1, A1, C1), . . . , (Nq, Aq, Cq). Consider the case where B interacts with PRF4, and we say that a bad
event occurs and write BPRF4(·,·,·) sets bad, if there exist two distinct queries (N,A,C), (N ′, A′, C ′) ∈
{(N1, A1, C1), . . . , (Nq, Aq, Cq)} such that

– |C[m]| = |C ′[m′]| = n and I[m] = I ′[m′], or

– 1 ≤ |C[m]| ≤ n− 1, 1 ≤ |C ′[m′]| ≤ n− 1, and I[m] = I ′[m′],

where (C[1], . . . , C[m])
n← C, (C ′[1], . . . , C ′[m′])

n← C ′, I[m] = SP[m− 1]⊕ C[m] (or I[m] = SP[m− 1]⊕
ozp(C[m])) is the input value of F25 or F26 for the query (N,A,C), and I ′[m′] = S′

P[m
′ − 1] ⊕ C ′[m′]

(or I ′[m′] = S′
P[m

′ − 1] ⊕ ozp(C ′[m′])) is the input value for (N ′, A′, C ′). The absence of the bad event
implies that the responses that A receives are random bit strings, and we thus have

Advind
PRF4(B) ≤ Pr

[
BPRF4(·,·,·) sets bad

]
. (15)

Since the adaptivity does not help in increasing the probability of the bad event, we fix all queries
(N1, A1, C1), . . . , (Nq, Aq, Cq) and evaluate Pr

[
BPRF4(·,·,·) sets bad

]
. To evaluate the probability, we first

focus on two distinct queries (N,A,C), (N ′, A′, C ′) ∈ {(N1, A1, C1), . . . , (Nq, Aq, Cq)}, and evaluate
Pr [I[m] = I[m′]] in two cases, Case |C[m]| = |C ′[m′]| = n, and Case 1 ≤ |C[m]| ≤ n − 1 and 1 ≤
|C ′[m′]| ≤ n− 1.

Case |C[m]| = |C ′[m′]| = n. For (N,A,C), we consider M = (M [1], . . . ,M [m]) defined as M ← (SP[0]⊕
C[1], C[2], . . . , C[m]), where SP[0] = HASH4′′(N,A), and we also define M ′ = (M ′[1], . . . ,M ′[m′]) from
(N ′, A′, C ′) analogously. If (N,A) = (N ′, A′), then we have C ̸= C ′. We arbitrarily fix HASH4′′, and we
see that M ̸= M ′ holds. We use Lemma 5 to obtain Pr [I[m] = I ′[m′]] ≤ mm′/2n + max{m,m′}/2n. If
(N,A) ̸= (N ′, A′), then we have

Pr [I[m] = I ′[m′]] = Pr [I[m] = I ′[m′] and SP[0]⊕ C[1] = S′
P[0]⊕ C ′[1]] (16)

+ Pr [I[m] = I ′[m′] and SP[0]⊕ C[1] ̸= S′
P[0]⊕ C ′[1]] . (17)

We see that (16) ≤ Pr [SP[0]⊕ C[1] = S′
P[0]⊕ C ′[1]] = 1/2n since HASH4′′ takes two distinct input values,

and (17) ≤ Pr [I[m] = I ′[m′] | SP[0]⊕ C[1] ̸= S′
P[0]⊕ C ′[1]] ≤ mm′/2n +max{m,m′}/2n from Lemma 5.

Case 1 ≤ |C[m]| ≤ n− 1 and 1 ≤ |C ′[m′]| ≤ n− 1. We define M = (M [1], . . . ,M [m]) from (N,A,C) as

M ←

{
SP[0]⊕ ozp(C[1]) if m = 1,

(SP[0]⊕ C[1], C[2], . . . , C[m− 1], ozp(C[m])) if m ≥ 2,
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where SP[0] = HASH4′′(N,A), and we also define M ′ = (M ′[1], . . . ,M ′[m′]) from (N ′, A′, C ′). If (N,A) =
(N ′, A′), then we arbitrarily fix HASH4′′, and we see that M ̸= M ′ holds from C ̸= C ′. We use Lemma 5
to obtain Pr [I[m] = I ′[m′]] ≤ mm′/2n +max{m,m′}/2n. If (N,A) ̸= (N ′, A′), then we use

Pr [I[m] = I ′[m′]] ≤ Pr [SP[0]⊕ ozp(C[1]) = S′
P[0]⊕ ozp(C ′[1])] (18)

+ Pr [I[m] = I ′[m′] | SP[0]⊕ ozp(C[1]) ̸= S′
P[0]⊕ ozp(C ′[1])] . (19)

We have (18) = 1/2n from the randomness of HASH4′′, and (19) ≤ mm′/2n + max{m,m′}/2n from
Lemma 5.

We now evaluate the probability of the bad event. For any two distinct queries (N,A,C), (N ′, A′, C ′) ∈
{(N1, A1, C1), . . . , (Nq, Aq, Cq)}, we have Pr [I[m] = I ′[m′]] ≤ 1/2n + mm′/2n + max{m,m′}/2n. By
writing the partition of Ci as (Ci[1], . . . , Ci[mi]), we obtain

Pr
[
BPRF4(·,·,·) sets bad

]
≤

∑
1≤i<i′≤q

1

2n
+

mimi′

2n
+

max{mi,mi′}
2n

≤ 0.5q2

2n
+

σ2
C

2n
.

We note that the last inequality follows from [15, Theorem 4]. ⊓⊔

E Proof of Lemma 4

Privacy of CLOC5. We first analyze the privacy of CLOC5. Consider the case where A interacts with
CLOC5-E , and let (Ni, Ai,Mi) be the i-th query, and (Ci, Ti) be the response, where (Ci[1], . . . , Ci[mi])

n←
Ci. Let Ii = {fix1(Ci[1]), . . . , fix1(Ci[mi − 1])}, i.e., Ii is the set of input values of F17 for the i-th query.
We say that a bad event occurs and write ACLOC5-E(·,·,·) sets bad if, for some 1 ≤ i ≤ q and 1 ≤ j ≤ mi−1,
we have

fix1(Ci[j]) ∈ I1 ∪ · · · ∪ Ii−1 ∪ {fix1(Ci[1]), . . . , fix1(Ci[j − 1])}. (20)

If (20) holds, then we say that fix1(Ci[j]) causes the bad event. That is, the bad event occurs if fix1(Ci[j])
collides with a previously used input value of F17. We see that the absence of the bad event implies that
the responses that A receives are uniform random bit strings, and we thus have

Advpriv
CLOC5[ℓN ,τ ](A) ≤ Pr

[
ACLOC5-E(·,·,·) sets bad

]
.

Assuming that C1[1], . . . , C1[m1−1], . . . , Ci−1[1], . . . , Ci−1[mi−1−1], Ci[1], . . . , Ci[j−1] do not cause the
bad event, we see that fix1(Ci[j]) is a uniform random string of (n−1) bits. In particular, C1[1], . . . , Cq[1]
are all random bits from the nonce-respecting assumption on A, and other values are random bits from
the randomness of F17. Therefore, we obtain the upper bound on Pr

[
ACLOC5-E(·,·,·) sets bad

]
as

∑
1≤i≤q

∑
1≤j≤mi−1

m1 − 1

2n−1
+ · · ·+ mi−1 − 1

2n−1
+

j − 1

2n−1
≤

∑
0≤ℓ≤σM−1

ℓ

2n−1
≤ σ2

M

2n
,

and therefore, we obtain Advpriv
CLOC5[ℓN ,τ ](A) ≤ σ2

M/2n.

Authenticity of CLOC5. Finally, we analyze the authenticity of CLOC5. Consider the j-th decryption
query (N ′

j , A
′
j , C

′
j , T

′
j), and suppose that, prior to this decryption query, A made i encryption queries and

obtained the responses. Let (N1, A1,M1, C1, T1), . . . , (Ni, Ai,Mi, Ci, Ti) be the list of the queries and the
responses. Now (N ′

j , A
′
j , C

′
j) ̸∈ {(N1, A1, C1), . . . , (Ni, Ai, Ci)} holds, since otherwise A does not succeed.

This implies that, each time A makes a decryption query, A has to guess the output value of PRF5 for a
new input value. Since A makes at most q′ decryption queries, we have Advauth

CLOC5[ℓN ,τ ](A) ≤ q′/2τ . ⊓⊔
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