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Abstract

Verifiable computation (VC) enables thin clients to efficiently verify the computational results produced by a
powerful server. Although VC was initially considered to be mainly of theoretical interest, over the last two years,
impressive progress has been made on implementing VC. Specifically, we now have open-source implementations of
VC systems that can handle all classes of computations expressed either as circuits or in the RAM model. However,
despite this very encouraging progress, new enhancements in the design and implementation of VC protocols are
required in order to achieve truly practical VC for real-world applications.

In this work, we show that for functionalities that can be expressed efficiently in terms of set operations (e.g., a
subset of SQL queries) VC can be enhanced to become drastically more practical: We present the design and prototype
implementation of a novel VC scheme that achieves orders of magnitude speed-up in comparison with the state of the
art. Specifically, we build and evaluate TRUESET, a system that can verifiably compute any polynomial-time function
expressed as a circuit consisting of “set gates” such as union, intersection, difference and set cardinality. Moreover,
TRUESET supports hybrid circuits consisting of both set gates and traditional arithmetic gates and, therefore, does
not lose any of the expressiveness of the previous schemes (allowing, at the same time, the user to choose the most
efficient way to represent different parts of a computation task). By expressing set computations as polynomial
operations and introducing a novel Quadratic Polynomial Program technique, TRUESET achieves prover performance
speed-up ranging from 30x to 150x and yields up to 97% evaluation key size reduction.

1 Introduction

Verifiable Computation (VC) is a cryptographic protocol that allows a client to outsource expensive computation
tasks to a worker (e.g., a cloud server), such that the client can verify the result of the computation in less time
than that required to perform the computation itself. Cryptographic approaches for VC [4, 5, 6, 11, 12, 13, 18] are
attractive in that they require no special trusted hardware or software on the server, and can ensure security against
arbitrarily malicious server behavior, including software/hardware bugs, misconfigurations, malicious insiders, and
physical attacks.

Due to its various applications such as secure cloud computing, the research community has recently made im-
pressive progress on Verifiable Computation, both on the theoretical and practical fronts. In particular, several recent
works [2, 8, 21, 23, 24, 27] have implemented Verifiable Computation for general computation tasks, and demonstrated
promising evidence of its near practicality. Despite this encouraging progress, performance improvement of orders of
magnitude is still required (especially on the time that the server takes to compute the proof) for cryptographic VC to
become truly practical.

Existing systems for Verifiable Computation are built to accommodate any language in NP: Specifically, func-
tions/programs are represented as either circuits (boolean or arithmetic) or sets of constraints and cryptographic opera-
tions are run on these representations. While such an approach allow us to express any polynomial-time computation,
it is often not the most efficient way to represent common computation tasks encountered in practice. For example,
Parno et al. [21] point out that the behavior of their construction deteriorates abruptly for functionalities that have
∗University of Maryland. Email: akosba@cs.umd.edu.
†Boston University. Email: dipapado@bu.edu.
‡University of Maryland. Email: cpap@umd.edu.
§University of Maryland. Email: mfayoub@cs.umd.edu.
¶University of Maryland. Email: elaine@cs.umd.edu.
‖RSA Laboratories, Cambridge MA, USA and Boston University. Email: Nikolaos.Triandopoulos@rsa.com@bu.edu.

1



SELECT COUNT(UNIVERSITY.id)
FROM UNIVERSITY JOIN CS

ON UNIVERSITY.id = CS.id

Figure 1.1: An example of a JOIN SQL query (between tables UNIVERSITY and CS) that can be efficiently supported by
TRUESET. TRUESET will implement JOIN with an intersection gate and COUNT with a cardinality gate.

“bad” arithmetic circuit representation and Braun et al. [8] recognize that their scheme is not quite ready for practical
use, restricting their evaluations to “smaller scales than would occur in real applications.”

In order to reduce the practical cost of Verifiable Computation, in this paper we design and build TRUESET.
TRUESET is an efficient and provably secure VC system that specializes in handling set-centric computation tasks.
It allows us to model computation as a set circuit—a circuit consisting of a combination of set operators (such as
intersection, union, difference and sum), instead of just arithmetic operations (such as addition and multiplication in
a finite field). For computation tasks that can be naturally expressed in terms of set operations (e.g., a subset of SQL
database queries), our experimental results suggest orders-of-magnitude performance improvement in comparison
with existing VC systems such as Pinocchio [21]. We now present TRUESET’s main contributions:

Expressiveness. TRUESET retains the expressiveness of existing VC systems, in that it can support arbitrary compu-
tation tasks. Fundamentally, since our set circuit can support intersection, union, and set difference gates, the set of
logic is complete1.

Additionally, in Section 4.4, we show that TRUESET can be extended to support circuits that have a mixture
of arithmetic gates and set gates. We achieve this by introducing a “split gate” (which, on input a set, outputs the
individual elements) and a “merge gate” (which has the opposite function of the split gate).

Input-specific running time. One important reason why TRUESET significantly outperforms existing VC systems
in practice is that TRUESET achieves input-specific running time (during proof computation and key generation).
Input-specific running time means that the running time of the prover is proportional to the size of the current input.

Achieving input-specific running time is not possible when set operations are expressed in terms of boolean or
arithmetic circuits, where one must account for worst-case set sizes when building the circuit: For example, in the
case of intersection, the worst case size of the output is the minimum size of the two sets; in the case of union, the
worst case size of the output is the sum of their sizes. Note that this not only applies to the set that comprises the
final outcome of the computation, but to every intermediate set generated during the computation. As a result, existing
approaches based on boolean or arithmetic circuits incur a large blowup in terms of circuit size when used to express set
operations. In this sense, TRUESET also achieves asymptotic performance gains for set-centric computation workloads
in comparison with previous approaches.

TRUESET achieves input-specific running time by encoding a set of cardinality c as a polynomial of degree c (such
encoding was also used in previous works, e.g., [16, 20]), and a set circuit as a circuit on polynomials, where every
wire is a polynomial, and every gate performs polynomial addition or multiplication. As a result, per-gate computation
time for the prover (including the time for performing the actual computation and the time for producing the proof) is
(quasi-)linear in the degree of the polynomial (i.e., cardinality of the actual set), and not proportional to the worst-case
degree of the polynomial.

Finally, as in other VC systems, verifying in TRUESET requires work proportional to the size of inputs/outputs,
but not in the running time of the computation.

Implementation and experimental results. We implemented TRUESET and documented its near practicality. We
compare TRUESET with a straightforward verifiable protocol that compiles a set circuit into an arithmetic circuit and
then uses Pinocchio [21] on the produced arithmetic circuit. In our protocol the prover’s running time is reduced by
approximately 30x for all set sizes of 64 elements or more. In particular, for a single intersection/union gate over 2 sets
of 256 elements each, TRUESET improves the prover cost by nearly 150x. We also show that, while other systems [21]
cannot—in a reasonable amount of time—execute over larger inputs, TRUESET can scale to large sets, e.g., sets whose
cardinality is approximately 8000 (213), demonstrating near practicality for instances that are about 30x larger than
previous systems. Finally, we show that TRUESET greatly reduces the evaluation key size, a reduction that can be up
to 97% for some operations.

1Any function computable by boolean circuits can be computed by a set circuit: If one encodes the empty set as 0 and a fixed singleton set {s}
as 1, a union expresses the OR gate, an intersection expresses the AND gate and a set difference from {s} expresses the NOT gate.
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Applications. TRUESET is developed to serve various information retrieval applications that use set operations as a
building block. For example, consider an SQL query that performs a JOIN over two tables and then computes MAX or
SUM over the result of the join operation. TRUESET can model the join operation as an intersection and then use the
split gate to perform the maximum or the summation/cardinality operation over the output of the join—see Figure 1.1.
Other queries that TRUESET could model are advanced keyword search queries containing complicated filters that can
be expressed as arbitrary combinations of set operations (union, intersection, difference) over an underlying data set.

Technical highlight. Our core technical construction is inspired by the recent quadratic span and arithmetic pro-
grams [13], which were used to implement VC for any boolean or arithmetic circuit. Since our internal representation
is a polynomial circuit (as mentioned earlier), we invent quadratic polynomial programs (QPP). During the prover’s
computation, polynomials on the wires of the circuit are evaluated at a random point s—however, this takes place in the
exponent of a bilinear group, in a way that the server does not learn s. Evaluating the polynomial at the point s in effect
reduces the polynomial to a value—therefore one can now think of the polynomial circuit as a normal arithmetic cir-
cuit whose wires encode plain values. In this way, we can apply techniques resembling quadratic arithmetic programs.
While the intuition may be summarized as above, designing the actual algebraic construction and formally proving its
security is nonetheless challenging, and requires a non-trivial transformation of quadratic arithmetic programs.

1.1 Related Work

There has been a large amount of theoretical work on Verifiable Computation (VC): Micali [18] presented a scheme
that can accommodate proofs for any language in NP. A more efficient approach is based on the construction of succinct
non-interactive arguments of knowledge (SNARKs) [4, 5, 6, 13]. For the case of polynomial-time computable func-
tions, protocols based on fully-homomorphic encryption (FHE) [11, 12] and attribute-based encryption (ABE) [22]
have also been proposed. In general, the above schemes employ heavy cryptographic primitives and therefore are not
very practical.

Recent works [2, 8, 21, 23, 24, 27] have made impressive progress toward implementations of some of the above
schemes, showing practicality for particular functionalities. Unfortunately, the server’s cost for proof computation
remains too high to be considered for wide deployment in real-world applications.

The problem of verifying a circuit of set operations was first addressed in a recent work by Canetti et al. [9]. Their
proofs are of size linear to the size of the circuit, without however requiring a preprocessing phase for each circuit. In
comparison, our proofs are of constant size, once such a preprocessing step has been run.

Papamanthou et al. [20] presented a scheme that provides verifiability for a single set operation. However, one can
only accommodate more general set operations by repeatedly using their approach, since all intermediate set outputs
are necessary for verification. This would lead to increased communication complexity.

A related scheme is also the scheme of Chung et al. [10]. This scheme uses Turing machines as the underlying
computation model, the prover has inherently high complexity (e.g., linear in the size of the sets). Another work that
combines verifiable computation with outsourcing of storage is [1] where a protocol for outsourced streaming datasets
is proposed but the supported class of functionalities is restricted to arithmetic functions that can be expressed as
polynomials of degree two.

2 Definitions

In this section we give some necessary definitions and introduce some terminology that is going to be useful in the rest
of the paper.

Circuits of Sets and Polynomials. TRUESET uses the same computation abstraction as the one used in the VC scheme
by Parno et al. [21]: A circuit. However, instead of field elements, the circuit wires now carry sets, and, instead of
arithmetic multiplication and addition gates, our circuit has three types of gates: Intersection, union and difference.
For the sake of presentation, the sets we are considering are simple sets, though our construction can be extended to
support multisets as well. We therefore begin by defining a set circuit:

Definition 1 (Set circuit C) A set circuit C is a circuit that has gates that implement set union, set intersection or set
difference over sets that have elements in a field F.

As mentioned in the introduction, our main technique is based on mapping any set circuit C to a circuit F of poly-
nomial operations, i.e., to a circuit that carries univariate polynomials on its wires and has polynomial multiplication
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and polynomial addition gates. We now define the polynomial circuit F :

Definition 2 (Polynomial circuit F) A polynomial circuit F in a field F is a circuit that has gates that implement
univariate polynomial addition and univariate polynomial multiplication over F. We denote with d the number of
multiplication gates of F and with N the number of input and output wires of F . The inputs and output wires are
indexed 1, . . . , N . The rest of the wires2 are indexed N + 1, . . . ,m.

SNARKs. TRUESET’s main building block is a primitive called succinct non-interactive argument of knowledge
(SNARK) [13]. A SNARK allows a client to commit to a computation circuit C and then have a prover provide
succinct cryptographic proofs that there exists an assignment on the wires w (which is called witness) such that the
input-output pair x = (I,O) is valid.

As opposed to verifiable computation [22], a SNARK allows a prover to specify some wires of the input I as part
of the witness w (this is useful when proving membership in an NP language, where the prover must prove witness
existence). For this reason, SNARKs are more powerful than VC and therefore throughout the rest of the paper, we are
going to show how to construct a SNARK for hierarchical set operations. In Appendix 6.6, we show how to use the
SNARK construction to provide a VC construction as well and we also provide a scheme for VC over outsourced sets,
where the server not only performs the computation, but also stores the sets for the client. We now give the SNARK
definition, adjusted from [13].

Definition 3 (SNARK scheme) A SNARK scheme consists of three PPT algorithms (KeyGen,Prove,Verify) defined
as follows.

1. (pk, sk) ← KeyGen(1k, C). The key generation algorithm takes as input the security parameter k and a com-
putation circuit C; it outputs a public key pk, and a secret key sk.

2. π ← Prove(pk, x, w): The prover algorithm takes as input the public key pk, an input-output pair x = (I,O),
a valid witness w and it outputs a proof π.

3. {0, 1} ← Verify(sk, x, π): Given the key sk, a statement x and a proof π, the verification algorithm outputs 0 or
1.

We say that a SNARK is publicly-verifiable if sk = pk. In this case, proofs can be verified by anyone with pk. Otherwise,
we call it a secretly-verifiable SNARK, in which case only the party with sk can verify.

There are various properties that a SNARK should satisfy. The most important one is soundness. Namely, no PPT
adversary should be able to output a verifying proof π for an input-output pair x = (I,O) that is not consistent with
C. All the other properties of SNARKs are described formally in Appendix 6.3.

3 A SNARK for Polynomial Circuits

In their recent seminal work, Gennaro et al. [13] showed how to compactly encode computations as quadratic pro-
grams, in order to derive very efficient SNARKs. Specifically, they show how to convert any arithmetic circuit into a
comparably-sized Quadratic Arithmetic Program (QAP), and any Boolean circuit into a comparably-sized Quadratic
Span Program (QSP).

In this section we describe our SNARK construction for polynomial circuits. The construction is a modification
of the optimized construction for arithmetic circuits that was presented by Parno et al. [21] (Protocol 2) and which is
based on the original work of Gennaro et al. [13]. Our extension accounts for univariate polynomials on the wires,
instead of just arithmetic values. We therefore need to define a quadratic polynomial program:

Definition 4 (Quadratic Polynomial Program (QPP)) A QPP Q for a polynomial circuit F contains three sets of
polynomials V = {vk(x)},W = {wk(x)},Y = {yk(x)} for k = 1, . . . ,m and a target polynomial τ(x). We say that
Q computes F if: c1(z), c2(z), . . . , cN (z) is a valid assignment of F’s inputs and outputs iff there exist polynomials
cN+1(z), . . . , cm(z) such that τ(x) divides p(x, z) where

p(x, z) =

(
m∑
k=1

ck(z)vk(x)

)(
m∑
k=1

ck(z)wk(x)

)
−

(
m∑
k=1

ck(z)yk(x)

)
.

2These wires include free wires (which are inputs only to multiplication gates) and the outputs of the internal multiplication gates (whose outputs
are not outputs of the circuit). The set of these wires is denoted with Im and has size at most 3d.
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We also define the degree of Q to equal the degree of τ(x).

The main difference of the above quadratic program with the one that was presented in [21] is the fact that we intro-
duce another variable z in the polynomial p(x, z) representing the program (hence we need to account for bivariate
polynomials, instead of univariate), which is going to account for the polynomials on the wires of the circuit.

We now show how to construct a QPPQ for a polynomial circuit. The polynomials in V,W,Y and the polynomial
τ(x) are computed as follows. Let r1, r2, . . . , rd be random elements in F. First, set τ(x) = (x−r1)(x−r2) . . . (x−rd)
and compute the polynomial vk(x) such that vk(ri) = 1 iff wire k is the left input of multiplication gate i, otherwise
vk(ri) = 0. Similarly, wk(ri) = 1 iff wire k is the right input of multiplication gate i, otherwise wk(ri) = 0 and
yk(ri) = 1 iff wire k is the output of multiplication gate i, otherwise yk(ri) = 0. We can now prove the following
(see proof in the Appendix)

Lemma 1 The above QPP Q computes F .

We now give an efficient SNARK construction for polynomial circuits based on the above QPP. Recall that a
polynomial circuit F has d multiplication gates and m wires, the wires 1, . . . , N occupy inputs and outputs and set
Im = {N + 1, . . . ,m} represents the internal wires, where |Im| ≤ 3d. Also, we will denote with ni the degree of
polynomial on wire i. We also set n be an upper bound on the degrees of the polynomials on F’s wires.

3.1 Intuition of Construction

The SNARK construction that we present works as follows. First, the key generation algorithm KeyGen produces a
“commitment” to the polynomial circuit F by outputting elements that relate to the internal set of wires Im of the
QPP Q = (V,W,Y, t(x)) as the public key. These elements encode bivariate polynomials in the exponent, evaluated
at randomly chosen points t and s, to accommodate for the fact that circuit F encodes operations over univariate
polynomials and not just arithmetic values (as is the case with [13]).

As was described in the previous section, for the prover to prove that an assignment c1(z), c2(z), . . . , cN (z) of
polynomials on input/output wires is valid, it suffices to prove there exist polynomials cN+1(z), . . . , cm(z) correspond-
ing to assignments on the internal wires, such that the polynomial p(x, z) from Relation 3.1 have roots r1, r2, . . . , rd.
In other words, the following should hold for some polynomial h(x, z):

p(x, z) = h(x, z)τ(x) . (3.1)

To prove the above, the prover first “solves” the circuit and computes the polynomials c1(z), c2(z), . . . , cm(z) that
correspond to the correct assignments on the wires. Then he uses these polynomials and the public evaluation key
(i.e., the circuit “commitment”) to compute the following three types of terms (which comprise the actual proof). The
detailed computation of these values is described in Section 3.2.

• Extractability terms. These terms declare three polynomials in the exponent, namely
∑m
k=N+1 ck(z)vk(x),∑m

k=N+1 ck(z)wk(x), and
∑m
k=N+1 ck(z)yk(x). Specifically, these polynomials correspond to the internal

wires since the verifier can fill in the parts for the input and output wires.

The above terms are engineered to allow extractability using a knowledge assumption. In particular, given these
terms, there exists a polynomial-time extractor that can, with overwhelming probability, recover the assignment
cN+1(z), . . . , cm(z) on internal wires. This proves the existence of cN+1(z), . . . , cm(z).

• Consistency check terms. Extraction is done separately for terms related to polynomials
∑m
k=N+1 ck(z)vk(x),∑m

k=N+1 ck(z)wk(x), and
∑m
k=N+1 ck(z)yk(x). We therefore require a set of consistency check terms to

ensure that the extracted cN+1(z), . . . , cm(z) polynomials are consistent for the above V , W , and Y terms—
otherwise, the same wire can have ambiguous assignments.

• Divisibility check term. Finally, the divisibility check term is to ensure that the above divisibility check corre-
sponding to Equation 3.1, holds for the polynomial(

m∑
k=1

ck(z)vk(x)

)(
m∑
k=1

ck(z)wk(x)

)
−

(
m∑
k=1

ck(z)yk(x)

)

declared earlier by the extractability terms.
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3.2 Concrete Construction

We now give the algorithms of our SNARK construction, following the definition of SNARKs (see Definition 3). In
comparison with the QSP and QAP constructions [13, 21], one difficulty arises in our setting when working with
polynomials on wires. In essence, to express a polynomial ck(z) on a wire in our construction, we evaluate the
polynomial at a committed point z = t. In existing QSP and QAP constructions [13, 21], the prover knows the
cleartext value on each wire when constructing the proof. However, in our setting, the prover does not know what t
is, and hence cannot directly evaluate the polynomials ck(z)’s on each wire. In fact, security would be broken if the
prover knows the value of the polynomials at z = t.

To overcome this problem, we have to include more elements in the evaluation key which contain in the exponent
powers of the variable t (see the evaluation key below). In this way, the prover will be able to evaluate ck(t) in the
exponent, without ever learning the value t. We now give the algorithms:
(pk, sk)← KeyGen(F , 1k): Let F be a polynomial circuit. Build the corresponding QPP Q = (V,W,Y, t(x)) as
above. Let e be a non-trivial bilinear map e : G×G→ GT , and let g be a generator of G. G and GT have prime order
p. Pick s, t, rv, rw, αv, αw, αy, β, γ from Zp and set ry = rvrw and gv = grv , gw = grw and gy = gry . The public
evaluation key EKF is

1. {gt
ivk(s)
v , g

tiwk(s)
w , g

tiyk(s)
y }(i,k)∈[n]×Im .

2. {gt
iαvvk(s)
v , g

tiαwwk(s)
w , g

tiαyyk(s)
y }(i,k)∈[n]×Im .

3. {gt
iβ·vk(s)
v g

tiβ·wk(s)
w g

tiβ·yk(s)
y }(i,k)∈[n]×Im .

4. {gtisj}(i,j)∈[2n]×[d].
The verification key VKF consists of the values

g, gαv , gαw , gαy , gγ , gβγgt(s)y

and the set {gt
ivk(s)
v , g

tiwk(s)
w , g

tiyk(s)
y }(i,k)∈[n]×[N ]. Note VKF and EKF are the public key pk of the SNARK. Our

SNARK is publicly verifiable, hence sk = pk.
π ← Prove(pk, x, w): The input x contains input polynomials u and output polynomials y and the witness w (which
contains assignments of polynomials on the internal wires). Let ck(z) be the polynomials on the circuit’s wires such
that y = F(u,w). Let h(x, z) be the polynomial such that p(x, z) = h(x, z) · τ(x). The proof is computed as follows:

1. (Extractability terms) gvm(s,t)
v , gwm(s,t)

w , gym(s,t)
y , g

αvvm(s,t)
v , gαwwm(s,t)

w , gαyym(s,t)
y .

2. (Consist. check term) gβ·vm(s,t)
v g

β·wm(s,t)
w g

β·ym(s,t)
y .

3. (Divisibility check term) gh(s,t),

where vm(x, z) =
∑
k∈Im ck(z)vk(x), wm(x, z) =

∑
k∈Im ck(z)wk(x) and ym(x, z) =

∑
k∈Im ck(z)yk(x). Note

that the term g
β·vm(s,t)
v g

β·wm(s,t)
w g

β·ym(s,t)
y can be computed from the terms

{gt
iβ·vk(s)
v gt

iβ·vk(s)
w gt

iβ·yk(s)
y }(i,k)∈[n]×Im

of the public key pk.
{0, 1} ← Verify(pk, x, π): Parse the proof π as

1. γv, γw, γy, κv, κw, κy .

2. Λ.

3. γh.

First, verify all three α terms: e(γv, gαv )
?
= e(κv, g) ∧ e(γw, gαw)

?
= e(κw, g) ∧ e(γy, gαy )

?
= e(κy, g). Then verify

the divisibility requirement:
e(λv · γv, λw · γw)/e(λy · γy, g)

?
= e(γh, g

τ(s)),

where λv = g
∑

k∈[N] ck(t)vk(s), λw = g
∑

k∈[N] ck(t)wk(s), λy = g
∑

k∈[N] ck(t)yk(s). Finally verify the β term:

e(γv · γw · γy, gβγ)
?
= e(Λ, gγ).
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3.3 Asymptotic Complexity and Security

In this section we analyze the asymptotic complexity of our SNARK construction for polynomial circuits. We also
state the security of our scheme.

KeyGen: It is easy to see that the computation time of KeyGen is O(n|Im|+ nd+ nN) = O(dn).
Prove: Let T be the time required to compute the polynomials ci(z) for i = 1, . . . ,m and let ni be the degree of

the polynomial ci(z) for i = 1, . . . ,m. The computation of each gci(z)vi(x) (similarly for gci(z)wi(x) and gci(z)yi(x))
for i ∈ Im takes O(ni) time (specifically, 7 ·

∑
ni exponentiations are required to compute all the proof), since one

operation per coefficient of ci(z) is required. Then multiplication of |Im| terms is required. Therefore the total time
required is

O

(
T +

∑
i∈Im

ni + |Im|

)
= O (T + dν) ,

where ν = maxi=1,...,m{ni} is the maximum degree of the polynomials over the wires and since |Im| ≤ 3d.
For the division, note that p(x, z) has maximum degree in z equal to 2ν and maximum degree in x equal to 2d.

To do the division, we apply “the change of variable trick”. We set z = x2×(2d)+1 and therefore turn p(x, z) into
a polynomial of one variable x, namely the polynomial p(x, x2×(2d)+1). Therefore the dividend now has maximum
degree 2ν(4d+ 1) + 2d while the divisor has still degree d. By using FFT, we can do such division in O(dν log(dν))
time. Therefore the total time for Prove is O (T + dν log(dν)).

Verify: The computation of each element gci(z)vi(x) (similarly for gci(z)wi(x) and gci(z)yi(x)) for i = 1, . . . , N
takes O(ni) time, since one operation per coefficient of ci(z) is required. Then multiplication of N terms is required.
Therefore the total time required is O(

∑
i∈[N ] ni), proportional to the size of the input and output.

We now have the following result. Its proof of security can be found in Appendix 6.5 and the involved assumptions
in Appendix 6.2.

Theorem 1 (Security of the SNARK for F) Let F be a polynomial circuit with d multiplication gates. Let n be an
upper bound on the degrees of the polynomials on the wires of F and let q = 4d + 4. The construction above is a
SNARK under the 2(n+ 1)q-PKE, the (n+ 1)q-PDH and the 2(n+ 1)q-SDH assumptions.

4 Efficient SNARKs for Set Circuits

In this section, we show how to use the SNARK construction for polynomial circuits that was presented in the previous
section to build a SNARK for set circuits.

To achieve that, we do the following: We first define a mapping from sets to polynomials (see Definition 5—such
representation was also used in prior work, e.g., the work of Kissner and Song [16]). Then we express the correctness
of the operations between two sets (e.g., set intersection) as constraints between the polynomials produced from this
mapping (e.g., see Lemma 2). For a set operation to be correct, these constraints must be satisfied simultaneously. To
capture that, we represent all these constraints with a circuit with loops, where a wire can participate in more than one
constraints (see Figure 4.2).

4.1 Expressing Sets with Polynomials

We first show how to represent sets and set operations with polynomials and polynomial operations. This represen-
tation is key to achieving input-specific time, since we can represent a set with a polynomial (evaluated at a random
committed point), regardless of the cardinality of the set.

Given a set, we first define the characteristic polynomial of a set.

Definition 5 (Characteristic polynomial) Let A be a set of elements {a1, a2, . . . , an} in F. We define its character-
istic polynomial as A(z) = (z + a1)(z + a2) . . . (z + an).

We now show the relations between set operations and polynomial operations. Note that similar relations were used
by Papamanthou et al. [20] in prior work.

Lemma 2 (Intersection constraints) Let A, B and I be three sets of elements in F. Then I = A ∩ B iff there exist
polynomials α(z), β(z), γ(z) and δ(z) such that
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Figure 4.2: Set circuits for intersection (a), union (b) and difference (c) expressed as polynomial circuits with loops using Lemma 2,
Corollary 1 and Corollary 2.

1. α(z)A(z) + β(z)B(z) = I(z).

2. γ(z)I(z) = A(z).

3. δ(z)I(z) = B(z).

Proof: (⇒) If I = A∩B, it follows that (i) the great common divisor of polynomials A(z) and B(z) is I(z), therefore,
by Bézout’s identity, there exist polynomials α(z) and β(z) such that (i) α(z)A(z)+β(z)B(z) = I(z); (ii) I(z) divides
A(z) and B(z), therefore there exist polynomials γ(z) and δ(z) such that γ(z)I(z) = A(z) and δ(z)I(z) = B(z).

(⇐) Let A, B and I be sets. Suppose there exist polynomials α(z), β(z), γ(z) and δ(z) such that (1), (2) and (3)
are true. By replacing (2) and (3) into (1), we get that α(z) and β(z) do not have any common factor, therefore I(z) is
the greatest common divisor of A(z) and B(z) and therefore A ∩ B = I.

Corollary 1 (Union constraints) Let A, B and U be three sets of elements in F. Then U = A ∪ B iff there exist
polynomials i(z), α(z), β(z), γ(z) and δ(z) such that

1. α(z)A(z) + β(z)B(z) = i(z).

2. γ(z)i(z) = A(z).

3. δ(z)i(z) = B(z).

4. δ(z)A(z) = U(z).

Corollary 2 (Difference constraints) Let A, B and D be three sets of elements in F. Then D = A − B iff there exist
polynomials i(z), α(z), β(z), γ(z) and δ(z) such that

1. α(z)A(z) + β(z)B(z) = i(z).

2. D(z)i(z) = A(z).

3. δ(z)i(z) = B(z).

4.2 Compiling Set Circuits into Polynomial Circuits

Polynomial circuits with loops. To compile a set circuit into a circuit on polynomials, we need to check that the
constraints in Lemma 2 and Corollaries 1 and 2 simultaneously satisfy for all intersection, union, and set difference
gates respectively. Doing this in a straightforward manner seems to require implementing a boolean AND gate using
polynomial algebra, which introduces an unnecessary representation overhead.

We use a simple idea to avoid this issue, by introducing polynomial circuits with loops. This means that the circuit’s
wires, following the direction of evaluation, can contain loops, as shown in Figure 4.2. When a circuit contains loops,
we require that there exist an assignment for the wires such that every gate’s inputs and output are consistent. It is not
hard to see that we can build a QPP for a polynomial circuit with loops.

From set circuits to polynomial circuits. Suppose we have a set circuit C, as defined in Definition 1. We can compile
circuit C into a polynomial circuit with loops F as follows:
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1. Replace every intersection gate gI with the circuit of Figure 4.2(a), which implements the constraints in Lemma 2.
Note that 6 additional wires per intersection gate are introduced during this compilation, 4 of which are free
wires. Also, for each intersection gate, 4 polynomial multiplication gates are added.

2. Replace every union gate gU of C with the circuit of Figure 4.2(b), which implements the set of constraints in
Corollary 1. Note that 7 additional wires per union gate are introduced during this compilation, 3 of which are
free wires. Also, for each union gate, 5 polynomial multiplication gates are added.

3. Replace every difference gate gD of C with the circuit of Figure 4.2(c), which implements the set of constraints
in Corollary 2. Note that 7 additional wires per union gate are introduced during this compilation, 3 of which
are free wires. Also, for each difference gate, 5 polynomial multiplication gates are added.

4.3 Asymptotic Complexity and Security

Let C be the circuit for set operations that has d gates (out of which d1 are intersection gates and d2 are union and
difference gates) and N inputs and outputs. After compiling C into an polynomial circuit with loops F , we end up
with a circuit F has 4d1 + 5d2 multiplication gates since each intersection gate introduces 4 multiplication gates and
each union or difference gate introduce 5 multiplication gates.

Therefore, a SNARK for set circuits with d = d1 +d2 gates can be derived from a SNARK for polynomial circuits
having 4d1 + 5d2 multiplication gates. Note that the complexity of algorithm Prove for the SNARK for set circuits is
O(dν log2 ν log log ν) because the prover runs the extended Euclidean algorithm to compute the polynomials on the
free wires, which takes O(t log2 t log log t) time, for t-degree polynomials as inputs.

Theorem 2 (Security of the SNARK for C) Let C be a set circuit that has d total gates and N total inputs and out-
puts. Let n be an upper bound on the cardinalities of the sets on the wires of C and let q = 16d1 + 20d2 + 4, where
d1 is the number of intersection gates and d2 is the number of union and difference gates (d = d1 + d2). The con-
structiuon above is a SNARK construction for the set circuit C under the 2(n + 1)q-PKE, the (n + 1)q-PDH and the
2(n+ 1)q-SDH assumptions.

We note here that there do exist known SNARK constructions for languages in NP that have excellent asymptotic
behavior and are input-specific, e.g., the work of Bitansky et al. [5], based on recursive proof composition. Therefore,
in theory, our SNARK asymptotics are the same with the ones by Bitansky et al. [5] (when applied to the case of set
operations).

However, the concrete overhead of such techniques remains high; in fact, for most functionalities it is hard to
deduce the involved constants. In comparison, with our approach, we can always deduce an upper bound on the
number of necessary operations involved. We give a tight complexity analysis of our approach in Appendix 6.7.

4.4 Handling More Expressive Circuits

As discussed in the introduction, by moving from QAPs to QPPs our scheme is not losing anything in expressiveness.
However, in order to be efficient for set operations, so far we explicitly discussed set circuits that only consist of set
gates. Ideally, we want to be able to efficiently accommodate “hybrid” circuits that consist both of set and arithmetic
operations in an optimally tailored approach.

In this section we show how, by constructing a split gate (and a merge gate) that upon input a set A outputs its
elements ai, we gain some “backwards compatibility” with respect to QAPs. In particular, this allows us to compute
on the set elements themselves, e.g., performing MAX or COUNT. Also, using techniques described in [21], one can
go one step below in the representation hierarchy and represent ai’s in binary form which yields, for example, more
efficient comparison operations.

Hence we produce here a truly complete toolkit that a delegating client can use for an elaborate computation, in
a way that allows him both to be more efficient for the part corresponding to set operations and at the same time
perform arithmetic and bit operations in an optimal way, choosing different levels of abstraction for different parts of
the circuit.

Zero-degree assertion gate. Arithmetic values can be naturally interpreted as zero-degree polynomials. Since we
want to securely accommodate both polynomials and arithmetic values in our circuit, we need to construct a gate that
will constrain the values of some wires to arithmetic values. For example, we need to assure that the outputs of a split
gate are indeed numbers (and not higher degree polynomials). The following lemma is going to be useful for that.
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Figure 4.3: Implementation of a split gate for the set A = {a, b, c, d}. The elements z and 1 on the wires are hard-coded in the
circuit during setup. All other polynomials on the wires are computed by the prover.

Lemma 3 (Zero-degree constraints) Let p(z) be a univariate polynomial in F[z]. The degree of p(z) is 0 iff ∃
polynomial q(z) in F[z] such that p(z)q(z) = 1.

Proof: (⇒) Every zero-degree polynomial q(z) ∈ F[z] also belongs in F. Since every element in F has an inverse,
the claim follows. (⇐) Assume now that p(z)q(z) = 1. Since polynomial 1 is of degree 0, p(z)q(z) must also be of
degree 0. By polynomial multiplication, we know that p(z)q(z) has degree deg(p(z)) +deg(q(z)). Therefore this can
only hold if deg(p(z)) = deg(q(z)) = 0.

This simple gate consists of a multiplication gate between polynomial p(z) and an auxiliary input q(z) computed
by the server and the output is set to the (hard-coded) polynomial 1. If the input is indeed a zero-degree polynomial,
by the above Lemma, q(z) is easily computable by the server (an inverse computation in F).

Split gate. A split gate, depicted in Figure 4.3, operates as follows. On input a wire with value A(z), it outputs n wires
with the individual elements ai. First, each of the wires carrying ai is connected to a degree-zero assertion gate. This
will make sure that these wires carry arithmetic values. Second, each of these wires is used as an input to an addition
gate, with the other input being the degree-one polynomial z. Then the outputs of all the addition gates are multiplied
together and the output of the multiplication is connected to the wire carrying A(z).

Split gate with variable number of outputs. In the above we assumed that the split gate can have a fixed number of
outputs, n. However, the number of outputs can vary. To accommodate this, we assume that n is an upper bound on
the number of outputs of a split gate. Now, for each of the n output wires, we introduce an indicator variable νi (picked
by the prover) such that if νi = 1, this output wire is occupied and carries an arithmetic value, otherwise νi = 0. Then,
in the split gate of Figure 4.3, instead of computing

∏n
i=1(z + ai) we compute

n∏
i=1

[νi(z + ai) + (1− νi)] .

Note here that an additional restriction we need to impose is that νi ∈ {0, 1}. Fortunately this can be checked very
easily by adding one self-multiplication gate and a loop wire for each value that enforces the condition νi · νi = νi
that clearly holds iff νi = 0 or 1.

Cardinality gate. One immediate side-effect of our construction for split gates with variable number of outputs, is
that it indicates a way to construct another very important type of gate, namely cardinality gate. Imagine for example a
computation where the requested output is not a set but only its cardinality (e.g., a COUNT SQL-query). A cardinality
gate is implemented exactly like a split gate, however it only has a single output wire that is computed as

∑
i νi, using

n− 1 addition gates over the νi wires.

Merge gate. Finally, the merge gate upon input n wires carrying numerical values ai, outputs a single wire that carries
them as a set (i.e., its characteristic polynomial).

The construction of this gate is conceptually very similar to that of the split gate, only in reverse order. First the
input wires are tested to verify that they are of degree 0 with n zero-degree assertion gates. Following that, these wires
are used as input for union gates, taken in pairs, in an iterative manner (imagine a binary tree of unions with n leaves
and the output set at the root). It should be noted that for computations that cater for multi-sets, this last step can be
replaced by multiplication gates that provide a more efficient solution.
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5 Evaluation

We now present the evaluation of TRUESET. We compare the performance of TRUESET with Pinocchio [21], which
is the state-of-the-art general VC scheme (already reducing computation time by orders-of-magnitude when compared
with previous implementations).

We also considered alternative candidates for comparison such as Pantry [8] which is specialized for stateful
computation. Pantry is theoretically more efficient than Pinocchio, in that it can support a RAM-based O(n)-time
algorithm for computing set intersection (i.e., when the input sets are sorted), instead of the circuit-based O(n log2 n)
or O(n2) algorithms that Pinocchio supports. However, in practice, the results we got by executing Pantry were not
that good, requiring more than one minute for proof construction even for the simplest operations. We therefore chose
to compare only with Pinocchio.

In our experiments, we analyse the performance of TRUESET both for the case of a single set operation and
multiple set operations. We begin by presenting the details of our implementation and the evaluation environment and
then we present the performance results.

5.1 Implementation

We built TRUESET by extending Pinocchio’s C++ implementation so that it can handle set circuits, with the special
set gates that we propose. However, since the original implementation of Pinocchio used efficient libraries for pairing-
based cryptography and field manipulation that are not available for public use (internal to Microsoft), the first step
was to replace those libraries with available free libraries that have similar characteristics. In particular, we used the
Number Theory Library (NTL) [25] along with the GNU Multi-Precision (GMP) library [14] for polynomial arith-
metic, in addition to an efficient free library for ate-pairing over Barreto-Naehrig curves [3], in which the underlying
BN curve is y2 = x3 + 2 over a 254-bit prime field Fp that maintains a 126 bit-level of security. As in Pinocchio,
the size of the cryptographic proof produced by our implementation is typically equal to 288 bytes in all experiments
regardless of the input or circuit sizes.

Optimizations. For a fair comparison, we employ the same optimizations used for reducing the exponentiation over-
head in Pinocchio’s implementation. Concerning polynomial arithmetic, Pinocchio’s implementation uses an FFT
approach to reduce the polynomial multiplication costs. In our implementation, we use the NTL library, which already
provides an efficient solution for polynomial arithmetic based on FFT [26].

Input Total IO Pinocchio Sorting Pinocchio Pairwise TRUESET Verification
Set Cardinality Set Cardinalities Network Eval. Key (MB) Eval. Key (MB) Eval. Key (MB) Key (KB)

22 16 2.624 0.019 0.012 1.937
23 32 8.69 0.073 0.024 3.437
24 64 26.327 0.286 0.047 6.437
25 128 74.814 1.135 0.094 12.437
26 256 202.619 4.519 0.188 24.437
27 512 - 18.039 0.375 48.437
28 1024 - 72.078 0.75 96.437
29 2048 - - 1.5 192.437
210 4096 - - 3.0 384.437
211 8192 - - 6.0 768.437
212 16384 - - 12.0 1536.437
213 32768 - - 24.0 3072.437

Table 1: Key sizes for a set circuit with a single union. Verification key size is the same for all protocols. Numbers represent the
keys and proof after compression. The cryptographic proof size is 288 bytes for all instances.

In addition to the above, the following optimizations were found to be very useful when the number of set gates is
high, or when the set split gate is being used.
1) For key generation, we reduce the generated key size by considering the maximum polynomial degree that can
appear on each wire, instead of assuming a global upper bound on the polynomial degree for all wires (as described in
previous sections). This can be calculated by assuming a maximum cardinality of the sets on the input wires, and then
iterating over the circuit wires to set the maximum degree per wire (sum of the input sets for union and minimum of
the input sets for intersection).
2) The NTL library does not provide direct support for bivariate polynomial operations, needed to calculate h(x, z)
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Figure 5.4: Comparison between TRUESET and Pinocchio for the case of a single union gate. In the horizontal axis, we show the
cardinality of each input set in logarithmic scale. Subfigures (a), (b) and (d) show the comparison in terms of the key generation,
proof computation and verification times, and (c) shows TRUESET’s prover’s time in more detail. (Note: Each data point is the
average of ten runs. The error bars were too small to be visualized).

through division of p(x, z) by t(x). Hence, instead of doing a naive O(n2) polynomial division, we apply the change-
of-variable trick discussed in Section 3.3 to transform the bivariate polynomials into univariate ones that can be handled
efficiently using NTL FFT operations.
3) Finally, calculation of the coefficients of the characteristic polynomial corresponding to the output is done by
the prover and not by the verifier. The verifier then verifies that the set elements of the output (i.e., the roots of
the characteristic polynomials) match the polynomial (expressed in coefficients) returned by the server. This can be
efficiently done through a randomized check—see algorithm certify() from [20]. We specify that this slightly increases
the communication bandwidth (the server effectively sends the output set twice, in two different encodings) but we
consider this an acceptable overhead. Note that this can be avoided by having the client perform the interpolation
himself, increasing the verification time.

5.2 Experiments Setup

We now provide a comparison between TRUESET’s approach and Pinocchio’s approach based for set operations. For
a fair comparison, we considered two different ways to construct the arithmetic circuits used by Pinocchio to verify
the set operations:

• Pairwise comparison-based, which is the naive approach for performing set operations. This requires O(n2)
equality comparisons.

• Sorting network-based, in which the input sets are merged and sorted first using and odd-even merge-sort net-
work [17]. Then a check for duplicate consecutive elements is applied to include/remove repeated elements,
according to the query being executed. This requires O(n log2 n) comparator gates, and O(n) equality gates.

Although the second approach is asymptotically more efficient, when translated to Pinocchio’s circuits it results in nu-
merous multiplication gates. This is due to the k-bit split gates needed to perform less-than or greater-than comparison
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operations, resulting into great overhead in the key generation and proof computation stages as each split gate trans-
lates into 254 multiplication gates (these gates upon input an arithmetical value output its bit-level representation and
they should not be confused with the split gates we introduce here, that given a set output its elements as arithmetical
values).

On the other hand, the pairwise approach uses zero-equality gates to check for equality of elements. Each equality
gate translates into only two multiplication gates, requiring only two roots.

Note that, for fairness purposes, for each different input set cardinality we experiment with, different Pinocchio
circuits were produced as each wire in Pinocchio’s circuits represents a single element. On the other hand, TRUESET
can use the same circuit over different input sets cardinalities.

We consider two Pinocchio implementations:

• MS Pinocchio: This is the executable built using efficient Microsoft internal libraries.

• NTL-ZM Pinocchio: This is a Pinocchio version built using exactly the same free libraries we used for our
TRUESET implementation. This will help ensure having a fair comparison.

The experiments were conducted on a Lenovo IdeaPad Y580 Laptop. The executable used a single core of a 2.3
GHz Intel Core i7 with 8 GB of RAM. For running time statistics, ten runs were collected for each data point, and the
95% confidence interval was calculated. Due to the scale of the figures, the confidence interval of the execution times
(i.e., error bars) was too low to be visualized.

5.3 Single-Gate Circuit

In this subsection, we compare TRUESET and Pinocchio’s protocols based on the verification of a single union opera-
tion that accepts two input disjoint sets of equal cardinalities. We study both the time overhead and the key sizes with
respect to different input set cardinalities. Note that, experiments for higher input cardinalities in Pinocchio’s case
incur great memory overhead due to the large circuit size, therefore we were unable to even perform Pinocchio’s for
large input sizes.

Figure 5.4 shows the comparison between TRUESET’s approach and Pinocchio’s pairwise and sorting network ap-
proaches, versus the cardinality of each input set. The results show clearly that TRUESET outperforms both approaches
in the key generation and proof computation stages by orders of magnitude, while maintaining the same verification
time. Specifically, TRUESET outperforms Pinocchio in the prover’s running time by 150x when the input set cardinal-
ity is 28. We note that Pinocchio’s pairwise comparison approach outperforms the sorting network approach due to
the 254-bit split gates needed for comparisons in the sorting-network circuits, as discussed above, which results into a
large constant affecting the performance at small cardinalities.

Considering evaluation and verification key size and proof size, Table 1 shows a comparison between TRUESET
and Pinocchio under both the pairwise and sorting networks approaches. The table demonstrates that TRUESET yields
much smaller evaluation keys due to the more compact wire representation it employs (a single wire for a set as
opposed to a wire per element), e.g., at an input set cardinality of 28, the saving is about 98%. It can also be noticed
that the keys generated in Pinocchio using sorting networks are much larger than the ones generated in pairwise
circuits, due to the use of the expensive 254-bit split gates. On the other hand, TRUESET and Pinocchio maintain the
same verification key sizes, as the verification key depends on the number of input elements in addition to the number
of output elements in the worst case.

5.4 Multiple-Gate Circuit

We now compare TRUESET and Pinocchio’s performance for a more complex set circuit that consists of multiple set
operations, illustrated in Figure 5.6. The computation takes eight input sets of equal cardinalities, and outputs one set.
We compare both the prover’s overhead and the key sizes with respect to different input set cardinalities, but this time
we consider only Pinocchio circuits based on pairwise comparisons, as the sorting network approach has much larger
overhead in terms of computation times and key sizes as shown in the previous subsection.

Figure 5.5 shows a comparison between TRUESET’s approach and Pinocchio’s approach. The results again confirm
that TRUESET greatly outperforms Pinocchio’s elapsed time in the key generation and proof computation stages,
while maintaining the same verification time. In particular, for an input set cardinality of 26, TRUESET’s prover has
a speedup of more than 50x. In terms of key sizes, Table 2 shows a comparison between TRUESET and Pinocchio,
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Figure 5.5: Comparison between TRUESET and Pinocchio in the case of the multiple-gate circuit shown in Fig. 5.6. In the
horizontal axis, we show the cardinality of each input set in logarithmic scale. Subfigures (a), (b) and (d) show the comparison in
terms of the key generation, proof computation and verification time, and (c) shows TRUESET’s prover’s time in more detail.
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Figure 5.6: The multiple-gate circuit used for evaluation.

confirming the observation that the evaluation key used by TRUESET is tiny compared to that of Pinocchio, e.g., 97%
smaller when the input cardinality is 26.

5.5 Cardinality and Sum of Set Elements

In this section, we evaluate TRUESET that uses a split gate to calculate the cardinality and sum for the output set of
Figure 5.6. We then compare that with Pinocchio’s performance when computing the same functions. One important
parameter that has to be defined for the split gate first is the maximum cardinality of the set it can support. This is
needed for translating the split gate to the appropriate number of multiplication gates needed for verification. For
example, a split gate added to the output of the circuit in Figure 5.6, will have to account for 4n set elements in the
worst case, if n is the upper bound on the input set cardinalities.

Table 3 presents a comparison between TRUESET and Pinocchio in terms of the elapsed times in the three stages
and the evaluation key size, when the input set cardinality is 64. As the table shows, TRUESET can provide better
performance in terms of the key generation and proof computation times (4x better proof computation time), in addition
to a smaller public evaluation key (by 50%). It can be noted that, while there definitely exists a large improvement
over Pinocchio, it is not as large as the one exhibited for the previous single-gate and multiple-gate circuits. Overall,
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Input Total IO Pinocchio TRUESET Verification
Set Cardinality Set Cardinalities Eval. Key (MB) Eval. Key (MB) Key (KB)

22 48 0.285 0.137 4.937
23 96 1.132 0.269 9.437
24 192 4.514 0.535 18.437
25 384 18.027 1.066 36.437
26 768 72.055 2.129 72.437
27 1536 - 4.254 144.437
28 3072 - 8.504 288.437
29 6144 - 17.004 576.437
210 12288 - 34.004 1152.437

Table 2: Key sizes for the circuit shown in Figure 5.6. Verification key size is the same for all protocols. Numbers represent the keys
and proof after compression. The cryptographic proof size is 288 bytes for all instances.

0

5

10

15

20

25

30

35

40

45

0 100 200

K
ey

 G
en

er
at

io
n

 T
im

e 
(s

ec
)

Input Set Cardinality

Single-gate
Multi-gate
Multi-gate with Split

0

20

40

60

80

100

120

140

0 100 200

P
ro

o
f 

C
o

m
p

u
ta

ti
o

n
 T

im
e 

(s
ec

)

Input Set Cardinality

Single-gate

Multi-gate

Multi-gate with Split

0

0.05

0.1

0.15

0.2

0.25

0.3

0 100 200

V
er

if
ic

at
io

n
 T

im
e 

(s
ec

)

Input Set Cardinality

Single-gate

Multi-gate

Multi-gate with Split

Figure 5.7: Summary of TRUESET performance under all circuits in linear scale.

we found the split gate to be costlier than set gates since the multiplication gates introduced by the split gate increase
proportionally with the number of the set elements it can support, whereas set gates are “oblivious” to the number of
elements.

5.6 Summary of Results

The evaluation of TRUESET in the case of single-gate and multiple-gate circuits showed huge improvement for both
key generation and proof computation time over Pinocchio. For example, for the single union case with 28-element
input sets, a speed-up of 150x was obtained for the prover’s time, while providing more than 98% saving in the
evaluation key size. For a multiple-gate circuit comprised of seven set gates with eight input sets, each of 26 elements,
a prover speed-up of more than 50x, and key size reduction of 97% were obtained. As can be qualitatively inferred
by our graphs, these great improvements in performance allow as to accommodate problem instances that are several
times larger than what was considered achievable by previous works. Observe that TRUESET achieves in practice the
performance behavior that Pinocchio exhibits for sets of a few dozen elements, for sets that scale up to approximately
8000 elements, handling circuits with nearly 30x larger I/O size.

To summarize the behavior of TRUESET for all circuits we experimented with, Figure 5.7 illustrates its perfor-
mance for the three stages in linear scale. In all cases, the performance increases approximately linearly in the input
size. It is clear that the performance cost increases more abruptly when a split gate is introduced due to the added
complexity discussed above. Enhancing the performance of the split gate is one possible direction for future work.

Supporting multisets. Finally, it should be noted that the comparisons with Pinocchio above assumed the case of
sets with distinct elements only. If this comparison is extended to the case of multiset operations (i.e., sets that allow
repetition in elements), we expect TRUESET’s performance to be much better than that of Pinocchio, as TRUESET
can naturally handle multiset cases without adding any modifications. On the other hand, Pinocchio multiset circuits
are going to be more complex than the distinct-elements sets, due to the added complexity of taking repetitions into
account. For example, in intersection circuits, it will not be enough to only check that two element are equal, but it will
also be necessary to make sure that the matched element was not encountered before, which will probably introduce
additional overhead.
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TRUESET MS Pinocchio NTL-ZM
Pinocchio

Key Generation (sec) 13.07 43.03 47.39
Proof Computation (sec) 32.45 174.99 137.79

Verification (sec) 0.065 0.074 0.066
Evaluation Key (MB) 36.66 72.45 72.45

Table 3: Comparison between TRUESET and Pinocchio on a circuit that computes the cardinality and the sum of the output set in
the circuit in Figure 5.6, at input set cardinality of 64.
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6 Appendix

6.1 Proof of Lemma 1

Lemma 4 The above QPP Q computes F .

Proof: (⇒) Suppose c1(z), c2(z), . . . , cN (z) are correct assignments of the input and output wires but there do not
exist polynomials cN+1(z), . . . , cm(z) such that τ(x) divides p(x, z). Then there is at least one multiplication gate r
with left input x, right input y and output o, such that p(r, z) 6= 0. Let p be the path of multiplication gates that contains
multiplication gate r starting from an input polynomial ci(z) to an output polynomial cj(z), where i, j ≤ N . Since
ci(z) and cj(z) are correct assignments, there must exist polynomials cx(z) and cy(z) such that cx(z)cy(z) = co(z).
Since r has a single left input, a single right input and a single output it holds vx(r) = 1 and vi(r) = 0 for all i 6= x.
Similarly, wy(r) = 1 and wi(r) = 0 for all i 6= y and yo(r) = 1 and yi(r) = 0 for all i 6= o. Therefore p(r, z) 6= 0
implies that for all polynomials cx(z), cy(z), co(z), it is cx(z)cy(z) 6= co(z), a contradiction.

(⇐) Suppose τ(x) divides p(x, z). Then p(r, x) = 0 for all multiplication gates r. By the definition of the
polynomials vi(x), wi(x), yi(x), it follows that c1(z), c2(z), . . . , cm(z) are correct assignments on the circuit wires.

6.2 Computational Assumptions

Assumption 1 (q-PDH assumption [15]) The q-power Diffie-Hellman (q-PDH) assumption holds for G if for all A
we have

Pr

 (p,G,GT , e, g)← G(1k); s← Z∗p;
σ ← (p,G,GT , e,G);

y ← A(σ) : y = gs
q+1

.

 = neg(k) .

where
G =

[
g, gs, . . . , gs

q

, gs
q+2

, . . . , gs
2q
]
.
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Assumption 2 (q-PKE assumption [15]) The q-power knowledge of exponent assumption holds for G if for all A
there exists a non-uniform probabilistic polynomial time extractor χA such that

Pr


(p,G,GT , e, g)← G(1k); {α, s} ← Z∗p;
σ ← (p,G,GT , e,G);
(c, ĉ; a0, a1, . . . , aq)← (A||χA)(σ, z) :

ĉ = cα ∧ c 6= g
∏q

i=0 ais
i

.

 = neg(k)

for any auxiliary information z ∈ {0, 1}poly(k) that is generated independently of α and where

G =
[
g, gs, . . . , gs

q

, gα, gαs, . . . , gαs
q
]
.

Note that (y; z) ← (A||χA)(x) signifies that on input x, A outputs y, and that χA, given the same input x and A’s
random tape, produces z.

Assumption 3 (q-SDH assumption [7]) The q-strong Diffie-Hellman (q-SDH) assumption holds for G if for allA we
have

Pr

 (p,G,GT , e, g)← G(1k); {s} ← Z∗p;
σ ← (p,G,GT , e,G);

(y, c)← A(σ) : y = e(g, g)
1

s+c .

 = neg(k) .

where
G =

[
g, gs, . . . , gs

q
]
.

6.3 Succinct Non-Interactive Arguments of Knowledge (SNARKs)

Definition 6 (SNARK) Algorithms (KeyGen,Prove,Verify) give a succinct non-interactive argument of knowledge
(SNARK) for an NP language L with corresponding NP relation RL if:

Completeness: For all x ∈ L with witness w ∈ RL(x), the probability:

Pr

[
Verify(sk, x, π) = 0

∣∣∣∣ (pk, sk)← KeyGen(1k),
π ← Prove(pk, x, w)

]
is a negligible function of k.

Adaptive soundness: For any probabilistic polynomial-time algorithm A, the probability:

Pr

[
Verify(sk, x, π) = 1
∧ (x /∈ L)

∣∣∣∣ (pk, sk)← KeyGen(1k),
(x, π)← A(1k, pk)

]
is negligible in k.

Succinctness: The length of a proof is given by |π| = poly(k)poly log(|x|+ |w|).

Extractability: For any poly-size prover Prv, there exists an extractor Extract such that for any statement x, auxiliary
information µ, the following holds:

Pr

 (pk, sk)← KeyGen(1k)
π ← Prv(pk, x, µ)
Verify(sk, x, π) = 1

∧ w ← Extract(pk, sk, x, π)
w /∈ RL(x)

 = negl(k) .

Zero-knowledge: There exists a simulator Sim, such that for any probabilistic polynomial-time adversary A, the
following holds:

Pr

 pk← KeyGen(1k); (x,w)← A(pk);
π ← Prove(pk, x, w) : (x,w) ∈ RL

and A(π) = 1

 ' Pr

 (pk, state)← Sim(1k); (x,w)← A(pk);
π ← Sim(pk, x, state) : (x,w) ∈ RL

and A(π) = 1 .


We say that a SNARK is publicly verifiable if sk = pk. In this case, proofs can be verified by anyone with pk.

Otherwise, we call it a secretly-verifiable SNARK, in which case only the party with sk can verify.
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6.4 Verifiable Computation

We now define Verifiable Computation.

Definition 7 (Public Verifiable Computation [21]) A public verifiable computation scheme consists of a set of three
polynomial-time algorithms (KeyGen,Compute,Verify) defined as follows.

1. {EKf ,VKf} ← KeyGen(f, 1k). The randomized key generation algorithm takes the function f to be outsourced
and security parameter k; it outputs a public evaluation key EKf , and a public verification key VKf .

2. (y, πy)← Compute(EKf , u): The deterministic worker algorithm uses the public evaluation key EKf and input
u. It outputs y = f(u) and a proof πy of y’s correctness.

3. {0, 1} ← Verify(VKf , u, y, πy): Given the verification key VKf , the deterministic verification algorithm outputs
1 if f(u) = y, and 0 otherwise.

4. Correctness. For any function f, and any input u to f , if we run {EKf ,VKf} ← KeyGen(f, 1k) and (y, πy)←
Compute(EKf , u), then we always get 1← Verify(VKf , u, y, πy).

5. Security. For any function f and any probabilistic polynomial-time adversaryA, the probability Pr[(u′, y′, π′y)←
A(EKf ,VKf ) : f(u′) 6= y′ ∧ 1← Verify(VKf , u

′, y′, π′y)] is neg(k).

6. Efficiency. KeyGen is assumed to be a one-time operation whose cost is amortized over many calculations, but
we require that Verify is cheaper than evaluating f .

6.5 Proof of Theorem 1

We now give proofs of completeness, soundness, extractability and zero-knowledge.

Completeness. Follows by inspection.

Soundness. Assume that there exists an adversary A who returns a cheating proof. Then we show how to construct
an adversary B that uses A and a 2(n + 1)q-PKE assumption knowledge extractor and breaks either the (n + 1)q-
PDH assumption or the 2(n + 1)q-SDH assumption, where q = 4d + 4. We show that B’s attack is successful with
probability 1/2. First, B flips a coin b ∈ {0, 1}. If b = 0, B asks for a challenge of an (n+ 1)q-PDH assumption, else
B asks for a challenge of a 2(n+ 1)q-SDH assumption.

G′ =


gs . . . gs

q

gs
q+2

. . . gs
2q

gs
2q+1

. . . gs
3q

gs
3q+2

. . . gs
4q

gs
4q+1

. . . gs
5q

gs
5q+2

. . . gs
6q

. . . . . . . . . . . . . . . . . .
gs

2nq+1

. . . gs
(2n+1)q

gs
(2n+1)q+2

. . . gs
2(n+1)q

 .
The challenge above is a subset of an (n + 1)q-PDH instance (Assumption 1), since more elements than one are
missing.

Case b = 1. B is given a 2(n+ 1)q-SDH instance

G =
[
g, gs, . . . , gs

2(n+1)q
]
.

Generating keys. The adversary A generates a function with N inputs/outputs that has QPP (τ(x),V,W,Y) of
size m = N + d and degree d. Recall that Im = {N + 1, . . . ,m} are the non-IO-related indices. If b = 0, B sets
t = s2q , otherwise it set t = Rs2q for random R and provides a carefully generated evaluation key to A, i.e.,

• {gt
ivk(s)
v }(i,k)∈[n]×Im , {gt

iwk(s)
w }(i,k)∈[n]×Im , {gt

iyk(s)
y }(i,k)∈[n]×Im .

• {gt
iαvvk(s)
v }(i,k)∈[n]×Im , {gt

iαwwk(s)
w }(i,k)∈[n]×Im , {gt

iαyyk(s)
y }(i,k)∈[n]×Im .

• {gt
iβ·vk(s)
v g

tiβ·wk(s)
w g

tiβ·yk(s)
y }(i,k)∈[n]×Im .
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• {gtisj}(i,j)∈[2n]×[d].

where gv = gr
′
vs

d+1

, gw = gr
′
ws

2(d+1)

and gy = gr
′
ys

3(d+1)

, where αv , αw, αy , r′v and r′w are chosen uniformly at
random and r′y = r′vr

′
w.

We now describe how B chooses β and γ in the challenge above. If b = 1, both β and γ are picked uniformly at
random. Otherwise B sets

β = sq−(4d+3)β(s) ,

where β(x) is a polynomial of degree at most 3d+ 3 sampled uniformly at random such that the polynomial

β(x)[r′vvk(x) + r′wx
d+1wk(x) + r′yx

2(d+1)yk(x)]

has a zero coefficient in front of x3d+3 for all k = 1, . . . ,m (see Lemma 10 of [13]). It is easy now to see that, with
such a choice of β, the term g

tiβ·vk(s)
v g

tiβ·wk(s)
w g

tiβ·yk(s)
y , for all k, can be written as

gt
iβ·vk(s)
v gt

iβ·wk(s)
w gt

iβ·yk(s)
y

= gt
i[sq−(4d+3)β(s)[r′vs

d+1vk(s)+r
′
ws

2(d+1)wk(s)+r
′
ys

3(d+1)yk(s)]]

= gt
i[sq−(3d+2)β(s)[r′vvk(s)+r

′
ws

d+1wk(s)+r
′
ys

2(d+1)yk(s)]]

(6.2)

where its exponent has a zero term in front of tisq+1 = si(2q)+q+1 = sq(2i+1)+1 and the maximum degree in variable
x is less than 2(n+1)q. Therefore B can efficiently generate the term g

tiβ·vk(s)
v g

tiβ·wk(s)
w g

tiβ·yk(s)
y from its challenge.

To choose γ, B generates γ′ uniformly at random and sets γ = γ′sq+2. It easy to see that both gγ and gβγ can be
efficiently generated from the challenge.

Extracting the exponents. Let now γv, γw, γy, γh, κv, κw, κy,Λ be a cheating proof. Since in the verification we
have

1. e(γv, gαv ) = e(κv, g).

2. e(γw, gαw) = e(κw, g).

3. e(γy, gαy ) = e(κy, g).

we can use a subset of the (2n + 2)q-PKE assumption to extract the polynomials vm(x), wm(x) and ym(x). Note,
that, due to the way B picked t = s2q (b = 0) in these polynomials, the expression xy = xi(2q)+j for (i, j) ∈ [n]× [d]
is mapped to

xj × zi .

For b = 1, it is easy to see that the mapping is
xj × zi

R
.

Consistency. Suppose now there does not exist polynomials ck(z) such that vm(x, z) =
∑
k∈Im ck(z)vk(x),

wm(x, z) =
∑
k∈Im ck(z)wk(x) and ym(x, z) =

∑
k∈Im ck(z)yk(x). Due to the verification, e(λv · λw · λy, gβγ) =

e(Λ, gγ) which implies that e(gr
′
vs

d+1vm(s,t)gr
′
ws

2(d+1)wm(s,t)gr
′
ys

3(d+1)ym(s,t), gβγ) = e(Λ, gγ), and it follows that

Λ = gβ(r
′
vs

d+1vm(s,t)+r′ws
2(d+1)wm(s,t)+r′ys

3(d+1)ym(s,t))

= gs
q−(4d+3)β(s)(r′vs

d+1vm(s,t)+r′ws
2(d+1)wm(s,t)

+r′ys
3(d+1)ym(s,t)) ,

where β(x) is the polynomial such that any polynomial that is produced as a linear combination of{
xq−(4d+3)β(x)(r′vx

(d+1)vk(x) + r′wx
2(d+1)wk(x) + r′yx

3(d+1)yk(x))
}
i=1,...,k
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has a zero term in front of xq+1. Polynomials that are not produced as a linear combination of these values have a
non-zero term in front of xq+1 that is distributed uniformly at random (when sampling b(x) uniformly at random based
on the above restriction).

Since we assumed there does not exist polynomials ck(z) such that vm(x, z) =
∑
k∈Im ck(z)vk(x), wm(x, z) =∑

k∈Im ck(z)wk(x) and ym(x, z) =
∑
k∈Im ck(z)yk(x), it follows that the exponent of Λ has a non-zero term in front

of tixq+1 for some i. It is easy to subtract the remaining terms from Λ and produce gt
ixq+1

= gx
2iq+q+1

, for some
i. If b = 0, B breaks a subset of (n + 1)q-PDH assumption and therefore it breaks the (n + 1)q-PDH assumption.
Otherwise it aborts.

Divisibility. Let now
λv = gv0(s,t)v , λw = gw0(s,t)

w and λy = gy0(s,t)y ,

as computed by the verification algorithm, where v0(x, z) =
∑
k∈[N ] ck(z)vk(x), w0(x, z) =

∑
k∈[N ] ck(z)wk(x)

and y0(x, z) =
∑
k∈[N ] ck(z)yk(x). Define now the polynomial p(x, z) = v(x, z)w(x, z) − y(x, z). This can be

written as

p(x, z) =

(
m∑
k=1

ck(z)vk(x)

)(
m∑
k=1

ck(z)wk(x)

)
−

(
m∑
k=1

ck(z)yk(x)

)
.

Suppose it is not divided by τ(x) =
∏d
i=1(x − ri) (equivalently, at least one of the characteristic polynomials ck(z)

used by the adversary is not the honestly computed one). Then there exists a factor ru of τ(x) that does not divide
p(x, z) which can be efficiently computed by dividing p(x, z) with all factors of τ(x). Therefore p(x, z) can be written
as p(x, z) = r(x, z)(x− ru) + κ(z). But the divisibility requirement holds:

e(λv · γv, λw · γw)/e(λy · γy, g) = e(γh, g
τ(s))

e(g
∑m

k=1 ck(t)vk(s), g
∑m

k=1 ck(t)wk(s)) · e(g−
∑m

k=1 ck(t)yk(s), g) = e(γh, g
τ(s))

e(g, g)r(s,t)(s−ru)+κ(t) = e(γh, g
τ(s)) .

If b = 0, B aborts. Otherwise, when b = 1, it is z = Rx2q . Since κ(z) has degree n, it has at most n roots. Let
w be a root of κ(z). Note now that κ(z) is divided by (x − ru) iff κ(Rx2q) is divided by (x − ru) iff Rr2qu = w,
where w is a root of κ(z). Since R is random, the probability of that event is negligible. We can thus write κ(Rx2q) =
π(x)(x− ru) + λ, where λ is a constant. Therefore we have

e(g, g)r(s,t)(s−ru)+κ(t) = e(γh, g
∏

i6=u(s−ri))⇔ e(g, g)r(s,t)(s−ru)+π(s)(s−ru)+λ = e(γh, g
τ(s)) ,

which gives

e(g, g)
1

s−ru =
(
e(γh, P )e(g, g)−r(s,t)(s−ru)−π(s)

)λ−1

,

where P = g
∏

i6=u(s−ri), breaking the 2(n+ 1)q-SDH assumption.

Extractability. In the soundness proof we show how to extract the coefficients of the polynomial vm(x, z) =
∑
k∈Im ck(z)vk(x),

but not the actual polynomials ck(z). Here we show how to extract the actual polynomials ck(z) for k ∈ Im. Write
the extracted polynomial as

vm(z, x) = ad(z)x
D + ad(z)x

D−1 + . . .+ a1(z)x+ a0(z)

for some D < d, since |Im| < d. Let now vk(x) = bkdx
d + bk(d−1)x

d−1 + . . . + bk0, for k ∈ Im. It is easy to see
that the following system of linear equations need to hold:


b10 b20 . . . bD0

b11x b21x . . . bD1x
. . .

b1dx
d b2dx

d . . . bDdx
d

 ·


c1(z)
c2(z)
. . .
. . .
. . .
cD(z)

 =


a0(z)
a1(z)
. . .
ad(z)

 .

Note that the above system has a solution since the multiplying matrix contains columns that are linearly independent.
To see that, suppose not. Then there exist non-zero w1, w2, . . . , wD such that

∑D
i=1 wivi(x) = 0. This means that∑D

i=1 wivi(x) = 0. Note however this is not true since we know for x = rg there exists a k such that vk(rg) = 1.

Zero-knowledge. For achieving zero-knowledge, the prover computes the following proof
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• gvm(s,t)+δvt(s)
v , gwm(s,t)+δwt(s)

w , gym(s,t)+δyt(s)
y , gh(s,t)

• gαv(vm(s,t)+δvt(s))
v , gαw(wm(s,t)+δwt(s))

w , gαy(ym(s,t)+δyt(s))
y

• gβ·(vm(s,t)+δvt(s))
v g

β·(wm(s,t)+δwt(s))
w g

β·(ym(s,t)+δyt(s))
y

where δv , δw and δy are picked uniformly at random. Therefore the proof elements become completely random-
ized, without loosing structure. To achieve that, in the public key pk we also include the terms gt(s)v , g

t(s)
w , g

t(s)
y ,

g
αvt(s)
v , g

αwt(s)
w , g

αyt(s)
y and gβt(s)v , g

βt(s)
w , g

βt(s)
y .

6.6 Verifiable Computation for Circuits on Sets

In this section, we present our verifiable computation (VC) schemes for set circuits (for the definition of VC, see
Section 6.4 in the Appendix). First, observe that our SNARK construction for set circuits immediately yields a VC
scheme for set circuits where the client sends to the server the input upon which the circuit is to be evaluated. Given a
set circuit C, one can compute a corresponding SNARK as described in Section 4.2 and send the evaluation key along
with C to the server. Consequently upon sending a number of sets X1, . . . , XN−1 he can receive answer set O and
proof that {X1, . . . , XN−1, O} ∈ L(C). The client can benefit from the re-usability of our SNARK, as well as from
the fact that it is publicly verifiable hence multiple clients can ask queries. The verification cost for the client is of
course O(

∑N−1
i=1 |Xi|+ |O|).

Consider now the scenario where a client commits to m sets X1, X2, . . . , Xm, outsources the sets to the server
and every time he would like to evaluate the set circuit on a subset of N − 1 sets of his liking. We present a VC
construction for this problem that combines verifiable computation with outsourcing of data. Indeed, once the owner
of setsXi runs a setup phase and outsources the sets to the server with a corresponding circuit C, any client with access
to public information can issue queries over an arbitrary subset of them without ever seeingXi’s (just a succinct digest
of them), making this approach ideal for multi-client environments where storage is costly.

Each set Xi with cardinality ni is originally represented by its accumulation value ai = g
∏ni

j=1(t−xj) (similar to
the bilinear accumulator of [19]) where the exponent is the characteristic polynomial of Xi evaluated for z = t and
consequently a Merkle tree is deployed over the m values ai. The evaluation key contains SNARK-related elements
and the Merkle tree, and the verification key contains also the tree’s digest d. At a high level, the function f that the
client outsources corresponding to set circuit C, takes us input a set ofN−1 indices from [1, . . . ,m] that correspond to
the sets to be used as inputs of C, and returns the circuit output. That is, given a collection of sets X = {X1, . . . , Xm},
the function fC,X corresponding to circuit C with N − 1 input wires, is f(i1, . . . , iN−1) = C(Xi1 , . . . , XiN−1

). For
the evaluation of C the server also uses as witness the sets Xi (the ones that correspond to the requested indices). Our
concrete VC construction is as follows:

{EKf ,VKf} ← KeyGen(fX ,C ,X , C, 1k): Run the SNARK key generation KeyGen(C, 1k) to receive corresponding

(pk, sk). For each set Xi compute ai = g
∏ni

j=1(t−xj). Choose appropriate collision-resistant hash function h and
compute a Merkle treeM over values (i, ai) with digest d. Output

{EKf := (pk, a1, . . . , an,M),VKf := (pk, d, h)} .

{y, πy} ← Compute(EKf , i1, . . . , iN−1): Compute y = C(Xi1 , . . . , XiN−1
). Execute the SNARK prover algorithm

Prove(pk, (Xi1 , . . . , XiN−1
, y), w) to receive π (w is the corresponding inner wire values). LetXj for j = 1, . . . , N−1

denote the sets corresponding to indices i1, . . . , iN−1. For each corresponding value aj compute a Merkle tree proof
pj for treeM. For each input set Xj , compute value δj = gαv

∏nj
l=1(t−xl). Finally, compute values λ(i)v = gci(t)vi(s),

λ
(i)
w = gci(t)wi(s) and λ(i)y = gci(t)yi(s) for k ∈ [N ]. Output

{y, πy = (π, a1, . . . , aN−1, δ1, . . . , δN−1, p1, . . . , pN−1,

λ(1)v , λ(1)w , λ(1)y , . . . , λ(N)
v , λ(N)

w , λ(N)
y )} .

{0, 1} ← Verify(VKf , i1, . . . , iN−1, y, πy): For each value aj verify its validity w.r.t d using proof pj . If it fails for any
of them, output 0 and halt. For each pair aj , δj check the equality e(aj , gαv ) = e(δj , g). If any of them fails, output 0
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and halt. Compute aN := g
∏|y|

l=1(t−xl).
For j ∈ [N ] check:

e(λ(j)v , g)
?
= e(aj , g

vj(s)) ∧ e(λ(j)w , g)
?
= e(aj , g

wj(s)) ∧ e(λ(j)y , g)
?
= e(aj , g

yj(s)) .

(recall that values gvj(s), etc. are included in the pk). If any of them fails, output 0 and halt. Compute value λv =∏
k∈[N ] λ

(k)
v and likewise for values λw, λy . Finally, run the SNARK verification algorithm (see Section 3) using the

computed λ values. If it accepts, output 1 otherwise 0.

Theorem 3 (VC for outsourced sets) Let C be a set circuit that has d total gates and N total inputs and outputs. Let
n be an upper bound on the cardinalities of the sets on the wires and let q = 16d1 + 20d2 + 4, where d1 is the number
of intersection gates and d2 is the number of union and difference gates (d = d1 + d2). Let X = {X1, . . . , Xm) be a
collection of m sets, with M =

∑m
i=1 |Xi| and µ = maxmi=1{|Xi|}. Finally, let K = max{2n + 1, µ}. The scheme

{KeyGen,Compute,Verify} is a verifiable computation scheme for function fC,X such that: (1) it is secure under the
Kq-PKE, the (n + 1)q-PDH, the Kq-SDH assumptions, and the existence of CRH functions; (2) Algorithm KeyGen
runs in O(dn + M) time; (3) Algorithm Compute runs in O(dν log2 ν log log ν + (N − 1) logm) time, where ν is
the maximum cardinality of the sets on the wires; (4) Algorithm Verify runs in O(

∑
i∈[N ] ni) time, where ni is the

cardinality of the set on wire i; (5) Proofs consist ofO(N) (5N+6 in practice) group elements andO((N−1) logm)
hash values.

Proof Sketch: First observe that a cheating prover can cheat either by using sets with different accumulation values,
different sets with the same accumulation values, or cheat in the SNARK proof construction. By the security of the
Merkle tree, the first case can happen with negligible-probability, or a collision for function h is found. Assuming the
second happens, the used sets can be extracted by the q-PKE assumption. Let X be one of the originally accumulated
sets and X ′ the extracted one, such that X 6= X ′ and

g
∏|X|

l=1(t−xl) = a = g
∏|X′|

j=1 (t−xj) .3

Let X(z), X ′(z) be their characteristic sets and Y (z) = X(z) − X ′(z). Observe that Y (t) = 0 hence t is a root of
Y (z). By running a randomized polynomial factoring algorithm on Y (z), an adversary can find t with non-negligible
probability, thus breaking q-SDH.

By a simple union bound, the two first events can only happen with negligible probability. Conditioned on that
not happening, the proof π is an accepting proof for a SNARK for the language L(C) for input sets Xij , . . . , XiN−1

and output y. A cheating adversary can extract these sets with overwhelming probability from q-PKE, hence it can be
used to break the security of our SNARK for sets. Since this can happen with negligible probability from Theorem 2,
the security claim follows. The complexities follow trivially from the complexities of the related algorithms of the
SNARK except for Compute where N − 1 Merkle proofs must be computed, each in time logm.

While the above construction yields a construction that appears practical, it has the downside that it produces proofs
that are linear in the number of input sets O(N) in size instead of the constant size proofs of our SNARK for sets. One
way to circumvent this would be to substitute the part or our scheme that deals with validating that the correct sets
were used (the Merkle tree part of the scheme and the λ values in the proof) with an appropriate SNARK that would
prove the same statement. One good candidate SNARK would be the construction from [13] for arithmetic circuits.
Indeed an arithmetic circuit proving the validity of values aj would be of sizeO(m) (assuming a hash computation can
be made with a constant number of arithmetic gates). Since both SNARK’s in such a construction offer extractability,
it would be easy for a cheating adversary to be reduced to an adversary for one of them and this scheme would
offer constant size proofs, assuming each of the two SNARKs does so. However, it is not clear how practical such a
construction would be and since N is only a the number of input sets (as opposed to, say, their cardinalities), we only
present it here as a viable theoretical construction.

6.7 Tight Complexity Analysis for Proof Construction.

Here we give an example of how we can deduce the exact cost related to the proof computation of our SNARK. We
will measure the number of necessary exponentiations for the mini-circuit of a single intersection gate with input sets

3In fact, the characteristic polynomial of X′ will be extracted. The same approach we explain here can be used to break the q-SDH assumption
even if the extracted polynomial is not the characteristic polynomial of some set.
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A,B of total cardinality |A|+ |B| = D. Let I(z), α(z), β(z), γ(z) and δ(z) be polynomials as defined in Lemma 2. By
the intersection constraints in the lemma, it follows that deg(γ(z))+deg(I(z)) = |A| and deg(δ(z))+deg(I(z)) = |B|.
Also, by the extended Euclidean algorithm, deg(α(z)) + deg(β(z)) ≤ D. Therefore the sum of the degrees of all the
polynomials at the wires (except for the input wires) is ≤ 2D.

These polynomials will be used for the computation of seven of the proof elements, namely the six extractability
terms and the one consistency term as defined in Section 3.1, hence the total number of exponentiations for these
terms is at most 7 · 2D. Finally, by the analysis in Section 3.3, polynomial h(x, z) has degree d to variable x and 2D
in z (since the maximum cardinality of a wire value is D) thus the maximum number of necessary exponentiations
to compute gh(s,t) is 2Dd. This circuit has four multiplication gates therefore d = 4 hence the overall necessary
exponentiations for the proof computation are at most 14D + 8D = 22D.
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