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Abstract

Verifiable computation (VC) enables thin clients to efficiently verify the computational re-
sults produced by a powerful server. Although VC was initially considered to be mainly of
theoretical interest, over the last two years, impressive progress has been made on implementing
VC. Specifically, we now have open-source implementations of VC systems that can handle all
classes of computations expressed either as circuits or in the RAM model. However, despite this
very encouraging progress, new enhancements in the design and implementation of VC protocols
are required in order to achieve truly practical VC for real-world applications.

In this work, we show that for functionalities that can be expressed efficiently in terms of
set operations (e.g., a subset of SQL queries) VC can be enhanced to become drastically more
practical: We present the design and prototype implementation of a novel VC scheme that
achieves orders of magnitude speed-up in comparison with the state of the art. Specifically,
we build and evaluate TrueSet, a system that can verifiably compute any polynomial-time
function expressed as a circuit consisting of “set gates” such as union, intersection, difference
and set cardinality. Moreover, TrueSet supports hybrid circuits consisting of both set gates and
traditional arithmetic gates. Therefore, it does not lose any of the expressiveness of the previous
schemes—this also allows the user to choose the most efficient way to represent different parts
of a computation. By expressing set computations as polynomial operations and introducing a
novel Quadratic Polynomial Program technique, TrueSet achieves prover performance speed-
up ranging from 30x to 150x and yields up to 97% evaluation key size reduction.

1 Introduction

Verifiable Computation (VC) is a cryptographic protocol that allows a client to outsource expensive
computation tasks to a worker (e.g., a cloud server), such that the client can verify the result of
the computation in less time than that required to perform the computation itself. Cryptographic
approaches for VC [4, 5, 6, 11, 12, 13, 18] are attractive in that they require no special trusted
hardware or software on the server, and can ensure security against arbitrarily malicious server
behavior, including software/hardware bugs, misconfigurations, malicious insiders, and physical
attacks.

Due to its various applications such as secure cloud computing, the research community has
recently made impressive progress on Verifiable Computation, both on the theoretical and practical
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fronts. In particular, several recent works [2, 8, 21, 23, 24, 27] have implemented Verifiable Compu-
tation for general computation tasks, and demonstrated promising evidence of its near practicality.
Despite this encouraging progress, performance improvement of orders of magnitude is still required
(especially on the time that the server takes to compute the proof) for cryptographic VC to become
truly practical.

Existing systems for Verifiable Computation are built to accommodate any language in NP:
Specifically, functions/programs are represented as either circuits (boolean or arithmetic) or sets of
constraints and cryptographic operations are run on these representations. While such an approach
allow us to express any polynomial-time computation, it is often not the most efficient way to
represent common computation tasks encountered in practice. For example, Parno et al. [21]
point out that the behavior of their construction deteriorates abruptly for functionalities that have
“bad” arithmetic circuit representation and Braun et al. [8] recognize that their scheme is not quite
ready for practical use, restricting their evaluations to “smaller scales than would occur in real
applications.”

In order to reduce the practical cost of Verifiable Computation, in this paper we design and build
TrueSet. TrueSet is an efficient and provably secure VC system that specializes in handling set-
centric computation tasks. It allows us to model computation as a set circuit—a circuit consisting
of a combination of set operators (such as intersection, union, difference and sum), instead of just
arithmetic operations (such as addition and multiplication in a finite field). For computation tasks
that can be naturally expressed in terms of set operations (e.g., a subset of SQL database queries),
our experimental results suggest orders-of-magnitude performance improvement in comparison with
existing VC systems such as Pinocchio [21]. We now present TrueSet’s main contributions:

Expressiveness. TrueSet retains the expressiveness of existing VC systems, in that it can
support arbitrary computation tasks. Fundamentally, since our set circuit can support intersection,
union, and set difference gates, the set of logic is complete1.

Additionally, in Section 4.4, we show that TrueSet can be extended to support circuits that
have a mixture of arithmetic gates and set gates. We achieve this by introducing a “split gate”
(which, on input a set, outputs the individual elements) and a “merge gate” (which has the opposite
function of the split gate).

Input-specific running time. One important reason why TrueSet significantly outperforms
existing VC systems in practice is that TrueSet achieves input-specific running time (during proof
computation and key generation). Input-specific running time means that the running time of the
prover is proportional to the size of the current input.

Achieving input-specific running time is not possible when set operations are expressed in terms
of boolean or arithmetic circuits, where one must account for worst-case set sizes when building the
circuit: For example, in the case of intersection, the worst case size of the output is the minimum
size of the two sets; in the case of union, the worst case size of the output is the sum of their sizes.
Note that this not only applies to the set that comprises the final outcome of the computation, but
to every intermediate set generated during the computation. As a result, existing approaches based
on boolean or arithmetic circuits incur a large blowup in terms of circuit size when used to express
set operations. In this sense, TrueSet also achieves asymptotic performance gains for set-centric
computation workloads in comparison with previous approaches.

TrueSet achieves input-specific running time by encoding a set of cardinality c as a polynomial
of degree c (such encoding was also used in previous works, e.g., [16, 20]), and a set circuit as a

1Any function computable by boolean circuits can be computed by a set circuit: If one encodes the empty set as
0 and a fixed singleton set {s} as 1, a union expresses the OR gate, an intersection expresses the AND gate and a
set difference from {s} expresses the NOT gate.

2



SELECT COUNT(UNIVERSITY.id)
FROM UNIVERSITY JOIN CS ON UNIVERSITY.id = CS.id

Figure 1.1: An example of a JOIN SQL query (between tables UNIVERSITY and CS) that can be effi-
ciently supported by TrueSet. TrueSet will implement JOIN with an intersection gate and COUNT with a
cardinality gate.

circuit on polynomials, where every wire is a polynomial, and every gate performs polynomial
addition or multiplication. As a result, per-gate computation time for the prover (including the
time for performing the actual computation and the time for producing the proof) is (quasi-)linear
in the degree of the polynomial (i.e., cardinality of the actual set), and not proportional to the
worst-case degree of the polynomial.

Finally, as in other VC systems, verifying in TrueSet requires work proportional to the size
of inputs/outputs, but not in the running time of the computation.

Implementation and experimental results. We implemented TrueSet and documented its
near practicality. We compare TrueSet with a straightforward verifiable protocol that compiles
a set circuit into an arithmetic circuit and then uses Pinocchio [21] on the produced arithmetic
circuit. In our protocol the prover’s running time is reduced by approximately 30x for all set
sizes of 64 elements or more. In particular, for a single intersection/union gate over 2 sets of 256
elements each, TrueSet improves the prover cost by nearly 150x. We also show that, while other
systems [21] cannot—in a reasonable amount of time—execute over larger inputs, TrueSet can
scale to large sets, e.g., sets whose cardinality is approximately 8000 (213), demonstrating near
practicality for instances that are about 30x larger than previous systems. Finally, we show that
TrueSet greatly reduces the evaluation key size, a reduction that can be up to 97% for some
operations.

Applications. TrueSet is developed to serve various information retrieval applications that use
set operations as a building block. For example, consider an SQL query that performs a JOIN over
two tables and then computes MAX or SUM over the result of the join operation. TrueSet can model
the join operation as an intersection and then use the split gate to perform the maximum or the
summation/cardinality operation over the output of the join—see Figure 1.1. Other queries that
TrueSet could model are advanced keyword search queries containing complicated filters that can
be expressed as arbitrary combinations of set operations (union, intersection, difference) over an
underlying data set.

Technical highlight. Our core technical construction is inspired by the recent quadratic span
and arithmetic programs [13], which were used to implement VC for any boolean or arithmetic
circuit. Since our internal representation is a polynomial circuit (as mentioned earlier), we invent
quadratic polynomial programs (QPP). During the prover’s computation, polynomials on the wires
of the circuit are evaluated at a random point s—however, this takes place in the exponent of
a bilinear group, in a way that the server does not learn s. Evaluating the polynomial at the
point s in effect reduces the polynomial to a value—therefore one can now think of the polynomial
circuit as a normal arithmetic circuit whose wires encode plain values. In this way, we can apply
techniques resembling quadratic arithmetic programs. While the intuition may be summarized as
above, designing the actual algebraic construction and formally proving its security is nonetheless
challenging, and requires a non-trivial transformation of quadratic arithmetic programs.
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1.1 Related Work

There has been a large amount of theoretical work on Verifiable Computation (VC): Micali [18]
presented a scheme that can accommodate proofs for any language in NP. A more efficient approach
is based on the construction of succinct non-interactive arguments of knowledge (SNARKs) [4, 5, 6,
13]. For the case of polynomial-time computable functions, protocols based on fully-homomorphic
encryption (FHE) [11, 12] and attribute-based encryption (ABE) [22] have also been proposed.
In general, the above schemes employ heavy cryptographic primitives and therefore are not very
practical.

Recent works [2, 8, 21, 23, 24, 27] have made impressive progress toward implementations of
some of the above schemes, showing practicality for particular functionalities. Unfortunately, the
server’s cost for proof computation remains too high to be considered for wide deployment in
real-world applications.

The problem of verifying a circuit of set operations was first addressed in a recent work by
Canetti et al. [9]. Their proofs are of size linear to the size of the circuit, without however requiring
a preprocessing phase for each circuit. In comparison, our proofs are of constant size, once such a
preprocessing step has been run.

Papamanthou et al. [20] presented a scheme that provides verifiability for a single set operation.
However, one cannot accommodate more general set operations by repeatedly using their approach,
since all intermediate set outputs are necessary for verification. This would lead to increased
communication complexity.

A related scheme is also the scheme of Chung et al. [10]. This scheme uses Turing machines as
the underlying computation model, the prover has inherently high complexity (e.g., linear in the
size of the sets). Another work that combines verifiable computation with outsourcing of storage
is [1] where a protocol for outsourced streaming datasets is proposed but the supported class of
functionalities is restricted to arithmetic functions that can be expressed as polynomials of degree
two.

2 Definitions

In this section we give some necessary definitions and introduce some terminology that is going to
be useful in the rest of the paper.

Circuits of Sets and Polynomials. TrueSet uses the same computation abstraction as the
one used in the VC scheme by Parno et al. [21]: A circuit. However, instead of field elements,
the circuit wires now carry sets, and, instead of arithmetic multiplication and addition gates, our
circuit has three types of gates: Intersection, union and difference. For the sake of presentation,
the sets we are considering are simple sets, though our construction can be extended to support
multisets as well. We therefore begin by defining a set circuit:

Definition 1 (Set circuit C) A set circuit C is a circuit that has gates that implement set union,
set intersection or set difference over sets that have elements in a field F.

As mentioned in the introduction, our main technique is based on mapping any set circuit C to a
circuit F of polynomial operations, i.e., to a circuit that carries univariate polynomials on its wires
and has polynomial multiplication and polynomial addition gates. We now define the polynomial
circuit F :

Definition 2 (Polynomial circuit F) A polynomial circuit F in a field F is a circuit that has
gates that implement univariate polynomial addition and univariate polynomial multiplication over
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F. We denote with d the number of multiplication gates of F and with N the number of input and
output wires of F . The inputs and output wires are indexed 1, . . . , N . The rest of the wires2 are
indexed N + 1, . . . ,m.

SNARKs. TrueSet’s main building block is a primitive called succinct non-interactive argument
of knowledge (SNARK) [13]. A SNARK allows a client to commit to a computation circuit C and
then have a prover provide succinct cryptographic proofs that there exists an assignment on the
wires w (which is called witness) such that the input-output pair x = (I,O) is valid.

As opposed to verifiable computation [22], a SNARK allows a prover to specify some wires of the
input I as part of the witness w (this is useful when proving membership in an NP language, where
the prover must prove witness existence). For this reason, SNARKs are more powerful than VC
and therefore throughout the rest of the paper, we are going to show how to construct a SNARK
for hierarchical set operations. In Appendix 6.6, we show how to use the SNARK construction to
provide a VC construction as well and we also provide a scheme for VC over outsourced sets, where
the server not only performs the computation, but also stores the sets for the client. We now give
the SNARK definition, adjusted from [13].

Definition 3 (SNARK scheme) A SNARK scheme consists of three PPT algorithms (KeyGen,
Prove,Verify) defined as follows.

1. (pk, sk)← KeyGen(1k, C). The key generation algorithm takes as input the security parameter
k and a computation circuit C; it outputs a public key pk, and a secret key sk.

2. π ← Prove(pk, x, w): The prover algorithm takes as input the public key pk, an input-output
pair x = (I,O), a valid witness w and it outputs a proof π.

3. {0, 1} ← Verify(sk, x, π): Given the key sk, a statement x and a proof π, the verification
algorithm outputs 0 or 1.

We say that a SNARK is publicly-verifiable if sk = pk. In this case, proofs can be verified by anyone
with pk. Otherwise, we call it a secretly-verifiable SNARK, in which case only the party with sk can
verify.

There are various properties that a SNARK should satisfy. The most important one is sound-
ness. Namely, no PPT adversary should be able to output a verifying proof π for an input-output
pair x = (I,O) that is not consistent with C. All the other properties of SNARKs are described
formally in Appendix 6.3.

3 A SNARK for Polynomial Circuits

In their recent seminal work, Gennaro et al. [13] showed how to compactly encode computations
as quadratic programs, in order to derive very efficient SNARKs. Specifically, they show how to
convert any arithmetic circuit into a comparably-sized Quadratic Arithmetic Program (QAP), and
any Boolean circuit into a comparably-sized Quadratic Span Program (QSP).

In this section we describe our SNARK construction for polynomial circuits. The construction
is a modification of the optimized construction for arithmetic circuits that was presented by Parno
et al. [21] (Protocol 2) and which is based on the original work of Gennaro et al. [13]. Our extension

2These wires include free wires (which are inputs only to multiplication gates) and the outputs of the internal
multiplication gates (whose outputs are not outputs of the circuit). The set of these wires is denoted with Im and
has size at most 3d.
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accounts for univariate polynomials on the wires, instead of just arithmetic values. We therefore
need to define a quadratic polynomial program:

Definition 4 (Quadratic Polynomial Program (QPP)) A QPP Q for a polynomial circuit
F contains three sets of polynomials V = {vk(x)},W = {wk(x)},Y = {yk(x)} for k = 1, . . . ,m
and a target polynomial τ(x). We say that Q computes F if: c1(z), c2(z), . . . , cN (z) is a valid
assignment of F ’s inputs and outputs iff there exist polynomials cN+1(z), . . . , cm(z) such that τ(x)
divides p(x, z) where

p(x, z) =

(
m∑
k=1

ck(z)vk(x)

)(
m∑
k=1

ck(z)wk(x)

)
−

(
m∑
k=1

ck(z)yk(x)

)
.

We also define the degree of Q to equal the degree of τ(x).

The main difference of the above quadratic program with the one that was presented in [21] is the
fact that we introduce another variable z in the polynomial p(x, z) representing the program (hence
we need to account for bivariate polynomials, instead of univariate), which is going to account for
the polynomials on the wires of the circuit.

We now show how to construct a QPP Q for a polynomial circuit. The polynomials in V,W,Y
and the polynomial τ(x) are computed as follows. Let r1, r2, . . . , rd be random elements in F. First,
set τ(x) = (x − r1)(x − r2) . . . (x − rd) and compute the polynomial vk(x) such that vk(ri) = 1 iff
wire k is the left input of multiplication gate i, otherwise vk(ri) = 0. Similarly, wk(ri) = 1 iff wire
k is the right input of multiplication gate i, otherwise wk(ri) = 0 and yk(ri) = 1 iff wire k is the
output of multiplication gate i, otherwise yk(ri) = 0. We can now prove the following (see proof in
the Appendix)

Lemma 1 The above QPP Q computes F .

We now give an efficient SNARK construction for polynomial circuits based on the above QPP.
Recall that a polynomial circuit F has d multiplication gates and m wires, the wires 1, . . . , N occupy
inputs and outputs and set Im = {N + 1, . . . ,m} represents the internal wires, where |Im| ≤ 3d.
Also, we will denote with ni the degree of polynomial on wire i. We also set n be an upper bound
on the degrees of the polynomials on F ’s wires.

3.1 Intuition of Construction

The SNARK construction that we present works as follows. First, the key generation algorithm
KeyGen produces a “commitment” to the polynomial circuit F by outputting elements that relate
to the internal set of wires Im of the QPP Q = (V,W,Y, t(x)) as the public key. These elements
encode bivariate polynomials in the exponent, evaluated at randomly chosen points t and s, to
accommodate for the fact that circuit F encodes operations over univariate polynomials and not
just arithmetic values (as is the case with [13]).

According to what we described in the previous section, for the prover to prove that an assign-
ment c1(z), c2(z), . . . , cN (z) of polynomials on input/output wires is valid, it suffices to prove there
exist polynomials cN+1(z), . . . , cm(z) corresponding to assignments on the internal wires, such that
the polynomial p(x, z) from Relation 3.1 have roots r1, r2, . . . , rd. In other words, the following
should hold for some polynomial h(x, z):

p(x, z) = h(x, z)τ(x) . (3.1)
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In order to prove the above, the prover first “solves” the circuit and computes the polynomials
c1(z), c2(z), . . . , cm(z) that correspond to the correct assignments on the wires. Then he uses these
polynomials and the public evaluation key (i.e., the circuit “commitment”) to compute the following
three types of terms (which comprise the actual proof). The detailed computation of these values
is described in Section 3.2.

• Extractability terms. These terms declare three polynomials in the exponent, namely∑m
k=N+1 ck(z)vk(x),

∑m
k=N+1 ck(z)wk(x), and

∑m
k=N+1 ck(z)yk(x). Specifically, these poly-

nomials correspond to the internal wires since the verifier can fill in the parts for the input
and output wires.

The above terms are engineered to allow extractability using a knowledge assumption. In
particular, given these terms, there exists a polynomial-time extractor that can, with over-
whelming probability, recover the assignment cN+1(z), . . . , cm(z) on internal wires. This
proves the existence of cN+1(z), . . . , cm(z).

• Consistency check terms. Extraction is done separately for terms related to polynomials∑m
k=N+1 ck(z)vk(x),

∑m
k=N+1 ck(z)wk(x), and

∑m
k=N+1 ck(z)yk(x). We therefore require a set

of consistency check terms to ensure that the extracted cN+1(z), . . . , cm(z) polynomials are
consistent for the above V, W, and Y terms—otherwise, the same wire can have ambiguous
assignments.

• Divisibility check term. Finally, the divisibility check term is to ensure that the above
divisibility check corresponding to Equation 3.1, holds for the polynomial(

m∑
k=1

ck(z)vk(x)

)(
m∑
k=1

ck(z)wk(x)

)
−

(
m∑
k=1

ck(z)yk(x)

)

declared earlier by the extractability terms.

3.2 Concrete Construction

We now give the algorithms of our SNARK construction, following the definition of SNARKs (see
Definition 3). In comparison with the QSP and QAP constructions [13, 21], one difficulty arises
in our setting when working with polynomials on wires. In essence, to express a polynomial ck(z)
on a wire in our construction, we evaluate the polynomial at a committed point z = t. In existing
QSP and QAP constructions [13, 21], the prover knows the cleartext value on each wire when
constructing the proof. However, in our setting, the prover does not know what t is, and hence
cannot directly evaluate the polynomials ck(z)’s on each wire. In fact, security would be broken if
the prover knows the value of the polynomials at z = t.

To overcome this problem, we have to include more elements in the evaluation key which contain
in the exponent powers of the variable t (see the evaluation key below). In this way, the prover
will be able to evaluate ck(t) in the exponent, without ever learning the value t. We now give the
algorithms:
(pk, sk)← KeyGen(F , 1k): Let F be a polynomial circuit. Build the corresponding QPP Q =
(V,W,Y, t(x)) as above. Let e be a non-trivial bilinear map e : G × G → GT , and let g be a
generator of G. G and GT have prime order p. Pick s, t, rv, rw, αv, αw, αy, β, γ from Zp and set
ry = rvrw and gv = grv , gw = grw and gy = gry . The public evaluation key EKF is

1. {gt
ivk(s)
v , g

tiwk(s)
w , g

tiyk(s)
y }(i,k)∈[n]×Im .

7



2. {gt
iαvvk(s)
v , g

tiαwwk(s)
w , g

tiαyyk(s)
y }(i,k)∈[n]×Im .

3. {gt
iβ·vk(s)
v g

tiβ·wk(s)
w g

tiβ·yk(s)
y }(i,k)∈[n]×Im .

4. {gtisj}(i,j)∈[2n]×[d].

The verification key VKF consists of the values

g, gαv , gαw , gαy , gγ , gβγgt(s)y

and the set {gt
ivk(s)
v , g

tiwk(s)
w , g

tiyk(s)
y }(i,k)∈[n]×[N ]. Note VKF and EKF are the public key pk of the

SNARK. Our SNARK is publicly verifiable, hence sk = pk.
π ← Prove(pk, x, w): The input x contains input polynomials u and output polynomials y and the
witness w (which contains assignments of polynomials on the internal wires). Let ck(z) be the
polynomials on the circuit’s wires such that y = F(u,w). Let h(x, z) be the polynomial such that
p(x, z) = h(x, z) · τ(x). The proof is computed as follows:

1. (Extractability terms) g
vm(s,t)
v , g

wm(s,t)
w , g

ym(s,t)
y , g

αvvm(s,t)
v , g

αwwm(s,t)
w , g

αyym(s,t)
y .

2. (Consist. check term) g
β·vm(s,t)
v g

β·wm(s,t)
w g

β·ym(s,t)
y .

3. (Divisibility check term) gh(s,t),

where vm(x, z) =
∑

k∈Im ck(z)vk(x), wm(x, z) =
∑

k∈Im ck(z)wk(x) and ym(x, z) =
∑

k∈Im ck(z)yk(x).

Note that the term g
β·vm(s,t)
v g

β·wm(s,t)
w g

β·ym(s,t)
y can be computed from the terms

{gtiβ·vk(s)
v gt

iβ·vk(s)
w gt

iβ·yk(s)
y }(i,k)∈[n]×Im

of the public key pk.
{0, 1} ← Verify(pk, x, π): Parse the proof π as

1. γv, γw, γy, κv, κw, κy.

2. Λ.

3. γh.

First, verify all three α terms: e(γv, g
αv)

?
= e(κv, g) ∧ e(γw, gαw)

?
= e(κw, g) ∧ e(γy, gαy)

?
= e(κy, g).

Then verify the divisibility requirement:

e(λv · γv, λw · γw)/e(λy · γy, g)
?
= e(γh, g

τ(s)),

where λv = g
∑

k∈[N ] ck(t)vk(s), λw = g
∑

k∈[N ] ck(t)wk(s), λy = g
∑

k∈[N ] ck(t)yk(s). Finally verify the β
term:

e(γv · γw · γy, gβγ)
?
= e(Λ, gγ).
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3.3 Asymptotic Complexity and Security

In this section we analyze the asymptotic complexity of our SNARK construction for polynomial
circuits. We also state the security of our scheme.

KeyGen: It is easy to see that the computation time of KeyGen is O(n|Im|+ nd+ nN) = O(dn).
Prove: Let T be the time required to compute the polynomials ci(z) for i = 1, . . . ,m and let ni

be the degree of the polynomial ci(z) for i = 1, . . . ,m. The computation of each gci(z)vi(x) (similarly
for gci(z)wi(x) and gci(z)yi(x)) for i ∈ Im takes O(ni) time (specifically, 7 ·

∑
ni exponentiations are

required to compute all the proof), since one operation per coefficient of ci(z) is required. Then
multiplication of |Im| terms is required. Therefore the total time required is

O

(
T +

∑
i∈Im

ni + |Im|

)
= O (T + dν) ,

where ν = maxi=1,...,m{ni} is the maximum degree of the polynomials over the wires and since
|Im| ≤ 3d.

For the division, note that p(x, z) has maximum degree in z equal to 2ν and maximum degree in
x equal to 2d. To do the division, we apply “the change of variable trick”. We set z = x2×(2d)+1 and
therefore turn p(x, z) into a polynomial of one variable x, namely the polynomial p(x, x2×(2d)+1).
Therefore the dividend now has maximum degree 2ν(4d+ 1) + 2d while the divisor has still degree
d. By using FFT, we can do such division in O(dν log(dν)) time. Therefore the total time for Prove

is O (T + dν log(dν)).
Verify: The computation of each element gci(z)vi(x) (similarly for gci(z)wi(x) and gci(z)yi(x)) for

i = 1, . . . , N takes O(ni) time, since one operation per coefficient of ci(z) is required. Then mul-
tiplication of N terms is required. Therefore the total time required is O(

∑
i∈[N ] ni), proportional

to the size of the input and output.
We now have the following result. Its proof of security can be found in Appendix 6.5 and the

involved assumptions in Appendix 6.2.

Theorem 1 (Security of the SNARK for F) Let F be a polynomial circuit with d multiplica-
tion gates. Let n be an upper bound on the degrees of the polynomials on the wires of F and let
q = 4d+ 4. The construction above is a SNARK under the 2(n+ 1)q-PKE, the (n+ 1)q-PDH and
the 2(n+ 1)q-SDH assumptions.

4 Efficient SNARKs for Set Circuits

In this section, we show how to use the SNARK construction for polynomial circuits that was
presented in the previous section to build a SNARK for set circuits.

To achieve that, we do the following: We first define a mapping from sets to polynomials
(see Definition 5—such representation was also used in prior work, e.g., the work of Kissner and
Song [16]). Then we express the correctness of the operations between two sets (e.g., set intersection)
as constraints between the polynomials produced from this mapping (e.g., see Lemma 2). For a
set operation to be correct, these constraints must be satisfied simultaneously. To capture that, we
represent all these constraints with a circuit with loops, where a wire can participate in more than
one constraints (see Figure 4.2).

4.1 Expressing Sets with Polynomials

We first show how to represent sets and set operations with polynomials and polynomial operations.
This representation is key to achieving input-specific time, since we can represent a set with a
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I = A ∩ B

A B

I
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Figure 4.2: Set circuits for intersection (a), union (b) and difference (c) expressed as polynomial circuits
with loops using Lemma 2, Corollary 1 and Corollary 2.

polynomial (evaluated at a random committed point), regardless of the cardinality of the set.
Given a set, we first define the characteristic polynomial of a set.

Definition 5 (Characteristic polynomial) Let A be a set of elements {a1, a2, . . . , an} in F. We
define its characteristic polynomial as A(z) = (z + a1)(z + a2) . . . (z + an).

We now show the relations between set operations and polynomial operations. Note that similar
relations were used by Papamanthou et al. [20] in prior work.

Lemma 2 (Intersection constraints) Let A, B and I be three sets of elements in F. Then I =
A ∩ B iff there exist polynomials α(z), β(z), γ(z) and δ(z) such that

1. α(z)A(z) + β(z)B(z) = I(z).

2. γ(z)I(z) = A(z).

3. δ(z)I(z) = B(z).

Proof: (⇒) If I = A ∩ B, it follows that (i) the great common divisor of polynomials A(z) and
B(z) is I(z), therefore, by Bézout’s identity, there exist polynomials α(z) and β(z) such that (i)
α(z)A(z) + β(z)B(z) = I(z); (ii) I(z) divides A(z) and B(z), therefore there exist polynomials γ(z)
and δ(z) such that γ(z)I(z) = A(z) and δ(z)I(z) = B(z).

(⇐) Let A, B and I be sets. Suppose there exist polynomials α(z), β(z), γ(z) and δ(z) such that
(1), (2) and (3) are true. By replacing (2) and (3) into (1), we get that α(z) and β(z) do not have
any common factor, therefore I(z) is the greatest common divisor of A(z) and B(z) and therefore
A ∩ B = I.

Corollary 1 (Union constraints) Let A, B and U be three sets of elements in F. Then U = A∪B
iff there exist polynomials i(z), α(z), β(z), γ(z) and δ(z) such that

1. α(z)A(z) + β(z)B(z) = i(z).

2. γ(z)i(z) = A(z).

3. δ(z)i(z) = B(z).

4. δ(z)A(z) = U(z).

Corollary 2 (Difference constraints) Let A, B and D be three sets of elements in F. Then
D = A− B iff there exist polynomials i(z), α(z), β(z), γ(z) and δ(z) such that

1. α(z)A(z) + β(z)B(z) = i(z).
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2. D(z)i(z) = A(z).

3. δ(z)i(z) = B(z).

4.2 Compiling Set Circuits into Polynomial Circuits

Polynomial circuits with loops. To compile a set circuit into a circuit on polynomials, we need
to check that the constraints in Lemma 2 and Corollaries 1 and 2 simultaneously satisfy for all
intersection, union, and set difference gates respectively. Doing this in a straightforward manner
seems to require implementing a boolean AND gate using polynomial algebra, which introduces an
unnecessary representation overhead.

We use a simple idea to avoid this issue, by introducing polynomial circuits with loops. This
means that the circuit’s wires, following the direction of evaluation, can contain loops, as shown in
Figure 4.2. When a circuit contains loops, we require that there exist an assignment for the wires
such that every gate’s inputs and output are consistent. It is not hard to see that we can build a
QPP for a polynomial circuit with loops.

From set circuits to polynomial circuits. Suppose we have a set circuit C, as defined in
Definition 1. We can compile circuit C into a polynomial circuit with loops F as follows:

1. Replace every intersection gate gI with the circuit of Figure 4.2(a), which implements the con-
straints in Lemma 2. Note that 6 additional wires per intersection gate are introduced during
this compilation, 4 of which are free wires. Also, for each intersection gate, 4 polynomial
multiplication gates are added.

2. Replace every union gate gU of C with the circuit of Figure 4.2(b), which implements the
set of constraints in Corollary 1. Note that 7 additional wires per union gate are introduced
during this compilation, 3 of which are free wires. Also, for each union gate, 5 polynomial
multiplication gates are added.

3. Replace every difference gate gD of C with the circuit of Figure 4.2(c), which implements the
set of constraints in Corollary 2. Note that 7 additional wires per union gate are introduced
during this compilation, 3 of which are free wires. Also, for each difference gate, 5 polynomial
multiplication gates are added.

4.3 Asymptotic Complexity and Security

Let C be the circuit for set operations that has d gates (out of which d1 are intersection gates and
d2 are union and difference gates) and N inputs and outputs. After compiling C into an polynomial
circuit with loops F , we end up with a circuit F has 4d1 + 5d2 multiplication gates since each
intersection gate introduces 4 multiplication gates and each union or difference gate introduce 5
multiplication gates.

Therefore, a SNARK for set circuits with d = d1 + d2 gates can be derived from a SNARK for
polynomial circuits having 4d1 + 5d2 multiplication gates. Note that the complexity of algorithm
Prove for the SNARK for set circuits is O(dν log2 ν log log ν) because the prover runs the extended
Euclidean algorithm to compute the polynomials on the free wires, which takes O(t log2 t log log t)
time, for t-degree polynomials as inputs.

Theorem 2 (Security of the SNARK for C) Let C be a set circuit that has d total gates and
N total inputs and outputs. Let n be an upper bound on the cardinalities of the sets on the wires of
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C and let q = 16d1 + 20d2 + 4, where d1 is the number of intersection gates and d2 is the number
of union and difference gates (d = d1 + d2). The constructiuon above is a SNARK construction for
the set circuit C under the 2(n+ 1)q-PKE, the (n+ 1)q-PDH and the 2(n+ 1)q-SDH assumptions.

We note here that there do exist known SNARK constructions for languages in NP that have
excellent asymptotic behavior and are input-specific, e.g., the work of Bitansky et al. [5], based on
recursive proof composition. Therefore, in theory, our SNARK asymptotics are the same with the
ones by Bitansky et al. [5] (when applied to the case of set operations).

However, the concrete overhead of such techniques remains high; in fact, for most functionalities
it is hard to deduce the involved constants. In comparison, with our approach, we can always deduce
an upper bound on the number of necessary operations involved. We give a tight complexity analysis
of our approach in Appendix 6.7.

4.4 Handling More Expressive Circuits

As discussed in the introduction, by moving from QAPs to QPPs our scheme is not losing anything
in expressiveness. However, in order to be efficient for set operations, so far we explicitly discussed
set circuits that only consist of set gates. Ideally, we want to be able to efficiently accommo-
date “hybrid” circuits that consist both of set and arithmetic operations in an optimally tailored
approach.

In this section we show how, by constructing a split gate (and a merge gate) that upon input a
set A outputs its elements ai, we gain some “backwards compatibility” with respect to QAPs. In
particular, this allows us to compute on the set elements themselves, e.g., performing MAX or COUNT.
Also, using techniques described in [21], one can go one step below in the representation hierarchy
and represent ai’s in binary form which yields, for example, more efficient comparison operations.

Hence we produce here a truly complete toolkit that a delegating client can use for an elaborate
computation, in a way that allows him both to be more efficient for the part corresponding to set
operations and at the same time perform arithmetic and bit operations in an optimal way, choosing
different levels of abstraction for different parts of the circuit.

Zero-degree assertion gate. Arithmetic values can be naturally interpreted as zero-degree
polynomials. Since we want to securely accommodate both polynomials and arithmetic values in
our circuit, we need to construct a gate that will constrain the values of some wires to arithmetic
values. For example, we need to assure that the outputs of a split gate are indeed numbers (and
not higher degree polynomials). The following lemma is going to be useful for that.

Lemma 3 (Zero-degree constraints) Let p(z) be a univariate polynomial in F[z]. The degree
of p(z) is 0 iff ∃ polynomial q(z) in F[z] such that p(z)q(z) = 1.

Proof: (⇒) Every zero-degree polynomial q(z) ∈ F[z] also belongs in F. Since every element in
F has an inverse, the claim follows. (⇐) Assume now that p(z)q(z) = 1. Since polynomial 1 is of
degree 0, p(z)q(z) must also be of degree 0. By polynomial multiplication, we know that p(z)q(z)
has degree deg(p(z)) + deg(q(z)). Therefore this can only hold if deg(p(z)) = deg(q(z)) = 0.

This simple gate consists of a multiplication gate between polynomial p(z) and an auxiliary
input q(z) computed by the server and the output is set to the (hard-coded) polynomial 1. If the
input is indeed a zero-degree polynomial, by the above Lemma, q(z) is easily computable by the
server (an inverse computation in F).

Split gate. A split gate, depicted in Figure 4.3, operates as follows. On input a wire with value
A(z), it outputs n wires with the individual elements ai. First, each of the wires carrying ai is
connected to a degree-zero assertion gate. This will make sure that these wires carry arithmetic
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Figure 4.3: Implementation of a split gate for the set A = {a, b, c, d}. The elements z and 1 on the wires are
hard-coded in the circuit during setup. All other polynomials on the wires are computed by the prover.

values. Second, each of these wires is used as an input to an addition gate, with the other input
being the degree-one polynomial z. Then the outputs of all the addition gates are multiplied
together and the output of the multiplication is connected to the wire carrying A(z).

Split gate with variable number of outputs. In the above we assumed that the split gate can
have a fixed number of outputs, n. However, the number of outputs can vary. To accommodate
this, we assume that n is an upper bound on the number of outputs of a split gate. Now, for each
of the n output wires, we introduce an indicator variable νi (picked by the prover) such that if
νi = 1, this output wire is occupied and carries an arithmetic value, otherwise νi = 0. Then, in the
split gate of Figure 4.3, instead of computing

∏n
i=1(z + ai) we compute

n∏
i=1

[νi(z + ai) + (1− νi)] .

Note here that an additional restriction we need to impose is that νi ∈ {0, 1}. Fortunately this can
be checked very easily by adding one self-multiplication gate and a loop wire for each value that
enforces the condition νi · νi = νi that clearly holds iff νi = 0 or 1.

Cardinality gate. One immediate side-effect of our construction for split gates with variable
number of outputs, is that it indicates a way to construct another very important type of gate,
namely cardinality gate. Imagine for example a computation where the requested output is not a
set but only its cardinality (e.g., a COUNT SQL-query). A cardinality gate is implemented exactly
like a split gate, however it only has a single output wire that is computed as

∑
i νi, using n − 1

addition gates over the νi wires.

Merge gate. Finally, the merge gate upon input n wires carrying numerical values ai, outputs a
single wire that carries them as a set (i.e., its characteristic polynomial).

The construction of this gate is conceptually very similar to that of the split gate, only in
reverse order. First the input wires are tested to verify that they are of degree 0 with n zero-degree
assertion gates. Following that, these wires are used as input for union gates, taken in pairs, in an
iterative manner (imagine a binary tree of unions with n leaves and the output set at the root). It
should be noted that for computations that cater for multi-sets, this last step can be replaced by
multiplication gates that provide a more efficient solution.

5 Evaluation

We now present the evaluation of TrueSet. We compare the performance of TrueSet with
Pinocchio [21], which is the state-of-the-art general VC scheme (already reducing computation
time by orders-of-magnitude when compared with previous implementations).
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We also considered alternative candidates for comparison such as Pantry [8] which is specialized
for stateful computation. Pantry is theoretically more efficient than Pinocchio, in that it can
support a RAM-based O(n)-time algorithm for computing set intersection (i.e., when the input sets
are sorted), instead of the circuit-based O(n log2 n) or O(n2) algorithms that Pinocchio supports.
However, in practice, the results we got by executing Pantry were not that good, requiring more
than one minute for proof construction even for the simplest operations. We therefore chose to
compare only with Pinocchio.

In our experiments, we analyse the performance of TrueSet both for the case of a single set
operation and multiple set operations. We begin by presenting the details of our implementation
and the evaluation environment and then we present the performance results.

5.1 Implementation

We built TrueSet by extending Pinocchio’s C++ implementation so that it can handle set circuits,
with the special set gates that we propose. However, since the original implementation of Pinocchio
used efficient libraries for pairing-based cryptography and field manipulation that are not available
for public use (internal to Microsoft), the first step was to replace those libraries with available
free libraries that have similar characteristics. In particular, we used the Number Theory Library
(NTL) [25] along with the GNU Multi-Precision (GMP) library [14] for polynomial arithmetic, in
addition to an efficient free library for ate-pairing over Barreto-Naehrig curves [3], in which the
underlying BN curve is y2 = x3 + 2 over a 254-bit prime field Fp that maintains a 126 bit-level of
security. As in Pinocchio, the size of the cryptographic proof produced by our implementation is
typically equal to 288 bytes in all experiments regardless of the input or circuit sizes.

Optimizations. For a fair comparison, we employ the same optimizations used for reducing
the exponentiation overhead in Pinocchio’s implementation. Concerning polynomial arithmetic,
Pinocchio’s implementation uses an FFT approach to reduce the polynomial multiplication costs.
In our implementation, we use the NTL library, which already provides an efficient solution for
polynomial arithmetic based on FFT [26].

Pinocchio Pinocchio
Input Total IO Sorting Network Pairwise TrueSet Verification

Set Cardinality Set Cardinalities Eval. Key (MB) Eval. Key (MB) Eval. Key (MB) Key (KB)
22 16 2.624 0.019 0.012 1.937
23 32 8.69 0.073 0.024 3.437
24 64 26.327 0.286 0.047 6.437
25 128 74.814 1.135 0.094 12.437
26 256 202.619 4.519 0.188 24.437
27 512 - 18.039 0.375 48.437
28 1024 - 72.078 0.75 96.437
29 2048 - - 1.5 192.437
210 4096 - - 3.0 384.437
211 8192 - - 6.0 768.437
212 16384 - - 12.0 1536.437
213 32768 - - 24.0 3072.437

Table 1: Key sizes for a set circuit with a single union. Verification key size is the same for all protocols.
Numbers represent the keys and proof after compression. The cryptographic proof size is 288 bytes for all
instances.

In addition to the above, the following optimizations were found to be very useful when the
number of set gates is high, or when the set split gate is being used.
1) For key generation, we reduce the generated key size by considering the maximum polynomial
degree that can appear on each wire, instead of assuming a global upper bound on the polynomial
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Figure 5.4: Comparison between TrueSet and Pinocchio for the case of a single union gate. In the hor-
izontal axis, we show the cardinality of each input set in logarithmic scale. Subfigures (a), (b) and (d)
show the comparison in terms of the key generation, proof computation and verification times, and (c) shows
TrueSet’s prover’s time in more detail. (Note: Each data point is the average of ten runs. The error bars
were too small to be visualized).

degree for all wires (as described in previous sections). This can be calculated by assuming a
maximum cardinality of the sets on the input wires, and then iterating over the circuit wires to set
the maximum degree per wire (sum of the input sets for union and minimum of the input sets for
intersection).
2) The NTL library does not provide direct support for bivariate polynomial operations, needed
to calculate h(x, z) through division of p(x, z) by t(x). Hence, instead of doing a naive O(n2)
polynomial division, we apply the change-of-variable trick discussed in Section 3.3 to transform
the bivariate polynomials into univariate ones that can be handled efficiently using NTL FFT
operations.
3) Finally, calculation of the coefficients of the characteristic polynomial corresponding to the
output is done by the prover and not by the verifier. The verifier then verifies that the set elements
of the output (i.e., the roots of the characteristic polynomials) match the polynomial (expressed in
coefficients) returned by the server. This can be efficiently done through a randomized check—see
algorithm certify() from [20]. We specify that this slightly increases the communication bandwidth
(the server effectively sends the output set twice, in two different encodings) but we consider this an
acceptable overhead. Note that this can be avoided by having the client perform the interpolation
himself, increasing the verification time.
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5.2 Experiments Setup

We now provide a comparison between TrueSet’s approach and Pinocchio’s approach based for
set operations. For a fair comparison, we considered two different ways to construct the arithmetic
circuits used by Pinocchio to verify the set operations:

• Pairwise comparison-based, which is the naive approach for performing set operations. This
requires O(n2) equality comparisons.

• Sorting network-based, in which the input sets are merged and sorted first using and odd-
even merge-sort network [17]. Then a check for duplicate consecutive elements is applied
to include/remove repeated elements, according to the query being executed. This requires
O(n log2 n) comparator gates, and O(n) equality gates.

Although the second approach is asymptotically more efficient, when translated to Pinocchio’s
circuits it results in numerous multiplication gates. This is due to the k-bit split gates needed to
perform less-than or greater-than comparison operations, resulting into great overhead in the key
generation and proof computation stages as each split gate translates into 254 multiplication gates
(these gates upon input an arithmetical value output its bit-level representation and they should
not be confused with the split gates we introduce here, that given a set output its elements as
arithmetical values).

On the other hand, the pairwise approach uses zero-equality gates to check for equality of
elements. Each equality gate translates into only two multiplication gates, requiring only two
roots.

Note that, for fairness purposes, for each different input set cardinality we experiment with,
different Pinocchio circuits were produced as each wire in Pinocchio’s circuits represents a single
element. On the other hand, TrueSet can use the same circuit over different input sets cardinal-
ities.

We consider two Pinocchio implementations:

• MS Pinocchio: This is the executable built using efficient Microsoft internal libraries.

• NTL-ZM Pinocchio: This is a Pinocchio version built using exactly the same free libraries we
used for our TrueSet implementation. This will help ensure having a fair comparison.

The experiments were conducted on a Lenovo IdeaPad Y580 Laptop. The executable used a
single core of a 2.3 GHz Intel Core i7 with 8 GB of RAM. For running time statistics, ten runs
were collected for each data point, and the 95% confidence interval was calculated. Due to the
scale of the figures, the confidence interval of the execution times (i.e., error bars) was too low to
be visualized.

5.3 Single-Gate Circuit

In this subsection, we compare TrueSet and Pinocchio’s protocols based on the verification of a
single union operation that accepts two input disjoint sets of equal cardinalities. We study both
the time overhead and the key sizes with respect to different input set cardinalities. Note that,
experiments for higher input cardinalities in Pinocchio’s case incur great memory overhead due to
the large circuit size, therefore we were unable to even perform Pinocchio’s for large input sizes.

Figure 5.4 shows the comparison between TrueSet’s approach and Pinocchio’s pairwise and
sorting network approaches, versus the cardinality of each input set. The results show clearly
that TrueSet outperforms both approaches in the key generation and proof computation stages
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Figure 5.5: Comparison between TrueSet and Pinocchio in the case of the multiple-gate circuit shown in
Fig. 5.6. In the horizontal axis, we show the cardinality of each input set in logarithmic scale. Subfigures
(a), (b) and (d) show the comparison in terms of the key generation, proof computation and verification
time, and (c) shows TrueSet’s prover’s time in more detail.

by orders of magnitude, while maintaining the same verification time. Specifically, TrueSet
outperforms Pinocchio in the prover’s running time by 150x when the input set cardinality is 28.
We note that Pinocchio’s pairwise comparison approach outperforms the sorting network approach
due to the 254-bit split gates needed for comparisons in the sorting-network circuits, as discussed
above, which results into a large constant affecting the performance at small cardinalities.

Considering evaluation and verification key size and proof size, Table 1 shows a comparison
between TrueSet and Pinocchio under both the pairwise and sorting networks approaches. The
table demonstrates that TrueSet yields much smaller evaluation keys due to the more compact
wire representation it employs (a single wire for a set as opposed to a wire per element), e.g., at an
input set cardinality of 28, the saving is about 98%. It can also be noticed that the keys generated
in Pinocchio using sorting networks are much larger than the ones generated in pairwise circuits,
due to the use of the expensive 254-bit split gates. On the other hand, TrueSet and Pinocchio
maintain the same verification key sizes, as the verification key depends on the number of input
elements in addition to the number of output elements in the worst case.

5.4 Multiple-Gate Circuit

We now compare TrueSet and Pinocchio’s performance for a more complex set circuit that consists
of multiple set operations, illustrated in Figure 5.6. The computation takes eight input sets of equal
cardinalities, and outputs one set. We compare both the prover’s overhead and the key sizes with
respect to different input set cardinalities, but this time we consider only Pinocchio circuits based
on pairwise comparisons, as the sorting network approach has much larger overhead in terms of
computation times and key sizes as shown in the previous subsection.

Figure 5.5 shows a comparison between TrueSet’s approach and Pinocchio’s approach. The
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Figure 5.6: The multiple-gate circuit used for evaluation.

Input Total IO Pinocchio TrueSet Verification
Set Cardinality Set Cardinalities Eval. Key (MB) Eval. Key (MB) Key (KB)

22 48 0.285 0.137 4.937

23 96 1.132 0.269 9.437

24 192 4.514 0.535 18.437

25 384 18.027 1.066 36.437

26 768 72.055 2.129 72.437

27 1536 - 4.254 144.437

28 3072 - 8.504 288.437

29 6144 - 17.004 576.437

210 12288 - 34.004 1152.437

Table 2: Key sizes for the circuit shown in Figure 5.6. Verification key size is the same for all protocols.
Numbers represent the keys and proof after compression. The cryptographic proof size is 288 bytes for all
instances.

results again confirm that TrueSet greatly outperforms Pinocchio’s elapsed time in the key gener-
ation and proof computation stages, while maintaining the same verification time. In particular, for
an input set cardinality of 26, TrueSet’s prover has a speedup of more than 50x. In terms of key
sizes, Table 2 shows a comparison between TrueSet and Pinocchio, confirming the observation
that the evaluation key used by TrueSet is tiny compared to that of Pinocchio, e.g., 97% smaller
when the input cardinality is 26.

5.5 Cardinality and Sum of Set Elements

In this section, we evaluate TrueSet that uses a split gate to calculate the cardinality and sum for
the output set of Figure 5.6. We then compare that with Pinocchio’s performance when computing
the same functions. One important parameter that has to be defined for the split gate first is the
maximum cardinality of the set it can support. This is needed for translating the split gate to the
appropriate number of multiplication gates needed for verification. For example, a split gate added
to the output of the circuit in Figure 5.6, will have to account for 4n set elements in the worst case,
if n is the upper bound on the input set cardinalities.

Table 3 presents a comparison between TrueSet and Pinocchio in terms of the elapsed times in
the three stages and the evaluation key size, when the input set cardinality is 64. As the table shows,
TrueSet can provide better performance in terms of the key generation and proof computation
times (4x better proof computation time), in addition to a smaller public evaluation key (by 50%).
It can be noted that, while there definitely exists a large improvement over Pinocchio, it is not as
large as the one exhibited for the previous single-gate and multiple-gate circuits. Overall, we found
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Figure 5.7: Summary of TrueSet performance under all circuits in linear scale.

the split gate to be costlier than set gates since the multiplication gates introduced by the split
gate increase proportionally with the number of the set elements it can support, whereas set gates
are “oblivious” to the number of elements.

5.6 Summary of Results

The evaluation of TrueSet in the case of single-gate and multiple-gate circuits showed huge
improvement for both key generation and proof computation time over Pinocchio. For example, for
the single union case with 28-element input sets, a speed-up of 150x was obtained for the prover’s
time, while providing more than 98% saving in the evaluation key size. For a multiple-gate circuit
comprised of seven set gates with eight input sets, each of 26 elements, a prover speed-up of more
than 50x, and key size reduction of 97% were obtained. As can be qualitatively inferred by our
graphs, these great improvements in performance allow as to accommodate problem instances that
are several times larger than what was considered achievable by previous works. Observe that
TrueSet achieves in practice the performance behavior that Pinocchio exhibits for sets of a few
dozen elements, for sets that scale up to approximately 8000 elements, handling circuits with nearly
30x larger I/O size.

To summarize the behavior of TrueSet for all circuits we experimented with, Figure 5.7
illustrates its performance for the three stages in linear scale. In all cases, the performance increases
approximately linearly in the input size. It is clear that the performance cost increases more
abruptly when a split gate is introduced due to the added complexity discussed above. Enhancing
the performance of the split gate is one possible direction for future work.

Supporting multisets. Finally, it should be noted that the comparisons with Pinocchio above
assumed the case of sets with distinct elements only. If this comparison is extended to the case of
multiset operations (i.e., sets that allow repetition in elements), we expect TrueSet’s performance
to be much better than that of Pinocchio, as TrueSet can naturally handle multiset cases without
adding any modifications. On the other hand, Pinocchio multiset circuits are going to be more
complex than the distinct-elements sets, due to the added complexity of taking repetitions into
account. For example, in intersection circuits, it will not be enough to only check that two element
are equal, but it will also be necessary to make sure that the matched element was not encountered
before, which will probably introduce additional overhead.
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6 Appendix

6.1 Proof of Lemma 1

Lemma 4 The above QPP Q computes F .

Proof: (⇒) Suppose c1(z), c2(z), . . . , cN (z) are correct assignments of the input and output wires
but there do not exist polynomials cN+1(z), . . . , cm(z) such that τ(x) divides p(x, z). Then there is
at least one multiplication gate r with left input x, right input y and output o, such that p(r, z) 6= 0.
Let p be the path of multiplication gates that contains multiplication gate r starting from an input
polynomial ci(z) to an output polynomial cj(z), where i, j ≤ N . Since ci(z) and cj(z) are correct
assignments, there must exist polynomials cx(z) and cy(z) such that cx(z)cy(z) = co(z). Since r
has a single left input, a single right input and a single output it holds vx(r) = 1 and vi(r) = 0 for
all i 6= x. Similarly, wy(r) = 1 and wi(r) = 0 for all i 6= y and yo(r) = 1 and yi(r) = 0 for all i 6= o.
Therefore p(r, z) 6= 0 implies that for all polynomials cx(z), cy(z), co(z), it is cx(z)cy(z) 6= co(z), a
contradiction.

(⇐) Suppose τ(x) divides p(x, z). Then p(r, x) = 0 for all multiplication gates r. By the
definition of the polynomials vi(x), wi(x), yi(x), it follows that c1(z), c2(z), . . . , cm(z) are correct
assignments on the circuit wires.
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6.2 Computational Assumptions

Assumption 1 (q-PDH assumption [15]) The q-power Diffie-Hellman (q-PDH) assumption holds
for G if for all A we have

Pr

 (p,G,GT , e, g)← G(1k); s← Z∗p;
σ ← (p,G,GT , e,G);

y ← A(σ) : y = gs
q+1

.

 = neg(k) .

where
G =

[
g, gs, . . . , gs

q
, gs

q+2
, . . . , gs

2q
]
.

Assumption 2 (q-PKE assumption [15]) The q-power knowledge of exponent assumption holds
for G if for all A there exists a non-uniform probabilistic polynomial time extractor χA such that

Pr


(p,G,GT , e, g)← G(1k); {α, s} ← Z∗p;
σ ← (p,G,GT , e,G);
(c, ĉ; a0, a1, . . . , aq)← (A||χA)(σ, z) :

ĉ = cα ∧ c 6= g
∏q

i=0 ais
i
.

 = neg(k)

for any auxiliary information z ∈ {0, 1}poly(k) that is generated independently of α and where

G =
[
g, gs, . . . , gs

q
, gα, gαs, . . . , gαs

q]
.

Note that (y; z)← (A||χA)(x) signifies that on input x, A outputs y, and that χA, given the same
input x and A’s random tape, produces z.

Assumption 3 (q-SDH assumption [7]) The q-strong Diffie-Hellman (q-SDH) assumption holds
for G if for all A we have

Pr

 (p,G,GT , e, g)← G(1k); {s} ← Z∗p;
σ ← (p,G,GT , e,G);

(y, c)← A(σ) : y = e(g, g)
1

s+c .

 = neg(k) .

where
G =

[
g, gs, . . . , gs

q]
.

6.3 Succinct Non-Interactive Arguments of Knowledge (SNARKs)

Definition 6 (SNARK) Algorithms (KeyGen,Prove,Verify) give a succinct non-interactive argument of

knowledge (SNARK) for an NP language L with corresponding NP relation RL if:

Completeness: For all x ∈ L with witness w ∈ RL(x), the probability:

Pr

[
Verify(sk, x, π) = 0

∣∣∣∣ (pk, sk)← KeyGen(1k),
π ← Prove(pk, x, w)

]
is a negligible function of k.

Adaptive soundness: For any probabilistic polynomial-time algorithm A, the probability:

Pr

[
Verify(sk, x, π) = 1
∧ (x /∈ L)

∣∣∣∣ (pk, sk)← KeyGen(1k),
(x, π)← A(1k, pk)

]
is negligible in k.
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Succinctness: The length of a proof is given by |π| = poly(k)poly log(|x|+ |w|).

Extractability: For any poly-size prover Prv, there exists an extractor Extract such that for any
statement x, auxiliary information µ, the following holds:

Pr

 (pk, sk)← KeyGen(1k)
π ← Prv(pk, x, µ)
Verify(sk, x, π) = 1

∧ w ← Extract(pk, sk, x, π)
w /∈ RL(x)

 = negl(k) .

Zero-knowledge: There exists a simulator Sim, such that for any probabilistic polynomial-time
adversary A, the following holds:

Pr

 pk← KeyGen(1k); (x,w)← A(pk);
π ← Prove(pk, x, w) : (x,w) ∈ RL

and A(π) = 1

 ' Pr

 (pk, state)← Sim(1k); (x,w)← A(pk);
π ← Sim(pk, x, state) : (x,w) ∈ RL

and A(π) = 1 .


We say that a SNARK is publicly verifiable if sk = pk. In this case, proofs can be verified by

anyone with pk. Otherwise, we call it a secretly-verifiable SNARK, in which case only the party
with sk can verify.

6.4 Verifiable Computation

We now define Verifiable Computation.

Definition 7 (Public Verifiable Computation [21]) A public verifiable computation scheme
consists of a set of three polynomial-time algorithms (KeyGen,Compute,Verify) defined as follows.

1. {EKf ,VKf} ← KeyGen(f, 1k). The randomized key generation algorithm takes the function
f to be outsourced and security parameter k; it outputs a public evaluation key EKf , and a
public verification key VKf .

2. (y, πy)← Compute(EKf , u): The deterministic worker algorithm uses the public evaluation key
EKf and input u. It outputs y = f(u) and a proof πy of y’s correctness.

3. {0, 1} ← Verify(VKf , u, y, πy): Given the verification key VKf , the deterministic verification
algorithm outputs 1 if f(u) = y, and 0 otherwise.

4. Correctness. For any function f, and any input u to f , if we run {EKf ,VKf} ← KeyGen(f, 1k)
and (y, πy)← Compute(EKf , u), then we always get 1← Verify(VKf , u, y, πy).

5. Security. For any function f and any probabilistic polynomial-time adversary A, the proba-
bility Pr[(u′, y′, π′y)← A(EKf ,VKf ) : f(u′) 6= y′ ∧ 1← Verify(VKf , u

′, y′, π′y)] is neg(k).

6. Efficiency. KeyGen is assumed to be a one-time operation whose cost is amortized over many
calculations, but we require that Verify is cheaper than evaluating f .

6.5 Proof of Theorem 1

We now give proofs of completeness, soundness, extractability and zero-knowledge.

Completeness. Follows by inspection.

Soundness. Assume that there exists an adversary A who returns a cheating proof. Then we show
how to construct an adversary B that uses A and a 2(n+1)q-PKE assumption knowledge extractor
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and breaks either the (n+1)q-PDH assumption or the 2(n+1)q-SDH assumption, where q = 4d+4.
We show that B’s attack is successful with probability 1/2. First, B flips a coin b ∈ {0, 1}. If b = 0,
B asks for a challenge of an (n+1)q-PDH assumption, else B asks for a challenge of a 2(n+1)q-SDH
assumption.

G′ =


gs . . . gs

q
gs

q+2
. . . gs

2q

gs
2q+1

. . . gs
3q

gs
3q+2

. . . gs
4q

gs
4q+1

. . . gs
5q

gs
5q+2

. . . gs
6q

. . . . . . . . . . . . . . . . . .

gs
2nq+1

. . . gs
(2n+1)q

gs
(2n+1)q+2

. . . gs
2(n+1)q

 .
The challenge above is a subset of an (n+ 1)q-PDH instance (Assumption 1), since more elements
than one are missing.

Case b = 1. B is given a 2(n+ 1)q-SDH instance

G =
[
g, gs, . . . , gs

2(n+1)q
]
.

Generating keys. The adversary A generates a function with N inputs/outputs that has QPP
(τ(x),V,W,Y) of size m = N + d and degree d. Recall that Im = {N + 1, . . . ,m} are the non-IO-
related indices. If b = 0, B sets t = s2q, otherwise it set t = Rs2q for random R and provides a
carefully generated evaluation key to A, i.e.,

• {gt
ivk(s)
v }(i,k)∈[n]×Im , {gt

iwk(s)
w }(i,k)∈[n]×Im , {gt

iyk(s)
y }(i,k)∈[n]×Im .

• {gt
iαvvk(s)
v }(i,k)∈[n]×Im , {gt

iαwwk(s)
w }(i,k)∈[n]×Im , {gt

iαyyk(s)
y }(i,k)∈[n]×Im .

• {gt
iβ·vk(s)
v g

tiβ·wk(s)
w g

tiβ·yk(s)
y }(i,k)∈[n]×Im .

• {gtisj}(i,j)∈[2n]×[d].

where gv = gr
′
vs

d+1
, gw = gr

′
ws

2(d+1)
and gy = gr

′
ys

3(d+1)
, where αv, αw, αy, r

′
v and r′w are chosen

uniformly at random and r′y = r′vr
′
w.

We now describe how B chooses β and γ in the challenge above. If b = 1, both β and γ are
picked uniformly at random. Otherwise B sets

β = sq−(4d+3)β(s) ,

where β(x) is a polynomial of degree at most 3d + 3 sampled uniformly at random such that the
polynomial

β(x)[r′vvk(x) + r′wx
d+1wk(x) + r′yx

2(d+1)yk(x)]

has a zero coefficient in front of x3d+3 for all k = 1, . . . ,m (see Lemma 10 of [13]). It is easy now

to see that, with such a choice of β, the term g
tiβ·vk(s)
v g

tiβ·wk(s)
w g

tiβ·yk(s)
y , for all k, can be written as

gt
iβ·vk(s)
v gt

iβ·wk(s)
w gt

iβ·yk(s)
y

= gt
i[sq−(4d+3)β(s)[r′vs

d+1vk(s)+r′ws
2(d+1)wk(s)+r′ys

3(d+1)yk(s)]]

= gt
i[sq−(3d+2)β(s)[r′vvk(s)+r′ws

d+1wk(s)+r′ys
2(d+1)yk(s)]]

(6.2)
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where its exponent has a zero term in front of tisq+1 = si(2q)+q+1 = sq(2i+1)+1 and the maxi-
mum degree in variable x is less than 2(n + 1)q. Therefore B can efficiently generate the term

g
tiβ·vk(s)
v g

tiβ·wk(s)
w g

tiβ·yk(s)
y from its challenge.

To choose γ, B generates γ′ uniformly at random and sets γ = γ′sq+2. It easy to see that both
gγ and gβγ can be efficiently generated from the challenge.

Extracting the exponents. Let now γv, γw, γy, γh, κv, κw, κy,Λ be a cheating proof. Since in the
verification we have

1. e(γv, g
αv) = e(κv, g).

2. e(γw, g
αw) = e(κw, g).

3. e(γy, g
αy) = e(κy, g).

we can use a subset of the (2n+2)q-PKE assumption to extract the polynomials vm(x), wm(x) and
ym(x). Note, that, due to the way B picked t = s2q (b = 0) in these polynomials, the expression
xy = xi(2q)+j for (i, j) ∈ [n]× [d] is mapped to

xj × zi .

For b = 1, it is easy to see that the mapping is

xj × zi

R
.

Consistency. Let us suppose now that there do not exist polynomials ck(z) such that vm(x, z) =∑
k∈Im ck(z)vk(x), wm(x, z) =

∑
k∈Im ck(z)wk(x) and ym(x, z) =

∑
k∈Im ck(z)yk(x). Due to ver-

ification, e(λv · λw · λy, gβγ) = e(Λ, gγ) hence e(gr
′
vs

d+1vm(s,t)gr
′
ws

2(d+1)wm(s,t)gr
′
ys

3(d+1)ym(s,t), gβγ) =
e(Λ, gγ), and it follows that

Λ = gβ(r′vs
d+1vm(s,t)+r′ws

2(d+1)wm(s,t)+r′ys
3(d+1)ym(s,t))

= gs
q−(4d+3)β(s)(r′vs

d+1vm(s,t)+r′ws
2(d+1)wm(s,t)+r′ys

3(d+1)ym(s,t)) ,

where β(x) is the polynomial such that any polynomial that is produced as a linear combination of{
xq−(4d+3)β(x)(r′vx

(d+1)vk(x) + r′wx
2(d+1)wk(x) + r′yx

3(d+1)yk(x))
}
i=1,...,k

has a zero term in front of xq+1. Polynomials that are not produced as a linear combination of
these values have a non-zero term in front of xq+1 that is distributed uniformly at random (when
sampling b(x) uniformly at random based on the above restriction).

Since we assumed there does not exist polynomials ck(z) such that vm(x, z) =
∑

k∈Im ck(z)vk(x),
wm(x, z) =

∑
k∈Im ck(z)wk(x) and ym(x, z) =

∑
k∈Im ck(z)yk(x), it follows that the exponent of Λ

has a non-zero term in front of tixq+1 for some i. It is easy to subtract the remaining terms from Λ
and produce gt

ixq+1
= gx

2iq+q+1
, for some i. If b = 0, B breaks a subset of (n+1)q-PDH assumption

and therefore it breaks the (n+ 1)q-PDH assumption. Otherwise it aborts.
Divisibility. Let now

λv = gv0(s,t)
v , λw = gw0(s,t)

w and λy = gy0(s,t)
y ,
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as computed by the verification algorithm, with polynomials v0(x, z) =
∑

k∈[N ] ck(z)vk(x), w0(x, z) =∑
k∈[N ] ck(z)wk(x) and y0(x, z) =

∑
k∈[N ] ck(z)yk(x). Let us define now the polynomial p(x, z) =

v(x, z)w(x, z)− y(x, z). This can be written as

p(x, z) =

(
m∑
k=1

ck(z)vk(x)

)(
m∑
k=1

ck(z)wk(x)

)
−

(
m∑
k=1

ck(z)yk(x)

)
.

Suppose it is not divided by τ(x) =
∏d
i=1(x − ri) (equivalently, at least one of the characteristic

polynomials ck(z) used by the adversary is not the honestly computed one). Then there exists a
factor ru of τ(x) that does not divide p(x, z) which can be efficiently computed by dividing p(x, z)
with all factors of τ(x). Therefore p(x, z) can be written as p(x, z) = r(x, z)(x − ru) + κ(z). But
the divisibility requirement holds:

e(λv · γv, λw · γw)/e(λy · γy, g) = e(γh, g
τ(s))

e(g
∑m

k=1 ck(t)vk(s), g
∑m

k=1 ck(t)wk(s)) · e(g−
∑m

k=1 ck(t)yk(s), g) = e(γh, g
τ(s))

e(g, g)r(s,t)(s−ru)+κ(t) = e(γh, g
τ(s)) .

If b = 0, B aborts. Otherwise, when b = 1, it is z = Rx2q. Since κ(z) has degree n, it has at most n
roots. Let w be a root of κ(z). Note now that κ(z) is divided by (x− ru) iff κ(Rx2q) is divided by
(x− ru) iff Rr2q

u = w, where w is a root of κ(z). Since R is random, the probability of that event
is negligible. We can thus write κ(Rx2q) = π(x)(x− ru) + λ, where λ is a constant. Therefore we
have

e(g, g)r(s,t)(s−ru)+κ(t) = e(γh, g
∏

i 6=u(s−ri))⇔ e(g, g)r(s,t)(s−ru)+π(s)(s−ru)+λ = e(γh, g
τ(s)) ,

which gives

e(g, g)
1

s−ru =
(
e(γh, P )e(g, g)−r(s,t)(s−ru)−π(s)

)λ−1

,

where P = g
∏

i 6=u(s−ri), breaking the 2(n+ 1)q-SDH assumption.

Extractability. In the soundness proof we show how to extract the coefficients of the polynomial
vm(x, z) =

∑
k∈Im ck(z)vk(x), but not the actual polynomials ck(z). Here we show how to extract

the actual polynomials ck(z) for k ∈ Im. Write the extracted polynomial as

vm(z, x) = ad(z)x
D + ad(z)x

D−1 + . . .+ a1(z)x+ a0(z)

for some D < d, since |Im| < d. Let now vk(x) = bkdx
d + bk(d−1)x

d−1 + . . .+ bk0, for k ∈ Im. It is
easy to see that the following system of linear equations need to hold:


b10 b20 . . . bD0

b11x b21x . . . bD1x
. . .

b1dx
d b2dx

d . . . bDdx
d

 ·


c1(z)
c2(z)
. . .
. . .
. . .
cD(z)

 =


a0(z)
a1(z)
. . .
ad(z)

 .

Note that the above system has a solution since the multiplying matrix contains columns that are
linearly independent. To see that, suppose not. Then there exist non-zero w1, w2, . . . , wD such that∑D

i=1wivi(x) = 0. This means that
∑D

i=1wivi(x) = 0. Note however this is not true since we know
for x = rg there exists a k such that vk(rg) = 1.

Zero-knowledge. For achieving zero-knowledge, the prover computes the following proof
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• gvm(s,t)+δvt(s)
v , g

wm(s,t)+δwt(s)
w , g

ym(s,t)+δyt(s)
y , gh(s,t)

• gαv(vm(s,t)+δvt(s))
v , g

αw(wm(s,t)+δwt(s))
w , g

αy(ym(s,t)+δyt(s))
y

• gβ·(vm(s,t)+δvt(s))
v g

β·(wm(s,t)+δwt(s))
w g

β·(ym(s,t)+δyt(s))
y

where δv, δw and δy are picked uniformly at random. Therefore the proof elements become com-
pletely randomized, without loosing structure. To achieve that, in the public key pk we also include

the terms g
t(s)
v , g

t(s)
w , g

t(s)
y , g

αvt(s)
v , g

αwt(s)
w , g

αyt(s)
y and g

βt(s)
v , g

βt(s)
w , g

βt(s)
y .

6.6 Verifiable Computation for Circuits on Sets

In this section, we present our verifiable computation (VC) schemes for set circuits (for the defi-
nition of VC, see Section 6.4 in the Appendix). First, observe that our SNARK construction for
set circuits immediately yields a VC scheme for set circuits where the client sends to the server
the input upon which the circuit is to be evaluated. Given a set circuit C, one can compute a
corresponding SNARK as described in Section 4.2 and send the evaluation key along with C to the
server. Consequently upon sending a number of sets X1, . . . , XN−1 he can receive answer set O and
proof that {X1, . . . , XN−1, O} ∈ L(C). The client can benefit from the re-usability of our SNARK,
as well as from the fact that it is publicly verifiable hence multiple clients can ask queries. The
verification cost for the client is of course O(

∑N−1
i=1 |Xi|+ |O|).

Consider now the scenario where a client commits to m sets X1, X2, . . . , Xm, outsources the
sets to the server and every time he would like to evaluate the set circuit on a subset of N − 1 sets
of his liking. We present a VC construction for this problem that combines verifiable computation
with outsourcing of data. Indeed, once the owner of sets Xi runs a setup phase and outsources the
sets to the server with a corresponding circuit C, any client with access to public information can
issue queries over an arbitrary subset of them without ever seeing Xi’s (just a succinct digest of
them), making this approach ideal for multi-client environments where storage is costly.

Each setXi with cardinality ni is originally represented by its accumulation value ai = g
∏ni

j=1(t−xj)

(similar to the bilinear accumulator of [19]) where the exponent is the characteristic polynomial
of Xi evaluated for z = t and consequently a Merkle tree is deployed over the m values ai. The
evaluation key contains SNARK-related elements and the Merkle tree, and the verification key
contains also the tree’s digest d. At a high level, the function f that the client outsources corre-
sponding to set circuit C, takes us input a set of N − 1 indices from [1, . . . ,m] that correspond to
the sets to be used as inputs of C, and returns the circuit output. That is, given a collection of
sets X = {X1, . . . , Xm}, the function fC,X corresponding to circuit C with N − 1 input wires, is
f(i1, . . . , iN−1) = C(Xi1 , . . . , XiN−1). For the evaluation of C the server also uses as witness the sets
Xi (the ones that correspond to the requested indices). Our concrete VC construction is as follows:

{EKf ,VKf} ← KeyGen(fX ,C ,X , C, 1k): Run the SNARK key generation KeyGen(C, 1k) to receive cor-

responding (pk, sk). For each set Xi compute ai = g
∏ni

j=1(t−xj). Choose appropriate collision-
resistant hash function h and compute a Merkle tree M over values (i, ai) with digest d. Output

{EKf := (pk, a1, . . . , an,M),VKf := (pk, d, h)} .

{y, πy} ← Compute(EKf , i1, . . . , iN−1): Compute y = C(Xi1 , . . . , XiN−1). Execute the SNARK prover

algorithm Prove(pk, (Xi1 , . . . , XiN−1 , y), w) to receive π (w is the corresponding inner wire values).
Let Xj for j = 1, . . . , N − 1 denote the sets corresponding to indices i1, . . . , iN−1. For each corre-
sponding value aj compute a Merkle tree proof pj for treeM. For each input set Xj , compute value
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δj = gαv
∏nj

l=1(t−xl). Finally, compute values λ
(i)
v = gci(t)vi(s), λ

(i)
w = gci(t)wi(s) and λ

(i)
y = gci(t)yi(s)

for k ∈ [N ]. Output

{y, πy = (π, a1, . . . , aN−1, δ1, . . . , δN−1, p1, . . . , pN−1,

λ(1)
v , λ(1)

w , λ(1)
y , . . . , λ(N)

v , λ(N)
w , λ(N)

y )} .

{0, 1} ← Verify(VKf , i1, . . . , iN−1, y, πy): For each value aj verify its validity w.r.t d using proof pj . If

it fails for any of them, output 0 and halt. For each pair aj , δj check the equality e(aj , g
αv) = e(δj , g).

If any of them fails, output 0 and halt. Compute aN := g
∏|y|

l=1(t−xl).
For j ∈ [N ] check:

e(λ(j)
v , g)

?
= e(aj , g

vj(s)) ∧ e(λ(j)
w , g)

?
= e(aj , g

wj(s)) ∧ e(λ(j)
y , g)

?
= e(aj , g

yj(s)) .

(recall that values gvj(s), etc. are included in the pk). If any of them fails, output 0 and halt.

Compute value λv =
∏
k∈[N ] λ

(k)
v and likewise for values λw, λy. Finally, run the SNARK verification

algorithm (see Section 3) using the computed λ values. If it accepts, output 1 otherwise 0.

Theorem 3 (VC for outsourced sets) Let C be a set circuit that has d total gates and N total
inputs and outputs. Let n be an upper bound on the cardinalities of the sets on the wires and let
q = 16d1 +20d2 +4, where d1 is the number of intersection gates and d2 is the number of union and
difference gates (d = d1 +d2). Let X = {X1, . . . , Xm) be a collection of m sets, with M =

∑m
i=1 |Xi|

and µ = maxmi=1{|Xi|}. Finally, let K = max{2n + 1, µ}. The scheme {KeyGen,Compute,Verify} is
a verifiable computation scheme for function fC,X such that: (1) it is secure under the Kq-PKE,
the (n + 1)q-PDH, the Kq-SDH assumptions, and the existence of CRH functions; (2) Algorithm
KeyGen runs in O(dn+M) time; (3) Algorithm Compute runs in O(dν log2 ν log log ν+(N−1) logm)
time, where ν is the maximum cardinality of the sets on the wires; (4) Algorithm Verify runs in
O(
∑

i∈[N ] ni) time, where ni is the cardinality of the set on wire i; (5) Proofs consist of O(N)
(5N + 6 in practice) group elements and O((N − 1) logm) hash values.

Proof Sketch: First observe that a cheating prover can cheat either by using sets with different
accumulation values, different sets with the same accumulation values, or cheat in the SNARK
proof construction. By the security of the Merkle tree, the first case can happen with negligible-
probability, or a collision for function h is found. Assuming the second happens, the used sets can
be extracted by the q-PKE assumption. Let X be one of the originally accumulated sets and X ′

the extracted one, such that X 6= X ′ and

g
∏|X|

l=1(t−xl) = a = g
∏|X′|

j=1 (t−xj) .3

Let X(z), X ′(z) be their characteristic sets and Y (z) = X(z)−X ′(z). Observe that Y (t) = 0 hence
t is a root of Y (z). By running a randomized polynomial factoring algorithm on Y (z), an adversary
can find t with non-negligible probability, thus breaking q-SDH.

By a simple union bound, the two first events can only happen with negligible probability.
Conditioned on that not happening, the proof π is an accepting proof for a SNARK for the language
L(C) for input sets Xij , . . . , XiN−1 and output y. A cheating adversary can extract these sets with
overwhelming probability from q-PKE, hence it can be used to break the security of our SNARK for
sets. Since this can happen with negligible probability from Theorem 2, the security claim follows.

3In fact, the characteristic polynomial of X ′ will be extracted. The same approach we explain here can be used
to break the q-SDH assumption even if the extracted polynomial is not the characteristic polynomial of some set.

28



The complexities follow trivially from the complexities of the related algorithms of the SNARK
except for Compute where N − 1 Merkle proofs must be computed, each in time logm.

While the above construction yields a construction that appears practical, it has the downside
that it produces proofs that are linear in the number of input sets O(N) in size instead of the
constant size proofs of our SNARK for sets. One way to circumvent this would be to substitute
the part or our scheme that deals with validating that the correct sets were used (the Merkle
tree part of the scheme and the λ values in the proof) with an appropriate SNARK that would
prove the same statement. One good candidate SNARK would be the construction from [13] for
arithmetic circuits. Indeed an arithmetic circuit proving the validity of values aj would be of size
O(m) (assuming a hash computation can be made with a constant number of arithmetic gates).
Since both SNARK’s in such a construction offer extractability, it would be easy for a cheating
adversary to be reduced to an adversary for one of them and this scheme would offer constant size
proofs, assuming each of the two SNARKs does so. However, it is not clear how practical such a
construction would be and since N is only a the number of input sets (as opposed to, say, their
cardinalities), we only present it here as a viable theoretical construction.

6.7 Tight Complexity Analysis for Proof Construction.

Here we give an example of how we can deduce the exact cost related to the proof computation
of our SNARK. We will measure the number of necessary exponentiations for the mini-circuit of
a single intersection gate with input sets A,B of total cardinality |A| + |B| = D. Let I(z), α(z),
β(z), γ(z) and δ(z) be polynomials as defined in Lemma 2. By the intersection constraints in the
lemma, it follows that deg(γ(z)) + deg(I(z)) = |A| and deg(δ(z)) + deg(I(z)) = |B|. Also, by the
extended Euclidean algorithm, deg(α(z)) + deg(β(z)) ≤ D. Therefore the sum of the degrees of all
the polynomials at the wires (except for the input wires) is ≤ 2D.

These polynomials will be used for the computation of seven of the proof elements, namely the
six extractability terms and the one consistency term as defined in Section 3.1, hence the total
number of exponentiations for these terms is at most 7 · 2D. Finally, by the analysis in Section 3.3,
polynomial h(x, z) has degree d to variable x and 2D in z (since the maximum cardinality of a wire
value is D) thus the maximum number of necessary exponentiations to compute gh(s,t) is 2Dd. This
circuit has four multiplication gates therefore d = 4 hence the overall necessary exponentiations for
the proof computation are at most 14D + 8D = 22D.
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