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Abstract. Random number generators (RNGs) play a crucial role in many cryptographic schemes and proto-
cols, but their security proof usually assumes that their internal state is initialized with truly random seeds and
remains secret at all times. However, in many practical situations these are unrealistic assumptions: The seed is
often gathered after a reset/reboot from low entropy external events such as the timing of manual key presses,
and the state can be compromised at unknown points in time via side channels or penetration attacks. The usual
remedy (used by all the major operating systems, including Windows, Linux, FreeBSD, MacOS, iOS, etc.) is to
periodically replenish the internal state through an auxiliary input with additional randomness harvested from
the environment. However, recovering from such attacks in a provably correct and computationally optimal way
had remained an unsolved challenge so far.

In this paper we formalize the problem of designing an efficient recovery mechanism from state compromise,
by considering it as an online optimization problem. If we knew the timing of the last compromise and the
amount of entropy gathered since then, we could stop producing any outputs until the state becomes truly
random again. However, our challenge is to recover within a time proportional to this optimal solution even in
the hardest (and most realistic) case in which (a) we know nothing about the timing of the last state compromise,
and the amount of new entropy injected since then into the state, and (b) any premature production of outputs
leads to the total loss of all the added entropy used by the RNG, since the attacker can use brute force to
enumerate all the possible low-entropy states. In other words, the challenge is to develop recovery mechanisms
which are guaranteed to save the day as quickly as possible after a compromise we are not even aware of. The
dilemma that we face is that any entropy used prematurely will be lost, and any entropy which is kept unused
will delay the recovery.

After developing our formal definitional framework for RNGs with inputs, we show how to construct a nearly
optimal RNG which is secure in our model. Our technique is inspired by the design of the Fortuna RNG (which
is a heuristic RNG construction that is currently used by Windows and comes without any formal analysis),
but we non-trivially adapt it to our much stronger adversarial setting. Along the way, our formal treatment of
Fortuna enables us to improve its entropy efficiency by almost a factor of two, and to show that our improved
construction is essentially tight, by proving a rigorous lower bound on the possible efficiency of any recovery
mechanism in our very general model of the problem.

1 Introduction

Randomness is essential in many facets of cryptography, from the generation of long-term cryptographic
keys, to sampling local randomness for encryption, zero-knowledge proofs, and many other randomized
cryptographic primitives. As a useful abstraction, designers of such cryptographic schemes assume a source
of (nearly) uniform, unbiased, and independent random bits of arbitrary length. In practice, however, this
theoretical abstraction is realized by means of a Random Number Generator (RNG), whose goal is to
quickly accumulate entropy from various physical sources in the environment (such as keyboard presses or
mouse movement) and then convert it into the required source of (pseudo) random bits. We notice that a
highly desired (but, alas, rarely achieved) property of such RNGs is their ability to quickly recover from
? Research partially supported by gifts from VMware Labs and Google, and NSF grants 1319051, 1314568, 1065288, 1017471.
?? Research partially supported by gift from Google and NSF grants 1347350, 1314722.



various forms of state compromise, in which the current state S of the RNG becomes known to the attacker,
either due to a successful penetration attack, or via side channel leakage, or simply due to insufficient
randomness in the initial state. This means that the state S of practical RNGs should be periodically
refreshed using the above-mentioned physical sources of randomness I. In contrast, the simpler and much
better-understood theoretical model of pseudorandom generators (PRGs) does not allow the state to be
refreshed after its initialization. To emphasize this distinction, we will sometimes call our notion an “RNG
with input”, and notice that virtually all modern operating systems come equipped with such an RNG with
input; e.g., /dev/random [Wik04] for Linux, Yarrow [KSF99] for MacOs/iOS/FreeBSD and Fortuna [FS03]
for Windows [Fer13].

Unfortunately, despite the fact that they are widely used and often referred to in various standards [ISO11,
Kil11,ESC05,BK12], RNGs with input have received comparatively little attention from theoreticians. The
two notable exceptions are the works of Barak and Halevi [BH05] and Dodis et al. [DPR+13]. The pioneer-
ing work of [BH05] emphasized the importance of rigorous analysis of RNGs with input and laid their first
theoretical foundations. However, as pointed out by [DPR+13], the extremely clean and elegant security
model of [BH05] ignores the “heart and soul” issue of most real-world RNGs with input, namely, their
ability to gradually “accumulate” many low-entropy inputs I into the state S at the same time that they
lose entropy due to premature use. In particular, [DPR+13] showed that the construction of [BH05] (proven
secure in their model) may always fail to recover from state compromise when the entropy of each input
I1, . . . , Iq is sufficiently small, even for arbitrarily large q.

Motivated by these considerations, Dodis et al. [DPR+13] defined an improved security model for RNGs
with input, which explicitly guaranteed eventual recovery from any state compromise, provided that the
collective fresh entropy of inputs I1, . . . , Iq crosses some security threshold γ∗, irrespective of the entropies
of individual inputs Ij . In particular, they demonstrated that Linux’s /dev/random does not satisfy their
stronger notion of robustness (for similar reasons as the construction of [BH05]), and then constructed a
simple scheme which is provably robust in this model. However, as we explain below, their robustness model
did not address the issue of efficiency of the recovery mechanism when the RNG is being continuously used
after the compromise.

The Premature Next Problem. In this paper, we extend the model of [DPR+13] to address some
additional desirable security properties of RNGs with input not captured by this model. The main such
property is resilience to the “premature next attack”. This general attack, first explicitly mentioned by
Kelsey, Schneier, Wagner, and Hall [KSWH98], is applicable in situations in which the RNG state S has
accumulated an insufficient amount of entropy e (which is very common in bootup situations) and then must
produce some outputs R via legitimate “next” calls in order to generate various system keys. Not only is this
R not fully random (which is expected), but now the attacker can potentially use R to recover the current
state S by brute force, effectively “emptying” the e bits of entropy that S accumulated so far. Applied
iteratively, this simple attack, when feasible, can prevent the system from ever recovering from compromise,
irrespective of the total amount of fresh entropy injected into the system since the last compromise.

At first, it might appear that the only way to prevent this attack is by discovering a sound way to
estimate the current entropy in the state and to use this estimate to block the premature next calls. This is
essentially the approach taken by Linux’s /dev/random and many other RNGs with input. Unfortunately,
sound entropy estimation is hard or even infeasible [SV03, FS03] (e.g., [DPR+13] showed simple ways to
completely fool Linux’s entropy estimator). This seems to suggest that the modeling of RNGs with input
should consider each premature next call as a full state compromise, and this is the highly conservative
approach taken by [DPR+13] (which we will fix in this work).

Fortuna. Fortunately, the conclusion above is overly pessimistic. In fact, the solution idea already comes
from two very popular RNGs mentioned above, whose designs were heavily affected by the desire to overcome
the premature next problem: Yarrow (designed by Schneier, Kelsey and Ferguson [KSF99] and used by
MacOS/iOS/FreeBSD), and its refinement Fortuna (subsequently designed by Ferguson and Schneier [FS03]
and used by Windows [Fer13]). The simple but brilliant idea of these works is to partition the incoming
entropy into multiple entropy “pools” and then to cleverly use these pools at vastly different rates when
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producing outputs, in order to guarantee that at least one pool will eventually accumulate enough entropy
to guarantee security before it is “prematurely emptied” by a next call. (See Section 4 for more details.)

Ferguson and Schneier provide good security intuition for their Fortuna “pool scheduler” construction,
assuming that all the RNG inputs I1, . . . , Iq have the same (unknown) entropy and that each of the pools can
losslessly accumulate all the entropy that it gets. (They suggest using iterated hashing with a cryptographic
hash function as a heuristic way to achieve this.) In particular, if q is the upper bound on the number of
inputs, they suggest that one can make the number of pools P = log2 q, and recover from state compromise
(with premature next!) at the loss of a factor O(log q) in the amount of fresh entropy needed.

Our Main Result. Inspired by the idea of Fortuna, we formally extend the prior RNG robustness notion
of [DPR+13] to robustness against premature next. Unlike Ferguson and Schneier, we do so without making
any restrictive assumptions such as requiring that the entropy of all the inputs Ij be constant. (Indeed,
these entropies can be adversarily chosen, as in the model of [DPR+13], and can be unknown to the RNG.)
Also, in our formal and general security model, we do not assume ideal entropy accumulation or inherently
rely on cryptographic hash functions. In fact, our model is syntactically very similar to the prior RNG
model of [DPR+13], except: (1) a premature next call is not considered an unrecoverable state corruption,
but (2) in addition to the (old) “entropy penalty” parameter γ∗, there is a (new) “time penalty” parameter
β ≥ 1, measuring how long it will take to recover from state compromise relative to the optimal recovery
time needed to receive γ∗ bits of fresh entropy. (See Figures 2 and 3.)

To summarize, our model formalizes the problem of designing an efficient recovery mechanism from
state compromise as an online optimization problem. If we knew the timing of the last compromise and
the amount of entropy gathered since then, we could stop producing any outputs until the state becomes
truly random again. However, our challenge is to recover within a time proportional to this optimal solution
even in the hardest (and most realistic) case in which (a) we know nothing about the timing of the last
state compromise, and the amount of new entropy injected since then into the state, and (b) any premature
production of outputs leads to the total loss of all the added entropy used by the RNG, since the attacker can
use brute force to enumerate all the possible low-entropy states. In other words, the challenge is to develop
recovery mechanisms which are guaranteed to save the day as quickly as possible after a compromise we
are not even aware of. The dilemma that we face is that any entropy used prematurely will be lost, and any
entropy which is kept unused will delay the recovery.

After extending our model to handle premature next calls, we define the generalized Fortuna construc-
tion, which is provably robust against premature next. Although heavily inspired by actual Fortuna, the
syntax of our construction is noticeably different (See Figure 5), since we prove it secure in a stronger model
and without any idealized assumptions (like perfect entropy accumulation, which, as demonstrated by the
attacks in [DPR+13], is not a trivial thing to sweep under the rug). In fact, to obtain our construction, we:
(a) abstract out a rigorous security notion of a (pool) scheduler; (b) show a formal composition theorem
(Theorem 2) stating that a secure scheduler can be composed with any robust RNG in the prior model
of [DPR+13] to achieve security against premature next; (c) obtain our final RNG by using the provably
secure RNG of [DPR+13] and a Fortuna-like scheduler (proven secure in our significantly stronger model).
In particular, the resulting RNG is secure in the standard model, and only uses the existence of standard
PRGs as its sole computational assumption.

Constant-Rate RNGs. In Section 5.4, we consider the actual constants involved in our construction,
and show that under a reasonable setting or parameters, our RNG will recover from compromise in β = 4
times the number of steps it takes to get 20 to 30 kB of fresh entropy. While these numbers are a bit high,
they are also obtained in an extremely strong adversarial model. In contrast, remember that Ferguson and
Schneier informally analyzed the security of Fortuna in a much simpler case in which entropy drips in at
a constant rate. While restrictive, in Section 6 we also look at the security of generalized Fortuna (with
a better specialized scheduler) in this model, as it could be useful in some practical scenarios and allow
for a more direct comparison with the original Fortuna. In this simpler constant entropy dripping rate,
we estimate that our RNG (with standard security parameters) will recover from a complete compromise
immediately after it gets about 2 to 3 kB of entropy (see Section 6.2), which is comparable to [FS03]’s
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(corrected) claim, but without assuming ideal entropy accumulation into the state. In fact, our optimized
constant-rate scheduler beats the original Fortuna’s scheduler by almost a factor of 2 in terms of entropy
efficiency.
Rate Lower Bound. We also show that any “Fortuna-like construction” (which tries to collect entropy
in multiple pools and cleverly utilize them with an arbitrary scheduler) must lose at least a factor Ω(log q)
in its “entropy efficiency”, even in the case where all inputs Ij have an (unknown) constant-rate entropy.
This suggests that the original scheduler of Fortuna (which used log q pools which evenly divide the entropy
among them) is asymptotically optimal in the constant-rate case (as is our improved version).

Semi-Adaptive Set-Refresh. As a final result, we make progress in addressing another important
limitation of the model of Dodis et al. [DPR+13] (and our direct extension of the current model that
handles premature nexts). Deferring technical details to Section 7, in that model the attacker A had very
limited opportunities to adaptively influence the samples produced by another adversarial quantity, called
the distribution sampler D. As explained in there and in [DPR+13], some assumption of this kind is necessary
to avoid impossibility results, but it does limit the applicability of the model to some real-world situations.
As the initial step to removing this limitation, in Section 7.1 we introduce the “semi-adaptive set-refresh”
model and show that both the original RNG of [DPR+13] and our new RNG are provably secure in this
more realistic adversarial model.
Other Related Work. As we mentioned, there is very little literature focusing on the design and analysis
of RNGs with inputs in the standard model. In addition to [BH05,DPR+13], some analysis of the Linux
RNG was done by Lacharme, Röck, Strubel and Videau [LRSV12]. On the other hand, many works showed
devastating attacks on various cryptographic schemes when using weak randomness; some notable examples
include [GPR06,KSWH98,NS02,CVE08,DGP07,LHA+12,HDWH12].

2 Preliminaries

Entropy. For a discrete distribution X, we denote its min-entropy by H∞(X) = minx{− log Pr[X = x]}.
We also define worst-case min-entropy of X conditioned on another random variable Z by in the following
conservative way: H∞(X|Z) = − log([maxx,z Pr[X = x|Z = z]]). We use this definition instead of the
usual one so that it satisfies the following relation, which is called the “chain rule”: H∞(X,Z)−H∞(Z) ≥
H∞(X|Z).
Pseudorandom Functions and Generators. We say that a function F : {0, 1}` × {0, 1}m → {0, 1}m
is a (deterministic) (t, qF, ε)-pseudorandom function (PRF) if no adversary running in time t and making
qF oracle queries to F(key, ·) can distinguish between F(key, ·) and a random function with probability
greater than ε when key

$← {0, 1}`. We say that a function G : {0, 1}m → {0, 1}n is a (deterministic)
(t, ε)-pseudorandom generator (PRG) if no adversary running in time t can distinguish between G(seed)

and uniformly random bits with probability greater than ε when seed
$← {0, 1}m.

Game Playing Framework. For our security definitions and proofs we use the code-based game-playing
framework of [BR06]. A game GAME has an initialize procedure, procedures to respond to adversary oracle
queries, and a finalize procedure. A game GAME is executed with an adversary A as follows: First, initialize
executes, and its outputs are the inputs to A. Then A executes, its oracle queries being answered by
the corresponding procedures of GAME. When A terminates, its output becomes the input to the finalize
procedure. The output of the latter is called the output of the game, and we let GAMEA ⇒ y denote the
event that this game output takes value y. AGAME denotes the output of the adversary and AdvGAME

A =
2×Pr[GAMEA ⇒ 1]− 1. Our convention is that Boolean flags are assumed initialized to false and that the
running time of the adversary A is defined as the total running time of the game with the adversary in
expectation, including the procedures of the game.

3 RNG with Input: Modeling and Security

In this section we present formal modeling and security definitions for RNGs with input, largely follow-
ing [DPR+13].
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Definition 1 (RNG with input). An RNG with input is a triple of algorithms G = (setup, refresh, next)
and a triple (n, `, p) ∈ N3 where n is the state length, ` is the output length and p is the input length of G:

– setup: a probabilistic algorithm that outputs some public parameters seed for the generator.
– refresh: a deterministic algorithm that, given seed, a state S ∈ {0, 1}n and an input I ∈ {0, 1}p, outputs

a new state S′ = refresh(seed, S, I) ∈ {0, 1}n.
– next: a deterministic algorithm that, given seed and a state S ∈ {0, 1}n, outputs a pair (S′, R) =

next(seed, S) where S′ ∈ {0, 1}n is the new state and R ∈ {0, 1}` is the output.

Before moving to defining our security notions, we notice that there are two adversarial entities we need
to worry about: the adversary A whose task is (intuitively) to distinguish the outputs of the RNG from
random, and the distribution sampler D whose task is to produce inputs I1, I2, . . . , which have high entropy
collectively, but somehow help A in breaking the security of the RNG. In other words, the distribution
sampler models potentially adversarial environment (or “nature”) where our RNG is forced to operate.

3.1 Distribution Sampler

The distribution sampler D is a stateful and probabilistic algorithm which, given the current state σ, outputs
a tuple (σ′, I, γ, z) where: (a) σ′ is the new state for D; (b) I ∈ {0, 1}p is the next input for the refresh
algorithm; (c) γ is some fresh entropy estimation of I, as discussed below; (d) z is the leakage about I
given to the attacker A. We denote by qD the upper bound on number of executions of D in our security
games, and say that D is legitimate if H∞(Ij | I1, . . . , Ij−1, Ij+1, . . . , IqD , z1, . . . , zqD , γ0, . . . , γqD) ≥ γj for
all j ∈ {1, . . . , qD} where (σi, Ii, γi, zi) = D(σi−1) for i ∈ {1, . . . , qD} and σ0 = 0.1

We explain [DPR+13]’s reason for explicitly requiringD to output the entropy estimate γj . Most complex
RNGs are worried about the situation where the system might enter a prolonged state where no new entropy
is inserted in the system. Correspondingly, such RNGs typically include some ad hoc entropy estimation
procedure E whose goal is to block the RNG from outputting output value Rj until the state has accumulated
enough entropy γ∗ (for some entropy threshold γ∗). Unfortunately, it is well-known that even approximating
the entropy of a given distribution is a computationally hard problem [SV03]. This means that if we require
our RNG G to explicitly come up with such a procedure E, we are bound to either place some significant
restrictions (or assumptions) on D, or rely on some hoc and non standard assumptions. Indeed, [DPR+13]
demonstrate some attacks on the entropy estimation of the Linux RNG, illustrating how hard (or, perhaps,
impossible?) it is to design a sound entropy estimation procedure E. Finally, we observe that the design of
E is anyway completely independent of the mathematics of the actual refresh and next procedures, meaning
that the latter can and should be evaluated independently of the “accuracy” of E.

Motivated by these considerations, [DPR+13] do not insist on any “entropy estimation” procedure as
a mandatory part of the RNG design. Instead, they place the burden of entropy estimations on D itself.
Equivalently, we can think that the entropy estimations γj come from the entropy estimation procedure E
(which is now “merged” with D), but only provide security assuming that E is correct in this estimation
(which we know is hard in practice, and motivates future work in this direction).

However, we stress that: (a) the entropy estimates γj will only be used in our security definitions, but
not in any of the actual RNG operations (which will only use the input I returned by D); (b) we do not
insist that a legitimate D can perfectly estimate the fresh entropy of its next sample Ij , but only provide a
lower bound γj that is legitimate. For example, D is free to set γj = 0 as many times as it wants and, in this
case, can even choose to leak the entire Ij to A via the leakage zj ! More generally, we allow D to inject new
entropy γj as slowly (and maliciously!) as it wants, but will only require security when the counter c keeping
track of the current “fresh” entropy in the system2 crosses some entropy threshold γ∗ (since otherwise we
have “no reason” to expect any security).

1 Since conditional min-entropy is defined in the worst-case manner, the value γj in the bound below should not be viewed
as a random variable, but rather as an arbitrary fixing of this random variable.

2 Intuitively, “fresh” refers to the new entropy in the system since the last state compromise.
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3.2 Security Notions

We define the game ROB(γ∗) in our game framework. We show the initialize and finalize procedures for
ROB(γ∗) in Figure 1. The attacker’s goal is to guess the correct value b picked in the initialize procedure
with access to several oracles, shown in Figure 2. Dodis et al. define the notion of robustness for an RNG
with input [DPR+13]. In particular, they define the parametrized security game ROB(γ∗) where γ∗ is a
measure of the “fresh” entropy in the system when security should be expected. Intuitively, in this game A
is able to view or change the state of the RNG (get-state and set-state), to see output from it (get-next),
and to update it with a sample Ij from D (D-refresh). In particular, notice that the D-refresh oracle keeps
track of the fresh entropy in the system and declares the RNG to no longer be corrupted only when the
fresh entropy c is greater than γ∗. (We stress again that the entropy estimates γi and the counter c are not
available to the RNG.) Intuitively, A wins if the RNG is not corrupted and he correctly distinguishes the
output of the RNG from uniformly random bits.

proc. initialize

seed
$← setup; σ ← 0; S $← {0, 1}n; c← n; corrupt← false; b $← {0, 1}

OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

Fig. 1: Procedures initialize and finalize for G = (setup, refresh, next)

proc. D-refresh

(σ, I, γ, z)
$← D(σ)

S ← refresh(S, I)
c← c+ γ
IF c ≥ γ∗,

corrupt← false
OUTPUT (γ, z)

proc. next-ror
(S,R0)← next(S)

R1
$← {0, 1}`

IF corrupt = true,
c← 0
RETURN R0

ELSE OUTPUT Rb

proc. get-next
(S,R)← next(S)
IF corrupt = true,

c← 0
OUTPUT R

proc. get-state
c← 0; corrupt← true
OUTPUT S

proc. set-state(S∗)
c← 0; corrupt← true
S ← S∗

Fig. 2: Procedures in ROB(γ∗) for G = (setup, refresh, next)

Definition 2 (Security of RNG with input). A pseudorandom number generator with input G = (setup,
refresh, next) is called ((t, qD, qR, qS), γ

∗, ε)-robust if for any attacker A running in time at most t, making at
most qD calls to D-refresh, qR calls to next-ror/get-next and qS calls to get-state/set-state, and any legitimate
distribution sampler D inside the D-refresh procedure, the advantage of A in game ROB(γ∗) is at most ε.

Notice that in ROB(γ∗), if A calls get-next when the RNG is still corrupted, this is a “premature”
get-next and the entropy counter c is reset to 0. Intuitively, [DPR+13] treats information “leaked” from
an insecure RNG as a total compromise. We modify their security definition and define the notion of
robustness against premature next with the corresponding security game NROB(γ∗, γmax, β). Our modified
game NROB(γ∗, γmax, β) has identical initialize and finalize procedures to [DPR+13]’s ROB(γ∗) (Figure 1).
Figure 3 shows the new oracle queries. The differences with ROB(γ∗) are highlighted for clarity.

In our modified game, “premature” get-next calls do not reset the entropy counter. We pay a price
for this that is represented by the parameter β ≥ 1. In particular, in our modified game, the game does
not immediately declare the state to be uncorrupted when the entropy counter c passes the threshold γ∗.
Instead, the game keeps a counter T that records the number of calls to D-refresh since the last set-state or
get-state (or the start of the game). When c passes γ∗, it sets T ∗ ← T and the state becomes uncorrupted
only after T ≥ βT ∗ (of course, provided A made no additional calls to get-state or set-state). In particular,
while we allow extra time for recovery, notice that we do not require any additional entropy from the
distribution sampler D.

Intuitively, we allow A to receive output from a (possibly corrupted) RNG and, therefore, to potentially
learn information about the state of the RNG without any “penalty”. However, we allow the RNG additional
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time to “mix the fresh entropy” received from D, proportional to the amount of time T ∗ that it took to get
the required fresh entropy γ∗ since the last compromise.

As a final subtlety, we set a maximum γmax on the amount that the entropy counter can be increased
from one D-refresh call. This might seem strange, since it is not obvious how receiving too much entropy
at once could be a problem. However, γmax will prove quite useful in the analysis of our construction.
Intuitively, this is because it is harder to “mix” entropy if it comes too quickly. Of course γmax is bounded
by the length of the input p, but in practice we often expect it to be substantially lower. In such cases,
we are able to prove much better performance for our RNG construction, even if γmax is unknown to the
RNG. In addition, we get very slightly better results if some upper bound on γmax is incorporated into the
construction.

proc. D-refresh

(σ, I, γ, z)
$← D(σ)

S ← refresh(S, I)

IF γ > γmax, THEN γ ← γmax

c← c+ γ

T ← T + 1

IF c ≥ γ∗,
corrupt← false

IF T ∗ = 0,
T ∗ ← T

IF T ≥ β · T ∗,
corrupt← false

OUTPUT (γ, z)

proc. next-ror
(S,R0)← next(S)

R1
$← {0, 1}`

IF corrupt = true,
c← 0
RETURN R0

ELSE OUTPUT Rb

proc. get-next
(S,R)← next(S)
IF corrupt = true,

c← 0
OUTPUT R

proc. get-state
c← 0; corrupt← true

T ← 0; T ∗ ← 0

OUTPUT S

proc. set-state(S∗)
c← 0; corrupt← true

T ← 0; T ∗ ← 0

S ← S∗

Fig. 3: Procedures in NROB(γ∗, γmax, β) for G = (setup, refresh, next) with differences from ROB(γ∗) highlighted

Definition 3 (Security of RNG with input against premature next). A pseudorandom number
generator with input G = (setup, refresh, next) is called ((t, qD, qR, qS), γ

∗, γmax, ε, β)-premature-next ro-
bust if for any attacker A running in time at most t, making at most qD calls to D-refresh, qR calls to
next-ror/get-next and qS calls to get-state/set-state, and any legitimate distribution sampler D inside the
D-refresh procedure, the advantage of A in game NROB(γ∗, γmax, β) is at most ε.

Relaxed Security Notions. We note that the above security definition is quite strong. In particular,
the attacker has the ability to arbitrarily set the state of G many times. Motivated by this, we present
several relaxed security definitions that may better capture real-world security. These definitions will be
useful for our proofs, and we show in Section 4.2 that we can achieve better results for these weaker notions
of security:

– NROBreset(γ
∗, γmax, β) is NROB(γ∗, γmax, β) in which oracle calls to set-state are replaced by calls to

reset-state. reset-state takes no input and simply sets the state of G to some fixed state S0, determined
by the scheme and sets the entropy counter to zero.3

– NROB1set(γ
∗, γmax, β) is NROB(γ∗, γmax, β) in which the attacker may only make one set-state call at

the beginning of the game.
– NROB0set(γ

∗, γmax, β) is NROB(γ∗, γmax, β) in which the attacker may not make any set-state calls.

We define the corresponding security notions in the natural way (See Definition 3), and we call them
respectively robustness against resets, robustness against one set-state, and robust without set-state.

4 The Generalized Fortuna Construction

At first, it might seem hopeless to build an RNG with input that can recover from compromise in the
presence of premature next calls, since output from a compromised RNG can of course reveal information
3 Intuitively, this game captures security against an attacker that can cause a machine to reboot.
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about the (low-entropy) state. Surprisingly, Ferguson and Schneier presented an elegant away to get around
this issue in their Fortuna construction [FS03]. Their idea is to have several “pools of entropy” and a special
“register” to handle next calls. As input that potentially has some entropy comes into the RNG, any entropy
“gets accumulated” into one pool at a time in some predetermined sequence. Additionally, some of the pools
may be used to update the register. Intuitively, by keeping some of the entropy away from the register for
prolonged periods of time, we hope to allow one pool to accumulate enough entropy to guarantee security,
even if the adversary makes arbitrarily many premature next calls (and therefore potentially learns the
entire state of the register). The hope is to schedule the various updates in a clever way such that this
is guaranteed to happen, and in particular Ferguson and Schneier present an informal analysis to suggest
that Fortuna realizes this hope in their “constant rate” model (in which the entropy γi of each input is an
unknown constant).

In this section, we present a generalized version of Fortuna in our model and terminology. In particular,
while Fortuna simply uses a cryptographic hash function to accumulate entropy and implicitly assumes
perfect entropy accumulation, we will explicitly define each pool as an RNG with input, using the robust
construction from [DPR+13] (and simply a standard PRG as the register). And, of course, we do not make
the constant-rate assumption. We also explicitly model the choice of input and output pools with a new
object that we call a scheduler, and we define the corresponding notion of scheduler security. In addition
to providing a formal model, we achieve strong improvements over Fortuna’s implicit scheduler.

As a result, we prove formally in the standard model that the generalized Fortuna construction is
premature-next robust when instantiated with a number of robust RNGs with input, a secure scheduler,
and a secure PRG.

4.1 Schedulers

Definition 4. A scheduler is a deterministic algorithm SC that takes as input a key skey and a state
τ ∈ {0, 1}m and outputs a new state τ ′ ∈ {0, 1}m and two pool indices, in, out ∈ N ∪ {⊥}.

We call a scheduler keyless if there is no key. In this case, we simply omit the key and write SC(τ). We say
that SC has P pools if for any skey and any state τ , if (τ ′, in, out) = SC(skey, τ), then in, out ∈ [0, P−1]∪{⊥}.

proc. SGAME
w1, . . . , wq ← E
skey

$← {0, 1}|skey|
τ0 ← A(skey, (wi)

q
i=1)

(ini, outi)
q
i=1 ← SC

q(skey, τ0)
c← 0; c0 ← 0, . . . , cP−1 ← 0; T ∗ ← 0
FOR T in 1, . . . , q,

IF wT > wmax, THEN OUTPUT 0
c← c+ wT ; cinT ← cinT + wT
IF out 6= ⊥,

IF coutT ≥ 1, THEN OUTPUT 0
ELSE coutT ← 0

IF c ≥ α
IF T ∗ = 0, THEN T ∗ ← T
IF T ≥ β ·T ∗, THEN OUTPUT 1

OUTPUT 0

Fig. 4: SGAME(P, q, wmax, α, β), the security game for a scheduler SC

Given a scheduler SC with skey and state τ , we write SCq(skey, τ) = (inj(SC, skey, τ), outj(SC, skey, τ))qj=1

to represent the sequence obtained by iteratively computing (in, out, τ) ← SC(skey, τ) for q times. When
SC, skey, and τ are clear or implicit, we will simply write inj and outj . We think of inj as a pool that is to
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be “filled” at time j and outj as a pool to be “emptied” immediately afterwards. When outj = ⊥, no pool
is emptied.

For a scheduler with P pools, we define the security game SGAME(P, q, wmax, α, β) as in Figure 4. In
the security game, there are two adversaries, a sequence sampler E and an attacker A. We think of the
sequence sampler E as a simplified version of the distribution sampler D that is only concerned with the
entropy estimates (γi)

q
i=1. E simply outputs a sequence of weights (wi)

q
i=1 with 0 ≤ wi ≤ wmax, where we

think of the weights as normalized entropies wi = γi/γ
∗ and wmax = γmax/γ

∗.
The challenger chooses a key skey at random. Given skey and (wi)

q
i=1, A chooses a start state for the

scheduler τ0, resulting in the sequence (ini, outi)
q
i=1. Each pool has an accumulated weight cj , initially 0,

and the pools are filled and emptied in sequence; on the T -th step, the weight of pool inT is increased by
wT and pool outT is emptied (its weight set to 0), or no pool is emptied if out = ⊥. If at some point in
the game a pool whose weight is at least 1 is emptied, the adversary loses. (Remember, 1 here corresponds
to γ∗, so this corresponds to the case when the underlying RNG recovers.) We say that such a pool is a
winning pool at time T against (τ0, (wi)

q
i=1). On the other hand, the adversary wins if

∑T ∗

i=1wi ≥ α and the
game reaches the (β · T ∗)-th step (without the challenger winning). Finally, if neither event happens, the
adversary loses.

Definition 5 (Scheduler security). A scheduler SC with P pools is (t, q, wmax, α, β, ε)-secure if for any
pair of adversaries E ,A with cumulative run-time t, the probability that E ,A win game SGAME(P, q, wmax, α, β)
is at most ε. We call r = α · β the competitive ratio of SC.4

We note that schedulers are non-trivial objects. Indeed, in Appendix A, we prove the following lower
bounds, which imply that schedulers can only achieve superconstant competitive ratios r = α · β.

Theorem 1. Suppose that SC is a (t, q, wmax, α, β, ε)-secure scheduler running in time tSC. Let r = α · β
be the competitive ratio. Then, if q ≥ 3, ε < 1/q, t = Ω(q · (tSC + log q)), and r ≤ wmax

√
q, we have that

r > loge q − loge(1/wmax)− loge loge q − 1 , α >
wmax

wmax + 1
· loge(1/ε)− 1

loge loge(1/ε) + 1
.

4.2 The Composition Theorem

Our generalized Fortuna construction consists of a scheduler SC with P pools, P entropy pools Gi, and
register ρ. The Gi are themselves RNGs with input and ρ can be thought of as a much simpler RNG with
input which just gets uniformly random samples. On a refresh call, Fortuna uses SC to select one pool Gin
to update and one pool Gout from which to update ρ. next calls are handled entirely from the register.

Formally, we define a generalized Fortuna construction as follows: Let SC be a scheduler with P pools
and let pools Gi = (setupi, refreshi, nexti) for i = 0, . . . , P −1 be RNGs with input. For simplicity, we assume
all the RNGs have input length p and output length `, and the same setup procedure, setupi = setupG . We
also assume G : {0, 1}` → {0, 1}2` is a pseudorandom generator (without input). We construct a new
RNG with input G(SC, (Gi)P−1i=0 ,G) = (setup, refresh, next) as in Figure 5.

Theorem 2. Let G be an RNG with input constructed as above. If the scheduler SC is a (tSC , qD, wmax, α, β, εSC)-
secure scheduler with P pools and state length m, the pools Gi are ((t, qD, qR = qD, qS), γ

∗, ε)-robust RNGs
with input and the register G is (t, εprg)-pseudorandom generator, then G is ((t′, qD, q

′
R, qS), α · γ∗, wmax ·

γ∗, ε′, β)-premature-next robust where t′ ≈ min(t, tSC) and ε′ = q2D · qS · (qD · εSC + P · 2m · ε+ q′Rεprg).
For our weaker security notions, we achieve better ε′:

– For NROBreset, ε′ = q2D · qS · (qD · εSC + P · ε+ q′Rεprg).
– For NROB1set, ε′ = qD · εSC + P · 2m · ε+ q′Rεprg.
– For NROB0set, ε′ = qD · εSC + P · ε+ q′Rεprg.
4 The intuition for the competitive ratio r = α ·β (which will be explicit in Section 6) comes from the case when the sequence
sampler E is restricted to constant sequences wi = w. In that case, r bounds the ratio between the time taken by SC to win
and the time taken to receive a total weight of one.
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proc. setup :

seedG
$← setupG()

skey
$← {0, 1}|skey|

OUTPUT seed = (skey, seedG)

proc. refresh(seed, S, I) :
PARSE (skey, seedG)← seed;

(
τ, Sρ, (Si)

P−1
i=0

)
← S

(τ, in, out)← SC(skey, τ)
Sin ← refreshin(seedG , Sin, I)
(Sout, R)← nextout(seedG , Sout)
Sρ ← Sρ ⊕R
OUTPUT S =

(
τ, Sρ, (Si)

P−1
i=0

)

proc.next(seed, S) :
PARSE

(
τ, Sρ, (Si)

P−1
i=0

)
← S

(Sρ, R)← G(Sρ)

OUTPUT (S =
(
τ, Sρ, (Si)

P−1
i=0

)
, R)

Fig. 5: The generalized Fortuna construction

4.3 Proof of Theorem 2

For convenience, we first prove the theorem for the game NROB1set. (Recall that NROB1set is a modified
version of NROB in which the adversary is allowed only one call to set-state at the start of the game.) We
then show that this implies security for the game NROB and sketch how to extend the proof to the two
other notions.

Let us start with some notation to keep track of the state of the security game NROB1set(α ·γ∗, β). Most
importantly, for each of the P component RNGs Gi we will keep track of a counter ci and a corruption
flag corrupti. These implicitly correspond to the notion of corruption in the basic security game ROB. In
particular, the flags are all initially set to corrupti ← false and ci ← n for each of the RNGs. Whenever
the attacker calls D-refresh on our constructed RNG, it receives sample I with min-entropy at least γ, and
the scheduler chooses component RNGs Gin,Gout. Then, we (1) increment cin ← cin + γ and if cin ≥ γ∗ set
corruptin ← false (2) if corruptout = true set cout = 0. Whenever the attacker calls set-state or get-state, we
set all of the flags corrupti ← true and ci ← 0.

We also define the flag corruptρ for the register, which is initially set to corruptρ ← false. Whenever the
attacker calls D-refresh and and the component RNG Gout selected by the scheduler has corruptout = false
then set corruptρ ← false. Whenever the attacker calls set-state, get-state we set corruptρ ← true.

We now define a sequence of games:

1. Game 0 is the NROB1set(α · γ∗, β) security game against G.
2. Game i for i = 1, . . . , P is a modified version of Game 0 in which, whenever we call nextout at any

point in the game on a component RNG Gout for out < i and corruptout = false, we choose the output
R← {0, 1}` uniformly at random instead of using the output of the RNG.

3. Game P + 1 is a modified version of Game P where, whenever nextρ is called and corruptρ is set to
false, we output uniform randomness R← {0, 1}`.

4. Game P + 2 is the same as Game P + 1, but whenever the corrupt flag (the global compromised flag
of NROB itself) is set to false we also set corruptρ to false.

Let A be an attacker on the NROB1set security game running in time t′ and making qD queries to
D-refresh, qR queries to get-next or next-ror, qS − 1 queries to get-state, and at most one set-state query at
the very beginning of the game. In each game, we say that A wins if it guesses the challenge bit b′ = b.

Claim. For each i ∈ {1, . . . P} we have |Pr[A wins in Game i− 1]− Pr[A wins in Game i]| ≤ 2mε.

Proof. We prove this by reduction to the basic robustness game ROB of the underlying RNG Gi. Assume
that there is some distribution sampler D attacker A with advantage δ in distinguishing Game i− 1 and
Game i. The main idea is to compose the distributions sampler D and the scheduler SC to create a new
distribution sampler D′ that only outputs the samples of D intended for Gi and “leaks” all of the other
samples to A′. This allows A′ to simulate the NROB1set game for A by knowing the entire state of all the
component RNGs except for Gi. The main subtle issue is that the state of the scheduler may get set by
the attacker A in the initial set-state call in a way that depends on the seed of the RNG Gi, preventing D′
from learning the correct sequence of input pools. We handle this by simply guessing the initial scheduler
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state ahead of time τD′ . D′ then leaks τD′ to A′, and if it happens to be wrong, he just stops the game and
outputs a random bit b∗.

In particular, we define a distribution sampler D′i,qD (with hard-coded values in the subscript) as shown
in Figure 6. We also define A′ as in Figure 7 to essentially simulate the NROB1set game for A by using its
oracles to get samples for Gi and knowing the state of all other generators. Let τA be the scheduler state
chosen by A on set-state or simply the start state of the scheduler if he does not call set-state. Let bchal be
the challenge bit chosen by the ROB(γ∗) challenger5 and let b∗ be the bit guessed by A′ (which is uniformly
random if τA 6= τD′). Conditioned on (bchal = 0) ∧ (τA = τD′), the view of A above exactly corresponds to
Game i− 1 and conditioned on (bchal = 1) ∧ (τA = τD′) it corresponds to Game i. Therefore, we have:

ε ≥ Adv
ROB(γ∗)
A′,D′ = 2 · |Pr[b∗ = bchal]−

1

2
| ≥ |Pr[b∗ = 1|bchal = 1]− Pr[b∗ = 1|bchal = 0]|

= Pr[τA = τD′ ]|Pr[b∗ = 1|bchal = 1, τA = τD′ ]− Pr[b∗ = 1|bchal = 0, τA = τD′ ]| ≥ 2−mδ

The second line follows because, conditioned on τA 6= τD′ , the bit b∗ is independent of bchal. This tells us
that δ ≤ 2mε as we wanted to show.

proc. D′i,qD (σ′) :
IF σ′ = 0 // initial call

τD′
$← {0, 1}m, skey

$← {0, 1}n, (inj , outj)
qD
j=1 ← SC

qD (skey, τ0)
Zsam ← ∅, Zleak ← ∅ //Two empty queues
σ ← 0
FOR j = 1 . . . qD:

(σ, I, γ, z)
$← D(σ).

IF inj = i, THEN Zsam.push((I, γ, z))
ELSE Zleak.push((I, γ, z))

σ′ ← Zsam, I0 ← 0, γ0 ← 0, z0 ← (Zleak, τD′ , skey)
OUTPUT (σ′, I0, γ0, z0)
ELSE

σ′ ← Zsam, (I, γ, z)← Zsam.pop()
OUTPUT (Zsam, I, γ, z).

Fig. 6: The distribution sampler D′

Next we show that Game P is indistinguishable from Game P + 1.

Claim. We have |Pr[A wins in Game P ]− Pr[A wins in Game P + 1]| ≤ 2εprg.

Proof. We prove this by reduction to the PRG security of the underlying “register” G. We simply employ
a hybrid argument over all calls to this G when corruptρ = false, starting from the earliest, and change the
output (Sρ, R) ← G(Sρ) to being a uniformly random 2` bit value. In each hybrid i the state Sρ prior to
the ith call is either (I) the initial value chosen uniformly random, (II) an output of a prior G call and
therefore uniformly random in this hybrid, (III) some value xored with the output of some pool Gi when
corrupti was set to false and therefore uniformly random.

Next we show that Game P + 1 is indistinguishable from Game P + 2.

Claim. We have |Pr[A wins in Game P + 1]− Pr[A wins in Game P + 2]| ≤ qDεSC .
5 This does not correspond to the bit b chosen by A′ in the simulation.
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proc. D-refresh
(τ, in, out)← SC(skey, τ)
IF in = i,

(γ, z)← ROB(γ∗).D-refresh()
ELSE ,

(I, γ, z)← Z.pop()
Sin ← refreshin(seedG , Sin, I)

cin ← cin + γ, c← c+ γ
IF cin > γ∗

corruptin ← false.
IF out = i,

R
$← ROB(γ∗).next-ror()

ELSE ,
(Sout, R)← nextout(seedG , Sout)
IF corruptout = true

cout ← 0
IF out < i AND corruptout = false,

R
$← {0, 1}`

Sρ ← Sρ ⊕R
OUTPUT (γ, z)

proc. initialize()

b
$← {0, 1}

seedG ← ROB(γ∗).initialize()
(Z, τD′ , skey)← ROB(γ∗).D-refresh()

τA
$← {0, 1}m

τ ← τA
FOR j ∈ {0, . . . , P − 1} \ {i}:

Sj
$← {0, 1}n

FOR j ∈ {0, . . . , P − 1}:
cj ← n, corruptj ← false

c← n, corrupt← false
OUTPUT seed = (seedG , skey)

proc. finalize(b∗)

IF τD′ 6= τA, THEN b∗
$← {0, 1}

OUTPUT ROB(γ∗).finalize(b∗)

proc. next-ror
(Sρ, R0)← G(Sρ)

R1
$← {0, 1}`

IF corrupt = true,
RETURN R0

ELSE OUTPUT Rb

proc. get-next
(Sρ, R)← G(Sρ)
OUTPUT R

proc. get-state
corrupt← true, c← 0
FOR j in 0, . . . , P − 1

cj ← 0, corruptj ← true
Si ← ROB(γ∗).get-state()
S ← (τ, Sρ, (Sj)

P−1
j=0 )

OUTPUT S

proc. set-state(S′)
corrupt← true, c← 0

PARSE (τA, S
′
ρ, (S

′
j)
P−1
j=0 )← S′

FOR j in 0, . . . , P − 1
cj ← 0, corruptj ← true
IF j 6= i

Sj ← S′j
ELSE

ROB(γ∗).set-state(S′j)
τ ← τA
Sρ ← S′ρ

Fig. 7: Responses of A′ to oracle queries from A

Proof. We prove this by reduction to scheduler security. In particular, Game P +1 and P +2 can only differ
if in Game P + 1 it happens at some point that the corrupt flag is set to false but corruptρ = true. We call
this event Ebad. Intuitively, this corresponds to the case where the attacker makes a get-state or set-state
query (causing corrupt and corruptρ to both be set to true) then sufficient entropy (αγ∗) has been added by
the entropy sampler and sufficient time (βT ∗) passes to ensure that corrupt is set to false, but none of the
component RNGs Gi managed to get enough entropy to set corrupti to false or they were never emptied.
This corresponds to a failure of the scheduler, and we show how to convert an attacker A and distribution
D for which Pr[Ebad] ≥ δ into an attack E ,A′ on the scheduler. For convenience, when Ebad occurs, let i∗

be the index of the first entropy sample given after the last get-state, set-state (compromise) query before
Ebad occurs.

The attackers E ,A′ guess a random value i ∈ [qD] which intuitively corresponds to a guess on i∗.
E simply runs D for qD steps to get (among other outputs) the entropy estimates {γj}. It outputs the
sequence w1 = γi/γ

∗, w2 = γi+1/γ
∗, . . .. The attacker A′(skey) simply runs a copy of A,D completely

simulating Game P + 1 and outputs the state of the scheduler τ immediately before the ith D-refresh
query. It is easy to check that E ,A′ win against the scheduler as long as D,A cause the event Ebad to
happen and the guess i = i∗ is correct. In particular, the entropy counters ci measuring the amount of
entropy added to each RNG behave the same those in the scheduler security game, up to the scaling factor
of γ∗. Therefore, they have advantage δ/qD which proves the claim.

Claim. We have Pr[A wins in Game P + 2] = 1
2 .

Proof. The attacker’s view in Game P + 2 is completely independent of challenge bit b. In particular, the
next-ror queries with corrupt = false always return a random value no matter what the bit b is. Therefore,
the attacker’s probability of guessing the challenge bit is exactly 1

2 .

Combining the above claims, we prove the theorem for the case of NROB1set security. Notice that the
same proof for the game NROB0set would not require us to guess the initial state of the scheduler in going
from Game i− 1 to Game i and would therefore avoid the 2m factor loss in security.
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We can now generically go from NROB1set security to full NROB security. Indeed, an analogous version of
the same claim can also be used to go from NROB0set to NROBreset security with the same loss of parameters.

Claim. If an RNG satisfies (t, qD, qR, qS , γ∗, γmax, ε, β)-NROB1set security, then it also satisfies
(t′, qD, qR, qS , γ

∗, γmax, ε
′, β)-NROB security where t′ ≈ t, ε′ = q2DqSε.

Proof. Let A, D be any attacker and distribution sampler against NROB with advantage δ. Let us divide
up the game into at most qS epochs, where each epoch i begins either at the beginning of the game or with
a set-state query. Let Game 0 be the original NROB game with challenge bit b = 0, and let Game i be the
game where each next-ror query in epoch i with corrupt = false returns a uniformly random R ← {0, 1}`.
The output of the game is the output of A. We have |Pr[(Game 0)⇒ 1]− Pr[(Game qS)⇒ 1]| = δ/2
meaning that there is some i such that |Pr[(Game i)⇒ 1]− Pr[(Game i+ 1)⇒ 1]| ≥ δ/(2qS).

We construct A′,D′ with advantage δ/(qSq2D) in the game NROB1set. In particular we guess two addi-
tional indices jstart < jend ∈ [qD] for the samples used at the beginning and end of epoch i. The distributions
sampler D′ runs D for qD times to get all the samples up front, immediately leaks the samples (Ij , γj , zj)
for j < jstart and j > jend, and on each invocation outputs the samples (Ij , γj , zj) starting from j = jstart
and incrementing j. The attacker A′ simply uses the leaked samples to completely simulate Game i for A
up until the ith epoch. At that point A′ invokes its own challenger for NROB1set with distribution sampler
D′ and uses the state given by attacker A in epoch i to make its own set-state query. It then uses its oracles
to simulate the ith epoch for A. Finally, at the end of the ith epoch A′ again uses the leaked samples to
simulate the rest of the game for A. If A′ didn’t guess jstart, jend correctly, it outputs a random bit. Other-
wise it outputs what A outputs. It’s easy to see that if A′ guesses correctly and the challenge bit is b = 0
then the above perfectly simulates (Game i) and if the bit is b = 1 is perfectly simulates (Game i + 1).
Therefore, the advantage of A′,D′ in guessing the challenge bit is δ/(qSq2D), which proves the claim.

5 Instantiating the Construction

5.1 A Robust RNG with Input

Recall that our construction of a premature-next robust RNG with input still requires a robust RNG with
input. We therefore present [DPR+13]’s construction of such an RNG.

Let G : {0, 1}m → {0, 1}n+` be a (deterministic) pseudorandom generator where m < n. Let [y]m1
denote the first m bits of y ∈ {0, 1}n. The [DPR+13] construction of an RNG with input has parameters n
(state length), ` (output length), and p = n (sample length), and is defined as follows:

– setup(): Output seed = (X,X ′)← {0, 1}2n.
– S′ = refresh(S, I): Given seed = (X,X ′), current state S ∈ {0, 1}n, and a sample I ∈ {0, 1}n, output:
S′ := S ·X + I, where all operations are over F2n .

– (S′, R) = next(S): Given seed = (X,X ′) and a state S ∈ {0, 1}n, first compute U = [X ′ · S]m1 . Then
output (S′, R) = G(U).

Theorem 3 ( [DPR+13, Theorem 2]). Let n > m, `, γ∗ be integers and εext ∈ (0, 1) such that γ∗ ≥
m + 2 log(1/εext) + 1 and n ≥ m + 2 log(1/εext) + log(qD) + 1. Assume that G : {0, 1}m → {0, 1}n+` is a
deterministic (t, εprg)-pseudorandom generator. Let G = (setup, refresh, next) be defined as above. Then G is
a ((t′, qD, qR, qS), γ

∗, ε)-robust RNG with input where t′ ≈ t, ε = qR(2εprg + q2Dεext + 2−n+1).

Dodis et al. recommend using AES in counter mode to instantiate their PRG, and they provide a detailed
analysis of its security with this instantiation. (See [DPR+13, Section 6.1].) We notice that our construction
only makes next calls to their RNG during our refresh calls, and Ferguson and Schneier recommend limiting
the number of refresh calls by simply allowing a maximum of ten per second [FS03]. They therefore argue
that it is reasonable to set qD = 232 for most security cases (effectively setting a time limit of over thirteen
years). So, we can plug in qD = qR = qS = 232.
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With this setting in mind, guidelines of [DPR+13, Section 6.1] show that their construction can provide a
pseudorandom 128-bit string after receiving γ∗0 bits of entropy with γ∗0 in the range of 350 to 500, depending
on the desired level of security.

5.2 Scheduler Construction

proc. SC(skey, τ) :
IF τ 6= 0 mod P/wmax, THEN out← ⊥
ELSE out← max{out : τ = 0 mod 2out · P/wmax}
in← F(skey, τ)
τ ′ ← τ + 1 mod q
OUTPUT (τ ′, in, out)

Fig. 8: Our scheduler construction

To apply Theorem 2, we still need a secure scheduler (as defined in Section 4.1). Our scheduler will be
largely derived from Ferguson and Schneier’s Fortuna construction [FS03], but improved and adapted to our
model and syntax. In our terminology, Fortuna’s scheduler SCF is keyless with log2 q pools, and its state is
a counter τ . The pools are filled in a “round-robin” fashion, (e.g., pool i is filled when τ = i mod log2 q).
Every log2 q steps, Fortuna empties the maximal pool i such that 2i divides τ/ log2 q.
SCF is designed to be secure against some unknown but constant sequence of weights wi = w. Roughly, if

w > 1/2i, then Fortuna will win by the second time that pool i is emptied.6 We modify Fortuna’s scheduler
so that it is secure against arbitrary (e.g., not constant) sequence samplers by replacing the round-robin
method of filling pools with a pseudorandom sequence. We also slightly lower the number of pools, and we
account for wmax, as we explain below.

Assume for simplicity that log2 log2 q and log2(1/wmax) are integers. We let P = log2 q − log2 log2 q −
log2(1/wmax). We denote by skey the key for some pseudorandom function F whose range is {0, . . . , P −1}.
Given a state τ ∈ {0, . . . , q−1} and a key skey, we define SC(skey, τ) formally in Figure 8. In particular, the
input pool is chosen pseudorandomly such that in = F(skey, τ). (Recall that A is given access to skey, but
E is not.) When τ = 0 mod P/wmax, the output pool is chosen such that out is maximal with 2out ·P/wmax

divides τ . (Otherwise, there is no output pool.)

Theorem 4. If the pseudorandom function F is (t, q, εF)-secure, then for any ε ∈ (0, 1), the scheduler SC
defined above is (t′, q, wmax, α, β, εSC)-secure with t′ ≈ t, εSC = q · (εF + ε),

α = 2 · (wmax · loge(1/ε) + 1) · (log2 q − log2 log2 q − log2(1/wmax)) , and β = 4 .

Remark. Note that we set P = log2 q− log2 log2 q− log2(1/wmax) for the sake of optimization. In practice,
wmax = γmax/γ

∗ may be unknown, in which case we can safely use log2 q − log2 log2 q pools at a very small
cost. We can then still obtaining significant savings in α when wmax = γmax/γ

∗ is small even if wmax is
unknown. In other words, one can safely instantiate our scheduler (and the corresponding RNG with input)
without a bound on wmax, and still benefit if wmax happens to be low in practice.

To prove the theorem, we define a sequence of games. Let Game 0 be SGAME(P, q, wmax, α, β) against
SC. Let Game 1 be Game 0 in which the adversary A is removed and the start state τ0 is simply selected
randomly τ0

$← {0, . . . , q− 1}. Let Game 2 be Game 1 with F(skey, ·) replaced by H, a uniformly random
function.
6 We analyze their construction against constant sequences much more carefully in Section 6.
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Claim. For any sequence sampler E and any adversary A,

Pr[A, E win in Game 0] ≤ q · Pr[E wins in Game 1]

Proof. Fix A, E . Let τR0
$← {0, . . . , q − 1}, and let E be the event that A(skey) = τR0 . Then,

Pr[E wins in Game 1] ≥ Pr[E wins in Game 1|E] · Pr[E] =
1

q
· Pr[A, E win in Game 0] .

Claim. Suppose F is a (t, q, εF)-secure pseudorandom function. Then, for any sequence sampler, E running
in time t′ ≈ t,

Pr[E wins in Game 1] ≤ εF + Pr[E wins in Game 2] .

Proof. Fix E . We will construct an adversary AF that attempts to distinguish between F under a random
key and a uniformly random function.
AF receives access to a function H, which is either F under a random key or uniformly random. AF then

simulates E , receiving output (w1, . . . , wq). Finally, AF simply simulates Game 1 with (wi) and outputs
the result of the game.

Note that AF outputs exactly the result of (Game 1)E if H is F under a random key and exactly the
results of (Game 2)E when H is a random function. The advantage of AF in the PRF game is therefore

Pr[E wins in Game 1] + Pr[E loses in Game 2]− 1 = Pr[E wins in Game 1]− Pr[E wins in Game 2] .

The result follows from the security of F.

Claim. For any ε ∈ (0, 1), let Game 2 as above with β = 4, P = log2 q, 1/wmax an integer, and

α = 2 · (wmax · loge(1/ε) + 1) · (log2 q − log2 log2 q − log2(1/wmax)) .

Then, for any sequence sampler E , Pr[E wins in Game 2] ≤ ε.

Proof. Fix the output of E , (w1, . . . , wq). Let τ0 ∈ {0, . . . , q−1} be some start state with the corresponding
sequence (ini, outi)

q
i=1. Note that ini is uniformly random and independent of E , τ0.

Let T ∗ such that
∑T ∗

i=1wi ≥ α. Let j such that 2j ≥ wmax · T ∗/P > 2j−1. (If no such T ∗, j exist, then
SC wins by default.)

We wish to find a pool that was not emptied before time T ∗ but is emptied relatively soon after time
T ∗. Call the first such pool to be emptied win and the first time that pool win is emptied Twin. Note that
there is at most one k ≥ j such that pool k was emptied before time T ∗. If such a pool exists, call the first
time that it is emptied Tk. Note that 2j · P/wmax divides Tk + τ0. We consider three different cases:

1. If no such k exists, then some pool whose index is at least j must be emptied by 2j · Pb/wmax, and by
hypothesis it cannot have been emptied before time T ∗. So Twin ≤ 2j · P/wmax.

2. If k > j, then pool k is emptied at most every 2j+1 · P/wmax rounds, so the pool emptied at time
Tk+2j ·P/wmax cannot be pool k. But, 2j ·P/wmax divides Tk+2j ·P/wmax+τ0, so some pool whose index is
at least j must be emptied at time Tk+2j ·P/wmax. Therefore, Twin = Tk+2j ·P/wmax < T ∗+2j ·P/wmax.

3. If k = j, then 2j+1 · P/wmax does not divide Tk + τ0, and therefore 2j+1 · P/wmax must divide Tk +
2j · P/wmax. So, a pool whose index is greater than j must be emptied at that time. Therefore Twin ≤
Tk + 2j · P/wmax < T ∗ + 2j · P/wmax.

In all cases,
Twin < T ∗ + 2j · P/wmax ≤ 2j+1 · P/wmax .

So Twin < 2j+1

2j−1 ·T ∗ = 4 ·T ∗ = β ·T ∗. Recall that the scheduler wins if it empties a pool with weight at least
one at any time before β · T ∗. Therefore, the scheduler wins if win has weight at least one after time T ∗.
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Let 0 ≤ Wwin,i ≤ wmax be the random variable that takes value wi if ini = win and 0 otherwise. Then,
the weight of pool win at time T ∗ is

∑T ∗

i=1Wwin,i.
We recall the standard Chernoff-Hoeffding bound:

Pr[W ≤ (1− δ)µ] ≤ e−δ2 E[W ]/(2wmax)

for any δ ∈ (0, 1). Plugging in, the probability that the scheduler loses after starting in state τ0 is at most

Pr
H

[ ∑
i≤T ∗

Wwin,i ≤ 1
]
≤ e−

αb
2wmax·P

·(1− 2P
α

) = e1/wmax · e−
α

2wmax·P .

Finally, we set ε = e1/wmax · e−
α

2wmax·P and solve for α:

α = 2 · (wmax · loge(1/ε) + 1) · P
= 2 · (wmax · loge(1/ε) + 1) · (log2 q − log2 log2 q − log2(1/wmax)) .

Putting everything together, for any E ,A,

εSC ≤ q · Pr[E wins in Game 1]

≤ q · (εF + Pr[E wins in Game 2])

≤ q · (εF + ε)

5.3 Scheduler Instantiation

To instantiate the scheduler in practice, we suggest using AES as the PRF F. As in [DPR+13], we ignore
the computational error term εF and set εSC ≈ qε.7 In our application, our scheduler will be called only on
refresh calls to our generalized Fortuna RNG construction, so we again set q = 232. It seems reasonable for
most realistic scenarios to set wmax = γmax/γ

∗ ≈ 1/16 and εSC ≈ 2−192, but we provide values for other
wmax and ε as well:

εSC q wmax α β P

2−128 232 1/64 115 4 21
2−128 232 1/16 367 4 23
2−128 232 1/4 1445 4 25
2−128 232 1 6080 4 27

εSC q wmax α β P

2−192 232 1/64 144 4 21
2−192 232 1/16 494 4 23
2−192 232 1/4 2000 4 25
2−192 232 1 8476 4 27

εSC q wmax α β P

2−256 232 1/64 174 4 21
2−256 232 1/16 622 4 23
2−256 232 1/4 2554 4 25
2−256 232 1 10, 871 4 27

5.4 Putting It All Together
Now, we have all the pieces to build an RNG with input that is premature-next robust (by Theorem 2).
Again setting q = 232 and assuming wmax = γmax/γ

∗ ≈ 32/500 ≈ 1/16, our final scheme can output a
secure 128-bit key in four times the amount of time that it takes to receive roughly 20 to 30 kilobytes of
entropy.
6 Constant-Rate Adversaries

We note that the numbers that we achieve in Section 5.4 are not ideal. But, our security model is also
very strong. So, we follow Ferguson and Schneier [FS03] and consider the weaker model in which the
distribution sampler D is restricted to a constant entropy rate. While this model may be too restrictive, it
leads to interesting results, and it suggests that our construction (or, rather, the slight variant suggested in
Section 6.3) may perform much better against distribution samplers that are not too adversarial. Indeed, if
we think of the distribution sampler D as essentially representing nature, this might not be too unreasonable.

Constant-Rate Model. We simply modify our definitions in the natural way. First, we say that a
distribution (resp., sequence) sampler is constant if, for all i, γi = γ (resp., wi = w) for all i for some
7 [DPR+13] contains a detailed discussion of the subtleties here and the justification for such an assumption.
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fixed γ (resp., w). Second, we say that an RNG with input is ((t, qD, qR, qS), γ∗, γmax, ε, β)-premature-next
robust against constant adversaries if it is ((t, qD, qR, qS), γ

∗, γmax, ε, β)-premature-next robust when the
distribution sampler D is required to be constant. Third, we say that a scheduler is (t, q, wmax, r, ε)-secure
against constant sequences if, for some8 α, β such that α · β = r it is (t, q, wmax, α, β, ε)-secure when the
sequence sampler E is required to be constant. When ε = 0 and the adversaries are allowed unbounded
computation (as is the case in our construction), we simply leave out the parameters t and ε.

Finally, we note that our composition theorem, Theorem 2, applies equally well in the constant-rate
case. In particular, replacing a secure scheduler with a scheduler that is secure against constant sequences
results in an RNG with input that is premature-next robust against constant adversaries, with identical
parameters. This will allow us to achieve much better parameters for schedulers and RNGs with input
against constant adversaries.

6.1 Optimizing Fortuna’s Scheduler

Ferguson and Schneier essentially analyze the security of a scheduler that is a deterministic version of our
scheduler from Section 5.2, with pseudorandom choices replaced by round-robin choices [FS03]. (This is,
of course, where we got the idea for our scheduler.) They conclude that it achieves a competitive ratio of
2 log2 q. However, the correct value is 3 log2 q.9 Ferguson and Schneier’s model differs from ours in that
they do not consider adversarial starting times τ0 between the emptying of pools. Taking this (important)
consideration into account, it turns out that SCF achieves a competitive ratio of rF = 3.5 log2 q in our
model (e.g., for q = 232, we get rF = 112, as opposed to their claimed value of 64).10

Interestingly, the pseudocode in [FS03] actually describes a potentially stronger scheduler than the one
that they analyzed. Instead of emptying just pool i, this new scheduler empties each pool j with j ≤ i.
Although Ferguson and Schneier did not make use of this in their analysis, we observe that this would
lead to significantly improved results provided that the scheduler could “get credit” for all the entropy from
multiple pools. Unfortunately, our model syntactically cannot capture the notion of multiple pools being
emptied at once, and this is necessary for our composition theorem (Theorem 2). Fortunately, we notice
that our model can simulate a multiple-pool scheduler by simply treating any set of pools that is emptied
together at a given time as one new pool.

In Appendix B, we make this observation concrete and further optimize the scheduler of Fortuna to
obtain the following result.

Theorem 5. For any integer b ≥ 2, there exists a keyless scheduler SCb that is (q, wmax, rb)-secure against
constant sequences where

rb =
(
b+

wmax

b
+

1− wmax

b2

)
· (logb q − logb logb q − logb(1/wmax)) .

In particular, with wmax = 1 and q →∞, b = 3 is optimal with r3 ≈ 2.1 log2 q ≈ rF
1.66 ≈

r2
1.19 ≈

r4
1.01 .

We note that SCb performs even better in the non-asymptotic case. For example, in the case that Ferguson
and Schneier analyzed, q = 232 and wmax = 1, we have r3 ≈ 58.2 ≈ rF

1.9 , saving almost half the entropy
compared to Fortuna.

6.2 Constant-Rate Instantiation

Using the results from above, we note that applying our generalized Fortuna construction with the scheduler
from Appendix B with b = 3, q = 232, and wmax = 1 yields an RNG with input that can achieve a secure
128-bit key after accumulating 3 to 4.5 kilobytes of entropy from a constant distribution sampler D. So,
8 We note that when the sequence sampler E must be constant, (t, q, wmax, α, β, ε)-security is equivalent to (t, q, wmax, α

′, β′, ε)-
security if α · β = α′ · β′.

9 There is an attack: Let w = 1/(2i+1) and start Fortuna’s counter so that pool i+1 is emptied after 2i · log2 q steps. Clearly,
SCF takes (2i + 2i+1) · log2 q = 3 · 2i · log2 q total steps to finish, achieving a competitive ratio arbitrarily close to 3 log2 q.

10 This follows from the analysis of our own scheduler in Appendix B.
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this constant-rate construction (in this restricted setting) is over twenty-five more efficient than our general
construction.11 (In Section 6.3, we present a scheduler that achieves these better results in the constant-rate
case but also achieves the results presented in Section 5 in our stronger model.)

Ferguson and Schneier claim in [FS03] that their underlying seed (the key for AES in counter mode)
reaches a secure 128-bit key after receiving what amounts to over 1.7 kilobytes of entropy (after accounting
for the error and difference in models mentioned in Section 6). However, we note that they implicitly assume
that their construction achieves perfect entropy accumulation. We achieve formally provable security and
lose roughly a factor of four from using the construction of [DPR+13] described in Section 5 to accumulate
entropy, though due to various optimizations we manage to come within a factor of about 2 of Ferguson
and Schneier’s claim.

6.3 A Scheduler Secure in Both Worlds

Recall that in Section 5.2, we construct a secure scheduler, and above we construct a keyless scheduler that
is secure only against constant sequence samplers but achieves much better parameters. We justify this
weaker model by arguing that, in practice, a purely adversarial distribution sampler may be too stringent.
We would like to say that the “true” security of our construction in a “real world” setting lies somewhere in
between. And, we would like to say that practitioners can use one scheduler that is provably secure in the
stronger model and achieves excellent parameters when adversaries happen to be friendlier.

However, this is unfortunately not true for the scheduler that we presented in Section 5.2. Recall that
this scheduler selected which pool to fill at a given time pseudorandomly, using a PRF. It is not hard to
see that its performance against constant sequence samplers is only slightly better than its performance
against arbitrary adversaries. Intuitively, our keyless scheduler distributes weight evenly amongst all of its
pools, while our more secure scheduler only does so in expectation. As a result, it can put entropy in the
“wrong pool” with fairly high probability, even in the constant-rate case.

Luckily, there is a fairly simple solution. Instead of selecting a new pool pseudorandomly at each step,
we instead choose a pseudorandom permutation of all P pools every P steps. In particular, given a state τ
and a key skey, the scheduler computes π ← F(skey, bτ/P c) where π is a permutation of P elements, F is a
pseudorandom function whose range is all permutations on P elements, and P is the number of pools of the
scheduler. It then fills pool in← π(τ mod P ). The scheduler can otherwise behave like our scheduler from
Section 6. It is not hard to see that our proofs of security in both the constant-rate and general case apply
immediately to this modified scheduler. So, we recommend that practitioners implement this construction.

7 Relaxing the Seed Independence of the Distribution Sampler

In this section, we address another limitation of the original model of [DPR+13], which our model inherits:
the subtle issue of seed independence. In particular, the model of [DPR+13] does not allow the distribution
sampler D to have access to the initial seed seed of the RNG with input.

As explained by [DPR+13], this is necessary to some extent, as there is a very simple impossibility
result when D knows the seed. Given any RNG with input G whose input length is p ≥ 2, consider
D that simply samples I1, . . . , IqD uniformly such that next(seed, SqD) starts with a 0 where S0 = 0, and
Sj = refresh(seed, Sj−1, Ij). LetA be the adversary that simply calls set-state(0), makes qD calls to D-refresh,
calls next-ror, and simply outputs the first bit of the resulting output. It is clear that this pair of A and D
will break the RNG security, and also that H∞(Ij |I1, . . . , Ij−1, Ij+1, . . . IqD) ≈ p− 1.

In fact, the original provably secure scheme from [DPR+13] can be attacked much more dramatically
(than the above generic attack) by a seed-dependent D. Recall, in that scheme part of the seed X, input
I, and state S are simply elements in a finite field F2n . Also, if the start state S is 0 and the distribution
11 To compare with our previous numbers from Section 5, recall that we had β = 4. Therefore, we note that the above scheduler

achieves such security in four times the amount of time that it takes to receive about 750 bytes to 1.2 kilobytes of entropy.
These are the proper numbers to compare, though they make less sense in the constant-rate case.
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sampler D samples some random variables I1, . . . , IqD , then after qD refresh calls the resulting state will be
S = XqD−1I1 + XqD−2I2 + . . . + IqD . This suggests a natural attack: simply let Ij be sampled uniformly
from {0, Xj−qD}. Clearly the distribution sampler provides qD bits of entropy in this case, but a quick
check shows that the state S is the sum of uniformly random bits, so it can be only 0 or 1. The distribution
sampler can therefore provide arbitrarily large amounts of entropy while only letting the state accumulate
one bit.

Unfortunately, our generalized Fortuna scheme that is premature-next robust suffers a similar fate, even
without attacking any of the “pool” RNGs. Indeed, if the distribution sampler D has access to the seed, then
in particular, it has access to the key skey of the scheduler. D can therefore choose to only provide entropy
to pools that will soon be emptied. For example, against our scheduler in Section 5.2, D can provide 1 bit of
entropy whenever pool 0 will be filled next, and no entropy otherwise. If the adversary A then calls get-next
repeatedly after every D-refresh call, the RNG will never accumulate any entropy (with high probability).

To sum up, existing schemes crucially rely on the seed-independence of the distribution sampler, and it
is also clear that full seed-dependence is impossible. Finding the right (realistic and, yet, provably secure)
balance between these extremes is an important subject for further research. In the next subsection, we
make some initial progress along these lines by introducing a somewhat realistic model that effectively
allows a certain level of seed dependence.

7.1 Semi-Adaptive set-refresh

Our extended adversarial model is motivated by the following realistic scenario given by Ferguson and
Schneier when describing Fortuna [FS03]. They assume that there are several sources of entropy N1, N2, . . .
contributing the inputs Ij for the D-refresh procedure. Some of these sources might be completely controlled
by the attacker A, while others are assumed to provide “good” entropy. Of course, since the actual RNG
does not know the identity of these adversarial sources, they suggest that the RNG should take the inputs
from N1, N2, . . . in a round-robin manner, ensuring that “good” sources periodically contribute fresh entropy
to the system.

Semi-Adaptive set-refresh Model. Translating this natural attack scenario to our model (for both ROB
and NROB), we can think of the union of “good” sources Ni as our original (seed-independent) distribution
sampler D, while the union of “bad” source Ni can be modeled by giving the (seed-dependent) attacker A
access to the simple set-refresh oracle shown in Figure 9.

proc. set-refresh(I∗)
S ← refresh(S, I∗)

Fig. 9: The set-refresh oracle

Note, in particular, that since set-refresh is called by A, the entropy counter
c is not incremented during this call. Additionally, since in the above moti-
vating example the RNG will call the good/bad entropy sources in a round-
robin manner, it seems reasonable to make the assumption that the order of
set-refresh calls is seed-independent (though, crucially, the values I∗ in various
set-refresh(I∗) calls can depend on the seed).12 Overall, we can think of A and

D as defining a partially seed-dependent distribution sampler D′.
We arrive at the following natural extension of robustness, which we call the semi-adaptive set-refresh

model, where qD is now the maximal sum of the number D-refresh and the set-refresh calls made by A:

– D selects a subset of indices J ⊆ {1, . . . , qD} where set-refresh calls will be made.
– A learns seed and J , and can play the usual ROB/NROB game, except the sequence of its D-refresh and

set-refresh calls must be consistent with J . I.e., the j-th such call must be set-refresh iff j ∈ J .

Security Against Semi-adaptive set-refresh. We observe that the robustness proofs of both the original
RNG construction of [DPR+13] and our generalized Fortuna construction easily extend to handle semi-
adaptive set-refresh calls. Indeed, we even achieve identical parameters.

12 Note that, while this assumption is quite strong, we do not impose a fixed order on the set-refresh calls or assume constant
entropy from D-refresh calls as [FS03] do. Indeed, the original Fortuna construction is clearly not secure in our extended
model even with a constant entropy assumption.
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Interestingly, we are not aware of an attack on [DPR+13]’s construction even with seed-dependent (i.e.,
fully-adaptive) set-refresh calls, but our current proof crucially uses semi-adaptivity. Unfortunately, our
attack on generalized Fortuna with a seed-dependent distribution sampler easily extends to an attack using
seed-dependent (i.e., fully-adaptive) set-refresh calls instead. Indeed, using skey, A can schedule set-refresh
calls such that D-refresh calls only affect pools that will soon be emptied.

Theorem 6. The security bound for the RNG of [DPR+13] given in Theorem 3 extends to the semi-
adaptive set-refresh model. Similarly, the premature next robustness of the generalized Fortuna scheme given
in Theorem 2 extends to the semi-adaptive set-refresh model, provided all the pool RNGs Gi are robust in
the semi-adaptive set-refresh model.

Since both proofs are simple variants of the original proofs, we will only sketch the key steps required
to extend both proofs below.

Extending the Composition Theorem. We first show how to extend the proof of our main composition
theorem (Theorem 2) to handle semi-adaptive set-refresh. To do so, we need to show how to extend the
main reduction, mapping the “big” attackers A,D against the composed RNG G into “small” attackers Ai,Di
against the pool RNG Gi, to the semi-adaptive set-refresh setting. Fortunately, this is simple because the
scheduler key skey in our reduction is selected directly by Di (see Figure 6) and then immediately passed
to Ai via leakage. In particular, Di can now also compute the index set J , then use skey to “project” this
set J to whatever calls j ∈ J will be “routed” to Gi by the scheduler, and finally pass this “projected set”
Ji to the challenger. Ai then learns the seed and Ji and can simulate the run of A as before (see Figure 7),
handling set-refresh calls in the obvious way.

Extending [DPR+13]’s Proof. Next, we sketch the changes needed to extend the original proof of
robustness of the [DPR+13] construction (see Section 5.1) to handle semi-adaptive set-refresh calls. The proof
of [DPR+13] consists of three steps: (1) reducing robustness to two simpler properties called preserving and
recovering security (see [DPR+13]’s Theorem 1); (2) showing preserving security; and (3) showing recovering
security. Step (1) easily extends to semi-adaptive set-refresh calls, provided the notion of recovering security
is naturally augmented to include semi-adaptive set-refresh calls. Step (2) needs no changing at all (as
preserving security already gives A access to a fully adaptive set-refresh oracle). Hence, it suffices to show
how to extend the proof of recovering security in step (3) to a slightly modified version that includes
set-refresh calls. We present the modified recovery security game together with the preserving security game
and a modified version of [DPR+13]’s composition theorem in Appendix C.

Intuitively, recovering security considers an attacker that sets the state to some arbitrary value S0 and
starts the distribution sampler D after k calls to D-refresh. Following that, d calls to D-refresh are made,
resulting in final state S, where d, k are chosen by A such that the corrupt flag is false after the d calls to
D-refresh. Then, the attacker A attempts to distinguish the full output (S∗, R)← next(S) from uniform. In
our modified version, an index set J is chosen by D at the beginning, and the j-th D-refresh call is replaced
by a set-refresh call if and only if j ∈ J .

Note that in the recovering game, [DPR+13]’s RNG with input effectively computes a function of the
form

h∗X,X′(I1, . . . , Id) =
[
X ′ ·

d−1∑
j=0

Id−j ·Xj
]m
1
+ [X ′ · S0]m1

and applies a PRG G to the result. In [DPR+13], the authors show that recovering security follows imme-
diately from the fact that h∗X,X′ is a good randomness extractor. In particular, if the sum of the conditional
min-entropies of the input is sufficiently high (i.e., above γ∗) and the Ij are chosen independently of X,X ′,
then (X,X ′, h∗X,X′(I1, . . . , ID)) is εext-close to uniform (with εext defined as in Theorem 3).

Our key observation is simply that h∗X,X′ is linear. Intuitively, we wish to define three sequences:
ID,Aj (seed) is the sequence of inputs to refresh calls, including both D-refresh and set-refresh; IDj is the
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contribution from D-refresh calls; and IAj (seed) is the contribution from A’s set-refresh calls. We then want
to say that h∗X,X′ applied to ID,Aj is the sum of h∗X,X′ applied to each adversary’s contribution.

In particular, fix A,D. Let (Ij)
qD
j=1 be the distributions sampled by D; J the index set chosen by D,

seed = (X,X ′) a randomly chosen seed; k, d the (seed-dependent) choices of A; and (I∗j (seed))j∈J the input
of A to set-refresh calls. Then, formally, we let IDj = ID,Aj (seed) = Ij and IAj (seed) = 0 if j /∈ j, and
IAj (seed) = ID,Aj (seed) = I∗j (seed) and IDj = 0 if j ∈ J . We can then write

U := h∗X,X′
(
IA,Dk+1 (seed), . . . , IA,Dk+d (seed)

)
+ [X ′ · S0]m1

= h∗X,X′
(
IDk+1, . . . , I

D
k+d

)
+ h∗X,X′

(
IAk+1(seed), . . . , IAk+d(seed)

)
+ [X ′ · S0]m1 .

Finally, we simply note that IDj are chosen independently fromX,X ′ (equivalently, they are the output of
some valid distribution samplerD′), and therefore the proof of [DPR+13] implies that (X,X ′, h∗X,X′(I

D
k+1, . . . , I

D
k+d))

is εext close to uniform when the sum of the entropies of the corresponding distributions is sufficiently high.
This of course immediately implies that X,X ′, U is also εext close to uniform. The result, presented below,
then follows immediately from the proof in [DPR+13].

Theorem 7. Let n > m, `, γ∗ be integers and εext ∈ (0, 1) such that γ∗ ≥ m + 2 log(1/εext) + 1 and n ≥
m+2 log(1/εext)+log(qD)+1. Assume that G : {0, 1}m → {0, 1}n+` is a deterministic (t, εprg)-pseudorandom
generator. Let G = (setup, refresh, next) be defined as in Section 5. Then G is a ((t′, qD, qR, qS), γ

∗, ε)-robust
RNG with input in the semi-adaptive set-refresh model where t′ ≈ t, ε = qR(2εprg + q2Dεext + 2−n+1).

Combining Theorems 6 and 7, we see that the security of the instantiation that we presented in Section 5
immediately extends to the semi-adaptive set-refresh model with identical parameters.
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A Proof of Theorem 1

We prove the two bounds in Theorem 1 as two separate propositions. Note that the first lower bound applies
even when adversaries are restricted to just constant sequences.

Proposition 1. For q ≥ 3, let SC be a (t, q, wmax, α, β, ε)-secure scheduler against constant-rate adversaries
running in time tSC. Then, either t = O(q · (tSC + log q)), ε ≥ 1/(q − 1/wmax + 1), or

r > loge q − loge(1/wmax)− loge loge q − 1 ,

where r = α · β is the competitive ratio.

Proposition 2. Suppose that SC is a (t, q, wmax, α, β, ε)-secure scheduler running in time tSC. Then, either
t = O(q(tSC + log q)), r2 > w2

maxq, ε ≥ 1/e, or

α >
wmax

wmax + 1
· loge(1/ε)− 1

loge loge(1/ε) + 1
,

where r = α · β.

It should be clear that Theorem 1 follows immediately from the two propositions.

A.1 Proof of Proposition 1

The main step in the proof of Proposition 1 is the following lemma:

Lemma 1. For any q ≥ 3 let Ei be the constant sequence sampler that simply outputs the sequence
(1/i, . . . , 1/i) for i = 1/wmax, . . . q. Then, for any keyless scheduler SC with P pools, there exists an i and an
adversary A such that Ei and A win SGAME(P, q, wmax, r) for any r > loge q−loge(1/wmax)−loge loge q−1.

Furthermore, there exists a single adversary A′ that, given any keyless scheduler SC, i, and r, can
output the τ that allows Ei to win SGAME(P, q, wmax, r) against SC (or outputs FAIL if none exists) in time
O(q · (log q + tSC)), where tSC is the run-time of the scheduler.

Proof. We assume without loss of generality that 1/wmax is an integer.
Fix any keyless scheduler SC and start state τ0. Given the corresponding sequence (inj , outj)

q
j=1, we

define the sequence of “leave times” b1, . . . bq ∈ N ∪ {∞} as bj = min{T ≥ j : outT = inj} (where we adopt
the convention that min∅ = ∞). Intuitively, at time T , we imagine the scheduler selecting a pool inT in
which to “throw a ball”, and a pool outT to empty afterwards. The leave time bj is the time at which the
ball that was “thrown” at time j will “leave the game”.

Let τT be the state of SC after T steps, and let AT be the adversary that sets the state of SC to τT . Note
that SC wins SGAME(P, q, wmax, r) against Ei,AT if and only if there is some set of i balls J ⊆ [T+1, T+i·r]
with bj = bj′ ≤ T + i · r for all j, j′ ∈ J .
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We proceed by “marking balls”. We first consider bwmax·q
r c non-overlapping intervals of length r/wmax

in {1, . . . , q}. By hypothesis, there must be at least 1/wmax balls in each of these intervals that leave at the
same time in the same interval. We mark all such balls, marking at least q

r − 1/wmax distinct balls in total.
Now, consider bwmax·q

2r c non-overlapping intervals of length 2r/wmax. In each such interval, there must be
at least 2/wmax balls whose leave time is the same and in the interval. We mark these balls. Previously
no more than 1/wmax balls that we’d marked had the same leave time, so we must have marked at least
1/wmax new balls in each interval. Therefore, we’ve now marked at least q

r +
q
2r −2/wmax distinct balls, and

no set of more than 2/wmax balls have the same leave time.
Proceeding by induction, suppose that after j < bwmax·q

r c steps, we have marked at least
∑j

k=1
q
k·r −

j/wmax distinct balls, and no set of more than j/wmax marked balls have the same leave time. We consider
bwmax·q
(j+1)·rc non-overlapping intervals of length (j+1) · r/wmax and note that in each such interval there must

be (j + 1)/wmax balls with the same leave time. So, we mark these and note that we must have marked an
additional q

2r − 1/wmax new balls and that no set of more than (j + 1)/wmax marked balls have the same
leave time.

It follows that this procedure will mark at least
∑bwmax·q/rc

k=1
q
k·r − q/r balls. Recalling that the nth

harmonic number satisfies Hn =
∑n

k=1 1/k > loge(n+ 1), it follows that we’ve marked at least q
r · (loge q−

loge r − loge(1/wmax) − 1) distinct balls in this way. But, there are only q balls total. It follows that
r > loge q − loge(1/wmax)− loge loge q − 1.

It remains to construct an A′ that finds the winning τ in O(q · (tSC + log q)) time given SC, i, and r.
A′ first computes (τj)

q−1
j=0 in time O(q · tSC). Now, as above, A′ divides {1, . . . , q} into disjoint intervals of

length b qi·rc. For each such interval [T +1, T + i ·r], A′ simply simulates SGAME(P, i ·r, r) against Ei starting
at τT .13 A returns τT if it wins the simulation. If no τT wins, A′ outputs FAIL. This takes time O(q log q).
(The log q overhead is incurred because A needs to write numbers that could be as large as q.)

The result follows.

From this, Proposition 1 follows easily.

Proof of Proposition 1. Fix SC.
Let E be the sequence sampler that selects i $← {1/wmax, . . . , q} and then behaves as the constant

sequence sampler Ei from Lemma 1. Let A be the adversary that behaves as follows: On input skey, A
produces the keyless scheduler SCskey such that SCskey(σ) = SC(skey, σ). A then simulates A′ from the
lemma, which outputs either some state τ or FAIL. If A′ outputs τ , A simply does the same. Otherwise, A
outputs an arbitrary state.

By Lemma 1, A runs in time O(q·(log q+tSC)), and if r ≤ loge q−loge(1/wmax)−loge loge q−1, then with
probability at least 1/(q−1/wmax+1), this procedure produces an Ei, τ pair that wins SGAME(P, q, wmax, r)
against SCskey. The result follows.

A.2 Proof of Proposition 2

Proof of Proposition 2. Suppose r2 ≤ w2
maxq. For simplicity, we will assume 1/wmax is an integer.

Our proof begins similarly to that of Lemma 1. In particular, we let τ0 be any start state. Let B1, . . . , Bq
be random variables over the choice of skey corresponding to leave times, Bj = min{T ≥ j : outT = inj}.
We again think of a ball with weight wj thrown into pool inj at time j and leaving the game at time Bj .

Intuitively, our approach will be to first show a pair of adversaries that win if balls take too long to
leave. We’ll then show a pair of adversaries that win if balls leave too quickly.

In particular, let E simply output a sequence of α/wmax maximum weights followed by 0s, (wmax, . . . , wmax, 0, . . . 0).
For any skey and any 1 ≤ T ≤ q, let τT (skey) be the state that SC with skey reaches after T steps,
starting at τ0. Let Ak be the adversary that simply outputs τkr/wmax

(skey) on input skey. Note in or-
der for SC to win SGAME against E ,Ak, it is necessary but not sufficient for there to be some j with
13 Technically, we replace Ei with E ′i , which outputs a sequence of length i · r.
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kr/wmax < j ≤ kr/wmax + α/wmax and Bj ≤ (k + 1)r/wmax. (Intuitively, there must be some ball that
enters in the first α/wmax steps of the game against Ak and leaves before time r/wmax.)

Now, let A∗k be an adversary that for 0 ≤ k′ < k selects jk′ uniformly at random with k′r/wmax < jk′ ≤
k′r/wmax + α/wmax. If Bjk′ > (k′ + 1) · r/wmax, then A∗k simply behaves as Ak′ . Otherwise, A∗k behaves as
Ak. Let Ek be the event that Bjk′ < (k′ + 1) · r/wmax for all k′ ≤ k. Note that A∗k wins if Ek happens and
Bj > (k + 1) · r/wmax for all j with kr/wmax < j ≤ kr/wmax + α/wmax. (To be clear, A∗k may win in other
circumstances as well.) Therefore,

ε ≥ Pr[Ek] · Pr
[
∀j with

kr

wmax
< j ≤ kr + α

wmax
, Bj > (k + 1) · r

wmax

∣∣∣ Ek] .
Rearranging, we have

Pr[Ek]− ε ≤ Pr[Ek] · Pr
[
∃j with

kr

wmax
< j ≤ kr + α

wmax
, Bj ≤ (k + 1) · r

wmax

∣∣∣ Ek]
≤ Pr[Ek] ·

(k·r+α)/wmax∑
j=k·r/wmax

Pr
[
Bj ≤ (k + 1) · r

wmax

∣∣∣ Ek]
=

α

wmax
· Pr[Ek] · Pr

[
Bjk ≤ (k + 1) · r

wmax

∣∣∣ Ek]
=

α

wmax
· Pr[Ek+1] ,

where Bjk is chosen uniformly at random with kr/wmax < jk ≤ kr/wmax + α/wmax. So, we have the
recurrence relation Pr[Ek] ≥ (wmax/α) · (Pr[Ek−1]− ε), with Pr[E0] = 1. It follows that

Pr[Ek] ≥
(wmax

α

)k
− ε ·

k∑
i=1

(wmax

α

)i
>
(wmax

α

)k
− ε · wmax

α− wmax
.

Now, let E∗ be the sequence sampler that randomly selects jk with kr/wmax < jk ≤ kr/wmax +α/wmax

for all k < (wmax + 1) · α/wmax. E∗ then outputs the sequence (wi) where wi = wmax/(wmax + 1) if i = jk
for some k and wi = 0 otherwise. Suppose the event Ek∗ occurs where k∗ = (wmax + 1) · (α− 1)/wmax + 1.
Then, for all k ≤ k∗, the jk-th ball leaves before the jk+1-st ball enters. In particular, E∗,A0 win SGAME.
Therefore,

ε ≥ Pr[Ek∗ ] >
(wmax

α

)k∗
− ε · wmax

α− wmax
.

It follows that
α >

wmax

wmax + 1
· loge(1/ε)− 1

loge loge(1/ε) + 1

provided that ε < 1/e.
It is easy to see that A∗k and E∗ run in time O(q(tSC + log q)), and the result follows.

B Construction of Constant-Rate Scheduler and Proof of Theorem 5

We first notice that Fortuna’s scheduler can be easily modified to use a different base. In particular, for
any integer b ≥ 2, we define a keyless scheduler, SCb. Roughly, SCb has Pb ≈ logb q pools, numbered
0, . . . , Pb − 1. The state τ ∈ {0, . . . , q − 1} will just be a counter. The pools are filled in turn, and pool i is
emptied whenever the counter τ divides bi · Pb but not bi+1 · Pb.

Our actual construction will be slightly more involved than the above, but it is simply an optimized
version of this basic idea. In particular, we make four changes:

1. We account for wmax by emptying pools when τ divides bi · Pb/wmax, instead of just bi · Pb.
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2. We use slightly fewer than logb q pools, setting Pb = logb q − logb logb q − logb(1/wmax).
3. We do not empty the 0th pool twice in a row. (While this never comes up when b = 2, it is an issue for
b ≥ 3.)

4. If pool j will next be emptied sooner than pool i and j > i, we fill pool j instead of pool i. (This
captures the idea of emptying multiple pools at once from Section 6.)

For simplicity, we assume that logb logb q and logb(1/wmax) are both integers, and we let Pb = logb q −
logb logb q − logb(1/wmax). Then, we define SCb as in Figure 10.

proc. SCb(τ) :
IF τ 6= 0 mod Pb/wmax, THEN out← ⊥
ELSE

j ← max{j : τ = 0 mod bj · Pb/wmax}
IF j = 0 AND τ − Pb/wmax 6= 0 mod b · Pb/wmax

out← ⊥ // Don’t empty pool 0 twice in a row
ELSE out← j

i← τ − 1 mod Pb
// Find the next time τ∗ that a pool with index at least i will be emptied
τ∗ ← min{τ∗ ≥ τ : τ∗ = 0 mod bi · Pb/wmax}
// Fill the pool emptied at time τ∗

in← max{in : τ∗ = 0 mod bin · Pb/wmax}
τ ′ ← τ + 1 mod q
OUTPUT (τ ′, in, out)

Fig. 10: Our keyless scheduler construction

Theorem 5 shows that this scheme achieves a very good competitive ratio of rb ≈ bPb. In Appendix A,
we show a lower bound in the constant-rate case of r > loge q− loge loge q− loge(1/wmax)−1 (or r > Pe−1
in slightly abused notation), so this result is very close to optimal.

Proof of Theorem 5. Note that E must output a constant sequence, (w, . . . , w) with rb/q ≤ w ≤ wmax. (If
w < rb/q, then we win by default.) We assume without loss of generality that 1/w is an integer.

We first handle the case when w > wmax/b. Note that no pool is emptied more than once every b
wmax

·Pb
steps and at least one pool is emptied every b−1

wmax
· Pb steps. So, if w > wmax/b, SCb wins as soon as the

first pool is emptied after 1
w · Pb steps, in time at most ( 1

w + b−1
wmax

) · Pb. It therefore achieves a competitive
ratio of less than (1 + (b− 1) · w

wmax
) · Pb ≤ bPb.

Now, assume w ≤ wmax/b.
Let i ≥ 1 such that bi+1−1

b−1 ≥ wmax/w > bi−1
b−1 . Consider the first time a pool whose index is at least i

is emptied. If it is full on this first emptying, then SCb wins, in time at most bi · Pb/wmax. Otherwise, let
T ∗ be the first time such a pool is emptied. Then, SCb wins the next time a pool whose index is greater
than i is emptied, at time T ∗ + bi · Pb/wmax. In both cases, SCb achieves a competitive ratio of at worst
rb = w · (T ∗ + bi · Pb/wmax).

We wish to bound T ∗. Let j such that bj+1 > wmax · T ∗/Pb ≥ bj . Then, at time T ∗ the pool that is
emptied has weight at least

w · bT ∗/Pbc+
w

wmax
·

j∑
k=0

bk > w ·
(T ∗
Pb

+
1

wmax
· b

j+1 − 1

b− 1
− 1
)

> w ·
(T ∗
Pb

+
1

wmax
·
wmax · T

∗

Pb
− 1

b− 1
− 1
)

=
w · T ∗

Pb
· b

b− 1
− w · 1 + (b− 1) · wmax

(b− 1) · wmax
.
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Note that the above weight is less than one by hypothesis. Applying this and rearranging,

w · T ∗ < w + (1 + w)(b− 1) · wmax

b · wmax
· Pb .

Plugging in and recalling that w ≤ wmax/b and wmax/w > bi−1
b−1 ,

rb <
w + (1 + w)(b− 1) · wmax

b · wmax
· Pb +

w

wmax
·
(
(b− 1) · wmax

w
+ 1
)
· Pb

≤
((1 + wmax/b)(b− 1)

b
+

1

b2

)
· Pb +

(
b− 1 +

1

b

)
· Pb

=
(
b+

wmax

b
+

1− wmax

b2

)
· Pb

The result follows.

C Recovering and Preserving Secutity

C.1 Recovering Security

We consider the following security game with an attacker A, a sampler D, and bounds qD, γ∗.

– D sends J ⊂ {1, . . . , qD} to the challenger.

– The challenge chooses a seed seed
$← setup, and a bit b $← {0, 1} uniformly at random. It sets σ0 := 0.

For k = 1, . . . , qD, the challenger computes

(σk, Ik, γk, zk)← D(σk−1).

– The attacker A gets seed, J , and γ1, . . . , γqD , z1, . . . zqD . It gets access to an oracle get-refresh() which
initially sets k := 0 on each invocation increments k := k+1 and outputs Ik. At some point the attacker
A outputs a value S0 ∈ {0, 1}n, an integer d, and I∗j for j ∈ J such that k + d ≤ qD and

∑
k<j≤k+d

j /∈J

γj ≥ γ∗ .

– For j = k + 1, . . . , k + d, the challenger computes

Sj ←
{

refresh(Sj−1, Ij) : j /∈ J
refresh(Sj−1, I

∗
j ) : j ∈ J

.

If b = 0 it sets (S∗, R) ← next(Sd) and if b = 1 is sets (S∗, R) ← {0, 1}n+` uniformly at random. The
challenger gives Ik+d+1, . . . , IqD , and (S∗, R) to A.

– The attacker A outputs a bit b∗.

Definition 6 (Recovering Security). We say that PRNG with input has (t, qD, γ∗, ε)-recovering security
if for any attacker A and legitimate sampler D, both running in time t, the advantage of the above game
with parameters qD, γ∗ is at most ε.
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C.2 Preserving Security

We define preserving security exactly as in [DPR+13]. Intuitively, it says that if the state S0 starts uniformly
random and uncompromised and is then refreshed with arbitrary (adversarial) samples I1, . . . , Id resulting
in some final state Sd, then the output (S∗, R)← next(Sd) looks indistinguishable from uniform.

– The challenger chooses an initial state S0 ← {0, 1}n, a seed seed← setup, and a bit b← {0, 1} uniformly
at random.

– The attacker A gets seed and specifies an arbitrarily long sequence of values I1, . . . , Id with Ij ∈ {0, 1}n
for all j ∈ [d].

– The challenger sequentially computes

Sj = refresh(Sj−1, Ij , seed)

for j = 1, . . . , d. If b = 0 the attacker is given (S∗, R) = next(Sd) and if b = 1 the attacker is given
(S∗, R)← {0, 1}n+`.

– The attacker outputs a bit b∗.

Definition 7 (Preserving Security). A PRNG with input has (t, ε)-preserving security if for any at-
tacker A running in time t, the advantage of A in the above game is at most ε.

C.3 Modified Composition Theorem

With these modified definitions, [DPR+13]’s proof of their composition theorem immediately extends to
handle semi-adaptive set-refresh queries.

Theorem 8. Assume that a PRNG with input has both (t, εp)-preserving security and (t, qD, γ
∗, εr)-recovering

security as defined above. Then, it is ((t′, qD, qR, qS), γ∗, qR(εr + εp))-robust in the semi-adaptive set-refresh
model where t′ ≈ t.
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