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ABSTRACT 

RC4 is the most widely used stream cipher around. So, it is 

important that it runs cost effectively, with minimum 

encryption time. In other words, it should give higher 

throughput. In this paper, a mechanism is proposed to 

improve the throughput of RC4 algorithm in multicore 

processors using multithreading. The proposed mechanism 

does not parallelize RC4, instead it introduces a way that 

multithreading can be used in encryption when the input is in 

the form of a text file. In this particular research, the source 

codes were written in Java (version: 1.6.0_21) in Windows 

environments. Experiments to analyze the throughput were 

done separately in an Intel P4 machine (O/S: Windows XP), 

Core 2 Duo machine (O/S: Windows XP) and Core i3 

machine (O/S: Windows 7). 

The main objective of the research was to study the robustness 

of RC4 (implemented purely in software) when encryption is 

done in multiple threads. In other words the intension was to 

improve the throughput of RC4 by using parallelism. For that, 

the following mechanism was used:  

Chunking the input text file into similar sized portions, then 

encrypting each portion by RC4 (key size: 128 bits) and 

merging all encrypted portions together then finally saving the 

final encrypted file in a folder. This process was done 

multiple threads to get the advantages of eligible parallelism 

in multicores. (using Executors in Java).  

Measurement criteria: Execution time (i.e. time taken to 

chunk, encrypt and form the final encrypted files by merging 

all the portions) of different data sizes in different types of 

multicores when using the sequential approach and parallel 

approach. 

The outcome: Higher throughput of RC4 can be achieved in 

multicores when using the described mechanism in this 

research. Effective use of multithreading in encryption can be 

achieved in multicores. 

General Terms 

Accelerating RC4, Parallel RC4 Encryption, Using 

Multithreading for Encryption. 
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1. INTRODUCTION 
RC4 is regarded as the most popular stream cipher in the 

world of cryptography [3]. When it comes to accelerating the 

algorithm, the focus of many researches has been pivoted 

around hardware implementations. [2], [3], [4], [5]. Since 

RC4 is commonly used in WEP, variety of studies has been 

done in the areas of WEP to improve the latency of RC4 or in 

other words improve the throughput. [4], [6]. So, in this 

research the idea was to identify parallel programming model 

or mechanism to improve the throughput of the algorithms 

which is cost effective.  

Improving throughput of encryption algorithms is essential as 

the connectivity of computers have increased rapidly. 

Irrespective of the cipher used, the major reason for the lower 

throughput is lack of parallelism. [7] Thus focus of this work 

was to introduce a parallel execution mechanism to RC4 in-

order to enhance the throughput. In open literature, there is no 

evidence of using multithreading (in Java) to execute the 

mechanism used in this research in multicores to accelerate 

RC4.  

Initially the input text file is divided into similar sized parts 

(chunks).  This mechanism was adopted from a research done 

by Barnes A. et al. [1] but in that research the file chunking 

mechanism was not executed using parallelism. But here, in 

this research file chunking and encryption are executed in 

multiple threads using Java’s executors.   

Encryption time is measured in nanoseconds once all the 

threads have been executed. Average time is calculated. To 

compare the results with the sequential implementation, input 

text file is encrypted without chunking and it is done. These 

experiments were done in Core Duo and Core i3 machines 

respectively.  It is obvious that the test should be run in more 

sophisticated machines like Core i7, and 24 or 32 core 

processors and as well as GPUs. Those experiments should be 

done in the future. 

2. RC4 ALGORITHM 
RC4 is the most commonly used, stream cipher. It is used in 

applications like WEP, WPA, SSL, PDF, Bit-Torrent protocol 

system, MS Point-to-Point Encryption, Remote Desktop 

Protocol and Skype.  

In this section, the algorithm RC4 is described with respect to 

its major parts: The key scheduling algorithm (KSA) and the 

pseudo-random generation algorithm (PRGA). In most 

applications RC4 is used with a word size n = 8 and array size 

N = 28. [7] 

The RC4 algorithmcan be illustrated as follows because n = 8 
and N = 28 (256) 
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KSA: 

for i = 0 to 255  
   S[i] = i; 

j=0 

for i = 0 to 255 

   j = (j+S[i]+K[i]) mod 256; 

  sawp S[i] and S[j]; 

 

PRGA: 

i = 0, j=0; 

for x = 0 to M-1 

   i = (i+1) mod 256; 

   j = (j+S[i]) mod 256; 

swap S[i] and S[j]; 

GeneratedKey = S[ (S[i] + S[j]) mod 256] 

Output = M  XOR GeneratedKey 

Where ‘M’ is the plain text message length. [8] 

3. MULTITHREADING IN JAVA 
A thread is the smallest unit of processing that is scheduled by 

the operating system. A process is a unit of execution in 

operating system level. Normally a computer executes more 

than one process at a time. A single program can be multi-

threaded. Time slicing is done like in multiprocessing. The 

threads share the same memory. [9] 

Tasks can be regarded as logical units of work, and threads 

are a mechanism that enables tasks (units of work) run 

asynchronously. There are two policies for executing tasks 

using threads: execute tasks sequentially in a single thread, 

and execute each task in its own thread. Both carry 

limitations: the sequential approach suffers from poor 

throughput, and the thread-per-task approach suffers from 

poor resource management. [10]  

A thread pool, manages a homogeneous pool of worker 

threads. A thread pool is strictly dedicated to a work queue 

that is holding tasks waiting to be executed. Worker threads 

own a simple routine: request the next task from the work 

queue, execute it, and go back to waiting for another task. [10] 

Executing tasks in pool threads is advantageous over the 

thread-per-task approach. Reusing an existing thread instead 

of creating a new one omits thread creation and teardown 

costs over multiple requests. And also, since the worker 

thread already exists at the time the request arrives, the 

latency associated with creation of threads does not delay the 

execution of tasks, thus responsiveness is improved. By 

properly tuning the size of the thread pool, enough threads can 

be obtained to keep the processors busy while not having so 

many or thrashes due to competition among threads for 
resources. [10] 

Thus, to achieve a rich throughput, the sequential approach 

should be avoided; in other words, the multithread mechanism 

should be used (executing tasks in pool threads using). Then 

the challenging resource management will be fixed because a 

resource manager is used. Such a resource manager is 

supplied by Java in the form of “Executors” 

The particular class library provides a flexible thread pool 

implementation along with some useful predefined 
configurations. [10] 

newFixedThreadPool - A fixed-size thread pool creates 

threads as tasks are submitted, up to the maximum pool size, 

defined by the user, and then attempts to keep the pool size 

constant (will add new threads if a thread dies due to an 
unexpected Exception in the middle of execution). [10] 

newCachedThreadPool - A cached thread pool has more 

flexibility to reap idle threads when the current size of the 

pool exceeds the demand for processing, and to add new 

threads when demand increases, but places no bounds on the 

size of the pool.[10] 

In this research newCachedThreadPool is used as it has 
advantages.  

An Executor is an object that manages tasks which are 

running. A Runnable can be submitted to the Executor’s 

‘execute ()’ method in-order to be run with it. [9]. Instead of 

creating a thread for a Runnable that you have defined, and 

calling ‘start ()’, the following can be done: 

Get an Executor object, say called exec  Create a Runnable, 

say called myTask  Submit for running:  

exec.execute(myTask) 

Executors are designed relying on the producer-consumer 

pattern, where activities that submit tasks are the producers 

(producing units of work to be done) and the threads that 

execute tasks are the consumers (consuming those units of 
work). [10]  

Summary of the usage of Executors: obtained from [9] 

• Create a class that implements a Runnable to be the “task 

object”  

• Create the task objects 

• Create the Executor 

• Submit each task-object to the Executor which starts it 
up in a separate thread 

4. RESEARCH METHOD 
4.1 Mechanism which adhered Parallelism  

Each input text file is divided into similar sized chunk. Chunk 

size is taken as 10000 bytes. After that, each portion is 

encrypted by RC4 cipher and saved in a folder. These two 

operations are done using multiple threads. Encryption time is 

calculated for the whole process (chunking, encrypting and 

saving) for all threads. Number of threads is decided by the 

JVM (as the static method newCachedThreadPool() is used).  
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Fig.1 Overview of the mechanism (referred [1]) 

4.2 Sequential approach for comparison 

A sequential encryption mechanism is needed to compare the 

results of the parallel implementation and to analyze the 

results. Hence the sequential encryption mechanism is used as 

follows:  

Input file is read (without chunking) line by line and then the 

whole string buffer is encrypted by RC4. This is the simplest 

sequential approach that  

4.3 Use of Multithreading and Execution Time: 

Below code segment shows how the executors used and how 

the time calculation is done: 

public static void main(String[] args) 

throws IOException { 

        

System.out.println("Multithreading 

started..."); 

ExecutorService executor = 

Executors.newCachedThreadPool(); 

        startTime1 = System.nanoTime();                 

        for (int i= 0; i<=2532271 ; 

i=i+10000) 

        { 

            executor.execute(new 

FileChunkAndEncrypt(i)); 

        } 

endTime1 = System.nanoTime(); 

        System.out.println("Starting 

shutdown..."); 

        executor.shutdown(); 

                 

        //Calculate the elapsed time in 

milliseconds 

        long timeElapsed1 = 

CalculateTimeDifference.GetTimeElapsed(st

artTime1, endTime1); 

        try { 

            

executor.awaitTermination(100, 

TimeUnit.SECONDS); 

        } catch (InterruptedException ex) 

{ 

            

System.out.println("Interrupted..."); 

        }  

        System.out.println("All 

executed!"); 

        System.out.println("Time Elapsed: 

" + timeElapsed1 + "ns"); 

} 

Value of ‘i’ is the chunk size and the maximum value is hard 

coded and it is the total file size in bytes.  

The following methods are written in the class 

“FileChunkAndEncrypt” which implements Runnable. This is 

where the task is defined for executions. 

public FileChunkAndEncrypt(int chunkSize) 

{ 

this.chunkSize = chunkSize; 

} 

@Override 

public void run() { 

try { 

// File chunking in parallel goes 

here....            

readFragmentEncrypt("D:/testChunk.txt", 

chunkSize); 

} catch (IOException ex) {            

Logger.getLogger(FileChunkAndEncrypt.clas

s.getName()).log(Level.SEVERE, null, ex); 

} 

} 



International Journal of Computer Applications (0975 – 8887)  

Volume 60– No.16, December 2012 

48 

4.4 Initial Key Generation: 

The initial key (in both occasions – parallel and sequential) is 

generated using java.security.SecureRandom and 

java.math.BigInteger. Stream 128bit random bits 

were generated every time, the experiment was done. The size 

of the key was not changed throughout the research because 

the variable was the input data size.  

5. RESULTS AND ANALYSIS 
 

Experiments were done for both sequential and parallel 

implementations in a single core (P4), Core 2 Duo and Core i3 

processors. Encryption times were measure 100 times and the 

average is taken. Then the throughput is calculated 

accordingly. Encryption time includes the time taken to chunk 

the input file into similar sized parts, encrypt each of those 

chunks and finally merge all of them to form one file. So, 

Encryption Time is referred as Execution Time. 

These are the results: 

5.1 Tables which contains the obtained results 

5.1.1 Average Execution Time (ns) Vs Data Size (KB) 

Table 1: Average Encryption Time Vs Data Size 

(Sequential in Core i3) 

Data Size/KB Average Execution Time/ns 

20 4791 

40 7417 

60 9959 

80 10507 

100 12153 

120 15397 

140 17087 

160 19015 

180 20874 

200 22504 

 

Table 2: Average Encryption Time Vs Data Size (Parallel 

in Core i3) 

Data Size/KB Average Execution Time/ns 

20 2275 

40 2631 

60 2794 

80 2918 

100 3365 

120 3748 

140 3908 

160 3991 

180 4488 

200 4715 
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Table 3: Average Encryption Time Vs Data Size 

(Sequential in Core 2 Duo) 

Data Size/KB Average Execution Time/ns 

20 6938 

40 10267 

60 14802 

80 17892 

100 18761 

120 21252 

140 24341 

160 27522 

180 29419 

200 33284 

 

Table 4: Average Encryption Time Vs Data Size (Parallel 

in Core 2 Duo) 

Data Size/KB Average Execution Time/ns 

20 1912 

40 2331 

60 2446 

80 5992 

100 5826 

120 7163 

140 6625 

160 7083 

180 8037 

200 8265 

Table 5: Average Encryption Time Vs Data Size 

(Sequential in Single Core P4) 

Data Size/KB Average Execution Time/ns 

20 12086 

40 16677 

60 20625 

80 24015 

100 27470 

120 31737 

140 35346 

160 38841 

180 42252 

200 45609 

 

Table 6: Average Encryption Time Vs Data Size (Parallel 

in Single Core P4) 

Data Size/KB Average Execution Time/ns 

20 5890 

40 7305 

60 8617 

80 8853 

100 10337 

120 10753 

140 12481 

160 17318 

180 19060 

200 22113 
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5.1.2 Throughput (MBps) Vs Data Size (KB) 

Table 7: Throughput Vs Data Size (All Sequential 

Implementations) 

Data 

Size/KB 

Throughput/MBps 

Corei3 Core 2 Duo P4 

20 4076.654143 2815.112424 1616.022671 

40 5266.617231 3804.665433 2342.297775 

60 5883.497339 3958.502229 2840.909091 

80 7435.519178 4366.476638 3253.175099 

100 8035.56735 5205.279569 3555.014561 

120 7611.060596 5514.1869 3692.456754 

140 8001.331422 5616.809088 3868.011939 

160 8217.19695 5677.276361 4022.810947 

180 8421.062087 5975.092627 4160.306021 

200 8679.01262 5868.059728 4282.323664 

 

Table 8: Throughput Vs Data Size (All Parallel 

Implementations) 

Data 

Size/KB 

Throughput/MBps 

Core i3 Core 2 Duo P4 

20 8585.1648 10215.089 3316.002 

40 14847.016 16757.829 5347.365 

60 20971.278 23954.926 6799.785 

80 26773.475 13038.218 8824.692 

100 29021.174 16762.144 9447.253 

120 31266.676 16360.114 10898.12 

140 34984.327 20636.792 10954.15 

160 39150.589 22059.862 9022.404 

180 39166.945 21871.501 9222.521 

200 41423.648 23631.276 8832.474 

5.2 Graphs which illustrates the results 

5.2.1 Average Execution Time Vs Data Size 

 

Fig.2 Average Execution Time Vs Data Size (Core i3) 

 

 

Fig.3 Average Execution Time Vs Data Size (Core 2 Duo) 

 

 

Fig.3 Average Execution Time Vs Data Size (Single Core 

P4) 
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5.2.2 Throughput Vs Data Size 

 

 

Fig.4 Throughput Vs Data Size (Sequential 

Implementations) 

 

 

Fig.5 Throughput Vs Data Size (Parallel Implementations) 

6. CONCLUSIONS AND FUTURE WORK 
By looking at the results the following conclusions can be 

mentioned:  

Parallelism mechanism made RC4 robust on any architecture.  

Performance or in other words, throughput increment is 

noteworthy. Anyways, effective improvements can be seen in 

multicores; especially in Corei3 as it is a quad-core processor. 

Since Core 2 Duo is a dual-core processor it doesn’t have a 

better performance then Core i3 which is an obvious fact.  

In this research Java Executors were used while the JVM 

decided the no.of threads were used in the parallelism process. 

According to the available theory and literature is one of the 

most cost effective ways when it comes to make use of 

Executors in multithreading.  

Performance/throughput of RC4 has been boosted due to the 

mechanism of parallel encryption introduced by this research. 

Obviously better results can be achieved in Core i5, Core 

i7…32 core machines and GPUs. The most important factor is 

the use of multithreading techniques in multicores! Thus it is 

obvious that the throughput of RC4 can be immensely 

increased by the proposed mechanism 

 

Suggested future work:  

1. Improving throughput of block cipher algorithms using 

multithreading techniques. 

2. Evaluation of the robustness of the symmetric key 

algorithms in multicores and GPUs. 

3. Analysis of symmetric key algorithms in multicores and 

GPUs based on Linux and C language. 
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