
International Journal of Computer Applications (0975 – 8887)

Volume 60– No.16, December 2012

45

Improving Throughput of RC4 Algorithm using
Multithreading Techniques in Multicore Processors

 T.D.B Weerasinghe

MSc.Eng, BSc.Eng (Hons),
MIEEE, AMIE (SL), AMCS (SL)

Software Engineer
IFS R&D International, 363,
Udugama, Kandy, Sri Lanka

ABSTRACT

RC4 is the most widely used stream cipher around. So, it is

important that it runs cost effectively, with minimum

encryption time. In other words, it should give higher

throughput. In this paper, a mechanism is proposed to

improve the throughput of RC4 algorithm in multicore

processors using multithreading. The proposed mechanism

does not parallelize RC4, instead it introduces a way that

multithreading can be used in encryption when the input is in

the form of a text file. In this particular research, the source

codes were written in Java (version: 1.6.0_21) in Windows

environments. Experiments to analyze the throughput were

done separately in an Intel P4 machine (O/S: Windows XP),

Core 2 Duo machine (O/S: Windows XP) and Core i3

machine (O/S: Windows 7).

The main objective of the research was to study the robustness

of RC4 (implemented purely in software) when encryption is

done in multiple threads. In other words the intension was to

improve the throughput of RC4 by using parallelism. For that,

the following mechanism was used:

Chunking the input text file into similar sized portions, then

encrypting each portion by RC4 (key size: 128 bits) and

merging all encrypted portions together then finally saving the

final encrypted file in a folder. This process was done

multiple threads to get the advantages of eligible parallelism

in multicores. (using Executors in Java).

Measurement criteria: Execution time (i.e. time taken to

chunk, encrypt and form the final encrypted files by merging

all the portions) of different data sizes in different types of

multicores when using the sequential approach and parallel

approach.

The outcome: Higher throughput of RC4 can be achieved in

multicores when using the described mechanism in this

research. Effective use of multithreading in encryption can be

achieved in multicores.

General Terms

Accelerating RC4, Parallel RC4 Encryption, Using

Multithreading for Encryption.

Keywords

Throughput of RC4, Multithreading in Encryption

1. INTRODUCTION
RC4 is regarded as the most popular stream cipher in the

world of cryptography [3]. When it comes to accelerating the

algorithm, the focus of many researches has been pivoted

around hardware implementations. [2], [3], [4], [5]. Since

RC4 is commonly used in WEP, variety of studies has been

done in the areas of WEP to improve the latency of RC4 or in

other words improve the throughput. [4], [6]. So, in this

research the idea was to identify parallel programming model

or mechanism to improve the throughput of the algorithms

which is cost effective.

Improving throughput of encryption algorithms is essential as

the connectivity of computers have increased rapidly.

Irrespective of the cipher used, the major reason for the lower

throughput is lack of parallelism. [7] Thus focus of this work

was to introduce a parallel execution mechanism to RC4 in-

order to enhance the throughput. In open literature, there is no

evidence of using multithreading (in Java) to execute the

mechanism used in this research in multicores to accelerate

RC4.

Initially the input text file is divided into similar sized parts

(chunks). This mechanism was adopted from a research done

by Barnes A. et al. [1] but in that research the file chunking

mechanism was not executed using parallelism. But here, in

this research file chunking and encryption are executed in

multiple threads using Java’s executors.

Encryption time is measured in nanoseconds once all the

threads have been executed. Average time is calculated. To

compare the results with the sequential implementation, input

text file is encrypted without chunking and it is done. These

experiments were done in Core Duo and Core i3 machines

respectively. It is obvious that the test should be run in more

sophisticated machines like Core i7, and 24 or 32 core

processors and as well as GPUs. Those experiments should be

done in the future.

2. RC4 ALGORITHM
RC4 is the most commonly used, stream cipher. It is used in

applications like WEP, WPA, SSL, PDF, Bit-Torrent protocol

system, MS Point-to-Point Encryption, Remote Desktop

Protocol and Skype.

In this section, the algorithm RC4 is described with respect to

its major parts: The key scheduling algorithm (KSA) and the

pseudo-random generation algorithm (PRGA). In most

applications RC4 is used with a word size n = 8 and array size

N = 28. [7]

The RC4 algorithmcan be illustrated as follows because n = 8
and N = 28 (256)

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.16, December 2012

46

KSA:

for i = 0 to 255
 S[i] = i;

j=0

for i = 0 to 255

 j = (j+S[i]+K[i]) mod 256;

 sawp S[i] and S[j];

PRGA:

i = 0, j=0;

for x = 0 to M-1

 i = (i+1) mod 256;

 j = (j+S[i]) mod 256;

swap S[i] and S[j];

GeneratedKey = S[(S[i] + S[j]) mod 256]

Output = M XOR GeneratedKey

Where ‘M’ is the plain text message length. [8]

3. MULTITHREADING IN JAVA
A thread is the smallest unit of processing that is scheduled by

the operating system. A process is a unit of execution in

operating system level. Normally a computer executes more

than one process at a time. A single program can be multi-

threaded. Time slicing is done like in multiprocessing. The

threads share the same memory. [9]

Tasks can be regarded as logical units of work, and threads

are a mechanism that enables tasks (units of work) run

asynchronously. There are two policies for executing tasks

using threads: execute tasks sequentially in a single thread,

and execute each task in its own thread. Both carry

limitations: the sequential approach suffers from poor

throughput, and the thread-per-task approach suffers from

poor resource management. [10]

A thread pool, manages a homogeneous pool of worker

threads. A thread pool is strictly dedicated to a work queue

that is holding tasks waiting to be executed. Worker threads

own a simple routine: request the next task from the work

queue, execute it, and go back to waiting for another task. [10]

Executing tasks in pool threads is advantageous over the

thread-per-task approach. Reusing an existing thread instead

of creating a new one omits thread creation and teardown

costs over multiple requests. And also, since the worker

thread already exists at the time the request arrives, the

latency associated with creation of threads does not delay the

execution of tasks, thus responsiveness is improved. By

properly tuning the size of the thread pool, enough threads can

be obtained to keep the processors busy while not having so

many or thrashes due to competition among threads for
resources. [10]

Thus, to achieve a rich throughput, the sequential approach

should be avoided; in other words, the multithread mechanism

should be used (executing tasks in pool threads using). Then

the challenging resource management will be fixed because a

resource manager is used. Such a resource manager is

supplied by Java in the form of “Executors”

The particular class library provides a flexible thread pool

implementation along with some useful predefined
configurations. [10]

newFixedThreadPool - A fixed-size thread pool creates

threads as tasks are submitted, up to the maximum pool size,

defined by the user, and then attempts to keep the pool size

constant (will add new threads if a thread dies due to an
unexpected Exception in the middle of execution). [10]

newCachedThreadPool - A cached thread pool has more

flexibility to reap idle threads when the current size of the

pool exceeds the demand for processing, and to add new

threads when demand increases, but places no bounds on the

size of the pool.[10]

In this research newCachedThreadPool is used as it has
advantages.

An Executor is an object that manages tasks which are

running. A Runnable can be submitted to the Executor’s

‘execute ()’ method in-order to be run with it. [9]. Instead of

creating a thread for a Runnable that you have defined, and

calling ‘start ()’, the following can be done:

Get an Executor object, say called exec Create a Runnable,

say called myTask Submit for running:

exec.execute(myTask)

Executors are designed relying on the producer-consumer

pattern, where activities that submit tasks are the producers

(producing units of work to be done) and the threads that

execute tasks are the consumers (consuming those units of
work). [10]

Summary of the usage of Executors: obtained from [9]

• Create a class that implements a Runnable to be the “task

object”

• Create the task objects

• Create the Executor

• Submit each task-object to the Executor which starts it
up in a separate thread

4. RESEARCH METHOD
4.1 Mechanism which adhered Parallelism

Each input text file is divided into similar sized chunk. Chunk

size is taken as 10000 bytes. After that, each portion is

encrypted by RC4 cipher and saved in a folder. These two

operations are done using multiple threads. Encryption time is

calculated for the whole process (chunking, encrypting and

saving) for all threads. Number of threads is decided by the

JVM (as the static method newCachedThreadPool() is used).

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.16, December 2012

47

Fig.1 Overview of the mechanism (referred [1])

4.2 Sequential approach for comparison

A sequential encryption mechanism is needed to compare the

results of the parallel implementation and to analyze the

results. Hence the sequential encryption mechanism is used as

follows:

Input file is read (without chunking) line by line and then the

whole string buffer is encrypted by RC4. This is the simplest

sequential approach that

4.3 Use of Multithreading and Execution Time:

Below code segment shows how the executors used and how

the time calculation is done:

public static void main(String[] args)

throws IOException {

System.out.println("Multithreading

started...");

ExecutorService executor =

Executors.newCachedThreadPool();

 startTime1 = System.nanoTime();

 for (int i= 0; i<=2532271 ;

i=i+10000)

 {

 executor.execute(new

FileChunkAndEncrypt(i));

 }

endTime1 = System.nanoTime();

 System.out.println("Starting

shutdown...");

 executor.shutdown();

 //Calculate the elapsed time in

milliseconds

 long timeElapsed1 =

CalculateTimeDifference.GetTimeElapsed(st

artTime1, endTime1);

 try {

executor.awaitTermination(100,

TimeUnit.SECONDS);

 } catch (InterruptedException ex)

{

System.out.println("Interrupted...");

 }

 System.out.println("All

executed!");

 System.out.println("Time Elapsed:

" + timeElapsed1 + "ns");

}

Value of ‘i’ is the chunk size and the maximum value is hard

coded and it is the total file size in bytes.

The following methods are written in the class

“FileChunkAndEncrypt” which implements Runnable. This is

where the task is defined for executions.

public FileChunkAndEncrypt(int chunkSize)

{

this.chunkSize = chunkSize;

}

@Override

public void run() {

try {

// File chunking in parallel goes

here....

readFragmentEncrypt("D:/testChunk.txt",

chunkSize);

} catch (IOException ex) {

Logger.getLogger(FileChunkAndEncrypt.clas

s.getName()).log(Level.SEVERE, null, ex);

}

}

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.16, December 2012

48

4.4 Initial Key Generation:

The initial key (in both occasions – parallel and sequential) is

generated using java.security.SecureRandom and

java.math.BigInteger. Stream 128bit random bits

were generated every time, the experiment was done. The size

of the key was not changed throughout the research because

the variable was the input data size.

5. RESULTS AND ANALYSIS

Experiments were done for both sequential and parallel

implementations in a single core (P4), Core 2 Duo and Core i3

processors. Encryption times were measure 100 times and the

average is taken. Then the throughput is calculated

accordingly. Encryption time includes the time taken to chunk

the input file into similar sized parts, encrypt each of those

chunks and finally merge all of them to form one file. So,

Encryption Time is referred as Execution Time.

These are the results:

5.1 Tables which contains the obtained results

5.1.1 Average Execution Time (ns) Vs Data Size (KB)

Table 1: Average Encryption Time Vs Data Size

(Sequential in Core i3)

Data Size/KB Average Execution Time/ns

20 4791

40 7417

60 9959

80 10507

100 12153

120 15397

140 17087

160 19015

180 20874

200 22504

Table 2: Average Encryption Time Vs Data Size (Parallel

in Core i3)

Data Size/KB Average Execution Time/ns

20 2275

40 2631

60 2794

80 2918

100 3365

120 3748

140 3908

160 3991

180 4488

200 4715

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.16, December 2012

49

Table 3: Average Encryption Time Vs Data Size

(Sequential in Core 2 Duo)

Data Size/KB Average Execution Time/ns

20 6938

40 10267

60 14802

80 17892

100 18761

120 21252

140 24341

160 27522

180 29419

200 33284

Table 4: Average Encryption Time Vs Data Size (Parallel

in Core 2 Duo)

Data Size/KB Average Execution Time/ns

20 1912

40 2331

60 2446

80 5992

100 5826

120 7163

140 6625

160 7083

180 8037

200 8265

Table 5: Average Encryption Time Vs Data Size

(Sequential in Single Core P4)

Data Size/KB Average Execution Time/ns

20 12086

40 16677

60 20625

80 24015

100 27470

120 31737

140 35346

160 38841

180 42252

200 45609

Table 6: Average Encryption Time Vs Data Size (Parallel

in Single Core P4)

Data Size/KB Average Execution Time/ns

20 5890

40 7305

60 8617

80 8853

100 10337

120 10753

140 12481

160 17318

180 19060

200 22113

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.16, December 2012

50

5.1.2 Throughput (MBps) Vs Data Size (KB)

Table 7: Throughput Vs Data Size (All Sequential

Implementations)

Data

Size/KB

Throughput/MBps

Corei3 Core 2 Duo P4

20 4076.654143 2815.112424 1616.022671

40 5266.617231 3804.665433 2342.297775

60 5883.497339 3958.502229 2840.909091

80 7435.519178 4366.476638 3253.175099

100 8035.56735 5205.279569 3555.014561

120 7611.060596 5514.1869 3692.456754

140 8001.331422 5616.809088 3868.011939

160 8217.19695 5677.276361 4022.810947

180 8421.062087 5975.092627 4160.306021

200 8679.01262 5868.059728 4282.323664

Table 8: Throughput Vs Data Size (All Parallel

Implementations)

Data

Size/KB

Throughput/MBps

Core i3 Core 2 Duo P4

20 8585.1648 10215.089 3316.002

40 14847.016 16757.829 5347.365

60 20971.278 23954.926 6799.785

80 26773.475 13038.218 8824.692

100 29021.174 16762.144 9447.253

120 31266.676 16360.114 10898.12

140 34984.327 20636.792 10954.15

160 39150.589 22059.862 9022.404

180 39166.945 21871.501 9222.521

200 41423.648 23631.276 8832.474

5.2 Graphs which illustrates the results

5.2.1 Average Execution Time Vs Data Size

Fig.2 Average Execution Time Vs Data Size (Core i3)

Fig.3 Average Execution Time Vs Data Size (Core 2 Duo)

Fig.3 Average Execution Time Vs Data Size (Single Core

P4)

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.16, December 2012

51

5.2.2 Throughput Vs Data Size

Fig.4 Throughput Vs Data Size (Sequential

Implementations)

Fig.5 Throughput Vs Data Size (Parallel Implementations)

6. CONCLUSIONS AND FUTURE WORK
By looking at the results the following conclusions can be

mentioned:

Parallelism mechanism made RC4 robust on any architecture.

Performance or in other words, throughput increment is

noteworthy. Anyways, effective improvements can be seen in

multicores; especially in Corei3 as it is a quad-core processor.

Since Core 2 Duo is a dual-core processor it doesn’t have a

better performance then Core i3 which is an obvious fact.

In this research Java Executors were used while the JVM

decided the no.of threads were used in the parallelism process.

According to the available theory and literature is one of the

most cost effective ways when it comes to make use of

Executors in multithreading.

Performance/throughput of RC4 has been boosted due to the

mechanism of parallel encryption introduced by this research.

Obviously better results can be achieved in Core i5, Core

i7…32 core machines and GPUs. The most important factor is

the use of multithreading techniques in multicores! Thus it is

obvious that the throughput of RC4 can be immensely

increased by the proposed mechanism

Suggested future work:

1. Improving throughput of block cipher algorithms using

multithreading techniques.

2. Evaluation of the robustness of the symmetric key

algorithms in multicores and GPUs.

3. Analysis of symmetric key algorithms in multicores and

GPUs based on Linux and C language.

REFERENCES
[1] Barnes, A.; Fernando, R.; Mettananda, K.; Ragel, R.; ,

"Improving the throughput of the AES algorithm with

multicore processors," Industrial and Information

Systems (ICIIS), 2012 7th IEEE International Conference

on , vol., no., pp.1-6, 6-9 Aug. 2012

doi: 10.1109/ICIInfS.2012.6304791

[2] Sen Gupta, S.; Chattopadhyay, A.; Sinha, K.; Maitra, S.;

Sinha, B.; , "High Performance Hardware

Implementation for RC4 Stream Cipher," Computers,

IEEE Transactions on , vol.PP, no.99, pp.1, 0

doi: 10.1109/TC.2012.19

[3] Zong Wang; Arslan, T.; Erdogan, A.; , "Implementation

of Hardware Encryption Engine for Wireless

Communication on a Reconfigurable Instruction Cell

Architecture," Electronic Design, Test and Applications,

2008. DELTA 2008. 4th IEEE International Symposium

on , vol., no., pp.148-152, 23-25Jan.2008 doi:

10.1109/DELTA.2008.100

[4] Kitsos, P.; Kostopoulos, G.; Sklavos, N.; Koufopavlou,

O.; , "Hardware implementation of the RC4 stream

cipher," Circuits and Systems, 2003 IEEE 46th Midwest

Symposium on , vol.3, no., pp. 1363- 1366 Vol. 3, 27-30

Dec.2003 doi: 10.1109/MWSCAS.2003.1562548

[5] Jun-Dian Lee; Chih-Peng Fan; , "Efficient low-latency

RC4 architecture designs for IEEE 802.11i WEP/TKIP,"

Intelligent Signal Processing and Communication

Systems, 2007. ISPACS 2007. International Symposium

on , vol., no., pp.56-59, Nov. 28 2007-Dec. 1 2007

doi: 10.1109/ISPACS.2007.4445822

[6] Dongara, P.; Vijaykumar, T.N.;, "Accelerating private-

key cryptography via multithreading on symmetric

multiprocessors," Performance Analysis of Systems and

Software, 2003. ISPASS. 2003 IEEE International

Symposium on , vol., no., pp. 58- 69, 6-8 March 2003

doi: 10.1109/ISPASS.2003.1190233

[7] Nawaz, Y.; Gupta, K.C.; Gong G.; "A 32-bit RC4-like

Keystream Generator," Cryptology ePrint Archive:

Report 2005/175.

[8] Mousa, A.; Hamad, A.; "Evaluation of the RC4

Algorithm for Data Encryption,"International Journal of

Computer Science and Applications, vol.3, no.2, pp. 44-

56

[9] Lecture notes in:

www.cs.virginia.edu/~cs201/slides/cs2110-16-

parallelprog.ppt

[10] Bloch J, Bowbeer J, Goetz B, Holmes D, Lea D, Peierls

T. Java Concurrency in Practice. (May 2006). Chapter

6.2

