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ABSTRACT 
RC4 is the most widely used stream cipher around. So, it is 
important that it runs cost effectively, with minimum 
encryption  time.  In  other  words,  it  should  give  higher 

throughput.  In  this  paper,  a  mechanism  is  proposed  to 
improve the throughput of RC4 algorithm in multicore 
processors using multithreading. The proposed mechanism 
does  not  parallelize  RC4, instead  it  introduces  a  way  that 
multithreading can be used in encryption when the plaintext is 
in the form of a text file. In this particular research, the source 
codes were written in Java (JDK version: 1.6.0_21) in 
Windows    environments.    Experiments    to    analyze    the 
throughput  were done separately in  an  Intel® P4  machine 
(O/S: Windows XP), Core 2 Duo machine (O/S: Windows 
XP) and Core i3 machine (O/S: Windows 7). 

 

Outcome of the research: Higher throughput of RC4 algorithm 

can be achieved in multicores when using the proposed 

mechanism in this research. Effective use of multithreading in 

encryption can be achieved in multicores using this technique. 
 

General Terms 
Accelerating RC4, Parallel RC4 Encryption, Multithreading 

for Encryption. 
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Throughput of RC4, Multithreading in Encryption 

 

 
1.  INTRODUCTION 
The main objective of the research was to study the robustness 
of RC4 (implemented purely in software) when encryption is 
done in multiple threads. In other words the intension was to 
improve the throughput of RC4 by using parallelism. For that, 
the following mechanism was used: 

 

Dividing the input file into similar sized portions, then 

encrypting each portion by RC4 (key size: 128 bits) and 

merging all encrypted portions together then finally saving the 

final  encrypted  file  in  a  folder.  This process was done 

multiple threads to get the advantages of eligible parallelism 

in multicores. (Using Executors in Java). 
 

Measurement criteria for parallel execution: Average 

encryption time (i.e. time taken to divide the file into similar 

parts, encrypt and form the final encrypted files by merging 

all the portions) of different plaintext data sizes in different 

types of multicores (after similar number of experiments for 

each data size). 

Measurement criteria for sequential execution (to compare the 

results of the parallel execution and come to a conclusion): 

Average encryption time of different plaintext data sizes in 

different types of multicores (after similar number of 

experiments for each data size). 

 
 
RC4 is the most popular stream cipher in the world of 

cryptography   [3].   When   it   comes   to   accelerating   the 

algorithm, the focus of many researches has been pivoted 

around hardware implementations. [2, 3, 4, 5]. Since RC4 is 

commonly used in WEP, variety of studies has been done in 

the areas of WEP to improve the latency of RC4 or in other 

words improve the throughput. [4], [6]. So, in this research the 

idea   was   to   identify   parallel   programming   model   or 

mechanism to improve the throughput of the algorithms which 

is cost effective. 

 
Improving throughput of encryption algorithms is essential as 

the connectivity of computers have increased rapidly. 

Irrespective of the cipher used, the major reason for the lower 

throughput is lack of parallelism. [7] Thus focus of this work 

was to introduce a parallel execution mechanism to RC4 in- 

order to enhance the throughput. In open literature, there is no 

evidence of using multithreading (in Java) to execute the 

mechanism used in this research in multicores to accelerate 

RC4. 

 
Initially the input text file was divided into similar sized parts 

(chunks). This mechanism was adopted from a research done 

by Barnes A. et al. [1] but in that research the file chunking 

mechanism was not executed using parallelism. But here, in 

this research, file chunking and encryption operations were 

executed in multiple threads using Java‟s executors. 

 
In the parallel approach, for each plaintext data size, the 

encryption time was measured in nanoseconds once all the 

threads have been executed. Then the average time was 

calculated after similar number of experiments for each data 

size respectively. To compare the results with the sequential 

implementation, original input text file was encrypted (without 

dividing i n t o    similar p a r t s ) a n d    the a v e r a g e  

t i m e s  w e r e  calculated accordingly. 

 
All these experiments were done in 3 computers, Intel® P4, 
Inter® Core™ 2 Duo and Core™ i5 respectively.
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2.  RC4 ALGORITHM 
RC4 is the most commonly used, stream cipher. It is used in 
applications like WEP, WPA, SSL, PDF, Bit-Torrent protocol 
system,   MS   Point-to-Point   Encryption,   Remote   Desktop 
Protocol and Skype. 

 

In this section, the algorithm RC4 is described with respect to 
its major parts: The key scheduling algorithm (KSA) and the 
pseudo-random generation algorithm (PRGA). In most 
applications RC4 is used with a word size n = 8 and array size 

N = 28. [7] 
 

The RC4 algorithm can be illustrated as follows because n = 8 

and N = 28 (256) 
 

KSA: 
 

for i = 0 to 255 
S[i] = i; 

 

j=0 
 

for i = 0 to 255 
 

j = (j+S[i]+K[i]) mod 256; 
 

swap (S[i] and S[j]); 
 

 
 

PRGA:  
 

i = 0, j=0; 
 

for x = 0 to L-1 
 

i = (i+1) mod 256; 
 

j = (j+S[i]) mod 256; 
 

swap (S[i] and S[j]); 
 

GeneratedKey = S[ (S[i] + S[j]) mod 256] 
 

Ciphetext Bit = M[x] XOR GeneratedKey 
 

Where „M‟ is the plain text message and L is its length. [8] 

 

 
3.  MULTITHREADING IN JAVA 
A thread is the smallest unit of processing that is scheduled by 
the  operating  system.  A  process  is  a  unit  of  execution  in 
operating system level. Normally a computer executes more 
than one process at a time. A single program can be multi- 
threaded. Time slicing is done like in multiprocessing. The 
threads share the same memory. [9] 

 
Tasks can be regarded as logical units of work, and threads 

are a mechanism that enables tasks (units of work) run 

asynchronously. There are two policies for executing tasks 

using threads: execute tasks sequentially in a single thread, 

and   execute   each   task   in   its   own   thread.   Both   carry 

limitations: the sequential approach suffers from poor 

throughput,  and  the  thread-per-task  approach  suffers  from 

poor resource management. [10] 
 

A thread pool, manages a homogeneous pool of worker 

threads. A thread pool is strictly dedicated to a work queue 

that is holding tasks waiting to be executed. Worker threads 

own a simple routine: request the next task from the work 

queue, execute it, and go back to waiting for another task. [10] 

Executing tasks in pool threads is advantageous over the 

thread-per-task approach. Reusing an existing thread instead 

of creating a new one omits thread creation and teardown 

costs over multiple requests.  And  also,  since  the  worker 

thread  already  exists  at  the  time  the  request  arrives,  the 

latency associated with creation of threads does not delay the 

execution of tasks, thus responsiveness is improved. By 

properly tuning the size of the thread pool, enough threads can 

be obtained to keep the processors busy while not having so 

many or thrashes due to competition among threads for 

resources. [10] 

 
Thus, to achieve a rich throughput, the sequential approach 

should be avoided; in other words, the multithread mechanism 

should be used (executing tasks in pool threads using 

Executors). Resource management will be fixed because a 

resource manager is used.  Such a resource manager is 

supplied by Java in the form of “Executors” 

 
The particular class library provides a flexible thread pool 

implementation along with some useful predefined 

configurations. [10] 

 
newFixedThreadPool - A fixed-size thread pool creates 

threads as tasks are submitted, up to the maximum pool size, 

defined by the user, and then attempts to keep the pool size 

constant  (will  add  new threads  if a  thread  dies due to  an 

unexpected Exception in the middle of execution). [10] 

 
newCachedThreadPool  -  A cached  thread  pool  has  more 
flexibility to reap idle threads when the current size of the 
pool exceeds the demand for processing, and to add new 
threads when demand increases, but places no bounds on the 
size of the pool.[10] 

 
In this research newCachedThreadPool is used as it has 
advantages. 

 
An Executor is an object that manages tasks which are running. 

A Runnable can be submitted to the Executor’s „execute ()’ 

method in-order to be run with it. Instead of creating a thread 

for a Runnable that you have defined, and calling, „start ()‟, the 

following can be done[9] : 

 
•     Select the Executor object, say called exec 

•     Create your Runnable, say called myTask 

•     Submit for running: exec.execute(myTask) 

 
Executors are designed relying on the producer-consumer 

pattern, where activities that submit tasks are the producers 

(producing units of work to be done) and the threads that 

execute tasks are the consumers (consuming those units of 

work). [10] 

 
Summary of the usage of Executors: obtained from [9] 

 
• Create a class that implements a Runnable to be the “task 

object”. 

•     Create the task objects. 

•     Create the Executor. 
• Submit each task-object to the Executor which starts it 

up in a separate thread.

j = (j+S[i]+K[i mod l]) mod 256;

end loop;

swap S[i] and S[j];
GeneratedKey = S[ (S[i] + S[j]) mod 256] ;
Output = M[x] XOR GeneratedKey;

swap S[i] and S[j];

GeneratedKey = S[ (S[i] + S[j]) mod 256] ;

Output = M[x] XOR GeneratedKey;

Where ‘M’ is the plain text message and ‘L’ is its length. [4]
Output is the Ciphertext
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4.  RESEARCH METHOD 
 

 
4.1 Mechanism which adhered Parallelism 

 
Each input text file is divided into similar sized chunk. Chunk 

size is taken as 10000 bytes. After that, each portion is 

encrypted by RC4 cipher and saved in a folder. These two 

operations are done using multiple threads. Encryption time is 

calculated for the whole process (chunking, encrypting and 

saving) for all threads. Number of threads is decided by the 

JVM [as the static method newCachedThreadPool() is used]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1 Overview of the mechanism (referred [1]) 

 
 
 

4.2 Sequential approach for comparison 
 

A sequential encryption mechanism is needed to compare the 

results of the parallel implementation and to analyze the 

results. Hence the sequential encryption mechanism is used as 

follows: 
 

Input file is read (without chunking) line by line and then the 

whole string buffer is encrypted by RC4. This is the simplest 

sequential approach that could have been adopted! 
 
 
 

4.3 Use of Multithreading and Execution Time: 
 

Below code segment shows how the executors used and how 
the time calculation is done: 

 
public static void main(String[] args) 

throws IOException { 

 
 

System.out.println("Multithreading 

started..."); 

 
ExecutorService executor = 

Executors.newCachedThreadPool(); 

 
startTime1 = System.nanoTime(); 

executor.execute(new 

FileChunkAndEncrypt(i)); 

 
} 

 
endTime1 = System.nanoTime(); 

 
 
 

System.out.println("Starting 

shutdown..."); 

 
executor.shutdown(); 

 
 
 

//Calculate the elapsed time in 

milliseconds 

 
long        timeElapsed1        = 

CalculateTimeDifference.GetTimeElapsed(st 

artTime1, endTime1); 

 
 
 

try { 

 
 
executor.awaitTermination(100, 

TimeUnit.SECONDS); 

 
} catch (InterruptedException ex) 

{ 

 
 
System.out.println("Interrupted..."); 

} 

System.out.println("All 

executed!"); 

 
System.out.println("Time Elapsed: 

" + timeElapsed1 + "ns"); 

 
} 

 
Value of „i‟ is the chunk size and the maximum value is hard 
coded and it is the total file size in bytes. 
 
The following methods are written in the class 
“FileChunkAndEncrypt” which implements Runnable. This is 
where the task is defined for executions. 
 
 
 
public FileChunkAndEncrypt(int chunkSize) 

 
{ 

 
this.chunkSize = chunkSize;

} 
for  (int  i=  0;  i<=2532271  ; 

i=i+10000) 

 
{
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Data Size/KB Average Execution Time/ns 

20 4791 

40 7417 

60 9959 

80 10507 

100 12153 

120 15397 

140 17087 

160 19015 

180 20874 

200 22504 

 

@Override 

 
public void run() { 

 
try { 

 
// File chunking in parallel goes 

here.... 

readFragmentEncrypt("D:/testChunk.txt", 

chunkSize); 

 
} catch (IOException ex) { 

Logger.getLogger(FileChunkAndEncrypt.clas 

s.getName()).log(Level.SEVERE, null, ex); 

 
} 

 
} 

 

4.4 Initial Key Generation: 
 

The initial key (in both occasions – parallel and sequential) is 

generated  using  java.security.SecureRandom and 

java.math.BigInteger. Stream  128bit  random  bits 

were generated every time, the experiment was done. The size 

of the key was not changed throughout the research because 

the variable was the input data size. 

5.  RESULTS AND ANALYSIS 
 

 
Experiments were done for both sequential and parallel 

implementations  in  a single  core  (P4), Core™  2  Duo  and 

Core™ i3 processors. Encryption times were measure 100 

times and the average is taken. Then the throughput is 

calculated  accordingly.  Encryption  time  includes  the  time 

taken to chunk the input file into similar sized parts, encrypt 

each of those chunks and finally merge all of them to form 

one file. So, Encryption Time is referred as Execution Time. 
 

These are the results: 

 

 
5.1 Tables which contains the obtained results 
 

5.1.1 Average Execution Time (ns) Vs Data Size (KB) 
 

Table 1: Average Encryption Time Vs Data Size (Sequential 
in Core i3)

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Average Encryption Time Vs Data Size (Parallel in 

Core i3) 
 

Data Size/KB Average Execution Time/ns 

20 2275 

40 2631 

60 2794 

80 2918 

100 3365 

120 3748 

140 3908 

160 3991 

180 4488 

200 4715 
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Data Size/KB Average Execution Time/ns 

20 12086 

40 16677 

60 20625 

80 24015 

100 27470 

120 31737 

140 35346 

160 38841 

180 42252 

200 45609 

 

Data Size/KB Average Execution Time/ns 

20 5890 

40 7305 

60 8617 

80 8853 

100 10337 

120 10753 

140 12481 

160 17318 

180 19060 

200 22113 

 

Table 3: Average Encryption Time Vs Data Size (Sequential 
in Core 2 Duo) 

Table 5: Average Encryption Time Vs Data Size (Sequential 
in Single Core P4) 

 

 

Data Size/KB Average Execution Time/ns 

20 6938 

40 10267 

60 14802 

80 17892 

100 18761 

120 21252 

140 24341 

160 27522 

180 29419 

200 33284 

Table 4: Average Encryption Time Vs Data Size (Parallel in 

Core 2 Duo) 

Table 6: Average Encryption Time Vs Data Size (Parallel in 

Single Core P4)
 

Data Size/KB Average Execution Time/ns 

20 1912 

40 2331 

60 2446 

80 5992 

100 5826 

120 7163 

140 6625 

160 7083 

180 8037 

200 8265 
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Data 
Size/KB 

Throughput/MBps 

Corei3 Core 2 Duo P4 

20 4076.654143 2815.112424 1616.022671 

40 5266.617231 3804.665433 2342.297775 

60 5883.497339 3958.502229 2840.909091 

80 7435.519178 4366.476638 3253.175099 

100 8035.56735 5205.279569 3555.014561 

120 7611.060596 5514.1869 3692.456754 

140 8001.331422 5616.809088 3868.011939 

160 8217.19695 5677.276361 4022.810947 

180 8421.062087 5975.092627 4160.306021 

200 8679.01262 5868.059728 4282.323664 

 

Data 
Size/KB 

Throughput/MBps 

Core i3 Core 2 Duo P4 

20 8585.1648 10215.089 3316.002 

40 14847.016 16757.829 5347.365 

60 20971.278 23954.926 6799.785 

80 26773.475 13038.218 8824.692 

100 29021.174 16762.144 9447.253 

120 31266.676 16360.114 10898.12 

140 34984.327 20636.792 10954.15 

160 39150.589 22059.862 9022.404 

180 39166.945 21871.501 9222.521 

200 41423.648 23631.276 8832.474 

 

5.1.2 Throughput (MBps) Vs Data Size (KB) 
 

Table   7:   Throughput   Vs   Data   Size   (All   Sequential 
Implementations) 

5.2 Graphs which illustrates the results 
 

5.2.1 Average Execution Time Vs Data Size 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2 Average Execution Time Vs Data Size (Core i3)

 
 
 
 
 
 
 
 
 
 
 

Table    8:    Throughput    Vs    Data    Size    (All    Parallel 

Implementations) 

 

 

 
 

Fig.3 Average Execution Time Vs Data Size (Core 2 Duo)
 

 

 
 

Fig.3 Average Execution Time Vs Data Size (P4)
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5.2.2 Throughput Vs Data Size 
 

 

 
 

Fig.4 Throughput Vs Data Size (Sequential Implementations) 
 

 

 
 

Fig.5 Throughput Vs Data Size (Parallel Implementations) 
 

 
6. CONCLUSIONS AND FUTURE WORK 

 
 

By looking at the results the following conclusions can be 
mentioned: 

 
Parallelism mechanism made RC4 robust on any architecture. 

Performance or in other words, throughput increment is 

noteworthy. Anyways, effective improvements can be seen in 

multicores;  especially  in  Core  i3  as  it  is  a  quad-core 

processor.  Since Core 2 Duo is a dual-core processor it 

doesn‟t have a better performance than Core i3 which is an 

obvious fact. 

 
In  this  research  Java  Executors  were  used  and  the  JVM 
decided  the  no.  of threads  were  used  in  the  parallelism 
process. According to the available theory and literature it is 
one of the most cost effective ways of using of Executors in 
multithreading. 

 
Performance/throughput of RC4 has been boosted due to the 

mechanism of parallel encryption introduced by this research. 

Obviously better results can be achieved in Core i5, Core 

i7 and other high end processors and GPUs. The most 

important factor is the use of multithreading techniques in 

multicores! Thus it is obvious that the throughput of RC4 can 

be immensely increased by the proposed mechanism. 

Suggested future work: 
 
1. Improving throughput of block cipher algorithms using 

multithreading techniques. 
 
2. Evaluation of the robustness of the symmetric key 

algorithms in multicores and GPUs. 
 
3.    Analysis of symmetric key algorithms in multicores and 

GPUs based on Linux and C language. 
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