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Abstract. Secret sharing schemes split a secret into multiple shares
that are usually distributed to distinct participants with the goal that
only authorized subsets of participants can recover it. We show that
SETUP (Secretly Embedded Trapdoor with Universal Protection) attack
can be embedded in schemes that employ enough randomness to give the
attacker an overwhelming advantage to access the secret. In case of ideal
schemes, a coalition of a few participants (within at least one is the
attacker) can succeed the attack, while in case of non-ideal schemes the
attacker knowledge can be enough to reveal the secret. We exemplify the
proposed attack against Shamir’s threshold scheme, as being the most
well-known and used secret sharing scheme. Finally, we consider some
prevention techniques against the attack.
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1 Introduction

SETUP (Secretly Embedded Trapdoor with Universal Protection) mechanism
was introduced by Young and Yung [17]. It represents a malicious technique
performed by the manufacturer of a cryptosystem that consists in implementing
a subliminal channel that leaks encrypted secret information. The encryption is
performed using the attacker’s public key and therefore he is the only one that
gains access to the leaked information.

From its introduction, SETUP attack was applied to different encryption
systems, signatures schemes, key generation algorithms, e-voting schemes and
network protocols [1, 4, 6, 10–13, 17–20, 22, 23]. Defense techniques against this
kind of attack were also analyzed [7, 8].

In this paper, we consider the embedding of the SETUP mechanism in a
secret sharing device. A secret sharing cryptographic device permits the splitting
of a secret into multiple shares that are securely distributed to participants. The
secret can be recovered if and only if an authorized subset of participants agrees
with its reconstruction.

We show that under certain conditions, the manufacturer can maliciously
modify the cryptographic sharing device so that it permits a specific participant
(the attacker) to gain an overwhelming advantage to access the secret. More
precisely, the attacker becomes able to determine the secret by himself or with a



help of a few other participants, without the requirement to form an authorized
group.

The attack is possible if the sharing mechanism is performed in a black-box
model that receives as input the secret and distributes the output shares to the
participants. In such a model, the malicious behavior remains hidden for the
owner of the secret sharing device, who considers the device trustable. He inputs
a secret into the cryptographic device, which is in charge of the generation and
the distribution of shares without being aware that a participant may gain access
to the secret information. The owner of the device is unable to determine the
malicious behavior because of the indistinguishability of the outputs towards the
genuine device.

We propose a general method of performing the SETUP attack against secret
sharing schemes that employ enough randomness. In order to exemplify the
applicability of the proposed mechanism, we present the embedding of SETUP
in the most popular secret sharing scheme, Shamir’s [15].

The paper is organized as follows. Section 2 gives the preliminary notions.
Section 3 introduces the SETUP attack against secret sharing schemes that use
enough random values. Section 4 analyses the security of the proposed attack.
We exemplify the usability of the proposed mechanism in Section 5. Section
6 considers the prevention techniques against the proposed attack. Finally, we
conclude in Section 7.

2 Background

2.1 SETUP

When a cryptosystem is implemented as a black-box, a user can only access its
inputs and outputs. The internal design, the implementation of the algorithm
and the internal memory are not externally accessible.

The black-box model permits the attacker to change the internal design in
order to obtain a unique advantage. While the modification does not apparently
affect the inputs or outputs of the cryptosystem, the user cannot suspect any
malicious behavior. This is accomplished by the SETUP mechanism, defined by
Young and Yung as follows [18]:

Definition 1. Assume that C is a black-box cryptosystem with a publicly known
specification. A (regular) SETUP mechanism is an algorithmic modification made
to C to get C’ such that:

1. The input of C’ agrees with the public specifications of the input of C;
2. C’ computes efficiently using the attacker’s public encryption function e (and

possibly other functions as well), contained within C’;
3. The attacker’s private decryption function d is not contained within C’ and

is known only by the attacker;
4. The output of C’ agrees with the public specifications of the output of C;
5. The output of C and C’ are polynomially indistinguishable (as in [5]) to

everyone except the attacker;



6. After the discovery of the specifics of the SETUP algorithm and after discov-
ering its presence in the implementation (e.g. reverse-engineering of hard-
ware tamper-proof device), users (except the attacker) cannot determine past
(or ideally, future) keys.

A modified cryptosystem that implements SETUP is called contaminated
[17].

2.2 Secret Sharing Schemes

A secret sharing scheme is a method of splitting a secret S into n (n > 1)
shares, which are then securely distributed to the participants. The secret can be
recovered only when an authorized subset of participants combines their shares
together. The set of all authorized subsets is called the access structure.

Definition 2. The access structure of a (k, n) threshold secret sharing scheme
consists of all sets whose cardinality is at least k.

Therefore, in case of a (k, n) threshold secret sharing scheme at least k out
of n shares are required for a successful reconstruction.

Definition 3. A secret sharing scheme is called ideal if the space of all possible
secrets equals the space of all possible shares.

We emphasize that in an ideal secret sharing scheme the size of a share equals
the size of the secret.

The rest of the paper focuses on centralized secret sharing schemes that use
random values. Such schemes involve the presence of a trusted party (the dealer)
who splits the secret into shares, which are computed based on some random
values. The majority of those involve the following two phases:

1. Selection of the random values;
2. Computing the shares C1, . . . , Cn (share Cj is distributed to participant Pj ,

1 ≤ j ≤ n) based on the random values previously selected.

In Section 3 we show that if the previous two steps are performed in the
black-box model and the number of the randomly chosen values is sufficiently
large, then a SETUP attack can be mounted on the secret sharing device.

An example of ideal secret scheme that performs the required two steps is
Shamir’s [15]:

Input: n the number of participants, q ≥ n+ 1 a prime number and S ∈ Zq
the secret.

Output: C1, C2, . . . , Cn the shares corresponding to the secret S.

1: n distinct and public elements x1, x2, . . . , xn ∈ Zq are chosen for the partic-
ipants (xj for Pj , 1 ≤ j ≤ n).



2: A k − 1 degree random polynomial

f(x) = a0 + a1x+ · · ·+ ak−1x
k−1 (mod q)

is picked, where a0 = S and aj ∈ Zq, (1 ≤ j ≤ k − 1).
3: Each participant Pj (1 ≤ j ≤ n) receives his share:

Cj = f(xj)

The reconstruction is based on polynomial interpolation: given at least k
points (xi, Ci) with distinct xi’s, the polynomial f(x) satisfying Ci = f(xi),
1 ≤ i ≤ k, is unique and can be found by interpolation:

f(x) =
∑k
i=1 Ci

∏
1≤j≤k,i 6=j

x− xi
xi − xj

The secret S is evaluated as f(0). Since any k or more participants can
recover the secret, Shamir’s scheme is a (k, n) threshold secret sharing scheme.

We will mount a SETUP attack on Shamir’s scheme in Section 5.

2.3 Public Key Encryption from Trapdoor Permutations

Diffie and Hellman introduced the notions of one-way functions and trapdoor
functions in 1976 [3]. The particular classes of one-way permutation and trapdoor
permutation require that the domain and range of the functions are equal. The
most well-known example of a trapdoor permutation is RSA [14].

This section introduces the general method to construct public key cryp-
tosystems from trapdoor permutations [2], [16]. We will use this construction
in Section 5 to exemplify the proposed SETUP attack in Shamir’s ideal secret
sharing scheme.

Definition 4. Let X be a set. A function f : X → X is a one-way permutation
if it is:

– easy to compute: there exists a polynomial time algorithm that on input x ∈
X outputs y = f(x);

– hard to invert: for all probabilistic polynomial time algorithms, the probability
that on input y ∈ X outputs x ∈ X such that f(x) = y is negligible;

Definition 5. A pair (G̃en, f) is a family of secure trapdoor permutation if the
following holds:

– G̃en is the parameter generation algorithm, which on input 1λ, outputs a
pair (pk, sk) and a function fpk : X → X;

– without the knowledge the trapdoor sk, fpk is a one-way function;
– with the knowledge of the trapdoor sk, the inverse f−1pk (y) of fpk is easily

computable, ∀y ∈ X.



Definition 6. Let (G̃en, f) be a family of secure trapdoor permutations. A de-
terministic probabilistic polynomial time algorithm hc, which on inputs pk and
x ∈ X, outputs a single bit hcpk(x) is called hard-core predicate if for all proba-
bilistic polynomial time algorithms A:

Pr[A(pk, fpk(x)) = hcpk(x)] ≤ 1/2 + negl(λ)

Let (G̃en, f) be a family of trapdoor permutations and hc an associated hard-
core predicate as described before. A public key encryption scheme (Gen,Enc,Dec)
can be constructed as:

– Gen is the key generation algorithm, which on input 1λ runs G̃en in order
to obtain the public key pk and the private key sk;

– Enc is the randomized encryption algorithm, which on inputs a public key
pk and a message M = (M1, . . . ,Ml) ∈ {0, 1}l, randomly chooses x1 ∈ X,
computes xi = fpk(xi−1), for all i > 1 and outputs the ciphertext C =
(c0, c1, . . . , cl) = (xl+1, hcpk(x1)⊕M1, . . . , hcpk(xl)⊕Ml);

– Dec is the deterministic decryption algorithm, which on inputs a private key
sk and a ciphertext C outputs M = (hcpk(x1)⊕ c1, . . . , hcpk(xl)⊕ cl), where
xi = f−1pk (xi+1), 1 ≤ i ≤ l.

Theorem 1. If (G̃en, f) is a family of secure trapdoor permutations and hc is a
corresponding hard-core predicate, then the public key cryptosystem (Gen,Enc,Dec)
is semantically secure.

The proof is beyond the purpose of this paper. The reader may refer to the
bibliography for more details [2], [9], [16].

3 The SETUP Attack

The main goal of SETUP is to offer the attacker an overwhelming advantage to
reconstruct the secret.

A trivial attack could be considered at first: in the distribution phase, the
attacker receives the (encryption of the) secret instead of a valid share. The
honest participants will not be able to determine the dishonest behavior if the
reconstruction is not performed. However, in case of reconstruction, if the at-
tacker is not be able to provide a valid share, then the attack will be revealed.
We highlight that his is not the case when the encryption of the secret represents
a valid share.

We propose such a technique for which, in the worst-case scenario, the at-
tacker can reveal the secret with the knowledge of a few other shares. Any par-
ticipant other than the attacker (or his allies) needs all the shares of participants
forming an authorized subset in order to reconstruct the secret.

The proposed SETUP attack becomes possible under the following assump-
tions:



1. The sharing mechanism is implemented as a black-box that can store infor-
mation across multiple invocations of the sharing algorithm in a non-volatile
memory;

2. The sharing mechanism selects a set of random values and uses them to com-
pute the shares (phases 1 and 2 mentioned in Subsection 2.2 are performed
within the black-box);

3. The number of random values in each share is greater or equal to the number
of the components of the shared secret (or the share itself can be considered
a random value);

4. The shares are distributed through secure channels;
5. The attacker is always one of the participants;
6. Several secrets are shared.

Assumptions 1 and 4 are general assumptions for SETUP, respectively secret
sharing schemes.

Assumptions 2 and 3 specify the properties that a particular secret sharing
should meet to be vulnerable to the proposed attack.

Assumption 5 states that the attacker must be one of the participants. For
the rest of the paper, we consider (without loss of generality) that the attacker
is the first participant P1. Moreover, he must always receive a specific share that
is computed in a special way within the contaminated device. In case of an ideal
secret sharing scheme, the attacker needs access to at least one more share of a
specific participant, which may be an ally.

The attack fails if only one secret is shared. However, assumption 6 does
not restrict the applicability of the SETUP attack, because usually the number
of shared secrets is large in practice. It is uncommon to believe that a sharing
device is used only once or it is restored to factory defaults after each run.

We consider the following notations: S the set of all possible secrets and ⊗
the group operation in S; C the set of all possible shares; H : {0, 1}∗ → S a
cryptographically strong hash function; ID a random and secret bit string of
considerable length that uniquely identifies the sharing device.

Let (Gen,Enc,Dec) be a semantically secure public key encryption scheme,
where:

– Gen is the key generation algorithm, which on input 1λ outputs a key pair
(pk, sk), where pk is the public key and sk is the secret key;

– Enc is the randomized encryption algorithm that on input a public key pk
and a message M ∈ S, outputs a ciphertext C ∈ Ct, t ∈ Z∗ fixed.

– Dec is the deterministic decryption algorithm that on input a private key
sk and a ciphertext C ∈ Ct, outputs the plaintext M ∈ S.

We highlight that the security against passive adversaries is enough, due
to the general assumption that shares are distributed through secure channels
(assumption 4).

As an extra requirement, the cryptosystem must accept any value in Ct as a
valid ciphertext: ∀C ∈ Ct and pk public key, ∃M ∈ S such that Encpk(M) = C.



The election of the public key encryption system is performed so that t ∈ Z∗
is minimum, while the system remains semantically secure. The high speed of
the encryption represents an advantage.

The contaminated sharing mechanism uses a public key encryption system
as described above. Let (pk, sk) be the pair of public and secret keys of the
attacker. When a secret is given as input, the contaminated device encrypts it
using the public key of the attacker that is stored in the non-volatile memory
of the black-box and outputs it as one or more shares. The secret key sk is not
stored within the device and cannot be recovered from pk as the encryption
system is secure. Therefore, the attacker is the only one that can benefit of the
leaked information.

Besides the public key pk of the attacker, the random string ID is also stored
in the non-volatile memory of the contaminated device.

As we have already mentioned, we consider that multiple secrets are shared.
Each secret is shared during one round. A round consists of the following steps:
the secret is given as input, the internal algorithm runs, outputs the shares and
distributes them to the participants. Let Si be the secret to be shared in round
i (i ≥ 1).

Given the previous assumptions and notations, we define the SETUP attack
as follows:

Input: n the number of participants and S1, S2, . . . the secrets to be shared.
Output: for each round i ≥ 1, Ci1, C

i
2, . . . , C

i
n the shares that correspond to

the secret Si.

1: if i==1 then
2: α ∈ C is randomly chosen.
3: C1

1 = α.
4: H(ID||C1

1 ) is stored in memory for further usage.
5: C1

2 , C
1
3 , . . . , C

1
n are computed accordingly to the genuine secret sharing

scheme, taking into consideration the share C1
1 .

6: else
7: (Ci1, . . . , C

i
t) = Encpk(Si ⊗H(ID||Ci−11 )).

8: H(ID||Ci−11 ) is replaced in the non-volatile memory by H(ID||Ci1).
9: Cit+1, C

i
t+2, . . . , C

i
n are computed accordingly to the genuine secret sharing

scheme, taking into consideration the shares Ci1, . . . , C
i
t .

10: end if

It is easy to observe that the attacker P1 can determine the secret Si (i > 1)
if he knows the first t shares of the current round and his share form the previous
round:

Input: Ci1, . . . , C
i
t the first t shares in round i, Ci−11 the share of the attacker

P1 in round i− 1, ID the random string and sk the secret key.
Output: Si the secret in round i (i > 1).

1: Si = Decsk((Ci1, . . . , C
i
t))⊗ (H(ID||Ci−11 ))−1.



P1 can benefit of an advantage only if he convinces P2, . . . , Pt to divulge him
their shares Ci2, . . . , C

i
t . We remark that on distinct runs of the protocol the

roles of P2, ..., Pt can be played by different participants, but the attacker must
know their identity. If this is the case, then a predefined algorithm that maps
these participants for each round of the protocol must be implemented in the
black-box and known to P1.

Possibly the most convenient situation is when P2, . . . , Pt are fixed and they
are allies of P1. This way, they will always provide their secret shares to the
attacker who becomes able to reconstruct the secret. We highlight that although
P2, . . . , Pt are allies, they cannot find the secret unless they own the secret key
sk. If it is desired that some of the allies have the same advantage in restoring
the secret, then they will be given the secret key.

The attack is practical when t is small. For large values of t the attack may
become difficult to implement or even useless. For example, in case of a (k, n)
threshold scheme, when t ≥ k the attacker has no advantage in restoring the
secret.

In case of ideal secret sharing schemes the value of t is lower bounded by 2 (t ≥
2) because a semantically secure public key cryptosystem for which the plaintexts
space equals the ciphertexts space (S = C) does not exist. We emphasize that
t = 1 may be possible for non ideal secret sharing schemes, since the space of all
possible shares is larger than the space of all possible secrets. This means that
the attacker could restore the secret by himself, without any help from other
participants.

No matter the case, P1 can never recover the first secret S1. This is because
the attacker’s first share must be random in order to achieve the property of
indistinguishability, which it is described in more detail in the next section.

4 Security analysis of the proposed SETUP Attack

The section analyzes the two requirements any SETUP mechanism must achieve:
output indistinguishability and secret confidentiality.

4.1 Output Indistinguishability

The SETUP mechanism should be indistinguishable from the genuine one for
everyone except the attacker. If the attack were easily identifiable, then the users
would change the contaminated sharing device for a more trustable one.

In order to prove the indistinguishability, we show that the outputs of the
contaminated device do not restrict the possible space of values and maintain
the same distribution as the outputs of the genuine device.

The intuition behind the demonstration is the following. The shares Ci1, . . . , C
i
t

are computed starting from a random value α using computations that do not re-
strict the possible space of values and maintain the same distribution: the group
operation in S and the encryption function from S to Ct. This makes them in-
distinguishable by construction. The rest of the shares are computed in the same
way as in the genuine scheme, therefore there are also indistinguishable.



We give next the indistinguishability proof for the proposed SETUP attack.

Theorem 2. The proposed SETUP attack achieves output indistinguishability.

Proof. From the construction of the SETUP attack, the proof is complete if we
show the indistinguishability of the first t shares for all possible rounds i ≥ 1.

We perform a proof by induction on the number of secrets that are shared.
In the first round, the share of the attacker is randomly chosen C1

1 = α ∈ C
and all the other shares are computed as in the genuine version of the scheme.
Therefore, the indistinguishability property holds.

We assume by induction that for a fixed i > 1 Ci−11 , . . . , Ci−1t are indistin-
guishable from uniformly distributed values in Ct. Since H acts like a random
oracle, the value H(ID||Ci−11 ) is random in S . Due to the selection of the public
key cryptosystem (it is semantically secure and it covers the whole space Ct),
Encpk applied to a random message maintains the indistinguishability of the
ciphertext from a random value in Ct.

4.2 Confidentiality

A SETUP attack must achieve confidentiality against reverse engineering. In this
scenario, the content of the non-volatile memory, which contains the public key
pk, the random string ID and the hashed value H(ID||Ci−11 ) can be accessed.
We highlight that Ci−11 cannot be revealed from the hashed value under the
assumption that H is a strong hash function. Otherwise, any k − 1 coalition of
participants can compute the secret that was shared in the previous round.

We show that the additional information extracted by reverse engineering
brings no advantage. The scheme remains secure for unauthorized set of partic-
ipants, even though they have access to the information stored in the memory
of the device.

Theorem 3. The contaminated secret sharing scheme remains as secure as the
genuine version for anyone except the owners of the secret key (the attacker and,
if desired, his allies).

Proof. Let P be a coalition of r participants, 1 ≤ r ≤ n, which gain access to
the public key pk, the string ID and the hashed value H(ID||Ci−11 ) through
performing reverse engineering on the device.

If P is an authorized set, then the theorem holds since its members can
recover the secret in both the genuine and the contaminated version of the secret
sharing scheme.

If P is an unauthorized set of participants, then, in the genuine scheme, its
members are not able to compute any secret Si, i ≤ 1. We will next analyze two
possible scenarios for the contaminated version.

In the first scenario, the attacker or at least one of his allies are not members
of P. Therefore, the only difference from the genuine scheme is that they may
reveal the content of the non-volatile memory. However, the stored values are



independent from the secret, so they do not provide any information regard-
ing the secret itself. The only useful information may be the hashed value of
the attacker’s share. But this is kept secret under the assumption that H is a
cryptographic strong hash function.

In the second scenario, the attacker and all of his allies are members of P.
Therefore, in addition to the information from the previous scenario, the users
have also access to the encryption of the secret. However, this provides them
no advantage under the assumption that the used cryptosystem is semantically
secure.

5 SETUP Attack Applied to Shamir’s Secret Sharing
Scheme

We exemplify the applicability of the proposed SETUP attack for Shamir’s secret
sharing scheme. We motivate our choice by the fact that Shamir’s scheme is the
most popular scheme in the literature.

Shamir’s scheme is ideal, therefore the attacker cannot succeed by himself
(Section 3). We give an optimal solution, which requires a single ally.

In order to do that, we first have to define a public key cryptosystem that
satisfies the requirements mentioned in Section 3 for t = 2 and S = C = Zq.
This is achieved by the general method of constructing public key cryptosystem
from trapdoor functions (Section 2.3), with some modifications.

Let (G̃en, f) be a family of trapdoor permutations with fpk : Zq → Zq.
Rivest, Shamir and Adleman gave a solution to restrict a RSA trapdoor per-
mutation to Zq in the original paper [14]: a plaintext is repeatedly encrypted
until the result lies in Zq. Similarly, a ciphertext is repeatedly decrypted until it
is obtained a value in Zq. The least-significant bit is a hardcore hc of the RSA
family of trapdoor permutations. Therefore, we define the public key encryption
scheme (Gen,Enc,Dec) as follows:

– Gen is the key generation algorithm, which on input 1λ runs G̃en in order
to obtain the public key pk and the private key sk;

– Enc is the randomized encryption algorithm, which on inputs a public key pk
and a message M = (M1, . . . ,Ml) ∈ Zq, randomly chooses x1 ∈ X, computes
xi = fpk(xi−1), i > 1 and then C = (c0, c1, . . . , cl) = (xl+1, hcpk(x1) ⊕
M1, . . . , hcpk(xl)⊕Ml), where l is chosen such that |Zq| ≈ |{0, 1}l|. If C ∈ Z2

q

then outputs C as ciphertext. Otherwise, it restarts the encryption using a
different value x1.

– Dec is the deterministic decryption algorithm, which on inputs a private key
sk and a ciphertext C outputs M = (hc(x1) ⊕ c1, . . . , hc(xl) ⊕ cl), where
xi = f−1pk (xi+1), 1 ≤ i ≤ l.

Theorem 4. The proposed public key cryptosystem remains semantically se-
cure.



Proof. The proof is by contradiction. Suppose for the sake of contradiction
that the proposed encryption system is not semantically secure. Let Game0
be the corresponding Ind-CPA experiment. Therefore, an adversary A has a
non-negligible advantage in winning the Ind-CPA game:

AdvInd−CPAA,Game0 ≥ ε1(λ)
Let’s now consider Game1 the Ind-CPA experiment for the public key cryp-

tosystem obtained from trapdoor permutations as explained in Section 2.3. We
remark that for C ∈ Z2

q, Game1 is identical to Game0, so the adversary wins
with non-negligible probability.

For l such that |Zq| ≈ |{0, 1}l|, the probability that the challenger’s response
is a ciphertext that lies in Z2

q is non-negligible:

Pr[C ∈ Z2
q] =

|Z2
q|

|{0, 1}2l|
≥ ε2(λ)

Therefore, the advantage of the attacker in winning Game1 is lower bounded
by the non-negligible value:

AdvInd−CPAA,Game1 ≥ ε1(λ)ε2(λ)
This contradicts Theorem 1, so the proposed public key cryptosystem is

semantically secure.

We can now introduce the SETUP attack for Shamir’s secret sharing scheme:

Input: n the number of participants, q ≥ n+1 a prime number and Si ∈ Zq,
i ≥ 1, the secrets to be shared.

Output: for each round i ≥ 1, Ci1, C
i
2, . . . , C

i
n the shares corresponding to

the secret Si.

1: n distinct elements x1, x2, . . . ., xn ∈ Zq are chosen for the participants (xj
for Pj , 1 ≤ j ≤ n).

2: if i==1 then
3: A k − 1 degree random polynomial

f1(x) = a10 + a11x+ . . . .+ a1k−1x
k−1 (mod q)

is picked, where a10 = S1 and a1j ∈ Zq (1 ≤ j ≤ k − 1).
4: Each participant Pj (1 ≤ j ≤ n) receives his share:

C1
j = f1(xj)

5: H(ID||C1
1 ) is stored in the non-volatile memory.

6: else
7: (Ci1, C

i
2) = Encpk(Si ·H(ID||Ci−11 ) (mod q)).

8: H(ID||Ci−11 ) is replaced in the non-volatile memory by H(ID||Ci1).
9: aij ∈ Zq, (3 ≤ j ≤ k − 1) are randomly chosen.

10: ai1 and ai2 are the solutions for the system of equations:{
Ci1 = f i(x1)
Ci2 = f i(x2)

11: The k − 1 degree polynomial of the round is:
f i(x) = Si + ai1x+ . . . .+ aik−1x

k−1 (mod q)



12: Each participant Pj(1 ≤ j ≤ n) receives his share:
Cij = f i(xj)

13: end if

It is easy to see that the contaminated secret sharing scheme is correctly
defined, in the sense that Cij = f i(xj), ∀1 ≤ j ≤ n, i ≥ 1.

The attacker can compute with probability 1 any shared secret, except the
first one, if he knows the share of his ally:

Input: Ci1, C
i
2 the shares of the attacker and his ally in round i, Ci−11 the

share of the attacker P1 in round i− 1, ID the random string and sk the secret
key.

Output: Si the secret in round i (i > 1).

1: Si = Decsk((Ci1, C
i
2)) · (H(ID||Ci−11 ))−1 (mod q).

6 SETUP Attack Prevention Techniques

We have shown that, under certain condition, a SETUP attack is possible in
secret sharing schemes that use randomly selected values to compute the shares.
As the majority of the assumptions we have made are easy to meet in practice,
they do not restrict the applicability of the proposed attack. For example, the
usage of a secret sharing device for sharing multiple secrets is natural, as well as
the attempt of one participant’s (the attacker) to recover the secret.

However, we have also introduced a restriction in the sense that the attacker
should always be the first participant (P1). The order of participants is not im-
portant, so we could have considered any other participant as being the attacker.
The true restriction is given by the fact that the contaminated sharing device
mechanism knows to distribute the proper shares to the attacker and his allies.
If the attacker does not receive the maliciously computed share that contains the
encrypted secret leaked as a random value and he does not know which are the
shares of his allies, then the attack cannot be mounted. The precise distribution
of the contaminated share to the corresponding participants is possible if the
sharing device is in charge of the shares distribution. Therefore, an immediate
protection against a SETUP attack is to use a sharing device that computes
the shares, but does not distribute them to the participants. The distribution
remains the responsibility of the dealer.

Although the dealer is in charge with the distribution, his improper behav-
ior may maintain the applicability of the attack. Consider for example that he
inputs the secret into the contaminated sharing device, maps each output to a
participant in the sense that the first output represents the share that will be
given to a participant, the second output represents the share that will be given
to another participant and so on and maintains the same mapping for several
rounds. The probability that the attack succeeds is given by the probability that



he manages to restore the valid ciphertext as a concatenation of his and his allies
shares:

PrA =
1

Atn
=

(n− t)!
n!

Of course, the success of the attack considerable diminishes in case the dealer
performs the distribution as described before. For example, SETUP attack suc-
ceeds with probability 5% in Shamir’s secret scheme with n = 5 participants.

However, a slightly modification on the contaminated device raises the success
probability in the proposed scenario by a factor of n/t. It consists in computing
as many groups of shares as possible in the same way as the shares of the attacker
and his allies are computed. This way, no matter how the dealer performs the
mapping, if the attacker and his allies receive as input such shares, then the
attacker will be able to recover the secret. The attack remains secure against
reverse engineering and maintains outputs indistinguishability.

The best prevention techniques against the proposed SETUP attack is achieved
if the dealer randomly maps the outputs to the participants in each round. The
existence of a SETUP attack that permits the attacker to recover the secret in
the conditions of a random mapping remains an open problem.

7 Conclusions

We showed that, under certain conditions, SETUP attack can be embedded in
secret sharing schemes that use uniformly randomly selected values to give the
attacker an overwhelming advantage to access the shared secret: in case of ideal
schemes the attack is performed by a coalition of a few participants (within
at least one is the attacker), while in case of non-ideal schemes the attacker’s
knowledge may be enough to reveal the secret. To the best of our knowledge, we
are the first to consider SETUP attack against secret sharing.

We proposed a general method of implementing the attack and analyzed its
properties. In order to exemplify the applicability of our proposal, we successfully
embedded SETUP in the most popular secret sharing scheme: Shamir’s scheme
becomes susceptible in case the attacker has only one ally.

In the last part of the paper, we considered some prevention techniques that
can be successfully applied in practice to avoid the attack.
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