SETUP in Secret Sharing Schemes using
Random Values

Ruxandra F. Olimid

E-mail: ruxandra.olimid@fmi.unibuc.ro

Abstract. Secret sharing schemes divide a secret among multiple par-
ticipants so that only authorized subsets of parties can reconstruct it. We
show that SETUP (Secretly Embedded Trapdoor with Universal Pro-
tection) attack can be embedded in secret sharing schemes that employ
enough randomness to give the attacker an overwhelming advantage to
access the secret. In case of ideal schemes, a coalition of a few participants
(within at least one is the attacker) can succeed the attack, while in case
of non-ideal schemes the attacker’s knowledge can be enough to reveal
the secret. We exemplify the attack against Shamir’s threshold scheme,
which is the most well-known and used secret sharing scheme. Finally,
we consider some prevention techniques against the proposed attack.

Key words: Secret Sharing, SETUP, Black-Box Cryptography.

1 Introduction

SETUP (Secretly Embedded Trapdoor with Universal Protection) mechanism
was introduced by Young and Yung [15]. It represents a malicious technique
performed by the manufacturer of a cryptosystem that consists in implementing
a subliminal channel that leaks encrypted secret information. The encryption is
performed using the attacker’s public key and therefore he is the only one that
gains access to the leaked information.

From its introduction, SETUP attack has been applied to different encryption
systems, signatures schemes, key generation algorithms, e-voting and network
protocols [1,3,4,7,8,9,10,15,16,17,18,20,21]. Defense techniques against this kind
of attack were also analyzed [5,6].

In this paper, we consider the embedding of the SETUP mechanism in secret
sharing schemes. A secret sharing cryptographic device divides a secret into
multiple shares that are distributed to participants through secured channels.
The secret can be subsequently recovered if and only if an authorized subset of
participants agrees with its reconstruction.

We show that under certain conditions, the manufacturer can maliciously
modify the cryptographic sharing device such that it permits a specific partici-
pant (the attacker) to gain an overwhelming advantage to access the secret. More
precisely, the attacker becomes able to determine the secret by himself or with

the help of a few other participants (without the cooperation of an authorized
subset).

The attack is possible if the sharing device is modeled as a black-box (the
inputs and outputs are available, but the internal algorithm is inaccessible). In
such a model, the owner of the device is unable to determine the malicious behav-
ior because of the indistinguishability of the outputs towards the genuine device.
He inputs a secret to the cryptographic device that is in charge of the generation
(and the distribution) of shares, without being aware that the adversary can gain
access to the secret.

We propose a general method to perform SETUP attack against secret shar-
ing schemes that employ enough randomness. In order to exemplify the applica-
bility of the proposed mechanism, we present the embedding of SETUP in the
most popular secret sharing scheme, Shamir’s [11].

The paper is organized as follows. Section 2 gives the preliminaries. Section
3 introduces the SETUP attack against secret sharing schemes that use enough
random values. Section 4 analyses the security of the proposed attack. Section 5
exemplifies the applicability against Shamir’s scheme. Section 6 considers some
prevention techniques against the proposed attack. Section 7 concludes.

2 Background
2.1 SETUP

When a cryptosystem is implemented as a black-box, a user can only access its
inputs and outputs. The internal design, the implementation of the algorithm
and the internal memory are not externally accessible.

The black-box model permits the attacker to change the insides of a device
with the goal to obtain a unique advantage. While the modification does not
apparently affect the inputs or outputs of the cryptosystem, the user cannot
suspect any malicious behavior. This is accomplished by the SETUP mechanism,
defined by Young and Yung as follows:

Definition 1. Assume that C is a black-box cryptosystem with a publicly known
specification. A (regular) SETUP mechanism is an algorithmic modification made
to C to get C’ such that:

1. The input of C” agrees with the public specifications of the input of C;

2. C’ computes efficiently using the attacker’s public encryption function e (and
possibly other functions as well), contained within C’;

8. The attacker’s private decryption function d is not contained within C’ and

18 known only by the attacker;

The output of C’ agrees with the public specifications of the output of C;

The output of C and C’ are polynomially indistinguishable to everyone except

the attacker;

6. After the discovery of the specifics of the SETUP algorithm and after discov-
ering its presence in the implementation (e.g. reverse-engineering of hard-
ware tamper-proof device), users (except the attacker) cannot determine past
(or ideally, future) keys. [16]

Siha

A modified cryptosystem that implements SETUP is called contaminated
[15].

2.2 Secret Sharing Schemes

A secret sharing scheme divides a secret S into n (n > 1) shares, which are then
securely distributed to the participants. The secret is reconstructed only when
an authorized subset of parties combines their shares together. The set of all
authorized subsets is called the access structure.

Definition 2. The access structure of a (k,n)-threshold secret sharing scheme
consists of all sets whose cardinality is at least k.

Hence, in case of a (k,n)-threshold secret sharing scheme at least k out of n
shares are required for a successful reconstruction.

Definition 3. A secret sharing scheme is called ideal if the space of all possible
secrets equals the space of all possible shares.

We emphasize that in an ideal secret sharing scheme the size of a share equals
the size of the secret.

The rest of the paper focuses on centralized secret sharing schemes in which
a trusted party (called the dealer) computes the shares based on some random
values. More precisely, the dealer:

1. selects some values uniformly at random;
2. computes the shares Ci,...,C, (share C; is distributed to participant P;,
1 <7 < n) based on the previously selected values.

We show in Section 3 that if the previous two steps are performed in the
black-box model and the number of the random values is sufficiently large, then
a SETUP attack can be mounted against the secret sharing device. An example
of ideal secret scheme that satisfy both these conditions is Shamir’s [11]:

Input: n the number of participants, ¢ > n + 1 a prime number and S € Z,
the secret
Output: C1,C,, ..., C, the shares corresponding to the secret S
1: set n distinct and public elements z1,z2,...,x, € Z4 for the participants
(xj for P;, 1 <j <n)
2: pick a k — 1 degree random polynomial

f@)=ao+aiz+ - +ap_12""" (mod q)
where ag =S and a; € Zg, (1 <j<k—1)
3: compute the shares C; = f(z;), 1 <j<n

The reconstruction is based on polynomial interpolation: given at least k
points (x;,C;) with distinct x;’s, the polynomial f(z) satisfying C; = f(x;),
1 <4 <k is unique and can be found by interpolation:

fo) =30, Lt}
=1

1< <kyiztj Ti = Lj

The secret S is evaluated as f(0). Since any k or more participants can
recover the secret, Shamir’s scheme is a (k, n)-threshold secret sharing scheme.
We mount a SETUP attack on Shamir’s scheme in Section 5.

3 The SETUP Attack

The main goal of SETUP is to offer the attacker an overwhelming advantage to
reconstruct the secret.

A trivial attack is immediate: in the distribution phase, the attacker receives
the (encryption of the) secret instead of a valid share. The honest participants are
unable to determine the dishonest behavior if the attacker skips reconstruction.
Otherwise, the attacker is not able to provide a valid share and the attack is
revealed.

We highlight that this is not the case when the encryption of the secret is a
valid share. We use this remark and propose a technique that allows the attacker
to reveal the secret with the help of only a few other participants. Except the
attacker, any other party needs all the shares of participants belonging to an
authorized subset to obtain the secret.

The proposed SETUP attack is possible under the following assumptions:

1. The sharing mechanism is implemented as a black-box that can store infor-
mation across multiple invocations of the sharing algorithm in a non-volatile
memory;

2. The sharing mechanism generates a set of random values and uses them
to compute the shares (phases 1 and 2 mentioned in Subsection 2.2 are
performed within the black-box);

3. The number of random values in each share is greater or equal to the number
of the components of the shared secret (or the share itself can be considered
a random value);

4. The shares are distributed through secure channels;

. The attacker is always one of the participants;

6. At least two secrets are shared.

ot

Assumptions 1 and 4 are general assumptions for SETUP, respectively secret
sharing schemes.

Assumptions 2 and 3 specify the properties that a particular secret sharing
should meet to be vulnerable to the proposed attack.

Assumption 5 states that the attacker must be one of the participants. For the
rest of the paper, we will consider without loss of generality that the attacker is
the first participant P;. In case of ideal secret sharing, the attacker needs access
to at least one more share of another participant, which may be his ally.

The attack fails if only one secret is shared. However, assumption 6 does
not restrict the applicability of the SETUP attack, because usually the number

of shared secrets is large in practice. It is uncommon to believe that a sharing
device is used only once.

We consider the following notations: S the set of all possible secrets and ®
the group operation in S; C the set of all possible shares; H : {0,1}* — S a
cryptographically strong hash function; 1D a random and secret bit string of
considerable length that uniquely identifies the sharing device.

Let (Gen, Enc, Dec) be a semantically secure public-key encryption scheme,
where:

— Gen is the key generation algorithm, which on input 1* (the security param-
eter) outputs a key pair (pk, sk), where pk is the public key and sk is the
secret key;

— FEnc is the randomized encryption algorithm that on input a public key pk
and a message M € S, outputs a ciphertext C € C¢, t € Z* fixed.

— Dec is the deterministic decryption algorithm that on input a private key
sk and a ciphertext C € C?, outputs the plaintext M € S.

We highlight that the security against passive adversaries suffices, due to
the general assumption that shares are distributed through secure channels (As-
sumption 4).

As extra requirements: (1) any value in C' must be a valid ciphertext, i.e.
VC € C' and pk public key, IM € S such that Ency,(M) = C; (2) t € Z* is
minimum such that the system remains semantically secure; (3) the high speed
of the encryption is an advantage.

The contaminated sharing mechanism uses a public-key encryption system
as described before. Let (pk, sk) be public and private keys of the attacker.
The contaminated device encrypts the input secret using the public key of the
attacker that is stored in the non-volatile memory of the black-box and outputs
the result as one or more shares. The secret key sk is not stored within the
device and cannot be recovered from pk because the encryption system is secure.
Therefore, the attacker is the only beneficiary of the leaked information.

In addition to the public key pk of the attacker, the random string I D is also
stored in the non-volatile memory of the contaminated device.

As Assumption 6 states, multiple secrets are shared. Each secret is shared
during one round. Each round consists of the following steps: the secret is given
as input, the internal algorithm runs, outputs the shares and distributes them
to the participants. Let S? be the secret to be shared in round i (i > 1).

Given the previous assumptions and notations, we define the SETUP attack
as follows:

Input: n the number of participants and S, S?,... the secrets to be shared
Output: for each round i > 1, C},C%, ..., C! the shares that correspond to
the secret S*
1: if i==1 then
2: compute Ci,C3,...,CL accordingly to the genuine secret sharing scheme

3: store H(ID||C]) in memory for further usage

4: else

5 (C,...,C}) = Ency(S* @ H(ID||C;™Y))

6: replace H(ID||C}™') by H(ID||C}) in the non-volatile memory

7. compute C},1,Ci 5, ...,C} accordingly to the genuine secret sharing scheme
such that (CY,...,Cf,Ci q,...,CL) is a valid set of shares

8: end if

It is easy to observe that the attacker P; can compute the secret S (i > 1)
if he knows the first ¢ shares of the current round and his own share form the
previous round:

Input: Ci,...,C? the first ¢ shares in round i, C{;l the share of the attacker
Py in round ¢ — 1, I D the random string and sk the secret key
Output: S* the secret in round ¢ (i > 1)

1: S* = Decyp((Cl,...,CH)) @ (H(ID||Ci~ 1))t

Hence, P; reconstructs S if he convinces Ps, ..., P; to divulge him their shares
Cs,...,C¢ We remark that on distinct runs of the protocol the roles of P, ..., P;
can be played by different participants, but the attacker must know their identity.
If this is the case, then a predefined algorithm that maps these participants for
each round of the protocol must be implemented in the black-box and known to
P.

The most convenient situation is when P, ..., P; are fixed and they are allies
of P;. In this scenario, they will always give their shares to the attacker. We
highlight that although P, ..., P; are allies, they cannot find the secret unless
they know the secret key sk. If it is desired that some of the allies have the same
advantage in restoring the secret as P, then they will be given the secret key.

The attack is practical for small ¢. Otherwise, it might become difficult to
implement or even useless. For example, in case of a (k, n)-threshold scheme with
t > k, the attacker has no advantage in restoring the secret.

In case of ideal secret sharing schemes the value of ¢ is lower bounded by 2 (¢ >
2) because a semantically secure public-key cryptosystem for which the plaintexts
space equals the ciphertexts space (S = C) does not exist. We emphasize that
t = 1 might be possible for non-ideal secret sharing schemes, since the space
of all possible shares is larger than the space of all possible secrets. This means
that the attacker could restore the secret by himself, without any help from other
participants.

No matter the case, P; can never recover the first secret S'. This is because
the attacker’s first share must be genuine to achieve the property of indistin-
guishability, which we consider in the next session.

4 Security analysis of the proposed SETUP Attack

The section analyzes the two requirements any SETUP mechanism must achieve:
output indistinguishability and secret confidentiality.

4.1 Owutput Indistinguishability

The SETUP mechanism should be indistinguishable from the genuine one for
everyone except the attacker. If the attack were easily identifiable, then the users
would change the contaminated sharing device for a trusted one.

To prove indistinguishability, we show that the outputs of the contaminated
device do not restrict the possible space of values and maintain the same distri-
bution as the outputs of the genuine device.

The intuition behind the demonstration is the following. The shares C?, ..., C}
are computed starting from a genuine share C] using computations that do not
restrict the possible space of values and maintain the same distribution: the
group operation in & and the encryption function from S to C!. This makes
them indistinguishable by construction. The rest of the shares are computed
accordingly to the genuine scheme, therefore there are also indistinguishable.

We give next the output indistinguishability proof for the proposed SETUP
attack.

Theorem 1. The proposed SETUP attack achieves output indistinguishability.

Proof. From the construction of the SETUP attack, the proof is complete if we
show the indistinguishability of the first ¢ shares for all possible rounds ¢ > 1.

We perform a proof by induction on the number of secrets that are shared.

For i = 1 the device runs the genuine sharing algorithm, therefore the indis-
tinguishability property holds by construction.

We assume by induction that for a fixed i > 1, Cf‘l, ..., C7 ! are indistin-
guishable from uniformly distributed values in C*. Since H acts like a random
oracle, the value H(ID||Ci™") is uniformly random in S . Due to the selection
of the public-key cryptosystem (it is semantically secure and it covers the whole
space C"), Encyy, applied to a random message maintains the indistinguishability
of the ciphertext from a random value in Ct.

4.2 Confidentiality

The SETUP contaminated device must achieve confidentiality against reverse
engineering. In this scenario, the content of the non-volatile memory (the public
key pk, the random string ID and the hashed value H(ID||C}~')) is accessible.
We highlight that C{;l cannot be revealed from the hashed value under the
assumption that H is a strong hash function and the private key sk cannot be
disclosed from the public key pk under the assumption that the cryptosystem is
secure.

We show next that reverse engineering the device brings no advantage: the
scheme remains secure for unauthorized set of participants even though they
access to the information stored in the non-volatile memory.

Theorem 2. The contaminated secret sharing scheme remains as secure as the
genuine version for anyone except the owners of the secret key (the attacker and,

if desired, his allies).

Proof. Let P be a coalition of r participants, 1 < r < n that gain access to
the public key pk, the string ID and the hashed value H(ID||Ci™") by reverse
engineering.

If P is an authorized set, then the theorem holds since its members can
recover the secret in both the genuine and the contaminated version of the secret
sharing scheme.

If P is an unauthorized set of participants, then, in case of the genuine
scheme, its members are not able to compute any secret S%, i > 1. We will
analyze next two possible scenarios for the contaminated version.

In the first scenario, the attacker or at least one of his allies are not members
of P. Therefore, the only difference from the genuine scheme is that they can
access the non-volatile memory. However, the stored values are independent from
the secret, so they do not provide any information regarding the secret itself.
The single useful information might be the hashed value of the attacker’s share.
But the share is kept secret under the assumption that H is a cryptographic
strong hash function.

In the second scenario, the attacker and all of his allies are members of P.
Therefore, in addition to the information from the previous scenario, the users
have also access to the encryption of the secret. However, this brings them no
advantage under the assumption that the cryptosystem is semantically secure.

5 SETUP Attack Applied to Shamir’s Secret Sharing
Scheme

We exemplify the applicability of the proposed SETUP attack for Shamir’s secret
sharing scheme. We motivate our choice by the fact that Shamir’s scheme is the
most popular scheme in the literature.

Shamir’s scheme is ideal, therefore the attacker cannot succeed by himself
(Section 3). We give an optimal solution, which requires a single ally:

Input: n the number of participants, ¢ > n+1 a prime number and S* € Z,
i > 1, the secrets to be shared
Output: for each round i > 1, Ci,C%, ..., C! the shares corresponding to
the secret S*
1: set n distinct and public elements x1,x2,....,2, € Z, for the participants
(xj for Pj, 1< j <n)
if i==1 then
pick a k — 1 degree random polynomial

fHz)=ab +alz+....+ap_12" 1 (mod q)

where aj = S' and a} € Z, (1 <j <k —1)
4: compute the shares Cf = f'(z;), 1<j<n
store H(ID||C}) in the non-volatile memory
else

(C1,03) = Ency (8" + H(ID||C{™") (mod g))
replace H(ID||Ci™%) by H(ID||CY) in the non-volatile memory

choose uniformly random a} € Zg, B3<ji<k-1)
10: compute a} and a} as solutions for the system of equations:

{C{ = fz:(l‘l)
C5 = f'(z2)

11: set the k — 1 degree polynomial of the round to:
filz)=S"+aiz+....+a._2¥! (mod q)

12: compute the shares C} = f*(z;), 1 <j <n

13: end if

It is easy to see that the contaminated secret sharing scheme is correctly
defined, in the sense that C} = fi(xj), 1<j<n,Vi>1.

If the attacker knows the share of his ally, then he can compute any secret
except the first one with probability 1:

Input: Ci,C} the shares of the attacker and his ally in round i, C{;l the
share of the attacker P; in round ¢ — 1, I D the random string and sk the secret
key

Output: S? the secret in round i (i > 1)

1: 8" = Decy((CH,C%)) — H(ID||CI™Y) (mod ¢)

For completeness, we consider ElGamal cryptosystem as example of a pos-
sible public-key encryption system that satisfies the requirements mentioned in
Section 3 for t =2 and S =C =7Z, [2].

We give next an experimental evaluation of the attack.

We consider the genuine (3, 4)-Shamir threshold secret sharing scheme and
its contaminated version. We motivate our choice as follows. First, kK = 3 is the
lowest bound that allows the adversary to recover the secret, while it remains
hidden for the authorized subsets (note that for k¥ = 2 the SETUP attack is
useless since any group of 2 parties - in particular the adversary and his ally -
can reconstruct the secret). Second, n = k + 1 is minimum for a given k such
that the scheme does not degenerate to the particular case of an all-or-nothing
scheme that requires all the shares for reconstruction.

The rest of the parameters were chosen accordingly to the natural implemen-
tation of Shamir’s scheme (z1 = 1, zo2 = 2, x3 = 3, ©4 = 4) and small enough to
permit visual inspection (p = 1019). We ran both the genuine and contaminated
versions for 100 rounds on the same input S = 0. We intentionally maintained
the same secret for all rounds to show that even this particular case does not
cancel output indistinguishability.

The implementation was done in Python, using SHA-224 as hash function
(hashlib.sha224) and the predefined random selection of integers (random.randrange)
[12,13,14].

Figure 1 plots the shares of the first two parties for each round of the genuine
scheme. Similarly, Figure 2 plots the shares of the attacker and his ally that were
output by the contaminated scheme within the same settings. It is easy to observe
that the contaminated shares remain distributed uniformly at random.

To conclude, we remark that the practical implementation supports the the-
ory results.

1000 Lo 1000
£ . - . 500
a0 . °, a0
m .. . M 0
w0 . L. N a0
0
]t . o N L. a0
a0 A . a0 e

20 AU . M .. . 20

0 10 2 Ed @ B Bl n 5 % 100 o 10 2 0 P 5 5 0 0 P 100

(a) Shares of the party Pi (b) Shares of the party P

Fig. 1. Genuine Shamir Secret Sharing Scheme

0 10 2 B @ B El n % % 10 0) 2)) 50 & n a B 10

(a) Shares of the attacker Py (b) Shares of the attacker’s ally P

Fig. 2. Contaminated Shamir Secret Sharing Scheme

6 SETUP Attack Prevention Techniques

We showed that, under certain condition, a SETUP attack is possible in secret
sharing schemes that use enough random values to compute the shares. Because
of the indistinguishability of the outputs of the contaminated device and the gen-
uine one, a user cannot notice its improper behavior and stop using it in practice.
More, the majority of the assumptions we have made are easy to meet in prac-
tice and therefore they do not restrict the applicability of the proposed attack.

However, we show that a proper usage of the contaminated device significantly
lowers its applicability.

For example, the usage of a secret sharing device for sharing multiple secrets
is natural in practice. Hence, the restriction that SETUP contaminated version
gives no information about the secret shared in the first round is insignificant. It
may seem naturally that a restart after each sharing would therefore lead to the
futility of the attack. However, this is not always true. The SETUP contaminated
device could be designed to maintain the internal value H(ID||Ci™") even after
restart or reset to factory defaults.

We have also introduced a restriction in the sense that the attacker should
always be the first participant (P;). The order of participants is not important,
so we could have considered any other participant as being the attacker. The true
restriction is given by the fact that the contaminated sharing device mechanism
knows to distribute the proper shares to the attacker and his allies. If the attacker
does not receive the maliciously computed share that contains the encrypted
secret leaked as a random value and he does not know which are the shares of
his allies, then the attack cannot be mounted. The precise distribution of the
contaminated share to the corresponding participants is possible if the sharing
device is in charge of the shares distribution. Therefore, an immediate protection
against a SETUP attack is to use a sharing device that computes the shares,
but does not distribute them to the participants. The distribution remains the
responsibility of the dealer.

Although the dealer is in charge with the distribution, his improper behav-
ior can maintain the applicability of the attack. Consider for example that he
inputs the secret into the contaminated sharing device, maps each output to a
participant in the sense that the first output represents the share that will be
given to a participant, the second output represents the share that will be given
to another participant and so on and maintains the same mapping for several
rounds. The probability that the attack succeeds is given by the probability that
he manages to restore the valid ciphertext as a concatenation of shares:

1 (n—1t)!
PT‘A -

At n!

Of course, the success of the attack%onsiderable diminishes in case the dealer
performs the distribution as described before. For example, SETUP attack suc-
ceeds with probability 5% in Shamir’s secret scheme with n = 5 participants.

However, a slightly modification on the contaminated device raises the success
probability in the proposed scenario by a factor of [n/t]. It consists in computing
as many groups of shares as possible in the same way as the shares of the attacker
and his allies are computed. This way, no matter how the dealer performs the
mapping, if the attacker and his allies receive as input such shares, then the
attacker will be able to recover the secret. The attack remains secure against
reverse engineering and maintains outputs indistinguishability.

The best prevention technique against the proposed SETUP attack is to
randomly map the outputs to the participants for each round. The existence of
a SETUP attack that permits the attacker to recover the secret in the conditions
of a random mapping remains an open problem.

For completeness, we consider another prevention technique in the same set-
tings (the contaminated device outputs the shares, but doest not distribute them
to the parties). We highlight that an attacker uses his previous share to compute
the secret. An immediate prevention usage is to input at least one dummy secret
between any two genuine secrets to be share and not distribute the dummies
shares to the users. This way, the attacker misses his previous share and hence
has no advantage to compute the secret. The drawback of this solution is its low
efficiency.

7 Conclusions

We introduced SETUP attack against secret sharing schemes that use random
values to give the attacker an overwhelming advantage to access the secret: in
case of ideal schemes the attack is performed by a coalition of a few participants
(within at least one is the attacker), while in case of non-ideal schemes the
attacker’s knowledge can be enough to reveal the secret. To the best of our
knowledge, we are the first to consider such an attack.

We described a general method of attack and analyzed its properties. In order
to exemplify the applicability of our proposal, we successfully embedded SETUP
in the most popular secret sharing scheme: Shamir’s scheme becomes vulnerable
when the attacker has one ally.

In the last part of the paper, we considered some prevention techniques that
can be successfully applied in practice to avoid the attack.

References

1. K.Anjan, J.Abraham, ” Behavioral Analysis of Transport Layer Based Hybrid Covert
Channel”, Recent Trends in Network Security and Applications, Springer-Verlag,
pp. 83-92, 2010.

2. T. El Gamal,” A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms”, Advances in Cryptology, Proceedings of CRYPTO ’84, Springer,
vol. 196, pp. 10-19, 1984.

3. M. Gogolewski, M. Klonowski, P. Kubiak, ”Kleptographic attacks on e-voting
schemes”, Proceeding of the 2006 International Conference on Emeerging Trends
in Information and Communication Security, pp. 494-508, 2006.

4. 7. Golebiewski, M. Kutylowski, F. Zagorski, ”Stealing Secrets with SSL/TSL
and SSH - Kleptographic Attacks”, Cryptology and Network Security, LNCS,
v0l.4301/2006, pp.191-202, 2006.

5. D. Kucner, M. Kutylowski, ”Stochastic kleptography detection”, Public-key Cryp-
tography and Computational Number Theory Proceedings of the International Con-
ference, Stefan Banach International Mathematical Center, pp. 137-149, 2001.

6. D. Kucner, M. Kutylowski, ”"How to use un-trusty cryptographic devices”, Tatra
Mountains Mathematical Publications, vol.29, pp. 57-67, 2004.

7. E. Mohamed, H. Elkamchouchi, ”Kleptographic Attacks on Elliptic Curve Cryp-
tosystems”, International Journal of Computer Science and Network Security,
vol.10(6), pp. 213-215, 2010.

8. E. Mohamed, H. Elkamchouchi, ”Kleptographic Attacks on Elliptic Curve Signa-
tures”, International Journal of Computer Science and Network Security, vol.10 (6),
pp- 264-267, 2010.

9. E. Mohamed, H. Elkamchouchi, ” Elliptic Curve Kleptography”, International Jour-
nal of Computer Science and Network Security, vol.10 (6), pp. 183-185, 2010.

10. C.Patsakis, N.Alexandris, ”A New SETUP for Factoring Based Algorithms”, 6th
International Conference on Intelligent Information Hiding and Multimedia Signal
Processing, pp.200-203, 2010.

11. A. Shamir, ”How to share a secret”, Communications of the ACM vol.22 (11), pp.
612-613, 1979.

12. Python Programming Language - https://www.python.org/. last accessed: april
22, 2014.

13. Python hashlib - Secure Hashes and Message Digests - https://docs.python.org/
2/library/hashlib.html. last accessed: april 22, 2014.

14. Python random - Generate Pseudo-Random Numbers - https://docs.python.
org/2/library/random.html. last accessed: april 22, 2014.

15. A. Young, M. Yung, ”The dark side of ”black-box” cryptography or: Should we
trust capstone?”, Advanced in Cryptology - CRYPTOQO’ 96, Springer-Verlag, pp. 89-
103, 1996.

16. A. Young, M. Yung, ”Kleptography: Using Cryptography Against Cryptography”,
Advances in Cryptology - CRYPTO ’97, Springer-Verlag, pp. 62-74, 1997.

17. A. Young, M. Yung, ” The prevalence of kleptographic attacks on discrete-log
based cryptosystems”, Advances in Cryptology - CRYPTO ’97, Springer-Verlag,
pp. 264-276, 1997.

18. A. Young, M. Yung, ”Malicious Cryptography: Kleptographic Aspects”, Proceed-
ings of CT-RSA’2005. pp. 7-18, 2005.

19. Young, A., Yung, M.: Malicious Cryptography: Exposing Cryptovirology, pp. 231,
243-244, Wiley Publishing, 2004.

20. A. Young, M. Yung, ”Space-efficient Kleptography Without Random Oracles”,
Proceedings of the 9th International Conference on Information Hiding, Springer-
Verlag, pp. 112-129, 2007.

21. A. Young, M. Yung, ”Kleptography from standard assumptions and applica-
tion” Security and Cryptography for Networks, Springer-Verlag, pp. 271-290, 2010.

https://www.python.org/
https://docs.python.org/2/library/hashlib.html
https://docs.python.org/2/library/hashlib.html
https://docs.python.org/2/library/random.html
https://docs.python.org/2/library/random.html

	SETUP in Secret Sharing Schemes using Random Values
	Ruxandra F. Olimid

