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ABSTRACT
We design novel, asymptotically more e�cient data struc-
tures and algorithms for programs whose data access pat-
terns exhibit some degree of predictability. To this end, we
propose two novel techniques, a pointer-based technique and
a locality-based technique. We show that these two tech-
niques are powerful building blocks in making data struc-
tures and algorithms oblivious. Specifically, we apply these
techniques to a broad range of commonly used data struc-
tures, including maps, sets, priority-queues, stacks, deques;
and algorithms, including a memory allocator algorithm,
max-flow on graphs with low doubling dimension, and shortest-
path distance queries on weighted planar graphs. Our obliv-
ious counterparts of the above outperform the best known
ORAM scheme both asymptotically and in practice.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General-
security and protection

Keywords
Security; Cryptography; Oblivious Algorithms

1. INTRODUCTION
It is known that access patterns, to even encrypted data,

can leak sensitive information such as encryption keys [26,
56]. Furthermore, this problem of access pattern leakage is
prevalent in numerous application scenarios, including cloud
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data outsourcing [43], design of tamper-resistant secure pro-
cessors [13,34,45,46,56], as well as secure multi-party com-
putation [23,32,33].

Theoretical approaches for hiding access patterns, referred
to as Oblivious RAM (ORAM) algorithms, have existed for
two and a half decades thanks to the ground-breaking work
of Goldreich and Ostrovsky [17]. However, the community
has started to more seriously investigate the possibility of
making ORAMs practical only recently [18,21,41,42,44,52].
Encouragingly, recent progress in this area has successfully
lowered the bandwidth blowup of ORAM from a factor of
tens of thousands to 10X – 100X range [42,44,52].

Since generic Oblivious RAM can support arbitrary ac-
cess pattern, it is powerful and allows the oblivious sim-
ulation of any program. However, state-of-the-art ORAM
constructions incur moderate bandwidth blowup despite the
latest progress in this area. In particular, under constant or
polylogarithmic client-side storage, the best known scheme

achieves O( log

2 N
log logN

) asymptotic blowup [28], i.e., for each

e↵ective bit read/written, O( log

2 N
log logN

) bits must be in re-
ality accessed for achieving obliviousness. We remark that
under large block sizes, Path ORAM can achieve O(logN)
bandwidth blowup under poly-logarithmic client-side stor-
age – however, the large block size assumption is often not
applicable for data structures or algorithms that operate on
integer or floating point values.

It will be beneficial to have customized, asymptotically
more e�cient constructions for a set of common algorithms
which exhibit some degree of predictability in their access
patterns. The access pattern graph for an algorithm has
memory cells as nodes, and two cells can be accessed in
succession only if there is a directed edge between the cor-
responding nodes. Hence, for general RAM programs, their
access pattern can be a complete graph. Our key insight is
that common data structures have a sparser access pattern
graph than generic RAM programs that make arbitrary ran-
dom accesses to data. For example, for a binary search tree
or heap, memory accesses can only go from one tree node
to an adjacent one. Therefore, we should be able to gain
some e�ciency (compared to ORAM) by not hiding some
publicly known aspects of the access patterns.

In this work, we are among the first to investigate oblivi-
ous data structures (ODS) for sparse access pattern graphs.
We achieve asymptotic performance gains in comparison
with generic ORAM schemes [28, 44] for two di↵erent char-
acterizations of sparse access graphs (see Table 1):



Technique Example Applications Client-side storage Blowup
Pointer-based for rooted
tree access pattern graph

map/set, priority_queue, stack, queue,
oblivious memory allocator

O(logN) · !(1) O(logN)

Locality-based for access
pattern graph with
doubling dimension dim

maximum flow, random walk on sparse
graphs; shortest-path distance on planar
graphs; doubly-linked list, deque

O(1)dim ·O(log2 N) +
O(logN) · !(1) O(12dim log2�

1
dim N)

Path ORAM [44] All of the above O(logN) · !(1) O( log
2 N+� logN

�
)

for block size � logN

ORAM in [28] All of the above O(1) O( log

2 N
log logN

)

Table 1: Asymptotic performance of our schemes in comparison with generic ORAM baseline. For the locality-
based technique and Path ORAM, the bandwidth blowup hold for a slight variant of the standard ORAM model where
non-uniform block sizes are allowed.
A note on the notation g(N) = O(f(N))!(1): throughout this paper, this notation means that for any ↵(N) = !(1), it holds
that g(N) = O(f(N)↵(N)).

• Bounded-degree trees. We show that for access pattern
graphs that are rooted trees with bounded degree, we
can achieve O(logN) bandwidth blowup, which is an
Õ(logN) factor improvement in comparison with the
best known ORAM.

• Graphs with low doubling dimensions. Loosely speaking,
graphs with low doubling dimension are those whose lo-
cal neighborhoods grow slowly. Examples of graphs hav-
ing low doubling dimension include paths and low di-
mensional grids. Let dim denote the doubling dimension
of the access pattern graph. We show how to achieve

O(1)dim·O(log2�
1
dim N) amortized bandwidth blowup while

consuming O(1)dim · O(logN) + O(log2 N) · !(1) client-
side storage. As a special case, for a two-dimensional
grid, we can achieve O(log1.5 N) blowup.

Applications. These two characterizations of sparse ac-
cess pattern graphs give rise to numerous applications for
commonly encountered tasks:

1. Commonly-encountered data structures. We derive a
suite of e�cient oblivious data structure implementa-
tions, including the commonly used map/set, priority_queue,
stack, queue, and deque.

2. Oblivious memory allocator. We use our ODS frame-
work to design an e�cient oblivious memory allocator
Our oblivious memory allocator requires transmitting
O(log3 N) bits per operation (notice that this is the ex-
act number of bits, not bandwidth blowup). We show
that this achieves exponential savings in comparison
with the baseline chunk-based method. In particular,
in the baseline approach, to hide what fraction of mem-
ory is committed, each memory allocation operation
needs to scan through O(N) memory.

Our oblivious memory allocator algorithm can be adopted
on ORAM-capable secure processor [13, 30, 34] for al-
location of oblivious memory.

3. Graph algorithms. We achieve asymptotic improve-
ments for operations on graphs with low doubling di-
mension, including random walk and maximum flow.
We consider an oblivious variant of the Ford-Fulkerson [14]
maximum flow algorithm in which depth-first-search is

used to find an augmenting path in the residual net-
work in each iteration. We also consider shortest-path
distance queries on planar graphs. We make use of
the planar separator theorem to create a graph data
structure and make it oblivious.

Practical performance savings. We evaluated our obliv-
ious data structures with various application scenarios in
mind. For the outsourced cloud storage and secure processor
settings, bandwidth blowup is the key metric; whereas for a
secure computation setting, we consider the number of AES
encryptions necessary to perform each data structure oper-
ation. Our simulation shows an order of magnitude speedup
under moderate data sizes, in comparison with using generic
ORAM. Since the gain is shown to be asymptotic, we expect
the speedup to be even greater when the data size is bigger.

Techniques. We observe two main techniques for con-
structing oblivious data structures for sparse access pattern
graphs.

• Pointer-based technique. This is applied when the access
graph is a rooted tree with bounded degree. The key
idea is that each parent keeps pointers for its children
and stores children’s position tags, such that when one
fetches the parent node, one immediately obtains the
position tags of its children, thereby eliminating the need
to perform position map lookups (hence a logarithmic
factor improvement).

We also make this basic idea work for dynamic data
structures such as balanced search trees, where the ac-
cess pattern structure may change during the life-time
of the data structure. Our idea (among others) is to use
a cache to store nodes fetched during a data structure
operation, and guarantee that for any node we need to
fetch from the server, its position tag already resides in
the client’s cache.

• Locality-based technique. This is applied when the access
pattern graph has low doubling dimension. The nodes
in the graph are partitioned into clusters such that each
cluster keeps pointers to only O(1)dim neighboring clus-
ters where dim is an upper bound on the doubling dimen-
sion. The intuition is that each cluster contains O(logN)

nodes and can support O(log
1
dim N) node accesses. As we

shall see, each cluster has size ⌦(log2 N) bits, and hence



each cluster can be stored as a block in Path ORAM [44]
with O(logN) bandwidth blowup.

Since each cluster only keeps track of O(1)dim neighbor-
ing clusters, only local information needs to be updated
when the access pattern graph is modified.

Non-goals, limitations. Like in almost all previous work
on oblivious RAM, we do not protect information leakage
through the timing channel. Mitigating timing channel leak-
age has been treated in orthogonal literature [2,54,55]. Ad-
ditionally, like in (almost) all prior ORAM literature, we as-
sume that there is an a’priori known upper bound N on the
total size of the data structure. This seems inevitable since
the server must know how much storage to allocate. Similar
to the ORAM literature, our oblivious data structures can
also be resized on demand at the cost of 1-bit leakage.

1.1 Related Work
Oblivious algorithms. Customized oblivious algorithms
for specific funtionalities have been considered in the past,
and have been referred to by di↵erent names (partly due to
the fact that the motivations of these works stem from di↵er-
ent application settings), such as oblivious algorithms [12,22]
or e�cient circuit structures [37,53].

The work by Zahur and Evans [53] may be considered
as a nascent form of oblivious data structures; however the
constructions proposed do not o↵er the full gamut of com-
mon data structure operations. For example, their stacks
and queues support special conditional update semantics;
and their associative map supports only batched operations
but not individual queries (supporting batched operations
are significantly easier). Toft [47] also studied e�cient con-
struction of oblivious priority queue. Their construction re-
veals the type of operations, and thus the size of the data
structure. Our proposed construction only reveals number
of operations with the same asymptotic bound.

Mitchell and Zimmerman [36] observe that Oblivious Tur-
ing Machine [39] can also be leveraged to build oblivious
stacks and queues yielding an amortized O(logN) blowup
(but worst-case cost is O(N)); however, the O(logN) obliv-
ious TM-based approach does not extend to more complex
data structures such as maps, sets, etc.

Blanton, Steele and Alisagari [7] present oblivious graph
algorithms, such as breadth-first search, single-source single-
destination (SSSD), minimum spanning tree and maximum
flow with nearly optimal complexity on dense graphs. Our
work provides asymptotically better algorithms for special
types of sparse graphs, and for repeated queries. See Section
5 for details.

Oblivious program execution. The programming lan-
guage community has started investigating type systems for
memory-trace obliviousness, and automatically compiling
programs into their memory-trace oblivious counterparts [30].
E�ciency improvements may be achieved through static anal-
ysis. The main idea is that many memory accesses of a pro-
gram may not depend on sensitive data, e.g., sequentially
scanning through an array to find the maximal element.
In such cases, certain arrays may not need to be placed
in ORAMs; and it may be possible to partition arrays into
multiple ORAMs without losing security. While e↵ective in
many applications, these automated compiling techniques
currently only leverage ORAM as a blackbox, and cannot

automatically generate asymptotically more e�cient oblivi-
ous data structures.

Generic oblivious RAM. The relations between oblivious
data structures and generic ORAM [9, 11, 15–21, 28, 38, 41,
43, 49–51] have mostly been addressed earlier. We add that
in the secure computation setting involving two or more par-
ties, it is theoretically possible to employ the ORAM scheme
by Lu and Ostrovsky [32] to achieve O(logN) blowup. How-
ever, their ORAM does not work for a cloud outsourcing
setting with a single cloud, or a secure processor setting.
Further, while asymptotically non-trivial, their scheme will
likely incur a large blowup in a practical implementation due
to the need to obliviously build Cuckoo hash tables.

History-independent data structures. Oblivious data
structures should not be confused with history-independent
data structures (occasionally also referred as oblivious data
structures) [8, 35]. History-independent data structures re-
quire that the resulting state of the data structure reveals
nothing about the histories of operation; and do not hide
access patterns.

Concurrent work. In concurrent work, Keller and Scholl
[27] implemented secure oblivious data structures using both
the binary-tree ORAM [41], and the Path ORAM [44]. They
leverage the technique suggested by Gentry et al. [15] in the
implementation of the shortest path algorithm, achieving
O(logN) asymptotic saving. They do not generalize this
approach for dynamic data structures, nor do they consider
other access pattern graphs.

2. PROBLEM DEFINITION
A data structure D is a collection of data supporting cer-

tain types of operations such as insert, del, or lookup. Every
operation is parameterized by some operands (e.g., the key
to look up). Intuitively, the goal of oblivious data structures
is to ensure that for any two sequences each containing k
operations, their resulting access patterns must be indistin-
guishable. This implies that the access patterns, including
the number of accesses, should not leak information about
both the op-code and the operand.

Definition 1 (Oblivious data structure). We say
that a data structure D is oblivious, if there exists a polynomial-
time simulator S, such that for any polynomial-length se-
quence of data structure operations ~

ops = ((op
1

, arg
1

), . . . ,
(opM , argM ))

addressesD( ~
ops)

c⌘ S(L( ~
ops))

where addressesD( ~
ops) is the physical addresses generated by

the oblivious data structure during a sequence of operations
~
ops; and L( ~

ops) is referred to as the leakage function. Typ-
ically we consider that L( ~

ops) = M , i.e., the number of op-
erations is leaked, but nothing else.

Intuitively, this definition says that the access patterns re-
sulting from a sequence of data structure operations should
reveal nothing other than the total number of operations.
In other words, a polynomial-time simulator S with knowl-
edge of only the total number of operations, can simulate
the physical addresses, such that no polynomial-time dis-
tinguisher can distinguish the simulated addresses from the
real ones generated by the oblivious data structure.



Note that directly using standard ORAM may not be able
to satisfy our definition, since information may leak through
the number of accesses. Specifically, some data structure
operations incur more memory accesses than others; e.g.,
an AVL tree deletion will likely incur rotation operations,
and thus incur more memory accesses than a lookup opera-
tion. Therefore, even if we were to employ standard ORAM,
padding might be needed to hide what data structure oper-
ation is being performed.

2.1 Model and Metric
Bandwidth blowup. In order to achieve obliviousness, we
need to access more data than we need. Roughly speaking,
the bandwidth blowup is defined as the ratio of the number of
bytes transferred in the oblivious case over the non-oblivious
baseline.

Since we hide the type of the data structure operation,
the number of bytes transferred in the oblivious case is the
same across all operations of the same data structure in-
stance. However, the number of bytes transferred in the
non-oblivious case may vary across operation. For most of
the cases we consider, the number of bytes transferred for
each operation are asymptotically the same. Further, the
average-case cost and worst-case cost in the non-oblivious
case are also asymptotically the same. In these cases, we do
not specify which individual operation is considered when
we mention bandwidth blowup.

Model. Results using our pointer-based techniques apply to
the standard RAM model with uniform block sizes. Results
relying on our locality-based techniques apply to a slight
variant of the standard RAM model, where blocks may be
of non-uniform size. This assumption is the same as in pre-
vious work such as Path ORAM [44], which relied on a “big
data block, little metadata block” trick to parameterize the
recursions on the position map.

3. ROOTED TREES WITH BOUNDED DE-
GREE

Numerous commonly used data structures (e.g., stacks,
map/set, priority-queue, B-trees, etc.) can be expressed as
a rooted tree with bounded degree. Each data access would
start at the root node, and traverse the nodes along the tree
edges. In these cases, the access pattern graph would nat-
urally be a bounded-degree tree as well. In this section, we
describe a pointer-based technique that allows us to achieve
O(logN) blowup for such access pattern graphs. In compar-

ison, the best known ORAM scheme has O( log

2 N
log logN

) blowup.
Our ideas are inspired by those of Gentry et al. [15] who
showed how to leverage a position-based ORAM to perform
binary search more e�ciently.

3.1 Building Block: Non-Recursive Position-
based ORAM

To construct oblivious data structures, an underlying prim-
itive we rely on is a position-based ORAM. Several ORAM
schemes have been proposed in the recent past that rely on
the client having a position map [9, 15, 41, 44] that stores a
location label for each block. By recursive, we mean the po-
sition map is (recursively) stored on the server, as opposed
to non-recursive, where the position map is entirely stored
by the client. So far, Path ORAM [44] achieves the least

0

1 4

2 3

0 14 2 3

id0 key=0 childrenIDs
childrenPospos0

Figure 1: Static oblivious binary search tree. A logical
binary search tree is on the left, and on the right-hand side
is how these nodes are stored in a (non-recursive) position-
based ORAM. Every position tag specifies a path to a leaf
node on the tree. Every parent points to the position tags of
its children such that we can eliminate the need for position
map lookups, thus saving an O(logN) factor in comparison
with generic ORAM. This is a generalization of the tech-
niques described by Gentry et al. [15] for performing binary
search with ORAM.

blowup of O(logN) for the non-recursive case, or the recur-
sive case when the data block size is ⌦(log2 N) bits. We
shall use Path ORAM by default.

For a client to look up a block with identifier id, the client
must first look up its locally stored position map to obtain
a location pos for block id. This pos records the rough loca-
tion (e.g., either a tree path [41, 44], or a partition [43]) of
block id. Knowing pos, the client will then know from which
physical addresses on the server to fetch blocks.

When a data block is read, it will be removed from the
ORAM and assigned a new location denoted pos

0. The block
is then written back to the server attached with its new
location tag, i.e., data||pos0. If this is a read operation, data
is simply a re-encryption of the fetched block itself; if this is
a write operation, data will be the newly written block.

We use the following abstraction for a position-based ORAM
scheme. Although any (non-recursive) position-based ORAM [9,
15,43,44] will work for our construction (potentially result-
ing in di↵erent performance); for simplicity, we often assume
that Path ORAM is the underlying position-based ORAM.

ReadAndRemove(id, pos): fetches and removes from server
a block identified by id. pos is the position tag of the
block, indicating a set of physical addresses where the
block might be.

Add(id, pos, data): writes a block denoted data, identified
by id, to some location among a set of locations indi-
cated by pos.

In standard ORAM constructions, to reduce the client
storage required to store the position map, a recursion tech-
nique has been suggested [41, 43] to recursively store the
position map in smaller ORAMs on the server. However,
this will lead to a blowup of O(log2 N).

Inspired by the binary search technique proposed by Gen-
try et al. [15] in the context of RAM-model secure computa-
tion, we propose a technique that allows us to eliminate the
need to perform recursive position map lookups, thus saving
an O(logN) cost for a variety of data structures.

3.2 Oblivious Data Structure
We first explain our data representation and how oblivious

AVL tree can be implemented securely. We show that a



factor of O(logN) can be saved by eliminating the need to
recursively store the position map. The detailed general
framework with dynamic access algorithms can be found in
[48].

Node format. In an oblivious data structure, every node
is tagged with some payload denoted data. If there is an
edge from vertex v to vertex w in the access pattern graph,
then it means that one can go from v to w during some data
structure operation.

In the oblivious data structure, every node is identified by
some identifier id along with its position tag pos. The node
also stores the position tags of all of its children. Therefore,
the format of every node will be

node := (data, id, pos, childrenPos)

In particular, childrenPos is a mapping from every child id

to its position tag. We write

childrenPos[idc]

to denote the position tag of a child identified by idc. In the
rest of the paper, unless otherwise specified, a node will be
the basic unit of storage.

All nodes will be (encrypted and) stored in a (non-recursive)
position-based ORAM on the server. The client stores only
the position tag and identifier of the root of the tree.

Oblivious map insertion example. To illustrate dy-
namic data structures, we rely on AVL tree (used to imple-
ment oblivious map) insertion as a concrete example. Figure
2 illustrates this example. The insertion proceeds as follows:
first, find the node at which the insertion will be made; sec-
ond, perform the insertion; and third, perform rotation op-
erations to keep the tree balanced.

During this operation O(logN) nodes will be accessed,
and some nodes may be accessed twice due to the rota-
tion that happens after the insertion is completed. Further,
among the nodes accessed, the graph structure will change
as a result of the rotation.

Notice that once a node is fetched from the server, its po-
sition tag is revealed to the server, and thus we need to gen-
erate a new position tag for the node. At the same time, this
position tag should also be updated in its parent’s children
position list. Our key idea is to rely on an O(logN)-sized
client-side cache, such that all nodes relevant for this opera-
tion are fetched only once during this entire insertion oper-
ation. After these nodes are fetched and removed from the
server, they will be stored in the client-side cache, such that
the client can make updates to these nodes locally before
writing them back. These updates may include insertions,
removals, and modifying graph structures (such as rotations
in the AVL tree example). Finally, at the end of the oper-
ation, all nodes cached locally will be written back to the
server. Prior to the write-back, all fetched nodes must be
assigned random new position tags, and their parent nodes
must be appropriately modified to point to the new position
tags of the children.

This approach gives us O(logN) blowup at the cost of a
client-side cache of size O(logN). Since the client-side cache
allows us to read and write this O(logN)-length path only
once for the entire insertion operation, and each node re-
quires O(logN) cost using (non-recursive) Path ORAM as
the underlying position-based ORAM, the bandwidth over-
head is O(logN) – since in the oblivious case, the total I/O
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Figure 2: Operations generated for insertion in an
AVL Tree. Cache hit/miss behavior does not leak infor-
mation due to the padding we perform to ensure that ev-
ery operation, regardless of the opcode and operands, has
an equal amount of ReadAndRemove and Add calls to the
position-based ORAM.

cost is O(log2 N) whereas in the non-oblivious case, the total
I/O cost is O(logN).

Padding. During a data structure operation, cache misses
will generate requests to the server. The number of accesses
to the server can leak information. Therefore, we pad the
operation with dummy ReadAndRemove and Add accesses
to the maximum number required by any data structure
operation. For example, in the case of an AVL tree, the
maximum number of ReadAndRemove operations and the
maximum number of Add operations is 3⇥d1.45 log(N+2)e.
It should be noted that ReadAndRemove is padded before a
real Add happens and hence all ReadAndRemove calls in an
operation happen before the first Add.

A generalized framework for oblivious data struc-
tures. We make the following observations from the above
example:

• The algorithm accesses a path from the root down to
leaves. By storing the position tag for the root, all po-
sitions can be recovered from the nodes fetched. This
eliminates the need to store a position map for all iden-
tifiers.

• After the position tags are regenerated, the tag in ev-
ery node’s childrenPos must also be updated. So we
require that every node has only one parent, i.e., the
access pattern graph is a bounded-degree tree.

The above technique can be generalized to provide a frame-
work for designing dynamic oblivious data structures whose
access pattern graphs are bounded-degree trees. Based on
this framework for constructing oblivious data structures, we
derive algorithms for oblivious map, queue, stack, and heap.
Due to space constraints, we defer the detailed algorithms,
implementations of di↵erent oblivious data structures as well
as some practical consideration to the online full version of
this paper [48].
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Figure 3: Accesses for 2 dimensional structure ex-
hibiting locality. The red arrows indicate the path of the
random walk for one set of

p
logN accesses.

Theorem 1. Assuming that the underlying (non-recursive)
position-based ORAM is secure, our oblivious stack, queue,
heap, and map/set are secure by Definition 1.

Proof can be found in the online version. [48].

4. ACCESS PATTERN GRAPHS WITH LOW
DOUBLING DIMENSION

As seen in Section 3, we can achieve O(logN) blowup
when the access pattern graph is a rooted tree where edges
are directed towards children. In this section, we consider
another class of access pattern graphs whose locality prop-
erty will be exploited. Recall that the access pattern graph
is directed, and we consider the underlying undirected graph
G = (V,E), which we assume to be static.
Intuition. The key insight is that if the block size is ⌦(log2 N)
bits, then (recursive) Path ORAM can achieve O(logN)
blowup [44]. Hence, we shall partition V into clusters, each
of which contains at most logN nodes. To make the data
structure oblivious, we need to pad a cluster with dummy
nodes such that each cluster contains exactly logN nodes.
Assuming that each node has size ⌦(logN) bits, each cluster
corresponds to ⌦(log2 N) bits of data and will be stored as
a generic ORAM block.

Hence, by accessing one cluster, we are storing the data
of logN nodes in the client cache, each with a bandwidth
blowup of O(logN). If these nodes are useful for the next

T iterations, then the amortized blowup is O( log
2 N
T

). To
understand how these clusters can be helpful, consider the
following special cases of access pattern graphs.

• For doubly-linked list and deque, the access pattern
graph is a (1-dimensional) path. In this case, each clus-
ter is a contiguous sub-path of logN nodes. Observe
that starting at any node u, after logN iterations, we
might end up at a node v that might not be in the same
cluster as u. However, node v must be in a neighboring
cluster to the left or the right of u. This suggests that
we should pre-fetch the data from the 2 neighboring
clusters, in addition to the cluster of the current node.
This will make sure that in the next logN iterations,
the cache will already contain the data for the accessed
nodes.

• If the access pattern graph is a 2-dimensional grid,
then each cluster is a sub-grid of dimensions

p
logN

by
p
logN as shown in Figure 3. Observe that by

pre-fetching the 8 neighboring clusters surrounding the
cluster containing the current node, we can make sure
that the cache contains data of the accessed nodes in
the next

p
logN iterations. Therefore, the blowup

for those
p
logN iterations is 9 · (

p
logN ·

p
logN) ·

O(logN), which gives an amortized blowup ofO(log1.5 N).
It is not di�cult to see that for the d-dimensional grid,

each cluster can be a hypercube with log
1
d N nodes on

a side, and the number of neighboring clusters (in-
cluding itself) is 3d. Hence, the amortized blowup is

O(3d log2�
1
d N).

The d-dimensional grid is a special case of a wider class
of graphs with bounded doubling dimension [3, 10,24].
Doubling dimension. We consider the underlying undi-
rected graph G = (V,E) of the access pattern graph in which
we assign each edge with unit length. We use dG(u, v) to
denote the shortest path distance between u and v. A ball
centered at node u with radius r is the set B(u, r) := {v 2
V : dG(u, v)  r}. We say that graph G has doubling di-
mension at most dim if every ball is contained in the union
of at most 2dim balls of half its radius. A subset S ⇢ V
is an r-packing if for any pair of distinct nodes u, u0 2 S,
d(u, u0) > r. We shall use the following property of doubling
dimension.

Fact 1 (Packings Have Small Size [24]). Let R �
r > 0 and let S ✓ V be an r-packing contained in a ball of
radius R. Then, |S|  ( 4R

r
)dim.

Blowup analysis sketch. We shall see that Fact 1 im-
plies that pre-fetching O(1)dim clusters is enough to support

⇥(log
1
dim N) node accesses. Hence, the amortized blowup for

each access is O(1)dim ·O(log2�
1
dim N).

Setting up oblivious data structure on server. We
describe how the nodes in V are clustered, and what infor-
mation needs to be stored in each cluster.

• Greedy Partition. Initially, the set U of uncovered
nodes contains every node in V . In each iteration,
pick an arbitrary uncovered node v 2 U , and form
a cluster Cv := {u 2 U : dG(u, v)  ⇢} with ra-

dius ⇢ :=
j

1

4

log
1
dim N

k
; remove nodes in Cv from U ,

and repeat until U becomes empty. From Fact 1, the

number of clusters is at most O(�)

dim

logN
, where � :=

maxu,v dG(u, v).

• Padding. By Fact 1, each cluster contains at most
logN nodes. If a cluster contains less than logN nodes,
we pad with dummy nodes to achieve exactly logN
nodes.

• Cluster Map. We need a generic ORAM to look up
in which cluster a node is contained. However, this is
required only for the very first node access, so its cost
can be amortized by the subsequent accesses. As we
shall see, all necessary information will be in the client
cache after the initial access.

• Neighboring Clusters. Each cluster corresponds to an
ORAM block, which stores the data of its nodes. In
addition, each cluster also stores a list of all clusters
whose centers are within 3⇢ from its center. We say



that two clusters are neighbors if the distance between
their cluster centers is at most 3⇢. From Fact 1, each
cluster has at most 12dim neighboring clusters.

Algorithm for node accesses. We describe the algorithm
for node accesses in Figure 4. An important invariant is that
the node to be accessed in each iteration is already stored
in cache when needed.

Lemma 1 (Cache Invariant). In each iteration i, the
ORAM block corresponding to the cluster containing ui is
already stored in cache in lines 13 to 17.

Theorem 2. Algorithm in Figure 4 realizes oblivious data
structures that are secure by Definition 1. When the num-

ber of node accesses is at least ⇢ = ⇥(log
1
dim N), it achieves

amortized O(12dim log2�
1
dim N) bandwidth blowup. Moreover,

the client memory stores the data of O(12dim logN)+O(log2 N)·
!(1) nodes.

Proof. The proofs can be found in Appendix A.

Dynamic access pattern graph. Our data structure can
support limited insertion or deletion of nodes in the access
pattern graph, as long as the doubling dimension of the re-
sulting graph does not exceed a preset upper bound dim and
some more detailed conditions are satisfied. We defer details
to the online version [48].

Finally, note that Ren et al. [40] proposed a new tech-

nique to reduce the block size assumption to ⌦( log

2 N
log logN

).
Their technique is also applicable here to slightly improve
our bounds — however, due to the use of PRFs, we would
now achieve computational rather than statistical security.
Further, this technique would be expensive in the secure
computation context due to the need to evaluate the PRF
over a secure computation protocol such as garbled circuit.

5. CASE STUDIES
Oblivious dynamic memory allocator. We apply our
pointer-based technique for ODS to an important operating
system task: memory management. A memory management
task consists of two operations: dynamically allocating a
portion of memory to programs at their request, and freeing
it for reuse. In C convention, these two operations are de-
noted by malloc(l) and free(p). The security requirement
of the oblivious memory allocator is that the physical ad-
dresses accessed to the allocator’s working memory should
not reveal any information about the opcode (i.e., malloc or
free) or the operand (i.e., how many bytes to allocate and
which address to free).

Since the total number of memory accesses may still leak
information, naive extensions to existing memory manage-
ment algorithms using ORAM are not secure. Padding in
this case results in a secure but ine�cient solution. We
develop a new memory management algorithm which stores
metadata in a tree-like structure, which can be implemented
as an ODS, so that each memory allocation operation can
be executed in the same time as one ORAM operation.

We develop a new oblivious memory allocator to achieve
O(log2 N) memory accesses per operation. The oblivious
memory allocator’s working memory consists of metadata

Oblivious Dynamic Data Allocation

Secure Processor

Program Oblivious Memory 
Allocator

Data Memory Meta Data 
Memory

ORAM 
Protocol

ODS 
Protocol

Figure 5: Oblivious dynamic memory allocation. For
simplicity, imagine that both the program and the oblivious
memory allocator reside in the secure processor’s instruction
cache. Securely executing programs (or a memory allocator)
that reside in insecure memory is discussed in orthogonal
work [30] and outside the scope here.

stored separately from the data ORAM. Figure 5 illustrates
this architecture1.

The intuition is that if we treat the memory as a segment
of sizeN , then themalloc and free functionalities are extract-
ing a segment of a given size from the memory, and insert-
ing a segment into the memory respectively. We construct a
tree structure with nodes corresponding to segments, which
is also called segment tree [6]. The root of the tree corre-
sponds to the segment [0, N). Each node corresponding to
[a, b) where a + 1 < b has two children corresponding to
[a, a+b

2

) and [a+b
2

, b) respectively. Nodes corresponding to
[a, a+1) are leaf nodes. It is easy to see that the height of a
segment tree of size N is O(logN). The metadata memory
is stored with these segments respectively. For each access,
we will travel along one or two paths from the root to leaf,
which can fit into our ODS framework. We state our result
and include the details in the full version [48].

Theorem 3. The oblivious memory allocator described
above requires transmitting O(log3 N) bits per operation.

Shortest path on planar graph. We consider shortest
distance queries on a weighted undirected planar graph. A
naive approach is to build an all-pairs shortest distance ma-
trix o✏ine, so that each online query can be performed by
a matrix lookup. On storing the matrix in an ORAM, the
query can be computed within O(log2 N) runtime, where N
is the number of vertices in the graph. Recall that a planar
graph is sparse and has O(N) edges. By using Dijkstra’s
algorithm to compute the shortest distances from each sin-
gle source, the total runtime for the o✏ine process is within
O(N2 logN), while the space is O(N2). We notice on a
large graph, i.e. N � 220, the space and o✏ine runtime is
impractical.

We present an alternative approach using the planar sep-
arator theorem [29]. Using our locality-based approach,
we can achieve oblivious versions of the construction with
O(N1.5 log3 N) o✏ine processing time, O(N1.5) space com-
plexity, at the cost of O(

p
N logN) online query time.

1For simplicity, we assume the program fits in the instruc-
tion cache which resides in the secure processor



In iteration i, Access(ui, op, data) is performed, where node ui is accessed, op is either Read or Write, and data is written
in the latter case. We maintain the invariant that cache contains the cluster containing ui.

1: ⇢ =
j

1

4

log
1
dim N

k

2: i = 0
3: Look up cluster C

0

containing u
0

from the cluster map.
4: Read the ORAM block corresponding to C

0

from the server into cache.
5: for i from 0 do
6: Access(ui, op, data):
7: if i mod ⇢ = 0 then
8: Ci is the cluster containing ui, which is currently stored in cache by the invariant.
9: Li is the list of neighboring clusters of Ci.
10: Read clusters in Li from the ORAM server into cache; perform dummy reads to ensure exactly 12dim clusters are

read.
11: Write back non-neighboring clusters of Ci from cache to ORAM server; perform dummy writes to ensure exactly

12dim clusters are written back.
12: end if
13: if op = Read then
14: Read data of node ui from cache.
15: else if op = Write then
16: Update data of node ui in cache.
17: end if
18: return data

19: end for

Figure 4: Algorithm for node accesses.

Max flow on sparse graphs. We apply our oblivious
data structure to solve the problem of maximum flow, and
compare our approach with that of Blanton et al. [7], which
focuses on the case when the graph is dense. We assume that
the underlying undirected graph G = (V,E) is fixed, and has
doubling dimension at most dim. Since the degree of each
node is at most 2dim, the graph is sparse, and we assume
that each block stores information concerning a node and
its incident edges. A one-time setup phase is performed to
construct the oblivious data structure in the ORAM server
with respect to the graph G. This can support di↵erent
instances of maximum flow in which the source, the sink, and
the capacities of edges (in each direction) can be modified.

Similar to [7], we consider the standard framework by
Ford and Fulkerson [14] in which an augmenting path is
found in the residual network in each iteration. There is a
strongly polynomial-time algorithm that takes O(|E| · |V |)
path augmentations, in which each augmenting path is found
by BFS. In [7], the adjacency matrix is permuted for every
BFS, which takes time O(|V |2 log |V |); hence, their running
time is O(|V |3 · |E| log |V |).
However, we can perform only DFS using our locality-

based technique. Hence, we consider a capacity scaling ver-
sion of the algorithm in which the capacities are assumed
to be integers and at most C. Hence, the running time of
the (non-oblivious) algorithm is O(|E|2 logC), which is also
an upper bound on the number of node accesses. By Theo-

rem 2, our running time is O(12dim · |E|2 logC log2�
1
dim |V |);

in particular, our algorithm is better than [7], for sparse
graphs, even when C = 2|V |.

Random walk on graphs with bounded doubling di-
mension. In many computer science applications (e.g., [4]),
random walk is used as a sub-routine. Since a random
walk on a graph with bounded doubling dimension only
needs to keep local information, our locality-based tech-

niques in Theorem 2 is applicable to achieve a blowup of

O(12dim log2�
1
dim |V |) for every step of the random walk.

6. EVALUATION

6.1 Methodology and Metrics
We evaluate the bandwidth blowup for our oblivious data

structures with various application scenarios in mind, in-
cluding cloud outsourcing [43], secure processors [13,34], and
secure computation [15,23,31]. Below we explain the metrics
we focus on, and our methodology in obtaining the perfor-
mance benchmarks.

Bandwidth blowup. Recall that bandwidth blowup is de-
fined as the ratio of the number of bytes transferred in the
oblivious case over the non-oblivious baseline. Bandwidth
blowup is the most important metric for the secure processor
and the outsourced cloud storage applications, since band-
width will be the bottleneck in these scenarios.

For our evaluation of bandwidth blowup, we use Path
ORAM [44] to be our underlying position-based ORAM. We
parameterize Path ORAM with a bucket size of 4, and the
height of the tree is set to be logN where N is the maximum
number of nodes in the tree.

We compare our oblivious data structures against Path
ORAM (with a bucket size of 4 and tree height logN), where
the position map is recursively stored. For recursion of posi-
tion map levels, we store 32 position tags in each block. We
note while parameters of the Path ORAM can potentially
be further tuned to give better performance, it is outside the
scope of the paper to figure out the optimal parameters for
Path ORAM.

Number of encryptions for secure computation. We
also consider a secure computation application. This part
of the evaluation focuses on an encrypted database query
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(a) Oblivious Map/Set
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(b) Oblivious Stack/Queue
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(c) Oblivious Deque/List

Figure 6: Bandwidth blowup for various oblivious data structures in comparison with general ORAM. Payload
= 64Bytes. The speedup curve has the y-axis label on the right-hand side.

scenario, where Alice stores the (encrypted, oblivious) data
structure, and Bob has the input (op, arg) pairs. After the
computation, Alice gets the new state of oblivious data struc-
ture without knowing the operation and Bob gets the result
of the operation.

We use the semi-honest, RAM-model secure computation
implementation described in [31], which further builds on
the FastGC garbled circuit implementation by Huang. et
al. [25], incorporating frameworks by Bellareet al. [5]. We
use the binary-tree ORAM by Shi et al. [41] in our ODS im-
plementation as the position-based ORAM backend. Simi-
larly, we compare with an implementation of the binary-tree
ORAM [41]. For the general ORAM baseline, the position
map recursion levels store 8 position tags per block, until the
client stores 1, 000 position tags (i.e., roughly 1KB of posi-
tion tags). We follow the ORAM encryption technique pro-
posed by Gordon et al. [23] for implementing the binary-tree
ORAM: every block is xor-shared while the client’s share is
always an output of client’s secret cipher. This adds 1 ad-
ditional cipher operation per block (when the length of an
ORAM block is less than the width of the cipher). We note
specific choices of ORAM parameters in related discussion
of each application.

In secure computation, the bottleneck is the cost of gener-
ating and evaluating garbled circuits (a metric that is related
to bandwidth blowup but not solely determined by band-
width blowup). We therefore focus on evaluating the cost
of generating and evaluating garbled circuits for the secure
computation setting.

We use the number of symmetric encryptions (AES) as
performance metric. Measuring the performance by the
number of symmetric encryptions (instead of wall clock time)
makes it easier to compare with other systems since the num-
bers can be independent of the underlying hardware and ci-
phering algorithms. Additionally, in our experiments these
encryption numbers also represent the bandwidth consump-
tion since every ciphertext will be sent over the network in a
Garbled Circuit backend. Modern processors with AES sup-
port can compute 108 AES-128 operations per second [1].

We assume that the oblivious data structure is setup once
at the beginning, whose cost hence can be amortized to later
queries. Therefore, our evaluation focuses on the online part.
The online cost involves three parts: i) the cost of prepar-
ing input, which involves Oblivious Transfer (OT) for input
data; ii) the cost of securely computing the functionality of
the position-based ORAM; and iii) securely evaluating the

computation steps in data structure operations (e.g., com-
parisons of lookup keys).

Methodology for determining security parameters.
We apply the standard methodology for determining secu-
rity parameters for tree-based ORAMs [44] for our oblivious
data structures. Specifically, we warm-up our underlying
position-based ORAM with 16 million accesses. Then, due
to the observation that time average is equal to ensemble
average for regenerative processes, we simulate a long run of
1 billion accesses, and plot the stash size against the security
parameter �. Since we cannot simulate “secure enough” val-
ues of �, we simulate for smaller ranges of �, and extrapolate
to the desired security parameter, e.g., � = 80.

6.2 Oblivious Data Structures
Bandwidth blowup results. Figure 6 shows the band-
width blowup for di↵erent data structures when payload is
64 Bytes. Note that because of the similarity in the im-
plementation of Oblivious Stack and Oblivious Queue, their
bandwidth blowup is the same; and therefore they share the
same curve.

As shown in the Figure 6, the blowup for our ODS grows
linear with logN , which confirms the result shown in Ta-
ble 1. The red curves show the blowup of naively building
data structures over recursive ORAM. The graphs show that
our oblivious data structure constructions achieve 4⇥–16⇥
speedup in comparison with Path ORAM, for a data struc-
ture containing N = 230 nodes.

The aforementioned bandwidth blowup results are ob-
tained while consuming a small amount of client-side stor-
age. We evaluated the client size storage with maximum
220 nodes and payload 64 Bytes for di↵erent oblivious data
structures, and the results are shown in Figure 7. The client-
side storage is split between 1) the cache consumed by the
ODS client (dark grey part in the bar plot); and 2) the over-
flow stash required by the underlying Path ORAM (light
grey part in the bar plot), which depends on the security
parameter. In Figure 7, we present client storage needed
with security parameter of 80, 128 and 256. For each value,
we plot the space needed for oblivious data structure and
naively building over recursive ORAM side by side. Result
for other data structures can be found in online full ver-
sion [48].

Secure computation results. Figure 8 shows the result
for our secure computation setting. In these experiments,
the payload is 32-bit integers, and for applicable data struc-
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(b) Oblivious Map/Set Operations
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(c) Oblivious Priority Queue Operations

Figure 8: Secure Computation over ODS vs. ORAM Payload = 32 bits. The speedup curve has the y-axis label on the
right-hand side.

ODS

ODS

ODS

ORAM

ORAM

ORAM

Figure 7: Client storage for our oblivious map/set and
the general ORAM-based approach. N = 220, payload
= 64Bytes. 85%-95% of the client-side storage in our ODS
is due to the overflow stash of the underlying position-based
ORAM.
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Figure 9: Secure Computation over Oblivious AVL
Tree vs. ORAM. Here we consider bandwidth for trans-
ferring garbled circuits and OT. Payload = 32 bits.

tures, the key is also 32-bit integers. The results show that
our oblivious data structures achieve 12⇥–15⇥ speedup in
comparison with a general ORAM-based approach. We also
compare the amount of data transmitted in secure compu-
tation for our oblivious AVL tree and AVL tree built over
ORAM directly in Figure 9. For logN = 20, the amount of
data transmitted is reduced by 9⇥.

6.3 Evaluation Results for Case Studies
In this section, we provide results for additional case stud-

ies. In Section 5, we have explained the algorithms for these
case studies, and their asymptotic performance gains.

Evaluation for dynamic memory allocation. We em-
pirically compare the cost of our dynamic memory alloca-

tor with the baseline chunk-based approach. As explained
in Section 5, our construction achieves exponential savings
asymptotically, in comparison with the naive approach.

Figure 10a plots the amount of data transferred per mem-
ory allocation operation. We observe that our oblivious
memory allocator is 1000 times faster than the baseline ap-
proach at memory size 230 (i.e., 1 GB).

Evaluation for random walk. For the random walk prob-
lem, we generate a grid of size N ⇥ N , where N goes from
210 to 220. Each edge weight is a 16-bit integer.

Figure 10b plots the bandwidth blowup versus logN . We
observe a speedup from 1⇥ to 2⇥ as N varies from 210 to 228.
The irregularity at logN = 16, 25 is due to the rounding-
up for computing

p
logN . At logN = 16, 25,

p
logN is an

integer, i.e., no rounding.

Evaluation for shortest path queries on planar graphs.
We evaluate the shortest path query answering problem over
a grid, which is a planar graph. The grid is of size N ⇥N ,
where N + 1 is a power of 2. As described in Section 5,
we build a separation tree for the planar graph graph, and
each tree node corresponding to a subgraph. By choosing
N such that N + 1 is a power of 2, it is easy to build the
separation tree so that all subgraphs corresponding to nodes
at the same height in the tree have the same size, which are
either rectangles or squares. We build the tree recursively
until the leaf nodes correspond to squares of size smaller
than log2 (N + 1).

We compare our optimized approach as described in Sec-
tion 5 with the baseline approach which uses Path ORAM
directly. Figure 10c illustrates the bandwidth blowup for
the two approaches as well as the speedup for log (N + 1)
ranging from 5 to 19. We can observe a speedup from 2⇥
to 14⇥.

7. CONCLUSION AND FUTURE WORK
We propose oblivious data structures and algorithms for

commonly encountered tasks. Our approach outperforms
generic ORAM both asymptotically and empirically. Our
key observation is that real-world program has predictabil-
ity in its access patterns that can be exploited in designing
the oblivious counterparts. In our future work, we plan to
implement the algorithms proposed in this paper. In partic-
ular, we wish to o↵er an oblivious data structure library for
a secure multi-party computation.
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APPENDIX
A. PROOFS

Proof of Lemma 1. We prove by induction on i. The
initialization in lines 3 and 4 ensures that it holds for i = 0.

Suppose that the invariant holds for some i mod ⇢ = 0. It
su�ces to show that the invariant holds for all iterations j 2
[i, i+⇢]. Lines 8 to 11 ensure that all neighboring clusters of
Ci are stored in the cache. Recall that these are the clusters
whose centers are at distance at most 3⇢ from the center of
Ci. Hence, it su�ces to show that for each j 2 [i, i + ⇢],
the center of the cluster containing j is at distance at most
3⇢ from the center of Ci. This follows from the triangle
inequality readily, because each node is at distance at most
⇢ from its cluster center, and dG(ui, uj)  j � i  ⇢.

Proof of Theorem 2. Observe that exactly 12dim ORAM
blocks are read from and written to the server at iteration i
mod ⇢ = 0. Hence, the security of the algorithm reduces to
the security of the underlying ORAM.

Since we assume that each node contains at least ⌦(logN)
bits, each cluster contains ⌦(log2 N) bits. Since Path ORAM [44]
hasO(logN) blowup when the block size is at least ⌦(log2 N)
bits, it follows that the bandwidth blowup for our algorithm

over ⇢ = ⇥(log
1
dim N) iterations is O(12dim log2 N). Observe

that the O(log2 N) initialization blowup in lines 3 and 4
can also be absorbed in this term. Therefore, the amortized

blowup per access is O(12dim log2�
1
dim N), and from the al-

gorithm description, cache stores at most 2 · 12dim clusters,
which correspond to at most O(12dim logN) nodes. An ad-
ditional client memory to store O(log2 N) ·!(1) nodes is re-
quired for the stash in the underlying Path ORAM [44].


