
AES-Based Authenticated Encryption Modes
in Parallel High-Performance Software

Andrey Bogdanov and Martin M. Lauridsen and Elmar Tischhauser

Department of Mathematics, Technical University of Denmark, Denmark
{anbog,mmeh,ewti}@dtu.dk

Abstract. Authenticated encryption (AE) has recently gained renewed interest due to the
ongoing CAESAR competition. This paper deals with the performance of block cipher modes
of operation for AE in parallel software. We consider the example of the AES on Intel’s
new Haswell microarchitecture that has improved intructions for AES rounds and finite field
multiplication.
As opposed to most previous high-performance software implementations of operation modes
– that have considered the encryption of single messages – we propose to process multiple
messages in parallel. We demonstrate that this message scheduling is of significant advantage
for most modes. As a baseline for longer messages, the performance of AES-CBC encryption
on a single core increases by factor 6.8 when adopting this approach.
For the first time, we report optimized AES-NI implementations of the novel AE modes OTR,
McOE-G, COBRA, and POET – both with single and multiple messages. For almost all
AE modes considered, we obtain a consistent speed-up when processing multiple messages
in parallel. Notably, among the nonce-based modes, AES-CCM gets by factor 3.5 faster and
its performance is about 1.2 cpb which is close to that of AES-GCM (the latter, however,
possessing classes of weak keys), with AES-OCB3 still performing at only 0.69 cpb. Among
the nonce-misuse resistant modes, AES-McOE-G receives a speed-up by factor 4 and its per-
formance is about 1.44 cpb, which is faster than AES-COBRA with its 1.55 cpb but slower
than AES-COPA with 1.29 cpb.
Keywords. authenticated encryption, AES-NI, pclmulqdq, COBRA, COPA, GCM, McOE-
G, OCB3, OTR, POET

1 Introduction

An authenticated encryption (AE) scheme is a secret-key cryptographic primitive which
combines encryption and authentication. Since around 2000, interest in such schemes has
been on the rise. Quite some AE schemes have been proposed, and more are expected to
join the ranks with the ongoing CAESAR1 cryptographic competition [1]. The CAESAR
competition is a move towards selecting a portfolio of AE schemes that should improve
upon the state of the art.

Arguably the most common way of constructing an AE scheme is a mode of operation
for a block cipher [2,6,7,9,10,13,26,27,29,32–35]. Other approaches are also feasible, e.g. the
hash function based Hash-CFB [15] or the permutation based SpongeWrap [8] and APE [5].
When realizing an AE mode of operation in practice using a block cipher, the tried-and-true
choice of the underlying primitive naturally falls upon the AES. Indeed, GCM instantiated
with the AES (denoted AES-GCM) is one such example which is widely used in e.g. TLS
1.2 [11] and included into e.g. the NSA Suite B Cryptography [3].

As authenticated encryption usually deals with processing bulk data, for any AE scheme,
especially a standardized one, performance is of paramount importance. With AES being
deployed in numerous cryptographic schemes and protocols on the Internet, among those
in AES-GCM, Intel launched in 2011 their Westmere microarchitecture which, for the first
time, implemented dedicated instructions for AES encryption and decryption as well as
for multiplication in the finite field needed by GCM. Since, also AMD has introduced such

1 Competition for Authenticated Encryption: Security, Applicability, and Robustness

instructions in its processor series. The newest Haswell microarchitecture by Intel introduced
in 2013 has improved upon the efficiency of these intructions.

This paper deals with the performance of AES modes of operation for authenticated
encryption on Intel Haswell.

Our Contributions. Our contributions are as follows:

– Parallel processing of multiple messages: The comminication devices of high-speed
links are likely to process many messages at the same time: Indeed, on the Internet,
the bulk of data is transmitted in packets of sizes betweeen 1 and 2 KB. While most
previous implementations of modes of operation for block ciphers consider processing a
single message, we propose to process several messages in parallel, which reflects this
reality. For instance, the simultaneous processing of multiple messages is beneficial when
using an inherently sequential mode. Additionally, also for many parallel modes, this
brings clear advantages. While this type of message processing was briefly discussed in
the paper proposing ALE [10], the consideration was limited to a single dedicated AE
scheme based on AES components. In the paper at hand, for the first time, we deal with
a variety of AE modes of operation in this setting. See Section 3.

– Speeding up AES-CBC encryption by factor 6.5: Whereas CBC decryption is
essentially parallel, CBC encryption is serial, thus, not being able to profit from the avail-
able parallelism if a single message is processed only. However, when several messages
are processed simultaneously, this parallelism can be exploited by the implementation.
We report an AES-CBC implementation with AES-NI on Intel Haswell featuring 0.56
cycles per byte (cpb) for longer messages of 2048 bytes. This constitutes a speed-up
by factor 6.8, which is an interesting show-case for the parallel processing of multiple
messages. See Section 3.3 for a discussion of CBC encryption in this setting.

– First AES-NI implementations of OTR, McOE-G, COBRA, and POET: We
provide AES-NI implementations both of recent nonce-based modes such as OTR and
of novel nonce-misuse resistant modes such as McOE-G, COBRA and POET. We also
present the first Haswell performance figures for AES-CCM, AES-OCB3, and AES-
COPA that have been implemented with AES-NI only on older platforms such as Sandy
Bridge and Ivy Bridge before. After the discussion of Haswell’s AES-NI and binary field
multiplication in Section 4, we present our new implementation results in Section 5.

– AE modes of choice: We provide a comprehensive performance study of both nonce-
based and nonce-misuse resistant AE modes of operation both in the single and multiple
message setting. This study establishes that when processing a long single message, in
the nonce-based setting, OCB3 with its 0.63 cpb is the mode of choice except for very
short messages, for which OTR performs better. Among the nonce-misuse resistant
modes, COPA outperforms the other modes for all message lengths. When considering
multiple messages of 2048 bytes, among the nonce-based modes, AES-CCM gets by fac-
tor 3.5 faster, at about 1.2 cpb being close to AES-GCM (the latter, however, possessing
classes of weak keys), with AES-OCB3 still performing best at 0.69 cpb. Among the
nonce-misuse resistant modes, AES-McOE-G receives a speed-up of factor 4 to about
1.44 cpb, with AES-COPA again performing best at 1.29 cpb. See Section 5.3 for a
discussion.

2 Authenticated Encryption Modes

We split up our consideration into nonce-based AE modes, i.e. modes that require a unique
input for each message to guarantee security, and nonce-misuse resistant AE modes, which
guarantee a certain level of security even when repeating nonces. The modes we consider

in the former camp are CCM, GCM, OCB3 and OTR, while the nonce-misuse resistant
modes considered are McOE-G, COPA, COBRA and POET. Table 1 gives a comparison
of the eight AE modes considered in this work.

The price to pay for a mode to be nonce-misuse resistant includes extra computation,
a higher serialization degree, or both. One of the fundamental questions we answer in this
work, is how much one has to pay in terms of performance, to maintain security when
repeating nonces.

Table 1: Overview of the AE modes considered in this paper. The top half are nonce-based
modes while the lower half are nonce-misuse resistant modes. The “Par” column indicates
whether a mode is parallelizable. The “E−1-free” column indicates whether a mode needs
to call the inverse of the underlying block cipher in decryption/verification. The “E” and
“M” columns give the number of calls per message block to the underlying n-bit block
cipher and multiplications in GF (2n), respectively.

Year Par E−1-free E M Description

Nonce-based AE modes

CCM [34] 2002 – yes 2 – CTR encryption, CBC-MAC authentication
GCM [27] 2004 yes yes 1 1 CTR mode with chain of multiplications
OCB3 [26] 2010 yes – 1 – Xor-encrypt-Xor (XEX) construction with doubling
OTR [29] 2013 yes yes 1 – Two-block Feistel structure

Nonce-misuse resistant AE modes

McOE-G [12] 2011 – – 1 1 Serial multiplication-encryption chain
COPA [6] 2013 yes – 2 – Two-round XEX
COBRA [7] 2014 yes yes 1 1 OTR with chain of multiplications on top
POET [2] 2014 yes – 1 2 XEX with two AXU (multiplication) chains

2.1 Specifications

Here, we briefly give specifications of the eight AE modes of Table 1. We use the notation
that M and C are arrays of message and ciphertext, respectively. We use M [i] and C[i] to
denote the ith block of these arrays with 1 ≤ i ≤ m. Exceptions are COBRA and OTR
where we define a block as twice the block size of the underlying block cipher, and we let
(M [i]L ‖M [i]R) and (C[i]L ‖ C[i]R) denote the ith block of message and ciphertext, respec-
tively. We use Ek to denote the encryption with the underlying block cipher using master
key k and let N denote the nonce. Multiplications (denoted ⊗) and additions (denoted ⊕)
are done in what we call the GCM finite field GF (2128) = GF (2)[x]/x128 +x7 +x2 +x+ 1.
Where applicable, we let A denote the output of the processing of associated data.

CCM. The CCM mode (Counter with CBC-MAC, see Figure 1a) is a design by Ferguson
et al. [34]. It is a part of IEEE 802.11i (as a variant), IPsec [21] and TLS 1.2 [11]. Initially,
L1 = A and v1 depends on the nonce N (vi is a counter incremented once per block). The
tag is computed as T = Ek(N)⊕ Lm+1.

GCM. GCM (Galois/Counter Mode, see Figure 1b) is a design by McGrew and Viega [27].
At the time of writing, it is the most widely used authenticated encryption scheme, and is
included in a range of specifications, including TLS 1.2 [11] and NSA Suite B Cryptogra-
phy [3]. Initially, v1 = 1 (vi is a counter incremented once per block) and X1 = A·H, where
H = Ek(0). The tag is computed as T = Ek(0) ⊕ H(Xm+1 ⊕ len(A)‖m) where len(A) is
the length of associated data.

vi vi+1

1

Ek

M [i]

C[i]

Li Ek Li+1

(a) CCM

vi vi+1

1

Ek

M [i]

C[i]

Xi

H

Xi+1

(b) GCM

∆i

∆i

Ek

M [i]

C[i]

(c) OCB

M [i]L M [i]R

Ek

Ek

C[i]L C[i]R

2iL′

2iL′

L

(d) OTR

M [i]

Ek1

C[i]

Ui Ui+1

k2

(e) McOE-G

M [i]

2i · 3L

Ek

Si Si+1

Ek

2i+1L

C[i]

(f) COPA

Vi

L

L

Vi+1

M [i]L M [i]R

Ek

Ek

C[i]L C[i]R

2iL′

2iL′

L

ρi

σi

(g) COBRA

Ek1

M [i]

C[i]

Hk2

Hk3

Ti

Bi

Ti+1

Bi+1

(h) POET

Fig. 1: Processing of a message block (or two message blocks in the case of COBRA and
OTR) for the AE modes benchmarked in this work

OCB3. OCB3 (see Figure 1c) is a mode by Krovetz and Rogaway [26]. It uses a table-
based approach of pre-computing values Lj = 2Lj−1, j ≥ 1, where L0 = 4Ek(0). Initially,
∆1 = Init(N) ⊕ L0 where Init(N) is a nonce-derived value, and ∆i = Lntz(i) ⊕ ∆i−1 for
i > 1. The ntz(i) function returns the number of trailing zeroes in the binary representation
of i. The tag is computed as T = Ek(Σ ⊕∆m+1)⊕A, where Σ =

⊕m
i=1M [i].

OTR. The OTR mode is a design by Minematsu [29]. It uses a Feistel scheme for two
consecutive blocks, but in OTR their processing is completely independent of two other
consecutive blocks (see Figure 1d), allowing for good parallelization. We assume the number
of blocks is a multiple of two. Under this assumption, the last two blocks of ciphertext are
swapped (not shown in figure). Values used are L = Ek(N) and L′ = 4L. The tag os
computed as T = A⊕ Ek(Σ ⊕ 3 · 2m/2−1L′), where Σ =

⊕m
i=2,i evenM [i]⊕ Z and Z is the

output of the top encryption in the Feistel branch of the last two blocks.

McOE-G. The McOE-G mode [13] (see Figure 1e) is a member of the McOE family [12] by
Fleischmann et al. from FSE 2012. The mode uses two keys, k1 and k2; one for encryption
and one for multiplication. Initially, U1 = τ ⊕ N , where τ = Ek(N ⊕ A) ⊕ A. The tag is
generated as T = Ek1(τ ⊕ (Um+1 ⊗ k2))⊕ (Um+1 ⊗ k2).

COPA. COPA (see Figure 1f) is a design by Andreeva et al. from Asiacrypt 2013 [6].
Values used are S0 = A ⊕ L and L = Ek(0). The tag is generated as T = Ek(Ek(Σ ⊕
2m−132L)⊕ Sm+1), where Σ =

⊕m
i=1M [i].

COBRA. COBRA is a mode proposed by Andreeva et al. at FSE 2014 [7]. Similarly to
OTR, it operates on two consecutive blocks in a Feistel scheme after the mixing with a
chaining value V (see Figure 1g). For simplicity, COBRA is defined for an even number of
blocks. Values used are V0 = L2 ⊕N · L, L = Ek(1) and L′ = 4L. The tag is computed as
T = Ek(Ek(Σ ⊕ 3(22L′ ⊕ L))⊕N ⊕A⊕ 32(22L′ ⊕ L)), where Σ =

⊕m
i=1 σi ⊕ ρi.

POET. This mode (see Figure 1h) is a design by Abed et al. presented at FSE 2014 [2].
It keeps two running chaining values which we denote T and B, and uses these with the
XEX paradigm by Rogaway. The mode uses three keys. The top and bottom hashing Hkj ,
j ∈ {2, 3}, and can be either multiplication by the key or encryption for four or ten rounds
in the case of AES-128. For the purpose of our benchmarking, we consider for POET only
the hash being multiplication in GF (2128). Initially, T0 = B0 = 1. The tag is computed
as T = Ek1(τ ⊕ Tm+1) ⊕ Bm+1 where τ = Ek1(AT ⊕ N) ⊕ AB. Here AT and AB the top
and bottom parts of A. We do not consider the other two variants of POET in this work:
While using the 4-round AES instead of the multiplication is not a mode of operation, using
the entire AES for hashing results in 3 block cipher calls per block of bulk data, which is
considered rather inefficient.

3 Simultaneous Processing of Multiple Messages

3.1 Motivation

A substantial number of block cipher modes of operation for (authenticated) encryption
are inherently serial in nature. This includes the classic CBC and CCM modes. Also, more
recent designs essentially owe their sequential nature to design goals, e.g allowing lightweight
implementations or achieving stricter notions of security, for instance not requiring a nonce
for security (or allowing its reuse). Examples include ALE [10], APE [5], CLOC [23] the
McOE family of algorithms [12,13], and some variants of POET [2].

While being able to perform well in other environments, such algorithms cannot benefit
from the available pipelining opportunities on contemporary general-purpose CPUs. For
instance, as detailed in Section 4, the AES-NI encryption instructions on Intel’s recent
Haswell architecture feature a high throughput of 1, but a relatively high latency of 7
cycles. Modes of operation that need to process data serially will invariably be penalized in
such environments.

Furthermore, even if designed with parallelizability in mind, (authenticated) modes of
operation for block ciphers typically achieve their best performance when operating on
somewhat longer messages, often due to the simple fact that these diminish the impact of
potentially costly initialization phases and tag generation. Equally importantly, only longer
messages allow high-performance software implementations to make full use of the available
pipelining opportunities [4, 17,26,28].

In practice, however, one rarely encounters messages which allow to achieve the maxi-
mum performance of an algorithm. Recent studies on packet sizes on the Internet demon-
strate that they basically follow a bimodal distribution [25, 30, 31]: 44% of packets are
between 40 and 100 bytes long, and 37% are between 1400 and 1500 bytes in size. First,
this emphasizes the importance of good performance for messages up to around 2 KB, as
opposed to longer messages. Second, when looking at the weighted distribution, this implies
that the vast majority of data is actually transmitted in packets of medium size between 1
and 2 KB.

Considering the first mode of the distribution, we observe that many of the very small
packets of Internet traffic comprise TCP ACKs (which are typically not encrypted), and
that the use of authentication and encryption layers such as TLS or IPsec incurs overhead
significant enough to blow up a payload of 1 byte to a 124 byte packet [22].

It is therefore this range of message sizes (128 to 2048 bytes) that authenticated modes
of encryption should excel at processing.

3.2 Multiple Message Processing

It follows from the above discussion that the standard approach of considering one message
at a time, while arguably optimizing message processing latency, cannot always generate
optimal throughput in high-performance software implementations in most practically rel-
evant scenarios. This is not surprising for the inherently sequential modes, but even when
employing a parallelizable design, the prevailing distribution of message lengths makes it
hard to achieve the best performance.

In order to remedy this, we propose to consider the scheduling of multiple messages in
parallel already in the implementation of the algorithm itself, as opposed to considering it
as a (single-message) black box to the message scheduler.

This opens up possibilities of increasing the performance in the cases of both sequential
modes and the availability of multiple shorter or medium-size messages. In the first case,
the performance penalty of serial execution can potentially be hidden by filling the pipeline
with a sufficient number of operations on independent data. In the second case, there is
a potential of increasing performance by keeping the pipeline filled also for the overhead
operations such as block cipher or multiplication calls during initialization or tag generation.
Note that while in this paper we consider the processing of multiple messages on a single
core, the multiple message approach naturally extends to multi-core settings.

Conceptually, the transition of a single message to a multiple message implementation
can be viewed as similar to the transition from a straightforward to a bit-sliced implemen-
tation approach.

We also note that typically, many messages belonging to the same communication ses-
sion will be encrypted under the same key (but with different nonces in case of a nonce-
based mode). This idea has been introduced in the performance study of the dedicated AE
algorithm ALE [10], without however being explored in its full generality.

Note that while multiple message processing has the potential to increase the throughput
of an implementation, it can also increase its latency (see also next subsection). The amount
of parallelism therefore has to be chosen carefully and with the required application profile
in mind.

3.3 Speeding Up AES-CBC Encryption

The CBC mode of operation is one of the most widely employed ones, being used in virtually
any protocol suite (SSH, TLS, IPsec, . . .). While CBC encryption is strictly sequential, CBC
decryption can be parallelized [4].

In here, we demonstrate that significant speed-ups are possible for CBC encryption when
processing multiple messages in parallel. Our sample target platform is Intel’s Haswell archi-
tecture with AES-NI instructions, though the approach also works for other recent microar-
chitectures including Intel’s Westmere, Sandy Bridge, and Ivy Bridge. The implementation
is as follows: each step of the CBC encryption algorithm is executed for every message
before continuing with the next step, thus allowing pipelining of the otherwise serial opera-
tions. We summarize the performance results for various choices for the number of multiple
messages in Table 2. Along the performance data, we list the relative speed-up compared
to a single-message implementation for each level of parallelism.

We observe that speed-ups of up to ×6.79 are possible using 8 multiple messages. Since
on Haswell, the theoretical limit is 7 by the latency of aesenc (see Section 4.1), this speed-
up of CBC encryption can be considered almost optimal. Note that the speed-ups reported
in [4] require the use of very long messages (32 KB), while the speed-ups of Table 2 are
achieved at a realistic message size of 2 KB. Experiments show that similar speed-ups can
be achieved in the multiple message setting for shorter messages as well.

Table 2: Performance of CBC encryption (cpb) and relative speed-up when processing
multiple messages (2048 bytes).

multiple messages

single msg. 2 3 4 5 6 7 8

AES-CBC 3.8 1.91 1.27 0.96 0.78 0.66 0.57 0.56
rel. speed-up ×1.00 ×1.99 ×3.00 ×3.96 ×4.78 ×5.76 ×6.67 ×6.79

A point worth discussing is the loss in latency we have to pay for the multiple message
processing. Since the speed-up is limited by the parallelization level, we can at most hope
for the same latency as in the single-message case. Table 2 shows that this is actually
achieved for 2 and 3 messages: Setting |M | = 2048, instead of waiting 3.8 · |M | cycles
in the single-message case, we have a latency of 1.91 · 2 = 3.82|M | and 1.27 · 3 = 3.81|M |
cycles, respectively. Starting from 4 messages, the latency slightly starts to increase together
with the throughput, however remaining at a manageable level even for 8 messages, where
it is only around 18% higher than in the single-message case. This has to be contrasted
(and, depending on the application, weighed against) the significant 6.8 times speed-up in
throughput.

Finally, we note that this technique also allows accelerating the computation of CBC-
MAC by the same factors and therefore serves as a basis to speed up CCM in the multiple
message setting.

4 Intel’s Haswell Microarchitecture

In this section, we describe the special Intel instructions that allow for fast AES implemen-
tations and multiplications in GF (2128). We also provide an overview of the changes made
in Haswell, compared to previous microarchitectures.

4.1 Improvements for the AES

AES is the block cipher of choice in modern systems, and is supported by virtually any
new protocol using block ciphers. With such a widely used cipher, going to the limits
performance-wise, both in hardware and software, is of paramount importance. With this
realization, Intel proposed and implemented since their 2010 Westmere microarchitecture,
special instructions for fast AES encryption and decryption [16]. The AES New Instruction
Set, or AES-NI for short, comprises six CPU instructions: aesenc (one round of AES),
aesenclast (last round of AES), their decryption equivalents aesdec and aesdeclast,
aesimc (inverse MixColumns) and aeskeygenassist for a faster key scheduling. The in-
structions do not only offer better performance, but security as well, leaking no timing
information.

AES-NI is supported in a subset of Westmere, Sandy Bridge, Ivy Bridge and Haswell
microarchitectures. A range of AMD processors also support the instructions under the
name AES Instructions, including processors in the Bulldozer, Piledriver and Jaguar se-
ries [20]. In Haswell, the AES-NI encryption and decryption instructions had their latency
improved from 8 cycles on Sandy and Ivy Bridge, down to 7 cycles [19]. This benefits se-
rial implementations such as AES-CBC, CCM and McOE-G. Furthermore, the throughput
has been optimized a bit, which allows for better performance in parallel. Table 3 gives
an overview of the latencies and inverse throughputs measured on our test machine (Core
i5-4300U), which matches the numbers provided by Intel.

Table 3: Experimental latency (L) and inverse throughput (T−1) of AES-NI and pclmulqdq

instructions on Intel’s Haswell microarchitecture. The data was obtained using the test suite
of Fog [14].

Instruction L T−1 Instruction L T−1

aesenc 7 1 aesimc 14 2
aesdec 7 1 aeskeygenassist 10 8
aesenclast 7 1 pclmulqdq 7 2
aesdeclast 7 1

4.2 Improvements for Multiplication in GF (2128)

The pclmulqdq instruction was introduced by Intel along with the AES-NI instructions [18],
but is not part of AES-NI itself. The instruction takes two 128-bit inputs and a byte input
imm8, and performs carry-less multiplication of a combination of one 64-bit half of each
operand. The choice of halves of the two operands to be multiplied is determined by the
value of bits 4 and 0 of imm8.

Most AE modes using multiplication in a finite field, employed in protocols in prac-
tice, use block lengths of 128 bits. As a consequence the finite fields multiplications are in
GF (2128). As the particular choice of finite field does influence the security proofs, modes
use the tried-and-true GCM finite field.

For our performance study, we have used two different implementations of finite field
multiplication (gfmul). The first implementation, which we refer to as the classical method,
was introduced in Intel’s white paper [18]. It applies pclmulqdq three times in a carry-
less Karatsuba multiplication followed by modular reduction. The second implementation
variant, which we refer to as the Haswell-optimized method, was proposed by Gueron [17]
with the goal of leveraging the improved pclmulqdq performance on Haswell to trade many
shifts and XORs for one more multiplication. This is motivated by the improvements in
both latency (7 versus 14 cycles) and inverse throughput (2 versus 8 cycles) on Haswell [19].

In modes where the output of a multiplication over GF (2128) is not directly used, other
than as a part of a chain combined using addition, the aggregated reduction by Jankowski
and Laurent [24] can be used to gain speed-ups. This method uses the inductive definitions of
chaining values combined with the distributivity law for the finite field to postpone modular
reduction at the cost of storing powers of an operand. Among the modes we benchmark
in this work, the aggregated reduction method is applicable only to GCM. We therefore
use aggregated reduction here, but apply the general gfmul implementations to the other
modes.

4.3 Classical Versus Haswell GF (2128) Multiplication

Here we compare the classical and Haswell-optimized methods of multiplication in GF (2128)
described in Section 4.2. We compare the performance of those AE modes that use full
GF (2128) multiplications (as opposed to aggregated reduction): McOE-G, COBRA and
POET, when instantiated using the two different multiplication algorithms. Figure 2 shows
that when processing a single message, the classical implementation of gfmul performs
better than the Haswell-optimized method, while the situation is reversed when processing
multiple messages in parallel.

Given the speed-up of pclmulqdq on Haswell, this may seem somewhat counter-intuitive
at first. We observe, however, that McOE-G, COBRA and POET basically make sequential
use of multiplications, which precludes utilizing the pipeline for single message implementa-
tions. In this case, the still substantial latency of pclmulqdq is enough to offset the gains by

replacing several other instructions for the reduction. This is different in the multiple mes-
sage case, where the availability of independent data allows our implementations to make
more efficient use of the pipeline, leading to superior results over the classical multiplication
method.

0 2,000 4,000 6,000 8,000
2

4

6

Message length (bytes)

P
er
fo
rm

a
n
ce

(c
y
cl
es
/
b
y
te
)

(a) Processing single messages

0 0.5 1 1.5

·104

2

3

4

Message length (bytes)

P
er
fo
rm

a
n
ce

(c
y
cl
es
/
b
y
te
)

(b) Processing multiple messages

Fig. 2: Performance of McOE-G (diamond mark), COBRA (circle mark) and POET (tri-
angle mark) with single messages (left) and 8 multiple messages (right). For both plots,
the filled marks are performances using the classical gfmul implementation and the hollow
marks are using the Haswell-optimized gfmul implementation.

5 Results

In this section we present the results of our performance study of the eight AE modes of
operation considered in this paper.

5.1 The Setting

We provide optimized implementations of AE modes using the AES as the underlying block
cipher and Intel’s AES-NI instructions. We consider all combinations of messages sizes from
128 to 2048 bytes, single messages, and from two to 16 multiple messages.

All measurements were taken on a single core of an Intel Core i5-4300U CPU at
1900 MHz. For each combination of parameters, the performance was determined as the
median of 91 averaged timings of 200 measurements each. This method has also been used
by Krovetz and Rogaway in their benchmarking of authenticated encryption modes in [26].

For our performance measurements, we are interested in the performance of the various
AE modes during their bulk processing of message blocks, i.e. during the encryption phase.
To that end, we do not measure the time spent on processing associated data. As some
schemes can have a significant overhead when computing authentication tags for short
messages, we do include this phase in the measurements as well.

5.2 Performance Measurements

Table 4 lists the results of the performance measurements of the various AE modes for
different message lengths in the single and multiple message setting. In the multiple message
scenario, the performance is shown for the optimal number of multiple messages processed
in parallel for each message length and algorithm.

In order to better evaluate the performance speed-ups (or reductions) obtained in the
multiple message setting as opposed to processing single messages, the ratios of single to
multiple message processing is shown in Table 5 for each of the parameters. Note that

Table 4: Performance comparison (in cycles/byte) of AE modes on various message lengths
in the single and multiple message scenarios. For multiple messages, data is shown for the
optimal level of parallelism for each message length and mode.

(a) Performance of nonce-based AE modes.

Message length (bytes)

Mode 128 256 512 1024 2048

single message
CCM 4.75 4.61 4.56 4.54 4.53
GCM 1.86 1.43 1.19 1.07 1.01
OCB3 1.94 1.27 0.94 0.77 0.72
OTR 2.64 1.19 1.00 0.90 0.86

multiple messages
CCM 1.37 1.29 1.25 1.23 1.21
GCM 1.61 1.53 1.49 1.47 1.46
OCB3 1.42 1.03 0.84 0.74 0.69
OTR 1.14 0.96 0.88 0.83 0.82

(b) Performance of nonce-misuse resistant AE
modes.

Message length (bytes)

Mode 128 256 512 1024 2048

single message
McOE-G 6.90 6.55 6.37 6.28 6.24
COPA 3.00 2.34 2.02 1.85 1.76
COBRA 3.91 2.85 2.63 2.52 2.46
POET 4.61 4.24 4.13 4.02 3.92

multiple messages
McOE-G 1.70 1.56 1.49 1.46 1.44
COPA 1.44 1.36 1.31 1.29 1.29
COBRA 1.81 1.67 1.60 1.57 1.55
POET 2.37 2.27 2.17 2.12 2.10

numbers greater than 1 indicate a speed-up for multiple messages, while values smaller
than 1 indicate a reduction in performance in comparison to the single message case.

Table 5: Ratios of single to multiple message performance of AE modes for various message
lengths. This ratio describes the speed-up obtained by processing multiple messages of a
certain length in parallel.

(a) Speed-up of multiple message processing in
nonce-based AE modes.

Message length (bytes)

Mode 128 256 512 1024 2048

CCM ×3.47 ×3.57 ×3.65 ×3.69 ×3.74
GCM ×1.16 ×0.93 ×0.80 ×0.73 ×0.69
OCB3 ×1.37 ×1.23 ×1.12 ×1.04 ×1.04
OTR ×2.32 ×1.24 ×1.14 ×1.08 ×1.05

(b) Speed-up of multiple message processing in
nonce-misuse resistant AE modes.

Message length (bytes)

Mode 128 256 512 1024 2048

McOE-G ×4.06 ×4.20 ×4.28 ×4.30 ×4.33
COPA ×2.08 ×1.72 ×1.54 ×1.43 ×1.36
COBRA ×2.16 ×1.71 ×1.64 ×1.61 ×1.59
POET ×1.95 ×1.87 ×1.90 ×1.90 ×1.87

The dependency of the performance in the multiple message case on the individual
parameters is further detailed in Figs. 3 and 4. The horizontal lines in the color key of both
figures indicate the integer values in the interval.

We further summarize the best-case performance of the various modes on long messages
in Table 6.

5.3 Discussion

From Table 4, it becomes apparent, that for each message length, the optimum choice in
terms of performance is a mode in the multiple message setting. In the nonce-based setting,
for everything but very short messages, OCB3 performs best, with slight advantages over its
own single message performance. For short messages (128 and 256 bytes), OTR outperforms
OCB3 in the multiple message setting. For the nonce-misuse resistant modes, COPA with
multiple messages consistently provides the best performance over all message lengths.

32
256

512

1,024

2,048

23456789
10111213141516

0

1

2

3

4

5

bytes
par. msg.

c
p
b

1.21

3.04

cpb

(a) CCM

32
256

512

1,024

2,048

23456789
10111213141516

0

1

2

3

4

5

bytes
par. msg.

c
p
b

1.46

3.64

cpb

(b) GCM

32
256

512

1,024

2,048

23456789
10111213141516

0

1

2

3

4

5

bytes
par. msg.

c
p
b

0.69

4.52

cpb

(c) OCB3

32
256

512

1,024

2,048

23456789
10111213141516

0

1

2

3

4

5

bytes
par. msg.

c
p
b

0.82

3.71

cpb

(d) OTR

Fig. 3: Performance of nonce-based AE modes of operation in the multiple-message setting.

Considering the processing of a long single message, in the nonce-based setting, OCB3
with its 0.63 cpb is the mode of choice in all cases except for the short messages of about
128 bytes where GCM is slightly faster with 1.86 cpb and of about 256 bytes where OTR
is better with 1.19 cpb. In the nonce-misuse resistant setting for single messages, COPA is
clearly outperforming all other modes with 1.70 cpb, followed by COBRA with 2.42 cpb.
The relation does not change for shorter messages of 128 bytes where COPA is still the
mode of choice with 3.00 cpb.

The landscape changes significantly when multiple messages are processed in parallel.
For almost all AE modes considered, we obtain a consistent speed-up when processing
multiple messages at the same time, see Table 5. Notably, among the nonce-based modes,
CCM gets by factor 3.5 faster and its performance is about 1.2 cpb which is close to that
of GCM (the latter, however, possessing classes of weak keys), with OCB3 still performing
at only 0.69 cpb. Among the nonce-misuse resistant modes, McOE-G receives a speed-up
by factor 4 and its performance is about 1.44 cpb, which is faster than COBRA with its
1.55 cpb but slower than for COPA with 1.29 cpb.

We also note from Table 6 that most modes achieve their best speed-up in the multiple
messages scenario for around 7-8 multiple messages, with GCM and COPA being the excep-
tions at 13 and 15, respectively. A closer inspection of Figures 3 and 4 reveals that the GCM
performance is actually quite stable from 7 till 13 multiple messages, starting from when
the increased pressure on the available AVX registers starts to influence the results. COPA
is a different case, though, with its two block cipher calls per message block explaining its
preference for about twice as many available messages than the pipeline length.

32
256

512

1,024

2,048

23456789
10111213141516

0

1

2

3

4

5

6

bytes
par. msg.

c
p
b

1.44

4.62

cpb

(a) McOE-G

32
256

512

1,024

2,048

23456789
10111213141516

0

1

2

3

4

5

6

bytes
par. msg.

c
p
b

1.29

3.15

cpb

(b) COPA

32
256

512

1,024

2,048

23456789
10111213141516

0

1

2

3

4

5

6

bytes
par. msg.

c
p
b

1.55

4.37

cpb

(c) COBRA

32
256

512

1,024

2,048

23456789
10111213141516

0

1

2

3

4

5

6

bytes
par. msg.

c
p
b

2.1

5.95

cpb

(d) POET

Fig. 4: Performance of nonce-misuse resistant AE modes of operation in the multiple-
message setting.

6 Conclusion

In this paper, we have discussed the performance of (authenticated) modes of operation for
block ciphers using the AES on Intel’s recent Haswell architecture.

As a general technique to speed up both inherently sequential modes and to the scenario
of having many but shorter messages, we propose the scheduling of multiple messages in
parallel already in the implementation of the algorithm itself. This leads to significant speed-
ups for serial modes, but also to considerable improvements for parallelizable modes.

We then apply this to AES-CBC encryption and illustrate the potential in this approach
by obtaining a speed-up of around factor 6.5 for longer messages of 2048 bytes, leading to
a performance of 0.56 cpb on a single core.

Providing the first optimized AES-NI implementations of the recent AE modes OTR,
McOE-G, COBRA, and POET, we perform a comprehensive performance study of both
nonce-based and nonce-misuse resistant modes on a wide range of parameters. Our study
indicates that processing multiple messages is almost always beneficial, even for paralleliz-
able modes. When processing single messages, OCB3 achieves the best performance for
short messages among the nonce-based modes we analyze; among the nonce-misuse resis-
tant modes, COPA performs best for all message lengths.

References

1. Cryptographic Competitions. Accessed on February 17, 2014., February.
2. Farzaneh Abed, Scott Fluhrer, Christian Forler, Eik List, Stefan Lucks, David McGrew, and Jakob

Wenzel. Pipelineable On-Line Encryption. In FSE, 2014.

Table 6: Performance of block cipher and AE modes on long messages (2048 bytes) in single
and multiple message settings.

Mode Single msg. Multiple msg. (# of msgs.)

ECB 0.55 0.54 (8)
CTR 0.64 0.65 (8)
CBC 3.80 0.56 (8)

CCM 4.53 1.21 (8)
GCM 1.01 1.46 (13)
OCB3 0.72 0.69 (7)
OTR 0.86 0.82 (8)

McOE-G 6.24 1.44 (7)
COPA 1.76 1.29 (15)
COBRA 2.46 1.55 (8)
POET 3.93 2.10 (8)

3. National Security Agency. NSA Suite B Cryptography. Accessed on February 17, 2014. http://www.

nsa.gov/ia/programs/suiteb_cryptography/, February 2014.
4. Kahraman Akdemir, Martin Dixon, Wajdi Feghali, Patrick Fay, Vinodh Gopal, Jim Guilford, Erdinc Oz-

turk, Gil Wolrich, and Ronen Zohar. Breakthrough AES Performance with Intel AES New Instructions.
Intel Corporation, 2010.

5. Elena Andreeva, Begl Bilgin, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha, and Kan
Yasuda. APE: Authenticated Permutation-Based Encryption for Lightweight Cryptography. In FSE,
2014. to appear.

6. Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tischhauser, and Kan Yasuda.
Parallelizable and Authenticated Online Ciphers. In ASIACRYPT (1), pages 424–443, 2013.

7. Elena Andreeva, Atul Luykx, Bart Mennink, and Kan Yasuda. COBRA: A Parallelizable Authenticated
Online Cipher Without Block Cipher Inverse. In FSE, 2014.

8. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Duplexing the Sponge: Single-
Pass Authenticated Encryption and Other Applications. In Selected Areas in Cryptography, pages
320–337, 2011.

9. Begl Bilgin, Andrey Bogdanov, Miroslav Knezevic, Florian Mendel, and Qingju Wang. Fides:
Lightweight Authenticated Cipher with Side-Channel Resistance for Constrained Hardware. In CHES,
pages 142–158, 2013.

10. Andrey Bogdanov, Florian Mendel, Francesco Regazzoni, Vincent Rijmen, and Elmar Tischhauser. ALE:
AES-based Lightweight Authenticated Encryption. In FSE, 2013.

11. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246
(Proposed Standard), August 2008. Updated by RFCs 5746, 5878, 6176.

12. Ewan Fleischmann, Christian Forler, and Stefan Lucks. McOE: A Family of Almost Foolproof On-Line
Authenticated Encryption Schemes. In FSE, pages 196–215, 2012.

13. Ewan Fleischmann, Christian Forler, Stefan Lucks, and Jakob Wenzel. McOE: A Family of Almost
Foolproof On-Line Authenticated Encryption Schemes. Cryptology ePrint Archive, Report 2011/644,
2011. http://eprint.iacr.org/.

14. Agner Fog. Software Optimization Resources. Accessed on February 17, 2014. http://www.agner.org/
optimize/, February 2014.

15. Christian Forler, Stefan Lucks, David McGrew, and Jakob Wenzel. Presented at DIAC 2012. Hash-CFB.
July 2012.

16. Shay Gueron. Intel Advanced Encryption Standard (AES) New Instructions Set. Intel Corporation,
2010.

17. Shay Gueron. Aes-gcm software performance on the current high end cpus as a performance baseline
for caesar. In DIAC 2013: Directions in Authenticated Ciphers, 2013.

18. Shay Gueron and Michael E. Kounavis. Intel Carry-Less Multiplication Instruction and its Usage for
Computing the GCM Mode. Intel Corporation, 2010.

19. Sean Gulley and Vinodh Gopal. Haswell Cryptographic Performance. Intel Corporation, 2013.
20. Brent Hollingsworth. New “Bulldozer” and “Piledriver” Instructions. Advanced Micro Devices, Inc.,

2012.
21. R. Housley. Using Advanced Encryption Standard (AES) CCM Mode with IPsec Encapsulating Security

Payload (ESP). RFC 4309 (Proposed Standard), December 2005.
22. Steven Iveson. IPSec Bandwidth Overhead Using AES. Accessed on February 17, 2014. http://

packetpushers.net/ipsec-bandwidth-overhead-using-aes/, October 2013.

23. Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, and Sumio Morioka. CLOC: Authenticated Encryption
for Short Input. In FSE, 2014. to appear.

24. Krzysztof Jankowski and Pierre Laurent. Packed AES-GCM Algorithm Suitable for
AES/PCLMULQDQ Instructions. pages 135–138, 2011.

25. Wolfgang John and Sven Tafvelin. Analysis of internet backbone traffic and header anomalies observed.
In Internet Measurement Comference, pages 111–116, 2007.

26. Ted Krovetz and Phillip Rogaway. The Software Performance of Authenticated-Encryption Modes. In
FSE, pages 306–327, 2011.

27. David A. McGrew and John Viega. The Galois/Counter Mode of Operation (GCM).
28. David A. McGrew and John Viega. The Security and Performance of the Galois/Counter Mode (GCM)

of Operation. In INDOCRYPT, pages 343–355, 2004.
29. Kazuhiko Minematsu. Parallelizable Authenticated Encryption from Functions. Cryptology ePrint

Archive, Report 2013/628, 2013. http://eprint.iacr.org/.
30. David Murray and Terry Koziniec. The state of enterprise network traffic in 2012. In Communications

(APCC), 2012 18th Asia-Pacific Conference on, pages 179–184. IEEE, 2012.
31. Kostas Pentikousis and Hussein G. Badr. Quantifying the deployment of TCP options - a comparative

study. pages 647–649, 2004.
32. Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes OCB

and PMAC. In ASIACRYPT, pages 16–31, 2004.
33. Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A Block-cipher Mode of Opera-

tion for Efficient Authenticated Encryption. In ACM Conference on Computer and Communications
Security, pages 196–205, 2001.

34. Doug Whiting, Russ Housley, and Niels Ferguson. Counter with CBC-MAC (CCM), 2003.
35. Hongjun Wu and Bart Preneel. AEGIS: A Fast Authenticated Encryption Algorithm. page 695, 2013.

A Additional Performance Data

Table 7: Performance of authenticated encryption modes from short to long messages (single
message case).

Message length (bytes)
128 256 512 1024 2048 4096 8192

CCM 4.75 4.61 4.56 4.54 4.53 4.53 4.53
GCM 1.86 1.43 1.19 1.07 1.01 0.98 0.97
OCB3 1.94 1.27 0.93 0.78 0.70 0.65 0.63
OTR 2.64 1.19 1.00 0.90 0.86 0.83 0.82

COBRA 3.91 2.85 2.63 2.52 2.46 2.43 2.42
COPA 3.00 2.34 2.02 1.85 1.76 1.72 1.70
McOE-G 6.90 6.55 6.37 6.28 6.24 6.22 6.21
POET 4.61 4.24 4.13 4.02 3.92 3.88 3.87

Table 8: Normalized performance comparison of AE modes.

(a) Normalized performance (in cpb) of nonce-
based AE modes, relative to OCB3 for each mes-
sage length.

Message length (bytes)

Mode 128 256 512 1024 2048

single message
CCM ×3.35 ×4.48 ×5.43 ×6.14 ×6.57
GCM ×1.31 ×1.39 ×1.42 ×1.45 ×1.46
OCB3 ×1.37 ×1.23 ×1.12 ×1.04 ×1.04
OTR ×1.86 ×1.16 ×1.19 ×1.22 ×1.25

multiple messages
CCM ×0.96 ×1.25 ×1.49 ×1.66 ×1.75
GCM ×1.13 ×1.49 ×1.77 ×1.99 ×2.12
OCB3 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00
OTR ×0.80 ×0.93 ×1.05 ×1.12 ×1.19

(b) Normalized performance (in cpb) of nonc-
misuse resistant AE modes, relative to COPA for
each message length.

Message length (bytes)

Mode 128 256 512 1024 2048

single message
McOE-G ×4.79 ×4.82 ×4.86 ×4.87 ×4.84
COPA ×2.08 ×1.72 ×1.54 ×1.43 ×1.36
COBRA ×2.72 ×2.10 ×2.01 ×1.95 ×1.91
POET ×3.20 ×3.12 ×3.15 ×3.12 ×3.04

multiple messages
McOE-G ×1.18 ×1.15 ×1.14 ×1.13 ×1.12
COPA ×1.00 ×1.00 ×1.00 ×1.00 ×1.00
COBRA ×1.26 ×1.23 ×1.22 ×1.22 ×1.20
POET ×1.65 ×1.67 ×1.66 ×1.64 ×1.63

