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Abstract. We present a new side-channel attack path threatening state-
of-the-art protected implementations of elliptic curves embedded scalar
multiplications. Regular algorithms such as the double-and-add-always
and the Montgomery ladder are commonly used to protect the scalar
multiplication from simple side-channel analysis. Combining such algo-
rithms with scalar and/or point blinding countermeasures lead to scalar
multiplications protected from all known attacks. Scalar randomization,
which consists in adding a random multiple of the group order to the
scalar value, is a popular countermeasure due to its efficiency. Amongst
the several curves defined for usage in elliptic curves products, the most
used are those standardized by the NIST. As observed in several pre-
vious publications, the modulus, hence the orders, of these curves are
sparse, primarily for efficiency reasons. In this paper, we take advantage
of this specificity to present new attack paths which combine vertical
and horizontal side-channel attacks to recover the entire secret scalar in
state-of-the-art protected elliptic curve implementations.

Keywords: Elliptic curves, Scalar multiplication, Side-channel analy-
sis, Correlation analysis

1 Introduction

Elliptic Curve Cryptography (ECC) has become a very promising branch of cryp-
tology. Since its introduction by Miller [40] and Koblitz [35] numerous stud-
ies have offered a rich variety of implementation methods to perform efficient
and tamper resistant scalar multiplication algorithms in embedded products.
Many standardized protocols like the Elliptic Curve Digital Signature Algorithm
(ECDSA) [44] or the Elliptic Curve Diffie-Hellman (ECDH) [4] are more and
more used in payment and identity products. They have the strong advantage to-
day to require significantly smaller parameters and key sizes than the well-known
RSA [45] and Diffie-Hellman [24] cryptosystems. The most time consuming op-
eration in ECC protocols is the scalar multiplication. It requires to choose the
best formulæ to perform efficient addition and doubling operations in the curve.



It also requires that the Integrated Circuit (IC) supports efficient field opera-
tions. Hence long-integer arithmetic coprocessors are designed and embedded
in microprocessors by the manufacturers to reach today’s strong performance
objectives. Most industrial ECC applications use elliptic curves defined in inter-
national standards [44, 47, 10]. These curves were generated with efficiency and
security advantages for different classical security levels. Due also to compatibil-
ity reasons, they are generally considered as default parameters on many ECC
systems.

Besides these efficiency requirements in embedded environment, developers
must also prevent their products from physical attacks. These techniques are
split in two categories namely the Side-Channel Analysis (SCA) and the Fault
Analysis (FA). In this paper, we use the full spectrum of Side-Channel Anal-
ysis namely classical Vertical Correlation attacks [14], Horizontal Correlation
attacks [19], Vertical Collision-Correlation [54, 42, 20] and Horizontal Collision-
Correlation [53, 21, 6]3.

A recent paper at Indocrypt 2013 from Bauer et al. [7] presented a new side-
channel attack, combining vertical and horizontal techniques, on a standard RSA
blinded exponentiation when the public exponent value is 3. Previous horizontal
attacks [19, 5, 6] used each of the single precision hardware multiplier operations
in each long-integer modular multiplication. This assumption can require a com-
plex signal processing phase. Instead, the horizontal attack of Bauer et al. [7]
only uses the side-channel leakage of the entire long-integer modular multiplica-
tions and does not require to split the side-channel trace for each single precision
multiplications. Hence it seems to be much more practical. Based on the same
observation, we design new side-channel attack paths on regular scalar multi-
plication algorithms with blinded scalar implementations for most standardized
curves. We present vertical and horizontal attacks with known and unknown
input point values that successfully recover the whole secret scalar.

Roadmap. The paper is organized as follows. Section 2 reminds basics on el-
liptic curve cryptography and embedded scalar multiplication. We also detail
the classical regular algorithms and explain the side-channel attack knowledge
necessary for a good understanding of the rest of the paper. In Section 3, we
describe our first attack that defeats a regular implementation when the secret
scalar is blinded but not the input point. Section 4 extends our attack techniques
to the unknown (or randomized) input point case. We demonstrate the applica-
bility of our attacks to other classic regular algorithms in Section 5. To illustrate
our attacks efficiency, we present experimental results on simulated side-channel
traces in Section 6. Discussion on countermeasures is done in Section 7. We
finally conclude our paper in Section 8.

3 Note that the article of Bauer et al. [5] gives a good overview of this classification of
attacks.



2 Preliminaries

2.1 Background on Elliptic Curves

Let Fp be a finite field of characteristic 6= 2, 3. Consider an elliptic curve E over
Fp given by the short Weierstraß equation y2 = x3 + ax + b, where a, b ∈ Fp
and with discriminant ∆ = −16(4a3 + 27b2) 6= 0. The set of points on an elliptic
curve form a group under the chord-and-tangent law. The neutral element is the
point at infinity OOO. Let PPP = (x1, y1) and QQQ = (x2, y2) be two affine points on
E(Fp), their sum RRR = PPP +QQQ = (x3, y3) belongs also to the curve. Generally on
elliptic curves, the operation PPP + PPP , called doubling, has different complexity
compared to the addition PPP +QQQ with QQQ 6= PPP .

In practice, it is advantageous to use Jacobian coordinates in order to avoid
inverses in Fp. An affine point (x, y) is represented by a triplet (X : Y : Z) such
that x = X/Z2 and y = Y/Z3.

Let n = #E(Fp) be the cardinality of the group of points E(Fp). Hasse’s
theorem states that n is close to p and bounded by: (

√
p− 1)2 ≤ n ≤ (

√
p+ 1)2.

Given a point PPP ∈ E(Fp) and a scalar d ∈ N∗, we note [d]PPP the scalar
multiplication of PPP by d. The scalar multiplication is the fundamental operation
in most cryptographic algorithms that use elliptic curve arithmetic. In most
protocols, the scalar is considered secret and the point public4.

In the industry, elliptic curve cryptosystems are generally implemented using
elliptic curves from standards such as the NIST FIPS186-2 [44], SEC2 [47] or
recently generated curves by Bernstein and Lange [10] and Aranha et al. [3]. All
these curves are specified using both efficiency and security criteria. A classic
efficiency criterion consists in choosing a special prime, i.e. Generalised Mersenne
Numbers (GMN) [49], for the finite field Fp. Those primes are sparse, i.e. they
contain long patterns of zeros or ones, hence due to Hasse’s theorem, the orders
of the elliptic curves defined over those fields are also sparse.

2.2 Side-Channel Attacks Background

Side-channel analysis has become a very rich science domain which combines
mathematics, computer and physic sciences. It can defeat embedded security
products that would not have cautiously considered all the existing attack tech-
niques this domain regroups.

Side-channel analysis, also referred as Passive Attacks, was introduced by
Kocher et al. in [36, 37]. It requires to monitor one or several executions of
the targeted cryptographic algorithm on the embedded device performing the
computations. These operations can reveal information on the secrets they ma-
nipulate when analyzing the physical interactions between the IC and its envi-
ronment. Hence the power consumption trace of the IC can leak information on
the data and code executed by the hardware device. Other side-channel signals

4 The problematic is different in pairing-based cryptography where the scalar is gen-
erally public and the point secret. We only consider here classic ECC protocols.



like electromagnetic emanations can also be exploited in a similar manner. SCA
regroups several different techniques. Simple Side-Channel Analysis (SSCA) ex-
ploits a single execution trace to recover the secret whereas Differential Side-
Channel Analysis (DSCA) performs statistical treatment on several (possibly
millions) traces to successfully highlight the right secret key guess amongst all
the possible ones.

Elliptic curves implementations have been subject to various side-channel
attack paths. The simplest one uses SSCA. The attacker’s objective is to dis-
tinguish a doubling from an addition operation using a single side-channel trace
execution. This analysis can be performed when doubling and addition curve
operations have different code behaviors as they are not using the same se-
quence of field operations. Simple and efficient countermeasures consist in using
atomic [17] or regular algorithms [23, 34, 32]. However both methods could still
be weakened by the zero-value side-channel attack presented by Goubin in [29].
Although this technique was initially presented as a DSCA, it is worth noticing
that it could be also efficient by using a single side-channel trace depending on
the hardware characteristics of the attacked product. Such countermeasures can
also be threatened by collision side-channel attacks like the first Doubling Attack
presented by Fouque et al. [26] and extended later in [56]. However these attacks
require that the attacker can choose the input value sent to the scalar multipli-
cation which is not always possible, and two executions must be performed to
retrieve the full scalar.

Other efficient (and not chosen-message) attacks use statistical tools, like
differential side-channel analysis, to differentiate the secret. The principle of the
classical DSCA on elliptic curve scalar multiplication is similar to the DSCA on
integer exponentiation presented by Messerges et al. in [39]. Guessing bit-per-
bit (or w-bit per w-bit) the secret scalar and knowing the input point manipu-
lated by the implementation, the attacker recomputes an intermediate guessed
value of the algorithm to validate the right guess with a statistical treatment
applied to many side-channel execution traces. While the first known method
was the Difference-of-Mean (DoM) from Kocher et al. [37], it has been shown
for years that the most efficient technique in practice is the Correlation Side-
Channel Analysis (CSCA) from Brier et al. [14]. Other techniques like the
Mutual Information Analysis (MIA) [27] and the Linear Regression Analysis
(LRA) [25] can also offer interesting attack results. All these techniques require
many thousands (up to millions) of acquired traces that need to be processed
by the attacker depending on the leakage characteristics of the hardware de-
vice embedding the attacked code. To protect their implementation from all
these attacks, developers can first randomize the input value (point) used in
the scalar multiplication. However this technique could be defeated on some
atomic implementations by using the power consumption difference presented
by Amiel et al. [2] or the attack from Bauer et al. [6]. On the other hand, se-
lecting regular multiplication implementation could also be threatened by the
Collision-Correlation Side-Channel Analysis (CCSCA) technique presented on
the Square-and-Multiply Always exponentiation by Witteman et al. in [54]. It is



then also recommended to additionally implement a scalar blinding countermea-
sure like the additive randomization [23] or the scalar splitting techniques with
random values [16, 22, 18].

A recent classification of attacks has categorized all these statistical attacks
as Vertical Analysis. Indeed, these techniques combine a single time sample t on
many side-channel traces to perform the analysis leading to the recovery of the
secret data manipulated at this instant t.

Recently another class of side-channel attack, the Horizontal Analysis, has
been presented by Clavier et al. [19], inspired by the Big Mac attack from Walter
[53]. Authors apply the classical correlation analysis using different segments of
time samples t0, . . . , tk in a same single side-channel trace to recover bit-per-
bit the standard RSA secret exponent. This technique has been later derived
to present horizontal attacks on elliptic curves implementations by Hanley et
al. [31] and Bauer et al. [6]. Using a single side-channel trace, the authors per-
formed the secret scalar recovery by applying correlation analysis on several
instants of selected long-integer operations in the point addition and doubling
operations. Considering a single trace naturally annihilate the effect of the scalar
randomization. Depending on the attack strategy, even the input randomization
countermeasure may become irrelevant. However, the main drawback of these
previous horizontal attacks is the complex signal processing computations which
are required to identify the points of interests that have to be correlated together
in the single side-channel trace. Let’s consider for instance an asymmetric co-
processor providing long integer operations on t bits which is based on a small
w-bit hardware multiplier. It is easier to identify the whole t-bit long integer
operation in the single side-channel trace than all the w-bit hardware multipli-
cation segments. Moreover, the bigger the value w, the smaller the number of
trace segments available to process the horizontal attack.

To get rid of such difficulties Bauer et al. presented at Indocrypt 2013 [5]
a more practical horizontal technique. Their new attack threatens RSA imple-
mentation when the public exponent e is small. They take advantage of many
t-bit long integer modular multiplications. Hence they do not require to identify
and split all the w-bit base multiplier segments of points.

Scalar blinding countermeasure has been subject to several discussions in
previous publications [18, 48] as the order of the curves defined by the NIST
is sparse. As we remind in next paragraphs, this property makes the blinding
not fully efficient as several bits of the blinded scalar remain unmasked. Thanks
to the combination of the recent collision correlation and new horizontal side-
channel attack techniques, we define a new side-channel attack path which takes
advantage of this sparse order to complete the full secret exponent recovery.

Correlation Analysis. Side-channel correlation relies upon a linear leakage
model following generally the Hamming weight of a sensitive manipulated data.
In order to measure the dependency between the estimated value of a sensitive
data and the corresponding value manipulated and represented in the physical
trace measurements, the linear correlation factor from Bravais-Pearson is clas-



sically used. In the ideal case, the correlation factor between the estimated and
the measured series will lead to a value converging towards one (equal to 1 in
theory).

Let C(i) with 1 ≤ i ≤ N be a set of N side-channel traces captured from
a device processing the targeted computations with input values X(i) whose
processing occurs at time sample t with l the number of points acquired at time
sample t. We consider Θ0 = {C(1)(t), . . . , C(N)(t)}. We denote S(i) with 1 ≤
i ≤ N a set of N guessed intermediate sensible values based on a power model,
which is generally linear in the Hamming weight of the data. Let f(X(i), d̂) be

a function of the input value X(i) and (a part of) the targeted guessed secret d̂.

All l points in the leakage trace are equal to this value f(X(i), d̂) for the time
sample t. We then consider Θ1 = {S(1), . . . , S(N)}. The objective is to evaluate
the dependency between both sets Θ0 and Θ1.

We recall that an estimation of the Bravais-Pearson correlation factor be-
tween series of trace segments Θ0 and Θ1 at time sample t is expressed as:

ρ(Θ0, Θ1) =
Cov(Θ0, Θ1)

σΘ0
σΘ1

=
N
∑

(C(i)(t) · S(i))−
∑
C(i)(t)

∑
S(i)√

N
∑

(C(i)(t))2 − (
∑
C(i)(t))2

√
N
∑

(S(i))2 − (
∑
S(i))2

,

where summations are taken over 1 ≤ i ≤ N .
The correlation value between both series is equal to 1 when the simulated

model perfectly matches the measured power traces. It then indicates that the
guess on the secret corresponds to the correct key value handled by the device
in the computations.

Collision-Correlation Analysis. Correlation can also be used to determine
the dependency between different time samples of the same side-channel trace.
It will then allow the attacker to detect internal side-channel collisions at two
different time samples t0 and t1. In this case, the term collision-correlation
is used as presented in [54, 20]. The correlation is applied between the sets
Θ0 = {C(1)(t0), . . . , C(N)(t0)} and Θ1 = {C(1)(t1), . . . , C(N)(t1)} where both sets
correspond to points of the same side-channel trace taken at different time sam-
ple t0 and t1. The collision-correlation value is estimated as:

ρ(Θ0, Θ1) =
Cov(Θ0, Θ1)

σΘ0
σΘ1

=
N
∑

(C(i)t0 · C
(i)
t1 )−

∑
C(i)t0

∑
C(i)t1√

N
∑

(C(i)t0 )2 − (
∑
C(i)t0 )2

√
N
∑

(C(i)t1 )2 − (
∑
C(i)t1 )2

,

where summations are taken over 1 ≤ i ≤ N .



We can expect a maximum correlation value when the same data is processed
in the device at the time samples t0 and t1. If the attacker can then find a
link between this information and the use of the secret, he can recover some
information on the secret’s value.

2.3 Side-Channel Resistant Scalar Multiplication

On embedded devices, a scalar multiplication needs to be protected against both
Simple Side-Channel Analysis (SSCA) and Differential Side-Channel Analysis
(DSCA). To resist SSCA, an attacker should not be able to distinguish an addi-
tion from a doubling operation. The main categories of countermeasures are:

– Regular multiplication algorithms – Specific scalar multiplication algo-
rithms have been proposed such that they always compute a regular sequence
of elliptic curve operations regardless of the value of the secret bits. The
double-and-add-always [23] (see Alg. 1), the Montgomery ladder [41, 34] (see
Alg. 2) or Joye’s double-add [32] (see Alg. 3) are the most well-known exam-
ples of regular algorithms. The recently proposed co-Z scalar algorithms [30]
are one of the most efficient regular algorithms for ECC over Fp.

– Unified addition formulæ – The same formula is used to compute both
an addition and a doubling [13, 51].

– Atomic block – The addition and doubling operations can be expressed
such that the same sequence of field operations are performed. Propositions
on the subject are numerous in the literature [17, 38, 28, 46].

The resistance against DSCA can be achieved by using a combination of the
following classic countermeasures:

– Scalar blinding [23] – We can add a random multiple of the order n of
the group E(Fp) to the scalar d. This alters the representation of d without
changing the output of the scalar multiplication. The blinded scalar d′ is
defined as d′ = d+ r.n for a random r.

– Scalar splitting [16, 22] – The scalar d can be split into several random-
ized scalars using different methods. The most efficient one consists in an
Euclidean splitting [18] by writing d′ = bd/rc .r+ (d mod r) for a random r.
The scalar multiplication becomes [d′]PPP = [d mod r]PPP + [bd/rc].([r]PPP ).

– Randomized projective points [23] – An affine point PPP = (x, y) can be
represented in Jacobian coordinates as (λ2X : λ3Y : λZ) for any nonzero λ.
The representation of a point can be randomized by choosing random values
of λ.



Algorithm 1 Double-and-add-always

Input: d = (dk−1, . . . , d0)2 ∈ IN and PPP ∈ E(IFq)
Output: QQQ = [d]PPP

1: R0R0R0 ← OOO; R1R1R1 ← OOO
2: for j = k − 1 to 0 do
3: R0R0R0 ← [2]R0R0R0

4: b← dj ; R1−bR1−bR1−b ← R0 +PPPR0 +PPPR0 +PPP
5: end for
6: return R0R0R0

The rest of the paper will consider an implementation using the double-and-
add-always (see Alg. 1) in combination with first the scalar blinding technique
and then the added randomized projective point countermeasure. Our attacks are
applicable to other classical regular algorithm with minor changes as explained
in Section 5.

3 Attack on a Blinded Regular Scalar Multiplication
with Known Input Point

We first analyze a simple scenario where the input point of the scalar multiplica-
tion is known, i.e. no DSCA countermeasure on PPP is used. We consider that the
scalar is protected against DSCA using the scalar blinding method. The targeted
operation is then [d′]PPP where d′ = d + r.n for a random r and n the order of
E(Fp).

Let {C(1), . . . , C(N)} be the N side-channel leakage traces corresponding to
the computations [d′(i)]PPP (i) such that d′(i) = d + r(i).n are the blinded scalars
using random values r(i) and known points PPP (i) with 1 ≤ i ≤ N . We consider
that the random factors r(i) are chosen relatively small such that r(i) ∈ [0, 2m−1]
with m ≤ 32 which is the case in many implementations for efficiency reasons.

We first detail the particular form of blinded scalars on standardized curves.
Then, we present our attack which is composed of three steps. In a first step,
we find the non-masked part of the secret d. Then, we recover each random
value r(i) used for the scalar blinding. Finally, we look for the remaining least
significant bits of d.

3.1 Representation of the Blinded Scalar using a Sparse Group
Order

As noted before, most elliptic curve implementations use in practice curves from
public standards [44, 47, 10, 3]. Most standards consider the use of generalized
Mersenne numbers to define the prime fields underlying the elliptic curves. These
particular primes are very advantageous efficiency-wise as tricks can be applied
to improve greatly the modular operations [15].



Classification of sparse group orders. The main standard that defines elliptic
curves is the NIST FIPS186-2 [44]. It specifies curves defined over the following
primes: p192 = 2192−264−1, p224 = 2224−296+1, p256 = 2256−2224+2192+296−1,
p384 = 2384 − 2128 − 296 + 232 − 1 and p521 = 2521 − 1. The orders of the curves
defined over each of these fields have also a sparse representation in its upper
half. We can categorize them in 3 sets:

– Type-1: the order has a large pattern of ones ,
– Type-2: the order has a large pattern of zeros,
– Type-3: the order has a combination of large patterns of both ones and zeros.

Consider the notation 1[a,b] with a, b ∈ N and a > b a pattern of 1 bits from
the bit positions a to b. Similarly, we note 0[a,b] a pattern of 0 bits.

Let n, the order of the curve, be a k-bit integer. We can write it depending
on its type:

– Type-1: n = 1[k−1,b] + x with (k − 1) > b and 0 ≤ x < 2b,
– Type-2: n = 2k−1 + 0[k−2,b] + x with (k − 2) > b and 0 ≤ x < 2b,
– Type-3: n = 1[k−1,b] + 0[c,d] + 1[e,f ] + x with (k − 1) > b > c > d > e > f

and 0 ≤ x < 2f ,

where a, b, c, e, d, f ∈ N.

Example 1. Here are some standard curves that belong to different types:

– Type-1: n = 1[191,96] + x (NIST P-192 [44]),
– Type-2: n = 2225 + 0[224,114] + x (SECP224k1 [47]),
– Type-3: n = 1[255,224] + 0[223,192] + 1[191,128] + x (NIST P-256 [44]).

Form of a random multiple of the order. Let r ∈ [1, 2m− 1] be an m-bit random
used to mask the secret scalar d such as d′ = d + r.n. Given the form of the
orders of standard curves as seen previously, the mask r.n also has a specific
representation.

Let r̃ = r.(2m − 1) be a 2m-bit integer, we note r̃1 and r̃0 respectively the
quotient and remainder of the Euclidean division of r̃ by 2m. This product has
a special form, ∀r ∈ [1, 2m − 1] we have:

r̃1 = r − 1,

r̃1 + r̃0 = 2m − 1.

This can be explained by noting the product: r.(2m − 1) = (r.2m)− r.
Depending on the category of n, we have the following representations of the

mask r.n:

– Type-1: r.n = r̃1.2
k + 1[k−1,b+m] + x, with 0 ≤ x < 2b+m,

– Type-2: r.n = r.2k + 0[k−1,b+m] + x, with 0 ≤ x < 2b+m,
– Type-3: r.n = r̃1.2

k+1[k−1,b+m] + r̃0.2
b+0[c,d+m] + r̃1.2

d+1[e,f+m] +x, with
0 ≤ x < 2f+m.

The patterns of zeros and ones are reduced by m bits for the 3 categories of
group orders. Note that these representations of r.n are exact up to possible
carries that can happen after each pattern. However, their effect is very limited
and does not impact our results.



Adding the random mask r.n to the scalar. The last part of the scalar blinding
consists in adding the secret scalar d to the mask r.n. First, we observe that an
addition x+ (2m− 1) with x ∈ [1, 2m− 1] equals to x− 1 on the least significant
m bits of the results with the (m+ 1)-th bit set at 1.

The notation d[a,b] corresponds to the bits of the scalar d from the bit position
a to b. The 3 types of masking representations have an important impact on the
(non-)masking of the secret:

– Type-1: d′ = (r̃1 + 1).2k + d[k−1,b+m] + x, with 0 ≤ x < 2b+m,
– Type-2: d′ = r.2k + d[k−1,b+m] + x, with 0 ≤ x < 2b+m,
– Type-3: d′ = (r̃1 + 1).2k + d[k−1,b+m] + r̃0.2

b+m + d[c,d+m] + (r̃1 + 1).2d+m +
d[e,f+m] + x, with 0 ≤ x < 2f+m.

Note that for patterns of ones in r.n, the addition of d can add a carry to the
least significant bit of the patterns of bits of d in d′. However, we find exactly
the bits of d when adding to a pattern of zeros.

3.2 First Step: Find the Non-Masked Part of d

From the previous observations on the representation of the blinded scalars d′(i),
we can directly deduce chunks of the secret d. We note d̄ = d[a,b] the non-masked
value of d, for some a, b. We note δ = (a−b) the bit size of d̄ = (d̄δ−1, . . . , d̄1, d̄0)2.
As we do not know the most significant part of the d′(i), we cannot compute an
intermediate value based on a guess, we need to perform a vertical collision-
correlation attack.

For each bit d̄j of the scalar, a point doubling followed by a point addition
are performed where the addition is dummy if d̄j = 0. If d̄j = 1, all the results of
point doubling and point addition are used whereas, if d̄j = 0, the result of the
point addition is discarded. This means that the next point doubling will take the
same input as the previous point addition when d̄j = 0, resulting in a collision.
We use the notations In, respectively Out, to indicate the input, respectively
output, of a given operation.

1. To find the j-th bit d̄j of d̄ with 0 < j < δ, identify the two elliptic curve
operations that possibly correspond to its processing. The processing of a
bit d̄j = 0 generates a collision between the input of the point addition
ECADD(j) and the input of the next point doubling ECDBL(j + 1) whereas
there is no collision when d̄j = 1.

2. Construct a first vector Θ0 =
{
C(i)(t0)

}
1≤i≤N that corresponds to the time

sample t0 of the N leakage traces C(i). The instant t0 corresponds to the
computation of In(ECADD(j)).

3. Construct similarly a second vector Θ1 =
{
C(i)(t1)

}
1≤i≤N that corresponds

to the time sample t1 of the N leakage traces C(i). The instant t1 corresponds
to the computation of In(ECDBL(j + 1)).

4. Perform a collision-correlation analysis ρ(Θ0, Θ1). We can expect that the
correlation coefficient will be maximal when the operations ECADD(j) and
ECDBL(j + 1) take the same input point, hence when d̄j = 0.



Remark 1. Note that, for the Type-3 orders, the attack has to be repeated on
each interval of non-masked bits of d.

3.3 Second Step: Retrieve Random Masks with Horizontal Attacks

From Section 3.1, we know that the random r used in the scalar blinding directly
appears in the most significant part of d′. The second part of our attack consists
in retrieving the random values r(i) ∈ [1, 2m − 1] from each blinded scalar d′(i)

using an horizontal correlation attack. The following attack procedure is repeated
for each trace C(i), 1 ≤ i ≤ N :

1. Try all possible m-bit values of r(i). In most implementations the random
chosen for the scalar blinding is small, i.e. r ≤ 232, hence this enumeration
is generally feasible. A guess on r(i) directly gives a guess on the first m bits
of d′(i)5.

2. Let r̂ be the guess on r(i). This guess gives the attacker a sequence of el-
liptic curve operations that appear at the beginning of the trace C(i). Since
the attacker knows the input point PPP (i), he can compute the sequence of
multiples of PPP (i) that should be processed for a given r̂. Note that from the
previous section, we also know the following δ bits of the non-masked part
of the blinded scalar. Then η intermediate points can be computed with
η = 2(m+ δ)6.

3. Choose a leakage model function L, e.g. the Hamming weight, and compute
some predicted values derived from the η points Tj , 1 ≤ j ≤ η. The attacker
computes the values lj = L(Tj) for 1 ≤ j ≤ η and creates the vector Θ1 =
(lj)1≤j≤η.

4. Construct η sub-traces from the trace C(i) where the targeted values Tj , 1 ≤
j ≤ η are manipulated. The attacker constructs the vector Θ0 = (oj)1≤j≤η
where oj are the identified points of interest related to Tj .

5. Compute the correlation coefficient ρ(Θ0, Θ1). If the guess r̂ is correct, the
sequence of Tj is also correct, hence we can expect a maximal coefficient of
correlation.

Remark 2. The random r appears at the beginning of each pattern of ones in
the order n. Hence, on curves of Type-3, the attacker could exploit this property
to obtain more time samples per trace to recover the random values.

3.4 Third Step: Recover the Least Significant Part of d

From the previous parts of the attack, we know the most significant part of d
as well as the random values r(i) of each blinded scalar d′(i). We need to recover

5 Note that (r̃
(i)
1 + 1) = r̃(i) for Type-1 and Type-3 orders.

6 Depending on the point addition and point doubling formulæ used, an attacker could
also include intermediate long-integer operations in order to work with even larger
sets.



the least significant part of the secret. By guessing the next w unknown bits of
d, we can compute guessed blinded scalars d̂′(i). We can then perform a classical
vertical correlation attack to validate the guesses. The following steps need to
be repeated until d is fully recovered (directly or with an easy brute-force):

1. Guess the following w unknown bits of d. From this guess and the known
random r(i), compute the N guessed blinded scalars d̂′(i) for 1 ≤ i ≤ N .

2. Choose a leakage model function L. For the i-th curve, the attacker can

compute some predicted values derived from the η points T
(i)
j , 1 ≤ j ≤ η

with η = 2w. He creates the vector Θ1 =
(
l
(i)
j

)
i,j

, with 1 ≤ j ≤ η, 1 ≤ i ≤ N

and where l
(i)
j = L

(
T

(i)
j

)
.

3. Construct a vector Θ0 =
(
o
(i)
j

)
i,j

where o
(i)
j is the point of interest of the

trace C(i) corresponding to the processing of T
(i)
j .

4. Compute the correlation coefficient ρ(Θ0, Θ1). We can expect a maximal
correlation coefficient when the w guessed bits are correct, hence the η in-
termediate points of the N traces are correct.

Remark 3. Note that there can be a carry on the least significant bit of the w
guessed bits of d̂′(i). If a wrong guess is recovered in first position due to the
carry, the following attack on the next w bits will give low correlation values.
The attacker then needs to correct the previous guess with a carry in order to
continue his attack.

4 Attack on a Protected Scalar Multiplication

The main attack strategy proposed in the previous section can also be applied
on an implementation with point blinding. The first step is identical even with
unknown input points. However as the input is unknown, classical correlation
attacks where a guessed intermediate variable is correlated to leakage observa-
tions are not applicable anymore. We present in this section modifications to the
second and third steps of our previous attack to recover the full secret scalar on
a fully protected scalar multiplication.

4.1 First Step: Vertical Collision-Correlation

The first attack is identical to the known input point scenario. The proposed
vertical collision-correlation in Section 3.2 does not require the knowledge of the
inputs. Hence the same steps can be applied in the unknown input case in order
to recover the non-masked bits of the scalar d, i.e. d̄ of bit length δ.



4.2 Second Step: Horizontal Collision-Correlation

The horizontal correlation attack presented previously in Section 3.3 is not appli-
cable without a known input point. We need to perform an horizontal collision-
correlation on each leakage trace C(i), 1 ≤ i ≤ N , simply noted C below for
readability:

1. Try all possible m-bit values of r(i).

2. The guessed random r̂ gives the attacker the supposed starting sequence of
elliptic curve operations that appears in the scalar multiplication. The known
part of d also provides the following δ bits of the blinded scalar. Hence, the
attacker works with (m+ δ) bits of the blinded scalar d̂′. The processing of
a bit at 0 or 1 generates different possible collisions between elliptic curve
coordinates:

– if d̂′j = 1, we have a collision between the coordinates of the output of
ECADD(j) and the coordinates of the input point of ECDBL(j + 1),

– if d̂′j = 0, we have a collision between the coordinates of the input of
ECADD(j) and the coordinates of the input of ECDBL(j + 1).

3. Construct two vectors Θ0 and Θ1 corresponding to different time samples of
the leakage trace C. They are defined as:

Θ0 =
{
C
(
tX0 (j)

)
, C
(
tY0 (j)

)
, C
(
tZ0 (j)

)}
0≤j<(m+δ)

,

Θ1 =
{
C
(
tX1 (j)

)
, C
(
tY1 (j)

)
, C
(
tZ1 (j)

)}
0≤j<(m+δ)

,

where

tX0 (j) =

{
OutX (ECADD(j)) if d̂′j = 1,

InX (ECADD(j)) if d̂′j = 0,

tX1 (j) = InX (ECDBL(j + 1)) ,

respectively tY0 , t
Y
1 and tZ0 , t

Z
1 for the Y and Z coordinates of the correspond-

ing elliptic points. The notations In and Out represent the time samples of
the processing of respectively the input point and output point coordinates
of the parametrized elliptic curve operation.

4. Compute the correlation analysis ρ(Θ0, Θ1). For the correct guess r̂, the
sequence of collisions is correct and should give the maximum coefficient of
correlation.

Remark 4. Note that the attack could be continued horizontally with guesses of
w bits on d until it is completely recovered. However, the horizontal attack works
with a fixed number of samples given by the size of the guess, w bits in this case.
In comparison, the number of leakage traces N is generally orders of magnitude
higher. Hence, if available, a vertical approach generally leads to better results.
It is thus preferable to apply the third step described below for better efficiency.



4.3 Third Step: Vertical Collision-Correlation

We need to apply a vertical collision-correlation side-channel attack in this third
step as the input is unknown. Instead of recomputing the intermediate points
of the scalar multiplication corresponding to guesses on d and computing a cor-
relation with the leakage observation, we build collision vectors, as previously,
depending on the bit values of the guess:

1. Guess w unknown bits of d. From this guess and the known random r(i), we
can compute guessed blinded scalars d̂′(i) for 1 ≤ i ≤ N .

2. Construct collision vectors Θ0 and Θ1 as defined in the previous attack
depending on the values of the bits of d̂′(i). If we consider that u ≤ δ bits of
d are already recovered, the collision vectors are of size (m+ u+ w)N .

3. Compute the correlation analysis ρ(Θ0, Θ1). For the correct w guessed bits,
we can expect the highest correlation coefficient.

Remark 5. In order to find the bit dj , the collision should be evaluated on the
operations of the next iteration (j + 1) of the scalar multiplication. Hence, the
final least significant bit cannot be recovered using the attack but has to be
guessed.

5 Applicability to Other Regular Algorithms

The attacks details provided in the previous sections considered the double-and-
add-always algorithm, notably regarding the location of collisions between loop
iterations. We demonstrate here the applicability of our attack paths for other
classical regular algorithms: Montgomery ladder [41, 34] (see Alg. 2) and Joye’s
double-add [32] (see Alg. 3). However the right-to-left add-and-double-always
(see Alg. 4) is resistant to our attack on unknown input points.

Montgomery ladder. As the double-and-add-always, the Montgomery ladder is
a left-to-right algorithm. Our attack strategy recovers the scalar from its most
significant bits to its least significant. Hence our first attack on known input
points works similarly considering different collision locations for the first step:

– if dj = dj+1, then the output of ECDBL(j) is the input of ECDBL(j + 1),
– if dj 6= dj+1, then the output of ECADD(j) is the input of ECDBL(j + 1).

Note that these collisions were observed and analyzed in [31]. The attack works
also similarly in the unknown input case using the collisions defined above.

Joye’s double-add. Joye’s algorithm is a right-to-left alternative to the Mont-
gomery ladder. As the algorithm treats scalar bits from its least significant to
its most significant, our classical correlation attacks in the known input case
are not applicable anymore. Based on a guess, the attacker cannot recompute
an intermediate point of the scalar multiplication as our strategy finds the most
significant part of the scalar first. Hence, Joye’s double-add can only be attacked
using our unknown input scenario. As with the Montgomery ladder case, we need
to define new collision locations inside the scalar multiplication iterations:



– if dj = dj+1, then the input Rb of ECADD(j) is the same input of ECADD(j+
1),

– if dj 6= dj+1, then the input Rb of ECADD(j) is the input of ECDBL(j + 1),

with b = dj ∈ {0, 1}. These collisions are based on the observations that R1,
respectively R0, remains the same if dj = 1, respectively if dj = 0. Similar
collisions were observed in [54] on the double-and-add-always algorithm.

Algorithm 2 Montgomery ladder

Input: d = (dk−1, . . . , d0)2 ∈ IN and
PPP ∈ E(IFq)

Output: QQQ = [d]PPP

1: R0R0R0 ← OOO; R1R1R1 ← PPP
2: for j = k − 1 to 0 do
3: b← dj ; R1−bR1−bR1−b ← R1−bR1−bR1−b +RbRbRb

4: RbRbRb ← [2]RbRbRb

5: end for
6: return R0R0R0

Algorithm 3 Joye’s double-add

Input: d = (dk−1, . . . , d0)2 ∈ IN and
PPP ∈ E(IFq)

Output: QQQ = [d]PPP

1: R0R0R0 ← OOO; R1R1R1 ← PPP
2: for j = 0 to k − 1 do
3: b← dj
4: R1−bR1−bR1−b ← [2]R1−bR1−bR1−b +RbRbRb

5: end for
6: return R0R0R0

Remark 6. The collisions on the Montgomery ladder and Joye’s double-add only
provide relation between consecutive bits, whereas the collisions on the double-
and-add-always are directly dependent on the value of the scalar bit. Hence an
additional guess on one bit is required to recover the full scalar.

Right-to-left binary algorithm. This algorithm is the right-to-left alternative of
Coron’s double-and-add-always [23]. It can be expressed as a variant of Yao’s m-
ary exponentiation algorithm [55] with added dummy operations. It is less known
then its left-to-right counterpart as it is less efficient while being as vulnerable
to fault attacks. Boscher et al. propose in [11] a fault resistant version of the
algorithm that was later improved in [33] (see Alg. 4). We can define the following
collision inside the scalar multiplication iterations:

– if dj = dj+1, then the output of ECADD(j) is the input of ECADD(j + 1).

Contrary to previous algorithms, we cannot define a collision when dj 6= dj+1.
This implies that the second attack step in the protected case (see Section 4.2)
cannot be performed. Hence, this algorithm is resistant to our attack when the
input point is unknown.



Algorithm 4 Binary SPA/FA resistant right-to-left scalar multiplication

Input: d = (dk−1, . . . , d0)2 ∈ IN and PPP ∈ E(IFq)
Output: QQQ = [d]PPP

1: AAA← PPP
2: R0R0R0 ← PPP
3: R1R1R1 ← OOO
4: for j = 0 to k − 1 do
5: b← dj
6: RbRbRb ← RbRbRb +AAA
7: AAA← [2]AAA
8: end for
9: R0R0R0 ← R0R0R0 +R1R1R1

10: if (R0R0R0 6= AAA) then
11: return Error
12: end if
13: return R1R1R1

6 Experimentations

In order to validate our different attack paths on the blinded scalar multipli-
cation, we performed simulations on a double-and-add-always algorithm using
the standardized elliptic curve P-192 from NIST. For our implementation, we
chose the classical jacobian projective coordinates and used the most efficient
generic addition and doubling algorithms7. The particular choice of coordinates
or group operation algorithms has no impact on the feasibility of our attacks. Its
only effect is on the selection of time samples on which to compute correlations
or collisions. We performed our attacks using 8-bit and 16-bit random for the
scalar blinding. As the use of larger random size impacts the computational time
of the attacks, we chose small random sizes in order to repeat several hundred
of times our attacks for consistency.

Our simulation traces consist of the leakage of the inputs and outputs of long
integer operations (multiplication, squaring, addition) that are used for the ellip-
tic curve group operations. The leakage is modeled with the classical Hamming
weight function. As nowadays most arithmetic coprocessors and chip have 32-bit
architectures, we consider Hamming weight leakage of words of 32-bits8. Hence,
the leakage of the long-integer multiplication c = a.b mod p is represented by the
vector (HW32(ai),HW32(bi),HW32(ci)) where HW32(ai), respectively HW32(bi)
and HW32(ci), represents the Hamming weight of the i-th 32-bit word of a, re-
spectively b and c. We performed our simulations with different level of noise
having a Gaussian distribution with mean 0 and standard deviation σ. We use
the classical (first-order) success rate metric [50]. We recall that the first-order

7 We selected the addition algorithm add-2007-bl with complexity 11M + 5S and the
doubling algorithm dbl-2007-bl with complexity 1M + 8S from [8].

8 We expect the horizontal parts of our attacks to give better results on smaller ar-
chitectures as more time samples will be available per long integer number.



success rate is the probability that the correct key is ranked in first position
by the side-channel distinguisher. Hence to obtain precise enough metrics, each
attack has been repeated several times. Finally, we use the Pearson correlation
as side-channel distinguisher9.

6.1 Simulated Attack Results on Known Input Points

We first present results on the attack path with a known (non-masked) input
point from Section 3. Table 1 details the success rates obtained for the three
attack steps with various parameters. We recall that the parameter N is the
number of traces and m is the bit size of the random for the exponent blinding.

The first step of the attack is a vertical collision-correlation. We tested its
success using 500 and 1000 leakage traces. The results show a great success rate
even when the noise becomes quite high. We can expect even better success
rate for high σ if the attacker has access to more traces. Figure 1 illustrates the
spreading of the correlation coefficient around its mean value. We clearly see
the variance of the coefficient increasing for high levels of noise when a collision
happens, i.e. the bit equals 0. This figure also gives a good idea on the threshold
value for the correlation coefficient in practice, in order to decide if a collision
happened. Its selection needs to be more precise the higher the noise level to
obtain a good success rate. In practice, we observe that the last bits found by
the attack are sometimes different to the expected scalar d. This is due to a
possible carry propagation because of the addition of the masking value r.n. In
this case, a bit equal to 1 is found as the correlation coefficient becomes low.
This possible error is then corrected during the third part of the attack where
the attacker can start the analysis a few bits before the ones retrieved at this
step.
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Fig. 1. First attack step: correlation coefficient spreading, left for 500 traces, right for
1000 traces.

The second attack step is an horizontal correlation that needs to be repeated
for each trace. As the horizontal attack uses only one trace, the parameters

9 Note that other distinguishers (mutual information, linear regression, etc.) could be
used in practice in place of Pearson.



affecting its success rate are the size m of the random used for the exponent
blinding as well as the noise level σ. A larger random gives more time samples
per trace, hence better results for our attack. However, as we enumerate 2m

values, the computational times may be prohibitive for large bit sizes of random.
The attack also uses the bits recovered in the first step to compute guessed
intermediate variables and perform a correlation on even more time samples.
The success rates are then very good even in the presence of high noise.

The last attack step is a vertical correlation. As the first part, we performed
tests on 500 and 1000 traces to compare the evolution of the success rate. The
results are very good until strong levels of noise (σ > 10).

Remark 7. As explained in Section 3.4, due to possible carry propagation instead
of recovering the right guess we can obtain the correct guess ±1. However, we
will be immediately informed as the correlation coefficients for the attack on the
next w bits will be much lower. We consider the attack successful if the best
guess is close to the right guess (±1).

Attack steps NNN mmm
Standard Deviation σσσ

0 1 2 5 10 15

Vertical 500 - 1.0 1.0 1.0 1.0 0.88 0.74
collision-correlation 1000 - 1.0 1.0 1.0 1.0 0.99 0.76

Horizontal - 8 1.0 1.0 1.0 1.0 1.0 0.77
correlation - 16 1.0 1.0 1.0 1.0 1.0 0.85

Vertical 500 - 1.0 1.0 1.0 1.0 0.64 0.42
correlation 1000 - 1.0 1.0 1.0 1.0 0.84 0.52

Table 1. Success rate for known input points.

6.2 Simulated Attack Results on Unknown Input Points

We now present results on the attack paths from Section 4 on a fully protected
scalar multiplication with scalar blinding and point randomization. Table 2
presents the success rates of the second and third steps as the first vertical
collision-correlation is identical. Hence, the results from Figure 1 and the first
row of Table 1 also apply to the unknown input point case.

The second step is an horizontal collision-correlation attack. Its success rate
depends on the number of time samples considered in each trace. The same
problematic as in the known-point case is present, i.e. a larger random gives
better results for a higher computational cost. The success rate drops quicker
than previous attacks for higher levels of noise. Indeed, the attack only uses time
samples of computations on coordinates of intermediate elliptic curve points.
Hence, contrary to vertical attacks the attacker is limited to a fixed number of
time samples regardless of the noise level.



The third attack step is a vertical collision-correlation. As each vertical at-
tack, we tested its success rate on 500 and 1000 traces. Its efficiency is very high
even with a strong noise. The Remark 7 also applies here as possible carries can
appear.

From our simulations, we observe that in the unknown input point case our
attack retrieves the full scalar for noise levels up to σ ≈ 5 whereas our attack
works up to σ ≈ 10 with a known input point.

Attack steps NNN mmm
Standard Deviation σσσ

0 1 2 5 10 15

Horizontal - 8 1.0 1.0 0.9 0.1 0.02 0.01
collision-correlation - 16 1.0 1.0 0.95 0.23 0.10 0.02

Vertical 500 - 1.0 1.0 1.0 1.0 1.0 0.97
collision-correlation 1000 - 1.0 1.0 1.0 1.0 1.0 0.99

Table 2. Success rate for unknown input points.

7 Countermeasures

There are different strategies of protection against our attack. We propose here
countermeasures that could be applied at different levels of the implementation.
Depending on the end application and on the stage in the development life-cycle
of the elliptic curve code, a developer is only able to modify certain parameters
of the system.

Elliptic curves with random modulus. In the industry, the NIST elliptic curves
are used in most products, generally for compatibility reasons. In some cases,
these curves are considered as default or hard-coded in the system. However,
if allowed by the application, a simple protection against our attack consists in
choosing an elliptic curve with a random modulus. A few standards propose such
types of curves as Brainpool [12] or the ANSSI [1].

Scalar splitting. Another classic technique to protect the exponent is the scalar
splitting. The first method proposed was the additive splitting [16, 22]: [d]PPP =
[d − r]PPP + [r]PPP . An analogue idea was proposed in [52] with the multiplica-
tive splitting: [d]PPP = [dr−1]([r]PPP ). Finally, the euclidean splitting was proposed
in [18]: [d]PPP = [d mod r]PPP + [bd/rc]([r]PPP ). The last splitting is generally pre-
ferred as the additive splitting could be vulnerable to advanced attacks [43]
and the multiplicative splitting requires a costly modular inversion. However the
euclidean splitting still remains less efficient than the scalar blinding and can
be disregarded by developers. Note that exponent splitting with a mask of bit
length m could be surmounted with 2m/2 traces due to the birthday paradox.



The use of a scalar splitting method, with large enough random masks, thwarts
the proposed attacks on standard curves.

Atomic algorithm and unified formulæ. Our attack only targets regular scalar
multiplication algorithms, hence an atomic algorithm could be considered. There
are many atomic formulas for elliptic curves proposed in the literature [17, 38, 28,
46]. This countermeasure generally offers an interesting time/memory trade-off
for embedded devices. However a recent attack was presented by Bauer et al.
[6] against the main atomic formulæ. Even if the practicality of their attack is
subject to different parameters, it clearly demonstrates a vulnerability in many
atomic schemes. As mentioned by the authors of [6], their technique can also
be applied to unified formulas on Weierstraß curves [13] as well as Edward’s
curves [9].

8 Conclusion

We present in this paper a new side-channel attack combination targeting ellip-
tic curves implementations of regular scalar multiplication on some standardized
curves. We assume the scalar multiplication algorithm implements the classical
scalar blinding and point randomization techniques, two of the most used coun-
termeasures against differential side-channel attacks. The fact that the sparse
order of these standardized curves weaken the classical scalar additive random-
ization countermeasure has been known for years and discussed in previous pub-
lications. However no complete attack path taking advantage of this property
had yet been introduced on blinded scalar multiplication. Here we take advan-
tage of the recent horizontal and collision correlation techniques to design and
achieve with success such a complete side-channel attack path. Indeed, as a sig-
nificant part of the scalar value remains unblinded, these bits can be recovered
with a vertical collision-correlation analysis. Thanks to these constant bits recov-
ery, we can perform with success the next steps of the attack path and recover
the remaining secret bits with horizontal and vertical correlation techniques. We
discuss the classical side-channel countermeasures and give recommendations to
protect scalar multiplication implementations from these new attack path.
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