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Abstract. This paper presents a fast implementation to compute the
scalar multiplication of elliptic curve points based on a “General-Purpose
computing on Graphics Processing Units” (GPGPU) approach. A GPU
implementation using Dan Bernstein’s Curve25519, an elliptic curve over
a 255-bit prime field complying with the new 128-bit security level, com-
putes the scalar multiplication in less than a microsecond on AMD’s R9
290X GPU. The presented methods and implementation considerations
can be applied to any parallel architecture.
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1 Motivations

In the current controversial context caused by the disclosure to the press of clas-
sified details of several top-secret United States and British government mass
surveillance programs by former NSA contractor Edward Snowden [21], issues
of data privacy, anonymity, forward secrecy and deniability have raised to pub-
lic prominence. Providing high-speed cryptographic performance, leveraging al-
ternate uses of state-of-the-art yet ubiquitous computing platforms, could con-
tribute to generalize symmetric cryptography. Namely, should high-speed ECC
be available on the current generation of low-cost devices, streaming key ex-
change protocols and on-the-fly one-time pad encryption may be broadly de-
ployed.

2 Faster GPGPU ECC Scalar Multiplication

2.1 Timings

Previous reports implementing ECC schemes on GPUs [7, 26, 11, 4] have explored
elliptic curve scalar multiplication algorithms for parallel hardware architecture,
mostly in view of asymmetric cryptography. Performance improvements were
demonstrated by dividing the elliptic curve arithmetic over multiple threads or
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by dividing single finite field operations over the available resources. GPU archi-
tectures have evolved however, and in the direction of providing ever increasing
acceleration of general purpose computing capabilities. Meanwhile programming
models and development libraries such as NVIDIA’s CUDA [23] and OpenCL
[25] were maturing quickly.

Curve2559 [5], originally introduced by Bernstein, has now a well documented
track record of reference implementations available on many platforms [1, 19,
9, 13, 10, 16]. It is generally recognized as the fastest practical implementation
for the Diffie-Hellman key exchange protocol [20]. This work thus focuses on
Curve25519, and uses several standard implementations of NIST-recommended
curves as comparison data points.

Selected reference implementations of scalar multiplication on Curve25519
were ported to OpenCL: the NaCL reference implementation [9], the so-called
donna variants for 32-bit and 64-bit architectures [1]. For comparison we also
developed alternate OpenCL implementations based on optimizations suggested
for SIMD architectures [27, 17, 15]. In all cases we ended up retaining the im-
plementation where one complete scalar multiplication is computed per thread
as also done in [4], which we call the GPGPU approach; only best performances
are shown.

Table 1. Execution times in seconds for 1,048,576 scalar multiplications on Curve25519

Variant i7 Quad-Core 3770 GTX Titan HD 6870 R9 290X

OpenCL 32-bit 42.6 4.2 2.26 0.7
OpenCL 64-bit 84.3 2 2.27 n/a

Table 1 compares execution time in seconds of the best OpenCL kernels: on
a multicore CPU, the i7-3770 at 3.5GHz with 4 cores, 8 threads; and on a range
of GPUs, the GEForce GTX Titan GPU, with 6GB, 2,688 processors, 4,494
GFLOPS; the Radeon HD 6870, with 1 GB GDDR5 memory, 1,120 processors
and 2,000 GFLOPS; and the recently released R9 290X GPU, 4 GB GDDR5,
2,816 processors and 5,600 GFLOPS. The OpenCL 32-bit implementation uses
the 32-bit scalar type of OpenCL 1.2; the OpenCL 64-bit implementation uses
64-bit instructions in the i7 CPU implementation and 64-bit scalar type support
when available in the OpenCL driver for GPU. On a R9 290X, the OpenCL
32-bit implementation performs 1,778,000 scalar multiplications per second, i.e.
one scalar multiplication in 563 nanoseconds.

2.2 Porting to OpenCL

Very little adaptation was required to move code from the reference implemen-
tations to the OpenCL 1.2 environment.

Integer types used here in the floodyberry implementation were mapped to
OpenCL types as shown in Table 2. There were no particular difficulty as The
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Table 2. Mapping scalar types from single-core reference donna implementation in [1]
to OpenCL

Types in curve25519-donna-32bit Built-in scalar types
in OpenCL (API types for application)

int32_t int (cl_int)
uint32_t unsigned int (cl_uint)
uint64_t unsigned long (cl_ulong)
uint8_t unsigned char (cl_uchar)

OpenCL C programming language is based on the ISO/IEC 9899:1999 C lan-
guage specification (the C99 specification).

As a second step, the original reference implementation of field element and
elliptic point functions were moved into the kernel program file and declared as
inline functions rather than as DONNA_INLINE static. This uses more memory
but removes the context switches and stack operations associated with regular
function calls in the kernel. Private memory and registers were used throughout,
as the GPGPU approach, with a single thread for each scalar multiplication,
does not need to share data between work items. Furthermore as the number
of registers may vary from a multicore architecture to another, the OpenCL
compiler pushing intermediate variables to slower local memory in case of register
spilling, care was taken to optimize the number of private variables used in these
ported functions. A simple instance of reducing register use is presented in Table
5. Similarly, as much as possible, loops were unrolled as comparison operations
are expensive.

Listing 1.1. OpenCL kernel for base point scalar multiplication

#define WG_SIZE 256
#define KEY_SIZE 32

__kernel __attribute (( reqd_work_group_size(WG_SIZE ,1,1)))
void mr_scalar_mult(

__global u8 *g_pk ,
__global u8 *g_sk)

{
unsigned int tx = get_local_id (0);
unsigned int g = get_group_id (0);
unsigned int d = get_local_size (0);

__local uint8_t mypublic[KEY_SIZE*WG_SIZE ];
size_t i, offset;

offset = tx*KEY_SIZE;
for(i = 0; i < KEY_SIZE; i++)
{
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mypublic[offset+i] = g_sk[offset + i + (g * d
* KEY_SIZE)];

}
mypublic[offset +0] &= 248;
mypublic[offset +31] &= 127;
mypublic[offset +31] |= 64;

curve25519_scalarmult(mypublic+offset);

for(i = 0; i < KEY_SIZE; i++)
{

g_pk[offset + i + (g * d * KEY_SIZE)] =
mypublic[offset+i];

}
}

Finally OpenCL kernels were created for scalar multiplication of the base
point and for scalar multiplication of a non-base point as required for the Diffie-
Hellman key exchange protocol. Arrays of scalars and arrays of elliptic curve
points are passed to the kernel in global memory by the driving C++ program;
results are also returned in global memory to the driving program. Listing 1.1
shows the OpenCL kernel which, given as an input the global memory array
g_sk, containing 4096 ∗ 256 256-bit random secret integers, performs 1, 048, 576
base point scalar multiplications on Curve25519 on as many threads organized as
4096 work groups of 256 threads, returning the million plus points x coordinates
in the global memory g_pk.

2.3 Timings of NIST Curves

As comparison data points, several NIST curves OpenCL kernels were devel-
oped using the same GPGPU approach mentioned earlier. Table 3 shows fastest
OpenCL kernel execution time for scalar multiplication over several NIST rec-
ommended elliptic curves [14], both on an i7 multicore CPU and the GTX Titan
GPU. OpenCL kernels for the NIST curves were ported without modifications,
beyond proper type mapping explained above, from the reference implemen-
tations in the micro-ECC library [22]. Execution times in both tables may be
compared against execution time of the original reference implementations, in C
and C++, running on the CPU without the benefits of parallelization introduced
by OpenCL.

On the i7 Quad-Core, standard implementation benefit from Streaming SIMD
Extensions 2 (SSE2), one of the Intel SIMD processor supplementary instruction
sets, which, combined with the 64-bit variants of the reference implementations,
provides faster execution times. Measured programs were built with Visual Stu-
dio 2008 and run on Microsoft Windows 7 Professional, using AMD OpenCL 1.2
drivers Catalyst 13.11, NVIDIA ForceWare 331.82 and Intel OpenCL SDK 2013
R2.
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Table 3. Execution times in seconds for 1,048,576 scalar multiplications on alternate
elliptic curves

NIST EC i7 Quad-Core 3770 GTX Titan

secp128r1 42.7 2.0
secp192r1 120.9 6.4
secp256r1 235.5 16.1
secp384r1 653.3 67.9

Table 4. Execution times in seconds for 1,048,576 scalar multiplications on the i7
CPU, standard non-OpenCL implementations

Curve 32-bit 64-bit and SSE2

Curve25519 (donna) 211.5 57
secp256r1 533 282

3 Streaming Diffie-Hellman Exchange Protocols

In this section we briefly present the use of the fast GPGPU scalar multiplication
implementation for state-of-the-art Elliptic Curve Diffie-Hellman key exchange
(ECDH) primitives for security level of approximately 128 bits. The choice of
the well-known Curve25519 and the GPGPU approach to OpenCL programming
reflects the motivations presented earlier:

– Very fast, constant time execution. Every Diffie-Hellman exchange basically
consumes four scalar multiplications, so faster performance of scalar multi-
plication P → [s]P is critical as it applies to a high throughput stream of
both varying points P and scalars s in our motivating scenarios. Alternate
optimizations afforded e.g. by pre-computations [20] are less relevant here
since we are interested in the censorship circumvention context where keys
are changing with each communication message.

– Compact keys and messages. Bernstein’s Curve25519, which is based on an
efficient, uniform differential addition chain applied to a well-chosen pair
of curve and twist. Curve25519 and its twist are presented as Montgomery
models. These models not only provide highly efficient group operations, but
they are optimized for x-coordinate-only operations [5]. Importantly enough,
typical Diffie-Hellman functions may be compromised if public keys are not
validated [3]; Curve25519’s design, in contrast, accepts every 32-byte string
as a public key.

These desirable characteristics of Curve25519, with the reported GPU accel-
eration of elliptic curve operations, were thus packaged as an experimental plug-
in for a popular Instant Messaging client, PSI+, a cross-platform Jabber/XMPP
[24] client1. In this preliminary implementation, the elliptic curve Diffie-Hellman
1 PSI+ Project at url http://psi-plus.com/
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key exchange protocol is performed prior to sending each message and the shared
secret key is used as a one-time pad to encrypt and decrypt each individual
XMPP message. Practically since millions of keys per seconds are available from
the GPU, the Diffie-Hellman exchange is synchronized with the XMPP presence
messages so that enough available shared secrets are immediately available when
beginning a conversation.

There is an extensive literature analyzing the speed of various implementa-
tions of diverse Diffie-Hellman functions for various conjectured security levels.
Most of these results are now found in the comprehensive ECRYPT Benchmark-
ing of Cryptographic Systems [8]. Comparison with related art is not straight-
forward, however, since CPU cycles hardly compare to GPU kernels parallel
threads and different GPU platforms may be employed, all with different ar-
chitectural characteristics and performance capabilities. In addition, the rapid
pace of progress of manufacturers may render experimental results obsolete quite
quickly.

In [12], the authors report on GPU accelerated version of the LSB Invari-
ant scalar point multiplication for binary elliptic curves implemented using the
CUDA programming language. By varying coordinate systems and paralleliza-
tion factors, timings measured ranged from 9.545 ms to 190.203995 ms for pre-
computations and from 10.363000 ms to 173.121002 ms for actual scalar point
multiplications in GF (2163) on an NVIDIA GTX 285 graphics card. The paper
[6] reports on the advancement of the project to break the Certicom ECC2K-
130 challenge: to compute an elliptic-curve discrete logarithm on a Koblitz curve
over F2131 . The comprehensive optimization of the ECC2K-130 computations for
GPU resulted in the execution of 320 million F2131 field multiplications per sec-
ond on a NVIDIA GTX 295 graphics card. In [2] a RNS base representation
was proposed to perform elliptic curve point arithmetic, parallelizing each RNS
channel on a GPU thread. The authors’ results suggested a maximum through-
put of 9990 scalar multiplications per second and minimum latency of 24.3 ms
for a 224-bit underlying field, on an NVIDIA 285 GTX GPU.

4 Conclusions

The simple GPGPU approach to porting elliptic points arithmetic to multicore
and parallel GPU architectures delivered encouraging timing results on modern
graphic cards. As these massively parallel hardware are ubiquitously finding their
ways in many classes of terminals, ranging from laptops and smartphones to high-
end datacenters, this reports suggests that symmetric key cryptography, and
namely the Vernam Cipher, may be efficiently deployed, for high performance
at low cost, onto a breadth of personal computing devices in the context of
censorship circumvention.
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Table 5. Simple instance of reducing the number of intermediate variables in the kernel
program to avoid register spilling, after loop unrolling.

Original code in curve25519-donna-32bit

DONNA_INLINE static void
curve25519_swap_conditional(bignum25519 a,

bignum25519 b,
uint32_t iswap) {

const uint32_t swap = (uint32_t)(-(int32_t)iswap);
uint32_t x0,x1,x2,x3,x4,x5,x6,x7,x8,x9;

x0 = swap & (a[0] ^ b[0]); a[0] ^= x0; b[0] ^= x0;
x1 = swap & (a[1] ^ b[1]); a[1] ^= x1; b[1] ^= x1;
x2 = swap & (a[2] ^ b[2]); a[2] ^= x2; b[2] ^= x2;
x3 = swap & (a[3] ^ b[3]); a[3] ^= x3; b[3] ^= x3;
x4 = swap & (a[4] ^ b[4]); a[4] ^= x4; b[4] ^= x4;
x5 = swap & (a[5] ^ b[5]); a[5] ^= x5; b[5] ^= x5;
x6 = swap & (a[6] ^ b[6]); a[6] ^= x6; b[6] ^= x6;
x7 = swap & (a[7] ^ b[7]); a[7] ^= x7; b[7] ^= x7;
x8 = swap & (a[8] ^ b[8]); a[8] ^= x8; b[8] ^= x8;
x9 = swap & (a[9] ^ b[9]); a[9] ^= x9; b[9] ^= x9;
}

Adapted code in OpenCL kernel file

__inline void
curve25519_swap_conditional(bignum25519 a,

bignum25519 b,
uint32_t iswap) {

const uint32_t swap = (uint32_t)(-(int32_t)iswap);
uint32_t x0;

x0 = swap & (a[0] ^ b[0]); a[0] ^= x0; b[0] ^= x0;
x0 = swap & (a[1] ^ b[1]); a[1] ^= x0; b[1] ^= x0;
x0 = swap & (a[2] ^ b[2]); a[2] ^= x0; b[2] ^= x0;
x0 = swap & (a[3] ^ b[3]); a[3] ^= x0; b[3] ^= x0;
x0 = swap & (a[4] ^ b[4]); a[4] ^= x0; b[4] ^= x0;
x0 = swap & (a[5] ^ b[5]); a[5] ^= x0; b[5] ^= x0;
x0 = swap & (a[6] ^ b[6]); a[6] ^= x0; b[6] ^= x0;
x0 = swap & (a[7] ^ b[7]); a[7] ^= x0; b[7] ^= x0;
x0 = swap & (a[8] ^ b[8]); a[8] ^= x0; b[8] ^= x0;
x0 = swap & (a[9] ^ b[9]); a[9] ^= x0; b[9] ^= x0;
}


