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Abstract. We consider the problem of a client who outsources the computation of a function f over
an input x to a server, who returns y = f(x). The client wants to be assured of the correctness of the
computation and wants to preserve confidentiality of the input x and possibly of the function f as well.
Moreover, the client wants to invest substantially less effort in verifying the correctness of the result
than it would require to compute f from scratch.
This is the problem of secure outsourced computation over encrypted data. Most of the work on
outsourced computation in the literature focuses on either privacy of the data, using Fully Homomorphic
Encryption (FHE), or the integrity of the computation. No general security definition for protocols
achieving both privacy and integrity appears in the literature. Previous definitions only deal with a
very limited security model where the server is not allowed to issue verification queries to the client:
i.e. it is not allowed to “see” if the client accepts or rejects the value y.
In this paper we present:
1. A formal definition of private and secure outsourced computation in the presence of verification

queries;
2. A protocol based on FHE that achieves the above definition for arbitrary poly-time computations;
3. Some additional protocols for the computation of ad-hoc functions (such as the computation of

polynomials and linear combinations) over encrypted data. These protocols do not use the power
of FHE, and therefore are much more efficient than the generic approach. We point out that some
existing protocols in the literature for these tasks become insecure in the presence of verification
queries, while our protocols can be proven in the stronger security model where verification queries
are allowed.

1 Introduction

Is it possible to delegate the processing of your data to a party you don’t completely trust? What if you do not
want to give full access to your data to such party? Or what if the computation you delegate is so sensitive
that you must make sure the result is correct, but must do so using only very limited computational resources
(which is the reason you delegated the computation in the first place)? These are central questions related
to the security of cloud computing, a paradigm where businesses buy computing time from a service, rather
than purchase and maintain their own computing resources. These issues also arise from the proliferation
of mobile devices, such as smart phones and tablets: computationally weak devices which might outsource
computationally intensive operation, e.g. a cryptographic operation or a photo manipulation that they are
not able to perform on their own.

This might explain why Secure Outsourced Computation has become a very active research area in
cryptography. When it comes to the security and privacy concerns associated with outsourced computation,
we can summarize them in the following very important two questions:

– Is it possible to protect the privacy of the input to the computation? In other words, can an outside party
compute for us, without learning our private data?

– Can you efficiently verify the result of the computation? In other words, how does one check that the
outside party performed the computation correctly without investing too many computational resources
in the verification (i.e. by redoing the computation from scratch)?

Both questions have a long research history associated with them. The need for an encryption algorithm
that would allow arbitrary computation over encrypted data was recognized very early by cryptographers



(see the notion of privacy homomorphism in [RAD78]). A tantalizing research question, it remained open
until the breakthrough result by Gentry [Gen09], who constructed the first Fully Homomorphic Encryption
(FHE). While the initial proposal remains only of theoretical interest, Gentry’s work revealed a new set
of techniques which were immediately put to use in the construction of many other more efficient schemes
[Gen10,SV10,GH11,BV11,BGV12,GHS12,Bra12], and today we seem to stand at the verge of having schemes
which can be used in practice.

Efficient verification of arbitrarily complex computations was the underlying goal of Interactive Proofs
[Bab85,GMR89], where a powerful (e.g. super-polynomial) prover can (probabilistically) convince a weak
(e.g. polynomial) verifier of the truth of statements that the verifier could not compute on its own. The goal
to make the verifier as efficient as possible led to the concept of probabilistically checkable proofs (PCPs)
[AS92,BFL90,BFLS91], where a prover can prepare a proof that the verifier needs to check in only very
few places (in particular only a constant number of bits of the proofs needed for NP languages) and their
cryptographic applications: the efficient arguments of Kilian [Kil92,Kil95] and Micali’s non-interactive CS
Proofs [Mic94].

The application to cloud computing has rekindled attention to this area, particularly in the search for
protocols where arbitrary poly-time (as opposed to superpoly-time) computations can be efficiently verified
by a linear (or quasi-linear) verifier, and performed by a prover without too much overhead. Starting with
the work on muggles proof [GKR08] a line of research revisited and “scaled down” the PCP machinery
[GLR11,BCCT12a,BCCT12b]. Another line of work explored alternative ways of arithmetizing computations
to construct efficient proofs [Gro10,Lip12,GGPR13]. Yet another approach used FHE as a tool to build
efficient verification of arbitrary computations [GGP10,AIK10,CKV10].

Several implementation efforts [CMT12,Tha13,PHGR13,BSCG+13] show that here too we are on the
verge of achieving practical efficiency, with the Quadratic Span Program techniques of [GGPR13,PHGR13]
showing particular promise.

1.1 Our Contribution

Given the practical and theoretical relevance of this research area, and the level of maturity the field is
reaching, it is somewhat surprising to notice that all the papers mentioned above deal with either one of
the two main questions. There are many results about finding efficient FHE schemes, and therefore efficient
computation over encrypted data, but without verification of its correctness. On the other hand, the works
on verifying computation seem focused on the case that the data is in the clear (an exception is [GKP+13]
which we discuss in detail below).

The protocols for verifiable computation in [GGP10,CKV10,AIK10] use FHE as a tool to achieve ver-
ifiability. Almost as a by-product of the techniques, they turn out to achieve privacy of the data as well
(the [GGP10] protocol also hides “most” of the function being computed – only the topology of the circuit
computing is revealed [BHR12]). In [GGP10] a formal definition of all the properties needed by a verifiable
computation scheme is given including input privacy. However, the definition in [GGP10] is in a very weak
model in which the adversary is not allowed to issue verification queries to the client. In other words, a cheat-
ing server who observes the behavior of the client when an incorrect proof is presented is not an adversary
considered by the definition in [GGP10].

There was a reason for this: as discussed in [GGP10], such a cheating server could in fact break the
protocols in [GGP10,CKV10,AIK10] completely (i.e. both input privacy and output correctness would be
compromised). We revisit this attack later in this section. For now we simply point out that [GGP10] defined
only what they could achieve, and assumed that the acceptance/rejection bit of the client remains private
and not learned by the adversary.

Somewhat surprisingly, no formal definition of private and secure outsourced computation in the presence
of verification queries can be found in the literature. Our goal in this paper is to address this somewhat
problematic state of affairs.

In particular we present the following:

1. An upgrade to the definition in [GGP10] that allows verification queries by the adversary. This is the
strongest possible model in which we can define security.

2. A protocol based on FHE that achieves the above definition for arbitrary poly-time computations.



3. Some additional protocols for the computation of ad-hoc functions such as the computation of polynomials
and linear combinations over encrypted data. These protocols do not use the power of FHE, and therefore
are much more efficient than the generic approach. These tasks had been considered by [BGV11,LPJY13].
We point out that the protocol in [BGV11] becomes insecure in the presence of verification queries (a
fact not noticed in that paper), while our protocols can be proven in the stronger security model where
verification queries are allowed; moreover, the protocol suggested in [LPJY13] for verifiable computation
of linear combinations over encrypted data is restrictive, since the linear combinations have to sit in a
small range for the client to retrieve the correct result.
Both our ad-hoc protocols are expressed in the same format as the general protocol, and are “function
private”, in the sense that the data defining the function to be computed is not disclosed to the server
(see Section 2); moreover, our protocol for verifiable computation of linear combinations achieves both
function privacy and input privacy. To the best of our knowledge, this is the first protocol to achieve
both properties.

1.2 The Technical Issues

One might think that to achieve a fully secure (i.e. both private and correct) outsourced computation, it is
sufficient to encrypt the data a with FHE and also run a verifiable computation for the function f . In other
words the client would send Ca = FHE(a) and the server would return C = FHE(f(a)) together with a proof
π that the decryption of C is the correct value. The client would then decrypt C and accept only if the proof
verifies it.

First of all, it is not immediately obvious how to do this for arbitrary computations in a way that the proof
be efficiently verifiable (i.e. in quasi-linear time) by the verifier. But even more importantly this approach
has no hope of achieving any meaningful notion of privacy (e.g. semantic security) for the encrypted data a.
Indeed, suppose that the server knows a priori information about the data (at the extreme that the data a
can assume only two possible values a0 or a1). Then the server would discard Ca and run the protocol on
C0 = FHE(a0). If the client accepts, then the server knows that a = a0; if the client rejects, then it must
be that a = a1. In other words the proof of correctness of the result can be used as a decryption oracle on
the FHE: in order for this protocol to be secure the encryption should be secure against chosen-ciphertext
attacks, but that is not possible if we also need it to be homomorphic.

The only way to maintain semantic security using this approach is to assume that the server/adversary
is not given access to the client’s decision bit regarding acceptance of the proof. In other words, security is
achieved in a scheme in which the adversary is not allowed arbitrary verification queries on the protocol.
This is of course a strong assumption on the behavior of the adversary and a very weak security model.

1.3 Other Prior Work

Generic Protocols. A different line of work to achieve private and verifiable outsourced computation was
introduced by Goldwasser et al. in [GKP+13] on functional encryption (FE). An FE scheme is an encryption
scheme with a single public key PK and several secret keys: given a function f there is a secret key SKf

associated with it. Given c, the encryption of a message m under PK, the owner of the secret key SKf

successfully decrypts c to f(m) and learns no other information about m. The main result in [GKP+13] is
the construction of such an FE scheme for any function defined by a poly-size circuit.

In a passing remark in the Introduction the authors of [GKP+13] show that such an FE scheme can be used
to construct a VC that operates over encrypted inputs and is resistant to verification queries (in particular it
is publicly verifiable – anybody can verify that the server operates correctly). The idea originates in [PRV12],
for the case of attribute-based encryption (a subset of FE): to outsource the computation of a boolean (i.e.
with output in {0, 1}) function f , the client gives the server the secret key SKf̂ (in a potentially expensive

preprocessing phase) for the function f̂ defined as follows: f̂(r, x) = r if f(x) = 1 otherwise f̂(r, x) = ⊥.
During the computation stage (when the client asks the server to compute f(x)), the client encrypts the pair
(r, x) for a random value r and submits c to the server. If the server returns the correct value r, then the
client has a “proof” that f(x) = 1. Note that



– this is a “one-sided” proof since the client cannot receive a proof that f(x) = 0 (the server can always
refuse to answer when f(x) = 1) – this can be addressed by outsourcing both f and its complement;

– This scheme is privately verifiable, but can be made publicly verifiable by publicizing an “obfuscated”
version of the random value r;

– This scheme does not reveal x, but reveals f(x). In [GKP+13] they also briefly discuss a neat technique
which hides the value of f(x).

We point out that the above construction is only sketched in [GKP+13], together with an intuitive
motivation for its security, but no formal definition or proof is given. When one formally analyzes the
protocol in [GKP+13] in light of our definition the following issues come up:

– As discussed in [BSW11], a simulation-based definition of security for FE cannot be achieved in general
in an “adaptive” model in which the adversary chooses the function f to be evaluated after seeing the
ciphertext encoding x. It appears that this limitation might be inherited by the FE-based verifiable
computation in [GKP+13], though the situation is far from clear. Our security definition is a game-based
one, but the security proof might require the FE tool to be simulatable. A proof of the [GKP+13] protocol
in this model is important, since in many cloud computing application the data might sit encrypted on
a cloud server, before any processing is performed on it. In contrast, we can provably show that our
proposed protocol does not have this limitation (see Section 2);

– Additionally, if one requires “standard” security against poly-time adversaries the protocol in [GKP+13]
only achieves selective security, where the adversary has to commit in advance to the input value on which
it wants to cheat1 while our protocol achieves full security for poly-time adversaries when instantiated
with the appropriate FHE and VC components.

– Finally, the scheme in [GKP+13] intrinsically works for binary functions. While this is sufficient in theory,
in practice it requires the overhead of working bit-by-bit on the function output. Our protocol is more
versatile and potentially more efficient, since it can handle arithmetic circuits if the underlying FHE and
VC schemes can (several FHE schemes work over arithmetic circuits, and the QSP/QAP approach in
[GGPR13] yields an efficient VC over arithmetic circuits)2.

Ad-Hoc Protocols. The verification of the result after decryption is actually suggested in [BGV11] that
proposes protocols for “ad-hoc” computations (for the evaluation of polynomials) and does not require the
full power of FHE, but simply additively homomorphic encryption. In that protocol, the client encrypts the
data a under an additively homomorphic encryption scheme Enc and receives back C = Enc(f(a)) and a
proof π. In order to verify the proof, the client must decrypt C, creating therefore the opportunity for the
above attack (neither the attack nor the weak countermeasure discussed above are mentioned in [BGV11]).

The verification of the result before decryption is employed in [LPJY13] that proposes a protocol for the
evaluation of linear computation over encrypted data, using additively homomorphic encryption, and makes
use of structure preserving signatures on the ciphertexts group. The encryption scheme in that protocol,
however, is used in such a way that the client cannot decrypt the result of the computation in general (the
client would need to compute the discrete logarithm of the encoded linear combination), so the protocol
allows efficient decryption only if the computation of linear combinations is in a small range.

1.4 Our Generic Protocol

Our protocol3 assumes the existence of a FHE scheme, and also of an efficiently verifiable scheme to outsource
the computation of a function f over data a, sent to the server in the clear (e.g. [GGPR13]).

1 This is because both known constructions of FE [GKP+13,GGH+13] achieve only selective security against poly-
time adversaries – full security can be obtained at the cost of assuming security against sub-exponential adversaries:
a much stronger assumption.

2 Another thing to consider is that the FE construction in [GKP+13] requires the client to work in the depth of the
function f being outsourced. However, the new FE scheme in [GGH+13] based on indistinguishability obfuscation
removes this limitation (since in their case ciphertexts are succinct and do not depend on the size of the circuit
computing f in any way).

3 We have never seen this protocol suggested anywhere in the literature, and we are not even aware of it as some
sort of folklore theorem.



The protocol encrypts the data a with an FHE scheme: Ca = FHE(a). It then runs a protocol for the
verifiable outsourcing not of f but of the function F = EvalFHE(f), i.e. the circuit that evaluates C =
FHE(f(a)) over Ca, which is now the input “in the clear”.

In order to hide both f and a, we follow the usual approach of outsourcing the universal circuit which
takes as input both f and a.

We note that this technique prevents the adversary from using the client as a decryption oracle for the
FHE. Indeed if the verifiable computation component is secure even in the presence of verification queries
(e.g. the QSP-based protocol in [GGPR13]) then the acceptance/rejection decision bit of the client is not
linked to any decryption but just to the “correct” evaluation of the EvalFHE procedure over the ciphertexts
(which we assume to be deterministic).

1.5 Protocols for computations over large datasets

In the last part of the paper we deal with the following problem. Let us assume that the data a consists
of a large dataset a = a0, a1, . . . , ad, stored at the server with with some authentication information t =
t0, t1, . . . , td.

Polynomials Following [BGV11] the function f consists of f(x) = A(x) =
∑d
i=0 aix

i mod p, the compu-
tation of the polynomial of degree d defined by the ai at the point x. In [BGV11] the following approach is
proposed to efficiently verify this computation when the ai are in the clear.

The authentication information stored by the client with the server is of the form ti = gc·ai+ri where
c ← Fp, ri ← Fp is the ith coefficient of a polynomial R(·) of degree d and g is the generator of a cyclic
group G of order p in which the discrete logarithm problem is hard. When queried on the point x the server
returns a =

∑d
i=0 aix

i and t =
∏d
i=0 t

xi

i and the client accepts a iff t = gc·agR(x).
If R(·) is a random polynomial, then this is a secure delegation scheme. To avoid storing a large polynomial

R(·) and the expensive (O(N)) computation of gR(x), the notion of closed-form efficient PRF is presented
in [BGV11]. The value ρi = gri is defined as PRFK(i) for a special form of pseudo-random function PRF
which has the property that the computation of gR(x) can be performed in o(N) time by the party who
knows the secret key K.

Since the values ti reveal no information about the dataset a, in [BGV11] it is suggested that in order to
protect the secrecy of a it is sufficient to encrypt it with an additively homomorphic encryption scheme E.
No more details are provided in the paper, but we assume that this means setting αi = Enc(ai) and using
the homomorphism the server returns an encryption α of a (since a is simply a linear combination of the
ai’s with weights xi) and the value t as before. At that point the client would decrypt α to a′ and check
correctness as above. Clearly this approach is subject to the verification query attack, and would require
hiding the client decision bit (i.e. forbidding verification queries – this attack is not noted in [BGV11]).

In Section 4.3 we construct a protocol that carries the basic ideas of [BGV11], has a fast verification phase,
is function private, secure even under verification queries, and extends the computation to a polynomial with
coefficients in an extension field Fpn .

Our solution is given by modifying the protocol in [BGV11] by assuming that the values ti are authenti-
cations of the ciphertexts αi, and that the verification check is carried out on the ciphertext α.

We need an additively homomorphic scheme (in which additions of plaintexts are correspond to addi-
tions of ciphertexts). Such encryption schemes exist under a variety of lattice-based assumptions, and for
concreteness we use the scheme by Brakerski and Vaikuntanathan in [BV11].

Linear Combinations Another specialized protocol we propose works in case a client wants to perform
linear combinations of the values in its dataset (which is a generalization of the above scenario). More

specifically, the client wants to compute
∑d
i=0 ai · wi for some weights w0, . . . , wd ∈ M – this setting is a

generalization of the case of the evaluation of polynomials, for which wi = xi for x ∈ Fp.
In [LPJY13] the case of general linear combination is considered using structure preserving cryptography.

Their scheme also uses additively homomorphic cryptography and does not require the client to decrypt the
result a to perform the verification check. However, their scheme is limited in many other ways (for example,



in the specific instantiation they describe, which makes use of the encryption scheme by Boneh, Boyen, and
Shacham [BBS04], the decryption of the value a by the client requires the computation of unknown discrete
logarithms or an exhaustive search and therefore is efficient only for small a’s, which limits the kind of linear
combinations one can do, and the size d of the dataset).

General linear combinations in the model in which verification queries are not allowed can be easily
achieved by a simpler version of the [BGV11] protocol where the value ri is computed using a regular PRF
(i.e. closed-form efficiency is not even required). The client stores αi = Enc(ai) and the authentication
information ti = c · ai + ri where c ← M, and ri = PRFk(i). When the client provides the weights wi,

the server computes α such that Dec(α) =
∑d
i=0 ai · wi (using the homomorphic properties of Enc) and

t =
∑d
i=0 ti · wi. The client decrypts α and accepts if and only if t = c · a+

∑d
i=0 ri · wi.

To achieve function privacy against verification queries, we change the authentication tags to be ti =
c · αi + ri. Now, if we use the [BV11] encryption scheme we can verify the correct evaluation of α before
decrypting. Moreover, by using the variant of [BV11] that allows the evaluation of a single multiplication on
encrypted data, the client can even encrypt the weights wi, i.e. hide the linear combination to be computed
and achieve input privacy as well. In this case, the client provides ωi = Enc(wi) to the server, which uses the
single multiplication homomorphic property to compute α such that Dec(α) = a and τ such that Dec(τ) = t.
As we describe in detail in Section 4.2 the verification check can still be performed before decrypting, and
therefore provides no useful decryption query to the adversary.

We note that the client complexity here depends on the size of the weight set and on the level of
information the client wants to hide. If the weights were sent in the clear, the client would have paid O(d̃)

complexity where d̃ ≤ d is the number of non-zero weights. If the weights are encrypted, the client has two
choices: he can still pay O(d̃) by simply sending the non-zero weights encrypted (and their indices). In this
case, however, the client reveals the indices used in the linear combination (though not their values). If the
client wants to completely hide the weights then it must pay O(d) to send a ciphertext ωi for each index.

2 Problem Definition

We work in the amortized model of [GGP10] where the client runs a one-time expensive phase to “outsource”
the function f to the server (this phase can cost as much as the computation of f). Later the client queries
the server on (an encrypted form of) input x and receives back (an encryption of) the value f(x) and a proof
of its correctness: this phase should be efficient for the client (ideally linear in |x|+ |f(x)|).

In [GGP10] the authors give a definition that includes both security (i.e. the client only accepts correct
outputs) and privacy (i.e. the client’s input x is semantically secure) but does not allow verification queries
(since the [GGP10] protocol does not tolerate them). In this Section we “upgrade” the definition by adding
verification queries to it.

A verifiable computation scheme VC = (KeyGen,ProbGen,Compute,Verify) consists of the four
algorithms defined below.

1. KeyGen(f, λ) → (PK,SK): Based on the security parameter λ, the randomized key generation algo-
rithm generates a public key that encodes the target function f , which is used by the server to compute
f . It also computes a matching secret key, which is kept private by the client.

2. ProbGenSK(x) → (σx, τx): The problem generation algorithm uses the secret key SK to encode the
function input x as a public value σx which is given to the server to compute with, and a secret value τx
which is kept private by the client.

3. ComputePK(σx) → σy: Using the client’s public key and the encoded input, the server computes an
encoded version of the function’s output y = f(x).

4. VerifySK(τx, σy) → (acc, y): Using the secret key SK and the secret “decoding” τx, the verification
algorithm converts the server’s encoded output into a bit acc and a string y. If acc = 1 we say the client
accepts y = f(x), if acc = 0 we say the client rejects.

We now recall the three main properties defined in [GGP10] for a verifiable computation scheme: cor-
rectness, security and privacy but we define them in the presence of verification queries by the adversary.



Also, we introduce another definition, that encompasses function privacy, that is the ability of a scheme to
hide from the server the function that it needs to compute.

A scheme is correct if the problem generation algorithm produces values that allow an honest server to
compute values that will verify successfully and correspond to the evaluation of f on those inputs. More
formally:

Definition 1 (Correctness). A verifiable computation scheme VC is correct if for any choice of function
f , the key generation algorithm produces keys (PK,SK) ← KeyGen(f, λ) such that, for all x the domain
of f , if (σx, τx)← ProbGenSK(x) and σy ← ComputePK(σx) then (1, y = f(x))← VerifySK(τx, σy).

Intuitively, a verifiable computation scheme is secure if a malicious server cannot persuade the verification
algorithm to accept an incorrect output. Below, we formalize this intuition with an experiment, where poly(·)
is a polynomial.

Note that the adversary A is given access to queries to the oracle PVerify which is defined as

PVerify(τ, σ) = acc if and only if Verify(τ, σ) = (acc, y)

In other words, PVerify is the public acceptance/rejection bit which results from a verification query.

Experiment ExpV erifA [VC, f, λ]
(PK,SK)← KeyGen(f, λ);
For i = 1, . . . , ` = poly(λ);

xi ← APVerify(τj ,·)(PK, x1, σ1, . . . , xi−1, σi−1);
(σi, τi)← ProbGenSK(xi);

(i, σ̂y)← APVerify(τj ,·)(PK, x1, σ1, . . . , x`, σ`);
(âcc, ŷ)← VerifySK(τi, σ̂y)
If âcc = 1 and ŷ 6= f(xi), output ‘1’, else ‘0’;

Essentially, the adversary is given oracle access to generate the encoding of multiple problem instances,
and to check the response of the client on arbitrary “encodings”. The adversary succeeds if it produces an
output that convinces the verification algorithm to accept on the wrong output value for a given input value.
We can now define the security of the system based on the adversary’s success in the above experiment.

Definition 2 (Security). A verifiable computation scheme VC is secure for a function f , if for any adver-
sary A running in probabilistic polynomial time,

Pr[ExpV erifA [VC, f, λ] = 1] ≤ negl(λ). (2.1)

We say that VC is secure if it is secure for every function f .

Input privacy is defined based on a typical indistinguishability argument that guarantees that no infor-
mation about the inputs is leaked. Input privacy, of course, immediately yields output privacy.

Intuitively, a verifiable computation scheme is private when the public outputs of the problem generation
algorithm ProbGen over two different inputs are indistinguishable; i.e. nobody can decide which encoding
is the correct one for a given input. More formally consider the following experiment: the adversary is given
the public key for the scheme and selects two inputs x0, x1. He is then given the encoding of a randomly
selected one of the two inputs and must guess which one was encoded. During this process the adversary
is allowed to request the encoding of any input he desires, and also is allowed to make verification queries
on any input. The experiment is described below4. The oracle PProbGenSK(x) calls ProbGenSK(x) to
obtain (σx, τx) and returns only the public part σx.

4 In the definition when we write that APVerify we mean that A is allowed to query PVerify(τ, ·) where τ is the
secret encoding of any of the queries made in PProbGen and τb



Experiment ExpPrivA [VC, f, λ]
(PK,SK)← KeyGen(f, λ);
(x0, x1)← APVerify,PProbGenSK(·)(PK)
(σ0, τ0)← ProbGenSK(x0);
(σ1, τ1)← ProbGenSK(x1);
b← {0, 1};
b̂← APVerify,PProbGenSK(·)(PK, x0, x1, σb)

If b̂ = b, output ‘1’, else ‘0’;

Definition 3 (Privacy). A verifiable computation scheme VC is private for a function f , if for any adver-
sary A running in probabilistic polynomial time,

Pr[ExpPrivA [VC, f, λ] = 1] ≤ 1

2
+ negl(λ). (2.2)

Function privacy is the requirement that the public key PK, sampled via (PK,SK) ← KeyGen(f, λ),
does not leak information on the encoded function f , even after a polynomial amount of runs of ProbGenSK
on adversarially chosen inputs. More formally, we define define function privacy based on an indistinguisha-
bility experiment as follows

Experiment ExpFPrivA [VC, λ]
(f0, f1)← A(λ);
b← {0, 1};
(PK,SK)← KeyGen(fb, λ);
For i = 1, . . . , ` = poly(λ);

xi ← APVerify(τj ,·)(PK, x1, σ1, . . . , xi−1, σi−1);
(σi, τi)← ProbGenSK(xi);

b̂← APVerify(τj ,·)(PK, x1, σ1, . . . , x`, σ`);

If b̂ = b, output ‘1’, else ‘0’;

Definition 4 (Function Privacy). A verifiable computation scheme VC is function private, if for any
adversary A running in probabilistic polynomial time,

Pr[ExpFPrivA [VC, λ] = 1] ≤ 1

2
+ negl(λ). (2.3)

The final condition we require from a verifiable computation scheme is that the time to encode the input
and verify the output must be smaller than the time to compute the function from scratch.

Definition 5 (Outsourceable). A VC can be outsourced if it permits efficient generation and efficient
verification. This implies that for any x and any σy, the time required for ProbGenSK(x) plus the time
required for Verify(σy) is o(T ), where T is the time required to compute f(x).

2.1 Adaptive Security

Here we introduce the notion of adaptive security for a verifiable computation scheme, and show that
our constructions fulfill this definition. Intuitively, an adaptively secure scheme is a scheme that is secure
even if the adversary chooses f after having seen many “encodings” σx for chosen values x. At first sight,
this property is non-trivial to achieve, since not every scheme allows σx to be computed before choosing f
(in particular schemes based on FE such as [GKP+13]). This observation leads us to first define a refined
class of schemes, for which adaptivity is not ruled out by this restriction, and then proceed with the actual
definition of adaptivity.
Definition 6 (Split Scheme). Let VC = (KeyGen,ProbGen,Compute,Verify) be a verifiable compu-
tation scheme. We say that VC is a split scheme if the following conditions hold:



– There exist PPT algorithms KeyGenE(λ) and KeyGenV (f, λ) such that if (PK,SK)← KeyGen(f, λ)
then PK = (PKE , PKV ) and SK = (SKE , SKV ) such that KeyGenE(λ) → (PKE , SKE) and
KeyGenV (f, λ)→ (PKV , SKV );

– There exist PPT algorithms ProbGenESKE
(x) and ProbGenVSKV

(x) such that if (σx, τx)← ProbGenSKE ,SKV
(x)

then σx = σEx ← ProbGenESKE
(x) and τx = τVx ← ProbGenVSKV

(x)

Notice that for a split scheme one can generate valid values σx for any function f to be delegated before
knowing f , since σx is independent of f . This can be done by running (PKE , SKE) ← KeyGenE(λ),
and setting σx ← ProbGenESKE

(x) before knowing f . The validity of this encoding applies for all keys

(PK,SK) = (PKE , PKV , SKE , SKV ) where (PKV , SKV )← KeyGenV (f, λ) for any f .
We can now describe the experiment that will be used to define adaptive security for split schemes:

Experiment ExpAdap−V erifA [VC, λ]

(PKE , SKE)← KeyGenE(λ);
For i = 1, . . . , `′ = poly′(λ):

x′i ← A(PKE , x
′
1, σ
′
1, . . . , x

′
i−1, σ

′
i−1);

σ′i ← ProbGenESKE
(x);

f ← A(x′1, σ
′
1, . . . , x

′
`′ , σ

′
`′);

(PKV , SKV )← KeyGenV (f, λ);
(PK,SK)← (PKE , PKV , SKE , SKV );
For i = 1, . . . , ` = poly(λ):

xi ← APVerify(τj ,·)(PK, x1, σ1, . . . , xi−1, σi−1);
(σi, τi)← ProbGenSK(xi);

(i, σ̂y)← APVerify(τj ,·)(PK, x1, σ1, . . . , x`, σ`);
(âcc, ŷ)← VerifySK(τi, σ̂y);
If âcc = 1 and ŷ 6= f(xi), output ‘1’, else ‘0’.

Definition 7 (Adaptive Security). A split scheme VC is adaptively secure, if for any adversary A running
in probabilistic polynomial time,

Pr[ExpAdap−V erifA [VC, λ] = 1] ≤ negl(λ). (2.4)

We point out that a particular instantiation of our generic scheme is split: consider the case in which
the VC component of our generic solution is implemented using a SNARK (e.g. any of the protocols in
[BCCT12b,GGPR13,PHGR13,BSCG+13]). In those protocols basically τx can be “empty” (as many of those
protocols are publicly verifiable). As a consequence our generic protocol in this case is split (the encoding of
x is just an FHE encryption of x, the secret key SK the decryption key for the FHE scheme).

Once we have a split scheme, our generic scheme can be easily proven to be adaptively secure along the
lines of the proof of Theorem 1.

3 A Generic Solution

In this section we describe our generic solution to outsource computation over encrypted data. As we discussed
in the introduction we assume the existence of a FHE scheme, with a deterministic evaluation procedure (all
known schemes have this property). We also need an efficiently verifiable scheme to outsource the computation
of a function f over data a, sent to the server in the clear, which is secure even in the presence of verification
queries. The latter can be achieved using a variety of schemes, e.g. [GGPR13,GLR11,BCCT12a,BCCT12b]

The protocol encrypts the data a with an FHE scheme: Ca = FHE(a). It then runs a protocol for the
verifiable outsourcing not of f but of the function F (·) = EvalFHE(f, ·), which is a circuit that takes Ca as
input and outputs an element C that decodes to f(a).

We note that this approach prevents the adversary from using the client as a decryption oracle for the
FHE. Indeed if the verifiable computation component is secure even in the presence of verification queries
then the acceptance/rejection decision bit of the client is not linked to any decryption but just to the
“correct” evaluation of the EvalFHE procedure over the ciphertexts (which we assume to be deterministic).



3.1 Homomorphic Encryption

A fully homomorphic (public-key) encryption (FHE) scheme is a quadruple of PPT algorithms
HE = (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval) defined as follows.

– HE.KeyGen(λ) → (pk, evk, sk): Outputs a public encryption key pk, a public evaluation key evk and a
secret decryption key sk.

– HE.Encpk(b)→ c: Encrypts a bit b ∈ {0, 1} under public key pk. Outputs ciphertext c.
– HE.Decsk(c)→ b: Decrypts ciphertext c using sk to a plaintext bit b ∈ {0, 1}.
– HE.Evalevk(g, c1, . . . , ct) → c∗: The deterministic evaluation algorithm takes the evaluation key evk, a

boolean circuit g : {0, 1}t → {0, 1}, and a set of t ciphertexts c1, . . . , ct. It outputs the result ciphertext
c∗.

An FHE should also satisfy the following properties.

Encryption Correctness. For all b ∈ {0, 1} we have:

Pr [HE.Decsk(HE.Encpk(b)) = b | (pk, evk, sk)← HE.KeyGen(λ)] = 1

Evaluation Correctness. For any (pk, evk, sk) in the support of HE.KeyGen(λ), any ciphertexts c1, . . . , ct such
that HE.Decsk(ci) = bi ∈ {0, 1}, and any circuit g : {0, 1}t → {0, 1} we have

HE.Decsk(HE.Evalevk(g, c1, . . . , ct)) = g(b1, . . . , bt).

Succinctness. We require that the ciphertext-size is always bounded by some fixed polynomial in the security
parameter, and is independent of the size of the evaluated circuit or the number of inputs it takes. That
is, there exists some polynomial p(·) such that, for any (pk, evk, sk) in the support of HE.KeyGen(λ), the
output-size of HE.Encpk(·) and of Evalevk(·) is bounded by p(n), for any choice of their inputs.

Semantic Security. Lastly, an FHE should satisfy the standard notion of semantic security for public-key
encryption, where we consider the evaluation key evk as a part of the public key. That is, for any PPT
attacker A we have:

|Pr [A(λ, pk, evk, c0) = 1]− Pr [A(λ, pk, evk, c1) = 1]| ≤ negl(λ)

where the probability is over (pk, evk, sk)← KeyGen(λ), {cb ← HE.Encpk(b)}b∈{0,1}, and the coins of A.

3.2 The Scheme

Let HE = (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval) be an FHE scheme as defined above.
Also let VC = (KeyGen,ProbGen,Compute,Verify) be a verifiable computation scheme which is correct,
secure, and outsourceable, as defined in Section 2. In particular note that VC needs not to be private, and
that the security is guaranteed in the presence of verification queries.

We now describe a new verifiable computation scheme PVC (for private VC) which uses the above two
tools. PVC = (PKeyGen,PProbGen,PCompute,PVerify) defined as follows.

1. PKeyGen(f, λ)→ (PKP , SKP ): it first runs HE.KeyGen(λ) to generate (pk, sk, evk) for the FHE scheme
HE.
Let evalf be the function that takes as input HE.Encpk(x) and outputs HE.Encpk(f(x)). Given pk, evk this
function is efficiently computable (given that HE is an FHE), therefore we can run KeyGen(evalf , λ)
to generate the PK,SK for VC.
It sets PKP = (PK, pk, evk) and SKP = (PKP , SK, sk).

2. PProbGenSKP
(x)→ (σx, τx): It first computes Cx = HE.Encpk(x), and then it runs ProbGenSK(Cx)

to get (σx, τx)
3. PComputePKP

(σx)→ σy: It runs ComputePK(σx) to compute σy. Note that since we are outsourcing
the function evalf the value σy should be an encoding of Cy = HE.Evalevk(f, Cx) = HE.Encpk(y = f(x))



4. PVerifySKP
(τx, σy)→ (acc, y): Run VerifySK(τx, σy) to get (acc, C). If acc = 0 then reject. If acc = 1

then decrypt y = HE.Decsk(C).

Theorem 1. If HE is a semantically secure FHE, and VC is a correct, secure and outsourceable verifiable
computation scheme (as defined in Section 2 i.e. in the presence of verification queries), then PVC is a
correct, secure, outsourceable and private verifiable computation scheme (as defined in Section 2 i.e. in the
presence of verification queries)

Proof. (Sketch) Correctness of PVC follows from the correctness of HE and VC. Similarly the fact that VC
is secure and outsourceable implies the same properties for PVC.

The one thing to argue then is privacy for PVC, and we prove that from the semantic security of HE. In
other words we show that if an adversary A can learn any information about the input x to PProbGen in
PVC then we can use A to break the semantic security of HE.

Let us assume then that there exists A, f such that

Pr[ExpPrivA [VC, f, λ] = 1] ≥ ζ

where ζ = ζ(λ) is non-negligible in λ. We build a simulator S which is allowed to query A as an oracle and
such that ∣∣Pr

[
SA(λ, pk, evk, c0) = 1

]
− Pr

[
SA(λ, pk, evk, c1) = 1

]∣∣ ≥ ζ
where the probability is over (pk, evk, sk)← KeyGen(λ), {cb ← HE.Encpk(b)}b∈{0,1}, and the coins of S.

On input pk, evk, cb the simulator S runs as follows:

1. Run KeyGen(evalf , λ) to generate the PK,SK for VC on evalf . It sets PKP = (PK, pk, evk).
2. Run A on PKP . Remember that in this step A is allowed two types of queries:

– Queries to PProbGen which S can answer since it knows the public key pk of HE and the secret
key SK of VC

– Queries to PVerify which S can also answer since it knows the secret key SK of VC. Remember
that PVerify returns only the acceptance/rejection bit acc which S can calculate using only SK.
The secret key sk of HE (which S does not have) is not needed to answer these queries.

3. At some point A outputs two inputs x0 6= x1. Let us assume for now that x0 and x1 differ in a single
bit, for example the first. We will show later how to get rid of this assumption by a standard hybrid
argument. So let’s assume that x0 starts with 0 and x1 starts with 1.
S will construct Cxb

by concatenating cb with the encryptions of all the other bits (which S can compute
using pk).
S will finish to run ProbGen on xb, to compute σxb

, τxb
and returns σxb

to A. This part requires only
knowledge of SK so S can simulate it.

4. A will continue running and making queries to PProbGen and PVerify which the simulator will be
able to answer as above.

5. Finally A outputs a bit b̂ which is equal to b with probability 1/2 + ζ. S outputs the same bit, and
therefore S will also be correct with probability 1/2 + ζ.

To finish the proof we need to remove the assumption we made on the behavior of A in step 3. Let us as-
sume that x0, x1 ∈ {0, 1}n and set xb = [xb,1xb,2 . . . xb,n]. Define the string x(j) = [x1,1x1,2 . . . x1,jx0,j+1 . . . x0,n],
so x(0) = x0 and x(n) = x1.

If A distinguishes between x0 and x1 with advantage ζ then by a standard hybrid argument there must
exists a j such that A distinguishes between x(j−1) and x(j) with advantage at least ζ/n. Notice that in order
to be the case we must have x0,j 6= x1,j . The proof then continues with S guessing the bit j and placing the
challenge ciphertext cb in position j of the ciphertext Cxb

sent to A. S will still guess the correct bit with
non-negligible advantage.

3.3 Hiding the Function

We point out that by outsourcing the universal circuit computing functions of a given size, we can hide not
only the input data, but also the function being computed, so our scheme can be compiled into one which is
also function private, according to definition 4, and without a significant loss in performance.



4 Ad-Hoc Solutions

In this section we describe two more efficient solutions, in case the function to evaluate on the dataset is of
a specific form (linear functions and evaluations of polynomials).

4.1 Tools

For our concrete construction we use the somewhat homomorphic encryption scheme by Brakerski and
Vaikuntanathan described in [BV11], based on the hardness of the polynomial learning with error problem,
and we specialize it to evaluate circuits of multiplicative depth one on encrypted data. The specifications of
the encryption scheme are as follows:

– BV.ParamGen(λ): The message space M is the ring Rp := Fp[X]/F (X), where F (X) is a polynomial in
Fp[X] of degree n. In the following we choose p and F (X) such that F (X) is irreducible in Fp[X], so
that Rp is isomorphic to Fpn (as a field). Operations in M are denoted with + for addition and · for
polynomial multiplication modulo F (X). The homomorphic properties of the scheme are over Rp. We
choose to represent elements in M as elements in Zn with infinity norm bounded by p/2.
The ciphertext space is determined as follows: pick a large integer q which is co-prime to p (for the choice
of q we rely on the analysis done in [BV11], Section 2), and define Rq := Fq[X]/F (X). In practice, we
consider plaintexts to be in Rq, when performing encryption and decryption (so computing arbitrary
circuits on encrypted data may cause overflows and yield incorrect decryption). The ciphertext space C
is defined as C := R3

q , and operations on ciphertexts are defined as follows:

(a0, a1, a2) + (b0, b1, b2) := (a0 + b0, a1 + b1, a2 + b2),

(a0, a1, 0) � (b0, b1, 0) := (a0 · b0, a1 · b0 + b1 · a0, a1 · b1).

Notice that � (multiplication of ciphertexts) is defined only for ciphertexts where the last entry equals
zero.
Finally, the algorithm defines DZn,σ, the discrete Gaussian with parameter σ: it is the random variable

over Zn obtained from sampling x ∈ Rn with probability e−π·‖x‖2/σ
2

and then rounding at the nearest
lattice point. Again, we refer to [BV11] for the specific choice of σ. In the following, we assume that the
parameters generated here are inputs of any subsequent algorithm.

– BV.KeyGen()→ (pk, sk): The key-generation algorithm samples a← Rq, and s, e← DZn,σ. Considering
s and e as elements in Rq, it computes b← a · s+ p · e, and sets sk← s and pk← (a, b).

– BV.Encpk(m, r) → (c0, c1, c2): Given m ∈ Rp, and r ←
(
DZ3·n,σ mod q

)
, the message m is parsed as an

element in Rq with infinity norm bounded by p/2, and the randomness r is parsed as r = (u, v, w) ∈ R3
q .

The output is c = (c0, c1, 0) ∈ R3
q , where c0 ← b · v + p · w +m and c1 ← a · v + p · u.

– BV.Decsk(c0, c1, c2) → t mod p: The algorithm computes an element t ∈ Rq as t ← c0 − s · c1 − s2 · c2.
The output is then t mod p, which is interpreted as an element in Rp.

Lemma 1 ([BV11], Lemma 4; and [BV11], Theorem 2).
For D = 1, 2, the public-key encryption scheme (BV.ParamGen,BV.KeyGen,BV.Enc,BV.Dec), specified above,
is semantically secure under the PLWE assumption, and it allows the computation of any polynomial f of
degree D such that

‖f‖∞ ·
(
p · σ · n1.5

)D ≤ q/2.
We also assume the existence of a keyed pseudorandom function PRF with image in Rq.

4.2 Linear Combinations

We are now ready to show a scheme for delegated computation on encrypted data, in case the secret function
to be computed is linear and over Rp, i.e. f is described by values a0, . . . ad ∈ Rp, the input is represented

by weights w0, . . . , wd ∈ Rp, and the output is
∑d
i=0 ai · wi.

The scheme VCLC is specified as follows:



1. KeyGen(f = a0, . . . ad, λ)→ (PK,SK):
– it runs BV.ParamGen(λ), (pk, sk)← BV.KeyGen(),
– it samples a uniform MAC key c← Rq, and a key k for PRF,
– it computes ri ← PRFk(2 · i), si ← PRFk(2 · i+ 1), it defines ρi ← (ri, si, 0),
– it computes αi ← BV.Encpk(ai), and τi ← c · αi + ρi,
– it sets PK = (pk, α0, τ0, . . . , αd, τd) and SK = (pk, sk, c, k).

2. ProbGenSK(x = w0, . . . , wd)→ σx, τx: for i = 0, . . . , d
– if σx, τx are not yet defined, it sets σx as a vector with zero entries, and τx ← 0 ∈ R3

q ,
– it computes ωi ← BV.Encpk(wi),
– it computes ri ← PRFk(2·i), si ← PRFk(2·i+1), it defines ρi ← (ri, si, 0), as in the keygen algorithm,
– it sets σx = σx, ωi,
– it sets τx = τx + ρi � ωi.

3. ComputePK(σx = ω0, . . . , ωd)→ σy:

– it computes α←
∑d
i=0 αi � ωi, and τ ←

∑d
i=0 τi � ωi,

– sets σy = α, τ
4. VerifySK(τx, σy = α, τ) → (acc, a′): If τ 6= c · α + τx, it rejects. Otherwise, it accepts and computes
a′ ← BV.Decsk(α).

Theorem 2. The scheme VCLC is correct, adaptively secure, function private, input private.

Proof. For correctness, if both the client and the server are honest, the client accepts; using the fact that �
distributes over + in the co-domain of BV.Encpk, the following holds:

τ =

d∑
i=0

τi � ωi =

d∑
i=0

(c · αi + ρi) � ωi =

d∑
i=0

c · αi � ωi +

d∑
i=0

ρi � ωi = c · α+ τx,

so the check at the verification step passes. Moreover, the output a′ is the desired one, since it equals:

BV.Decsk(α) = BV.Decsk

(
d∑

i=0

αi � ωi

)
= BV.Decsk

(
d∑

i=0

BV.Encpk(ai) � BV.Encpk(wi)

)
=

d∑
i=0

ai · wi.

For adaptive security, we show firstly that the scheme is split: define PKE = SKE = pk, and notice that
σx consists of the ωi = BV.Encpk(wi), which are independent of f . Therefore, in the security experiment the
challenger can answer the encoding queries before the adversary choses the function to attack on. At that
point the challenger computes the remaining part of the public and secret key. Now, notice that the value c
is statistically hidden to the server, because the entries of τi that depend on c (i.e. the first and the second
entry) are masked by the corresponding uniform entry of ρi (resp. ri, si). Now, for the sake of contradiction,
suppose that a server could provide α′, τ ′ with α′ 6= α such that the verification passes. This would imply
that τ ′ = c · α′ +

∑d
i=0 ρi � ωi, and that τ ′ − τ = c · (α′ − α). Therefore, the server could compute c in

polynomial time, by dividing (as an operation in Rq) the jth coordinate of τ ′ − τ by the jth coordinate of
α′ − α. Though, computing c in polynomial time is impossible, as argued earlier, so a cheating server would
succeed with negligible probability.

To show function privacy we argue that a simulator that does not know the function (or the secret key
for the encryption scheme) can provide a transcript that is computationally close to the one provided by the
honest client, therefore there is no information of the function revealed to the server. The simulator runs as
follows: It runs KeyGen honestly, but for all i it sets αi = BV.Encpk(0), instead. It runs ProbGen honestly,
(which is possible since SK is independent of the function), and finally it runs Verify honestly (and does
not need to perform the final decryption step). Since the encryption scheme is semantically secure, by a
standard hybrid argument the server is provided with a transcript that is computationally indistinguishable
from the honest one.

Input privacy can be argued in a similar way: it is guaranteed by the fact that the verification check is
independent of the encoded values (therefore it does not reveal any information on the encrypted values)
and all the other information about the secret weights given to the server is encrypted using a semantically
secure encryption scheme, therefore a server cannot distinguish between a run with the real input and a run
with dummy input.



In the above scheme we assume that the input to ProbGen is given in the so-called “streaming model”,
i.e. the wi are generated in rounds and at each round ProbGen is called: this means that the vector σx is
created at round 0 and sent to the server; then, at round i, it is updated by adding ωi and ωi is sent to the
server. Analogously, τx is created and stored by the client at round 0 and at round i it is updated by adding
ρi � ωi. This allows the client to work with a short memory: indeed creating and sending the ωi requires
O(log(q)) storage, as well as creating, updating and storing τx.

Moreover, as pointed out in the introduction, in case of a sparse linear combination, the client has two
choices for the communication complexity: he can pay O(d̃) by simply sending the non-zero weights encrypted
(and their indices); however, he reveals the indices used in the linear combination (though not their values).
If the client wants to completely hide the weights then it must pay O(d) to send a ciphertext ωi for each
index, as in the standard scheme.

4.3 Polynomials

We now look at a more specific task, which is to perform the verifiable computation of functions for which
wi = xi for a value x ∈ Fp that does not need to be private.

Our solution is given by “blending” our scheme VCLC with the result in [BGV11], as follows: we modify
the scheme in [BGV11] by assuming that the values ti are authentications of the ciphertexts αi, and that
the verification check is carried out on the ciphertext α.

We use, again, the scheme in [BV11], but in this case we do not need its full power: we only make
use of its additive homomorphic property, and apply the technique of [BGV11] on each component of the
ciphertexts αi, and verify the ciphertext output by the server component-wise. Again, acceptance or rejection
by the client depends only on the correct execution by the server of the computation assigned to it over the
ciphertexts. No useful decryption query is performed.

To be more formal, we assume that (as in [BGV11]) the client and the server agreed on a group G of
prime order q in which the discrete logarithm problem is hard, and on a generator g for G.5

Now, as in the previous section, we use the [BV11] scheme, but in this case we only need its addi-
tively homomorphic property, so the ciphertext space is now (Rq)

2 (the last coordinate of the ciphertexts
is superfluous), which, as an additive group is isomorphic to (Fq)2n. This observation is useful, because it
allows to “encode” elements in the ambient space of the ciphertexts as discrete logarithms in G, as follows:
for ζ ∈ (Fq)2n, we define gζ := (gζ1 , . . . , gζ2n) ∈ G2n. With this notation, we extend the operation of G
coordinate-wise to G2n. This is the main observation to implant the solution of [BGV11] into our scheme.

Before the specifications of the scheme, we shall make a final observation: due to the noise growth of the
[BV11] scheme summarized in Theorem 1 (for D = 1), in order to achieve correctness of the result to be
decoded by the client, we need q larger than 2 · pd+1 · σ · n1.5 (the factor pd on the right-hand side of the
inequality is an upper bound on the norm of xd).

The scheme VCpoly is specified as follows:

1. KeyGen(f = a0, . . . , ad, λ)→ (PK,SK):
– it runs BV.ParamGen(λ), (pk, sk)← BV.KeyGen(),
– it specifies a group (G, ·) of order q and a generator g,
– it samples a uniform MAC key c← Fq, uniform κ, ζ ← (Rq)

2,
– it computes αi ← BV.Encpk(ai), τi ← c · αi + ζ∗Fq i ∗Fq κ,6 Gτ,i ← gτi ,
– it sets PK = (pk, G, g, α0, Gτ,0, . . . , αd, Gτ,d) and SK = (pk, G, g, sk, c, ζ, κ).

2. ProbGenSK(x)→ σx, τx:
– it sets σx = x, and τx = x.

3. ComputePK(σx = x)→ σy:

– it computes α←
∑d
i=0 x

i · αi, and Gτ ←
∏d
i=0G

xi

τ,i,
– sets σy = α,Gτ

5 In this section q is assumed to be a prime, while it was previously only assumed to be an integer co-prime to p.
6 For any pair of vectors η, θ over Fq, we denote by η ∗Fq θ the Schur (or Hadamard, or coordinate-wise) prouct of η

with θ (over Fq), that is the vector whose ith coordinate equals ηi · θi. Notice that (Rq)2 is a vector space over Fq

– indeed (Rq)2 ∼= F2n
q – so the operation is well defined for elements in (Rq)2.



4. VerifySK(σy = α,Gτ , τx = x)→ (acc, a′):
– it computes the element µ in (Rq)

2 ∼= F2·n
q such that for j = 1, . . . , 2 · n:

µj =
(
(x · ζj)d+1 − 1

)
· (x · ζj − 1)

−1
,

– If Gτ 6= (gα)
c · (gκ)

∗Fqµ, it rejects. Otherwise, it accepts and computes a′ ← BV.Decsk(α).

Theorem 3. The scheme VCpoly is correct, adaptively secure, and function private.

Proof. For correctness, when both the client and the server are honest the verification step passes, because
of the following reasoning. Notice that:

Gτ =

d∏
i=0

Gx
i

τ,i =

d∏
i=0

(gτi)
xi

= g
∑d

i=0 τi·x
i

= g
∑d

i=0

(
c·αi+ζ

∗Fq i∗Fqκ
)
·xi

=

= gc·
∑d

i=0 αi·xi+
∑d

i=0 ζ
∗Fq i∗Fqκ·x

i

= gc·α · gκ∗Fq
∑d

i=0(ζ·x)
∗Fq i

Also for j = 1, . . . , 2 · n:(
d∑
i=0

(ζ · x)
∗Fq i

)
j

=

d∑
i=0

(ζj · x)
i

=

d∑
i=0

(
(x · ζj)d+1 − 1

)
· (x · ζj − 1)

−1
=

d∑
i=0

µj ,

so
∑d
i=0 (ζ · x)

∗Fq i = µ. Therefore

gc·α · gκ∗Fq
∑d

i=0(ζ·x)
∗Fq i

= gc·α · gκ∗Fqµ = (gα)
c · (gκ)

∗Fqµ .

In the above notice that all the values written in Greek letters are elements in (Rq)
2 (therefore vectors over

Fq), while all the values in Latin letters are scalars in Fq. This is important since all the sums and products
at the exponent should be “compatible” with the group structure of G, which is of order q. In other words,
the above formulas make sense because the additive group associated with each value at the exponent is
(Fq,+), which is isomorphic to (G, ·).
Moreover, the client retrieves the correct value of the computation, because

BV.Decsk(α) = BV.Decsk

(
d∑
i=0

αi · xi
)

= BV.Decsk

(
d∑
i=0

BV.Encpk(ai) · xi
)

=

d∑
i=0

ai · xi.

Notice that the bound on x makes the last equality hold, since that bound respects the inequality in Theorem
1 (for D = 1).

For adaptive security, notice that σx = x, therefore the scheme is split. Moreover, its adaptive security
property reduces to standard security, as the adversary has full knowledge on the encodings that can be
queried in the adaptive game, even before seeing the public key of the verification scheme. Regular security
can be proven in a game-based fashion, using a similar approach to the one in [BGV11], Section 5.2. We give
a sketch here:

– Define Game0 as the experiment in Definition 1.
– Define Game1 as Game1, but in which in the verification the value µ is computed via µ←

∑d
i=0 (ζ · x)

∗Fq i.
– Define Game2 as Game1, but replacing the value ζ∗Fq i ∗Fq

κ by a uniform νi ← (Rq)
2.

As in [BGV11], the change between Game1 and Game0 is merely syntactical, so the advantage of a cheating
server is the same. Moreover, the advantage of a cheating prover in Game2 is negligibly close to the one in

Game1: we will show it by proving that the function ϕκ,ζ : i 7→ gζ
∗Fq i∗Fqκ is a pseudorandom function (based on

the Strong Diffie-Helmann assumption), for uniform κ, ζ ∈ (Rq)
2. Notice first that ϕκ,ζ outputs vectors (over

Fq) whose entries are independently distributed, as (ϕκ,ζ(i))j = gζ
i
j ·κj depends only on the jth coordinate

of ζ and κ, whose respective coordinates are sampled independently. Therefore, the pseudorandomness of
ϕκ,ζ is granted by a standard hybrid argument, given that (ϕκ,ζ(·))j is an algebraic pseudorandom function,
based on the Strong Diffie-Helmann assumption.

Function privacy is guaranteed by a reduction to the semantic security of the scheme, similar to the
reduction done in the proof of Theorem 2.



A possible application of the above protocol is to perform keyword search: specifically, let F = (W1, . . . ,Wd)
be a file consisting of d words Wi. Let H be an injective function that maps “searchable” words Wj to in-

tegers of norm bounded by B. A client can encode F as the polynomial
∏d
i=0 (X −H(Wi)) and use its

coefficients as the input to our protocol. Notice that this polynomial evaluates to zero only at those points
that correspond (via H) to words in F , so in order to search for a word W the client can set x← H(W ) and
send it to the server which performs the evaluation of the polynomial. When the client decodes the answer
y, after the verification, it interprets y = 0 as “W is in F” and y 6= 0 as “W is not in F”.
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[Bab85] László Babai. Trading group theory for randomness. In Robert Sedgewick, editor, STOC, pages 421–429.
ACM, 1985.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew K. Franklin, editor,
CRYPTO, volume 3152 of Lecture Notes in Computer Science, pages 41–55. Springer, 2004.

[BCCT12a] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resistance to
succinct non-interactive arguments of knowledge, and back again. In Goldwasser [Gol12], pages 326–349.

[BCCT12b] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and
bootstrapping for snarks and proof-carrying data. IACR Cryptology ePrint Archive, 2012.
http://eprint.iacr.org/2012/095.
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