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Abstract. We study the task of efficient verifiable delegation of computation on encrypted data.
First, we improve previous definitions in order to tolerate adversaries that learn whether or not clients
accept the result of a delegated computation. Then, in this strong model, we show a scheme for arbitrary
computations, and we propose highly efficient schemes for delegation of various classes of functions, such
as linear combinations, high-degree univariate polynomials, and multivariate quadratic polynomials.
Notably, the latter class includes many useful statistics. Using our solution, a client can store a large
encrypted dataset with a server, query statistics over this data, and receive encrypted results that can
be efficiently verified and decrypted.
As a key contribution for the efficiency of our schemes, we develop a novel homomorphic hashing
technique that allows us to efficiently authenticate computations, at the same cost as if the data
were in the clear, avoiding a 104 overhead, which would occur with a naive approach. We confirm
our theoretical analysis with extensive implementation tests that show the practical feasibility of our
schemes.



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Other Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 A Generic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 The Generic Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1 The BGV Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Homomorphic Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Amortized closed-form Efficient Pseudorandom Functions . . . . . . . . . . . . . . . . . . . . . . . 18

5 Computing Multi-Variate Polynomials of Degree 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6 Computing Polynomials of Large Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7 Computing Linear Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8 Computing Linear Functions over the ring Z2k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

9.1 Statistics on Encrypted Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.2 Distance and Correlation Measures on Encrypted Data Sets . . . . . . . . . . . . . . . . . . . . . 35
9.3 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

10 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10.2 Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



1 Introduction

Can an outside party compute for us, without learning our private data? Can we efficiently check
that it performed the computation correctly? These are some central questions related to the privacy
and the security of cloud computing, a paradigm where businesses buy computational time from a
service, rather than purchase and maintain their own resources. Both questions have a long research
history.

Computing arbitrary functions on encrypted data was a research interest recognized very early
by cryptographers [50], and it remained open until Gentry’s construction of the first fully homo-
morphic encryption (FHE) scheme [28]. Gentry’s work revealed a new set of techniques that were
immediately used for many more efficient schemes [29, 53, 30, 19, 18, 31, 17]; today we seem to stand
at the verge of having FHE schemes which can be used in practice.

Efficient verification of arbitrarily complex computations was the underlying goal of interactive
proofs [3, 36], where a powerful (e.g. super-polynomial) prover can (probabilistically) convince a
weak (e.g. polynomial) verifier of the truth of statements that the verifier could not compute on its
own. Research on making the verifier as efficient as possible led to the concept of probabilistically
checkable proofs (PCPs) [2, 5, 4], and their cryptographic applications: the arguments of Kilian [41,
42] and Micali’s non-interactive CS Proofs [46].

The application to cloud computing has rekindled attention to this area, particularly in the
search for protocols where arbitrary poly-time (as opposed to superpoly-time) computations can
be efficiently verified by a linear (or quasi-linear) verifier, and performed by a prover without too
much overhead. Starting with the work on proofs for muggles [34], a line of research revisited and
“scaled down” the PCP machinery [35, 12, 13]. Another line of work explored alternative ways of
arithmetizing computations to construct efficient proofs [37, 44, 26]. Yet another approach used FHE
as a tool to build efficient verification of arbitrary computations [25, 1, 22]. Several implementational
efforts [23, 55, 47, 10] show that in this area, too, we are on the verge of achieving practical efficiency,
with the quadratic span program (QSP) techniques of [26, 47] showing particular promise.

1.1 Our Contribution

Given the practical and theoretical relevance of this topic, as well as the level of maturity of the
field, it is somewhat surprising to notice that most of the research was focused on solving either
one of the two main questions. There are many results about finding efficient FHE schemes, and
therefore efficient computation on encrypted data, but without verification of its correctness. On
the other hand, the works on verifying computation mostly focused on the case where the data is in
the clear or in a restricted model for privacy – a notable exception is the construction of Goldwasser
et al. [33], based on functional encryption.

The protocols for verifiable computation (VC) in [25, 22, 1] use FHE as a tool for verifiability,
and almost as a by-product, they achieve data privacy as well, but in a restricted sense: namely,
only if the client’s acceptance bit is kept hidden from the server. Also, in [25] only the topology of
the function is revealed [9]. In [25], a formal definition of all the properties needed by a VC scheme
is given, including input privacy – in this very weak model in which the server is not allowed to
issue verification queries to the client.

This model is quite restrictive in practice, as the client’s acceptance bit may leak due to multiple
reasons: error messages, protocol termination, recomputation, etc.

To the best of our knowledge, no definition of private and secure outsourced computation in the
presence of verification queries can be found in the literature. We address this somewhat problematic



state of affairs, provide constructions that satisfy the new definitions, and give experimental results
for our schemes. Our contribution, in a list:

1. An upgrade to the definition in [25] that allows verification queries by the adversary, and an
extension of this definition that models adaptive security and function privacy. This is the
strongest possible model in which we can define security.

2. A protocol based on FHE for arbitrary computations.

3. Constructions for specific families of functions to compute: multivariate quadratic polynomials,
univariate polynomials of high degree, linear combinations, all on encrypted data (details on
Table 1). Using our schemes a client can outsource the storage of large, privacy-sensitive, data
sets (e.g. location, medical, genomic data) on a server, and ask the server to compute statistics
or distance measures on these data sets, with guarantees of correctness of the computation and
privacy of the data.

4. A key technical contribution is the introduction of a homomorphic hashing technique that
allowed us to obtain improvements of more than four orders of magnitude, compared to a naive
approach.

5. Implementations and performance numbers of our schemes for practical security parameters.

In the following we discuss our contribution and the related work in more in detail.

Our Generic Protocol. Our protocol assumes the existence of an FHE scheme and a not (nec-
essarily) private, but secure VC scheme, e.g. [26]. The basic idea is to encrypt the data x with the
FHE scheme, and to run the VC scheme on the function EvalFHE(f), instead of f , and on input
EncFHE(x) instead of x. This technique prevents the server from using the client as a decryption
oracle for the FHE, since the acceptance bit is determined before decryption, just according to the
correctness of the evaluation of EvalFHE(f).

Ad-Hoc Protocols. We focus on the problem where a client stores a large data set x = (x0, . . . , xt)
on a server and later asks the server to compute functions f over x. Our solutions work in the amor-
tized model in which the client spends a single pre-processing phase whose cost is as running f(x),
and later amortizes this one-time cost over several function evaluations. Moreover, our protocols
work also in the so-called streaming model: clients can process and outsource single data items xi
in a separate fashion. This is desirable for storing applications, since it enables clients to work with
a very small memory, independent of the size of the (possibly huge) data set. As an example, think
of a set of weak devices that read the temperature in given locations, and daily send the data to a
server to store for later analysis (e.g. calculate the mean temperature in a year).

We focus on the case where the data sets consist of elements in a finite field Fp, and the
outsourced functions can be: (1) quadratic multi-variate polynomials, (2) univariate polynomials
of large degree, and (3) linear combinations.

Multi-Variate Quadratic Polynomials. We constructed a VC scheme in the case the client
stores several encrypted data sets at the server, and then asks it to compute a quadratic polynomial
f on any of the outsourced sets. In our solution, after a single pre-processing for every f , the client
can verify results in constant time. Moreover, our scheme achieves input and output privacy.

In terms of applications, this scheme allows to compute several statistics (average, variance,
covariance, RMS, linear regression, correlation coefficient, and many more) on remotely stored data
sets in a private and verifiable manner. We also consider the application in which a client stores a
large matrix X on the server, and then asks to compute a distance measure (e.g. Euclidean distance)
between a given vector y and any row of X. We propose a variant of our scheme that is function
private for a restricted class of quadratic polynomials (privacy holds only for the coefficients of the



Scheme
Input Function Amort.
Priv. Priv. Verif.

Linear combinations
X X O(t)

t-variables over Fp

Linear combinations
X × O(1)

t-variables over Z2k

Univariate Poly × X O(1)
of degree t over Fp

t-variate Poly
X × O(1)

of degree 2 over Fp

t-variate Restricted Poly
X X O(1)

of degree 2 over Fp

Table 1. Summary of our schemes.

linear terms). Yet, since the above application fits such restriction, we give a solution in which both
X and y are private.

We are not aware of any other existing solution for privately evaluating multivariate quadratic
polynomials, except by instantiating our paradigm with existing tools [18, 6]. Even compared to
these solutions, our experiments show that our ad-hoc protocol improves significantly: for instance,
in our scheme the computation of the variance function at the server is more than 104 times faster!
If we consider cloud computing, in which clients pay for the server’s CPU cycles, such improvement
leads to worthwhile savings.

Polynomials of High Degree. We also constructed a VC scheme for a setting which is comple-
mentary to the one above. Namely, we think of x as the coefficients of a uni-variate polynomial
Px(z) =

∑t
j=0 xiz

i of degree t. With our protocol the client stores the large polynomial Enc(Px)
at the server, and then asks it to compute Enc(Px(z)) on many different points z (provided in the
clear). Here, after the single preprocessing to outsource Px, the client can verify all the computations
in constant time. Moreover, our scheme is function private as Px is encrypted.

In terms of applications, we discuss how this solution can be used to outsource the Discrete
Fourier Transform computation on encrypted vectors.

Linear Combinations. Finally, we considered the task of outsourcing linear combinations. For
this we constructed a very clean and efficient solution which provides both input and function
privacy, but has no efficient verification. However, the client can work with a very short memory in
the streaming model. We note that a solution with efficient verification (achieving both input and
function privacy) can be obtained by using our variant scheme for quadratic polynomials. Compared
to the latter, the advantage of our dedicated scheme is efficiency: we achieve verifiability by using
information-theoretic techniques that do not require expensive, cryptographic computations (e.g.
over bilinear groups).

An Overview of Our Techniques. To design our protocols we follow the blueprint of our generic
scheme and we develop additional techniques that provide significant efficiency improvements. Our
basic idea is to encrypt the data with a somewhat homomorphic encryption scheme (for privacy),
and to add an authentication mechanism on top of the ciphertexts (for security). For the encryption,
we chose a simplified version of the scheme by Brakerski, Gentry, and Vaikuntanathan (BGV) [18].
The server stores µ = (µ0, . . . , µt) where µi is a BGV encryption of xi. For authentication, we
rely on homomorphic MACs [27]. In a nutshell, this primitive enables a client to use a secret key



to authenticate a set of messages m1, . . . ,mt by producing corresponding tags σ1, . . . , σt. Later,
given such tags, anyone (without any secret key) can produce a tag σ that authenticates m =
f(m1, . . . ,mt) as the output of f on the previously authenticated inputs. Interestingly, verification
can be performed without knowing the original messages, and recently proposed schemes [6] allow
to verify more efficiently than running f . The generic idea for our schemes is to generate a MAC
σi for every ciphertext µi, and then use the homomorphic property of the MAC to authenticate
the BGV homomorphic evaluation. While this idea may work for appropriate choices of the MAC
scheme (e.g. [6]), we note that BGV ciphertexts consist of several components over a field Fq: in

detail, if f : Ftp → Fp is the desired function, the BGV evaluation circuit is a function f̂ : F2nt
q →

F3n
q . We improve this situation using our key technical contribution: homomorphic hash functions

Hκ that allow to compress a BGV ciphertext into a single Fq-component, while preserving the

homomorphic properties, i.e. f(Hκ(µ1), . . . ,Hκ(µt)) = Hκ(f̂(µ1, . . . , µt)). By applying a MAC on
top of the hashed ciphertexts, we save at least a factor of 3n in all operations (e.g. input outsourcing,
computation, verification). Considering that for security reasons (and technical details discussed
later) n can be as large as 5000, applying the homomorphic hash leads to schemes that are up to
four orders of magnitude faster. Compare the last two columns of Table 2 for the concrete example
of computing the variance of 1000 items.

Without Ours Naive
Privacy [6] (Sec.5) Approach

Server Computation 0.98sec 1.11sec 15210.61sec
Client Verification 0.21ms 0.42ms 3316.63ms

Table 2. Comparision of the amortized costs for calculating the variance in a database of t = 1000 entries. Security
in the second and third column is 80bit.

Experiments. We implemented the above solutions, and tested their practical performances. Re-
markably, all our protocols run considerably fast. See section 10 for details.

An interesting point is that the cost (in terms of CPU time) of adding privacy to verifiability is
relatively small. As an example, for 80bit security, scheme in section 5: on the server side, the total
execution time of any operation, is between 1.1 and 2.2 times the execution time for authentication
operations only (i.e. excluding encryptions, FHE evaluations, etc. from the total cost), depending
on the particular function. The highest privacy cost (defined as: total execution time over authenti-
cation time, as above), 2.9, occurs in one-time operations: encrypting and authenticating the data
when loading it into the server. Finally, our verification algorithm has a privacy cost of 1.9×, due
to decryption of the result. Compare the first two columns of Table 2 for a concrete example, and
see Table 4 for more details. Notice that our timing for authentication only is comparable with the
timing of [6] (adapted with a secure pairing).

Finally, we point out that, even if minimal, the privacy overhead can be mitigated by using
the batching technique of BGV: for 80bit (resp. 128 bit) security we could encrypt 165 (resp. 275)
32bit plaintext items in a single ciphertext. This means the amortized cost (per plaintext item) of
our scheme is actually better than [6].

1.2 Other Related Work

Generic Protocols. Another generic protocol for private and verifiable outsourced computation
appears in [33], based on functional encryption (FE). In the introduction of [33] it is shown how to



use an FE scheme to construct a VC scheme that operates on encrypted inputs and is secure even
in the presence of verification queries; in particular it is publicly verifiable – anybody can verify
the correctness of the computation – and this property is achieved using an idea that originates in
[48], for the case of attribute-based encryption.

We point out that the above construction is only sketched in [33], together with an intuitive
motivation for its security, but no formal definition or proof is given. When one formally analyzes
the protocol in [33] in light of our definition the following issues come up.

– As discussed in [16], a simulation-based definition of security for FE cannot be achieved in
general in an “adaptive” model in which the adversary chooses the function f to be evaluated
after seeing the ciphertext encoding x. It appears that this limitation might be inherited by the
FE-based verifiable computation in [33], though the situation is far from clear. Our security def-
inition is a game-based one, but the security proof might require the FE tool to be simulatable.
A proof of the [33] protocol in this model is important, since in many cloud computing appli-
cation the data might sit encrypted on a cloud server, before any processing is performed on it.
In contrast, we can provably show that our proposed protocol does not have this limitation;

– Additionally, the protocol in [33] only achieves selective security (the adversary has to commit in
advance to the input value on which it wants to cheat), essentially because known constructions
of FE [33, 24] achieve only selective security against poly-time adversaries, and full security
can be obtained at the cost of assuming security against sub-exponential adversaries: a much
stronger assumption. Our protocol has the advantage of being full secure against poly-time
adversaries.

– Finally, the scheme in [33] intrinsically works for binary functions. While this is sufficient in
theory, in practice it requires the overhead of working bit-by-bit on the function output. Our
protocol is more versatile and potentially more efficient, since it can handle arithmetic circuits
if the underlying FHE and VC schemes can (several FHE schemes work over arithmetic circuits,
and the QSP/QAP approach in [26] yields an efficient VC over arithmetic circuits).

An issue on the security of the scheme in [25] was noted by Bellare et al. in [8] where the authors
investigate the notion of adaptive garbling schemes, and show that under the existence of these
schemes (realized later in [7]) the construction of [25] becomes secure in the presence of verification
queries. Compared to [8], we fully formalize the notion of security in the presence of verification
queries and, in particular, propose a stronger notion of adaptive security that allows the adversary
to obtain encodings of the input even before choosing the function.

Ad-Hoc Protocols. The task of evaluating univariate polynomials of large degree was earlier con-
sidered in [11]. However, in that protocol, when the polynomial is encrypted, the client’s acceptance
bit depends on the decrypted value, which creates the opportunity for a verification query attack.
In contrast, our solution (which builds on [11] in a slightly different way) enjoys security in the
stronger model where verification queries are allowed.

In [43] Libert et al. propose a protocol for the evaluation of linear combinations over encrypted
data using additively homomorphic encryption and structure-preserving linearly homomorphic sig-
natures. However, their protocol is restrictive, since the linear combinations have to reside in a very
small range in order for the client to retrieve the correct result: the client’s decryption consists in
solving discrete log, by which the exponents must be small. Compared to this work, our solutions
for linear combinations can support large domains and additionally provide function privacy.

The task of verifying computations on encrypted data has also been considered in [39, 21] via
the notion of homomorphic authenticated encryption. In a nutshell, this primitive enables a client
to encrypt a set of data using a secret key in such a way that anyone can then execute functions on



this data obtaining encrypted results whose correctness can be verified. In particular, [39] proposes
a construction for the evaluation of low-degree polynomials which is secretly verifiable, while [21]
proposes a scheme for linear functions that achieves public verifiability. However, we note that both
these constructions [39, 21] are not outsourceable, in the sense that verifying each computation is
as expensive as running the delegated function.

2 Problem Definition

We work in the amortized model of [25] where the client runs a one-time expensive phase to
outsource the function f to the server (this phase can cost as much as the computation of f). Later
the client queries the server on (an encrypted form of) input x and receives back (an encryption
of) the value f(x) and a proof of its correctness: this phase should be efficient for the client (ideally
linear in |x|+ |f(x)|).

In [25] the authors give a definition that includes both security (i.e. the client only accepts
correct outputs) and privacy (i.e. the client’s input x is semantically hidden to the server) but
does not allow verification queries. In this section we upgrade the definition by adding verification
queries to it. Moreover, we introduce the concept of adaptive security.

A verifiable computation scheme VC = (KeyGen,ProbGen,Compute,Verify) consists of
the following algorithms:

KeyGen(f, λ)→ (PK,SK): Based on the security parameter λ, the randomized key generation
algorithm generates a public key (that encodes the target function f) which is used by the
server to compute f . It also computes a matching secret key, kept private by the client.

ProbGenSK(x)→ (σx, τx): The problem generation algorithm uses the secret key SK to encode
the input x as a public value σx which is given to the server to compute with, and a secret value
τx which is kept private by the client.

ComputePK(σx)→ σy: Using the client’s public key and the encoded input, the server computes
an encoded version of the function’s output y = f(x).

VerifySK(τx, σy)→ (acc, y): Using the secret key SK and the secret τx, the verification algorithm
converts the server’s output into a bit acc and a string y. If acc = 1 we say the client accepts
y = f(x), if acc = 0 we say the client rejects.

We now recall the three main properties defined in [25] for a verifiable computation scheme:
correctness, security, privacy, and outsourceability, but we define them in the presence of verification
queries by the adversary. Next, we introduce function privacy, that is the ability of a scheme to
hide from the server the function that it needs to compute. Finally we move to adaptive security

A scheme is correct if the problem generation algorithm produces values that allow a honest
server to compute values that will verify successfully and correspond to the evaluation of f on those
inputs. More formally:

Definition 1 (Correctness). A verifiable computation scheme VC is correct if for all f, x: if

– (PK,SK)← KeyGen(f, λ),
– (σx, τx)← ProbGenSK(x), and
– σy ← ComputePK(σx),

then (1, y = f(x))← VerifySK(τx, σy).

For the other notions, we need to define the following oracles.

– PProbGen(x) calls ProbGenSK(x) to obtain (σx, τx) and returns only σx.



– PVerify(τ, σ) returns acc if and only if VerifySK(τ, σ) = (acc, y). In other words, PVerify
is the public acceptance/rejection bit which results from a verification query. When we write
APVerify we mean that A is allowed to query PVerify(τ, ·) where τ can be the secret encoding
of any of the queries made in PProbGen, or also τb in the case of the privacy experiments.

Intuitively, a verifiable computation scheme is secure if a malicious server cannot persuade the
verification algorithm to accept an incorrect output.

Experiment ExpV erifA [VC, f, λ]
(PK,SK)← KeyGen(f, λ);
For i = 1, . . . , ` = poly(λ);

xi ← APVerify(PK, x1, σ1, . . . , xi−1, σi−1);
(σi, τi)← ProbGenSK(xi);

(i, σ̂y)← APVerify(PK, x1, σ1, . . . , x`, σ`);
(âcc, ŷ)← VerifySK(τi, σ̂y)
If âcc = 1 and ŷ 6= f(xi), output ‘1’, else ‘0’;

Essentially, the adversary is given oracle access to generate the encoding of multiple problem
instances, and to check the response of the client on arbitrary “encodings”. The adversary succeeds
if it produces an output that convinces the verification algorithm to accept on the wrong output
value for a given input value. We can now define the security of the system based on the adversary’s
success in the above experiment.

Definition 2 (Security). A verifiable computation scheme VC is secure for a function f , if for
any adversary A running in probabilistic polynomial time,

Pr[ExpV erifA [VC, f, λ] = 1] ≤ negl(λ).

We say that VC is secure if it is secure for every function f .

Input privacy is defined based on a typical indistinguishability argument that guarantees that
no information about the inputs is leaked. Input privacy, of course, immediately yields output
privacy.

Intuitively, a verifiable computation scheme is private when the public outputs of the problem
generation algorithm ProbGen over two different inputs are indistinguishable(i.e., nobody can
decide which encoding is the correct one for a given input). More formally, consider the following
experiment: the adversary is given the public key for the scheme and selects two inputs x0, x1. He
is then given the encoding of a randomly selected one of the two inputs and must guess which one
was encoded. During this process the adversary is allowed to request the encoding of any input he
desires, and also is allowed to make verification queries on any input. The experiment is described
below.

Experiment ExpPrivA [VC, f, λ]
b← {0, 1};
(PK,SK)← KeyGen(f, λ);
(x0, x1)← APVerify,PProbGen(PK)
(σ0, τ0)← ProbGenSK(x0);
(σ1, τ1)← ProbGenSK(x1);

b̂← APVerify,PProbGen(PK, x0, x1, σb)

If b̂ = b, output ‘1’, else ‘0’;



Definition 3 (Privacy). A verifiable computation scheme VC is private for a function f , if for
any adversary A running in probabilistic polynomial time,

Pr[ExpPrivA [VC, f, λ] = 1] ≤ 1

2
+ negl(λ).

Function privacy is the requirement that the public key PK, sampled via (PK,SK)← KeyGen(f, λ),
does not leak information on the encoded function f , even after a polynomial amount of runs of
ProbGenSK on adversarially chosen inputs. More formally, we define function privacy based on
an indistinguishability experiment as follows.

Experiment ExpFPrivA [VC, λ]
(f0, f1)← A(λ);
b← {0, 1};
(PK,SK)← KeyGen(fb, λ);
For i = 1, . . . , ` = poly(λ);

xi ← APVerify(PK, x1, σ1, . . . , xi−1, σi−1);
(σi, τi)← ProbGenSK(xi);

b̂← APVerify(PK, x1, σ1, . . . , x`, σ`);

If b̂ = b, output ‘1’, else ‘0’;

Definition 4 (Function Privacy). A verifiable computation scheme VC is function private, if
for any adversary A running in probabilistic polynomial time,

Pr[ExpFPrivA [VC, λ] = 1] ≤ 1

2
+ negl(λ).

The next property of a verifiable computation scheme is that the time to encode the input and
verify the output must be smaller than the time to compute the function from scratch.

Definition 5 (Outsourceability). A VC can be outsourced if it allows efficient generation and
efficient verification. This implies that for any x and any σy, the time required for ProbGenSK(x)
plus the time required for Verify(σy) is o(T ), where T is the time required to compute f(x).

We now introduce the notion of adaptive security for a verifiable computation scheme. Intuitively,
an adaptively secure scheme is a scheme that is secure even if the adversary chooses f after having
seen many “encodings” σx for adaptively-chosen values x. At first sight, this property is non-trivial
to achieve, since not every scheme allows σx to be computed before choosing f (in particular schemes
based on FE such as [33]). This observation leads us to first define a refined class of schemes, for
which adaptivity is not ruled out by this restriction, and then proceed with the actual definition of
adaptivity.

Definition 6 (Split Scheme). Let VC = (KeyGen,ProbGen,Compute,Verify) be a verifi-
able computation scheme. We say that VC is a split scheme if the following conditions hold:

– There exist PPT algorithms KeyGenE(λ), KeyGenV (f, λ) such that:
if (PK,SK)← KeyGen(f, λ), then
PK = (PKE , PKV ) and SK = (SKE , SKV ),
where KeyGenE(λ)→ (PKE , SKE) and KeyGenV (f, λ, PKE , SKE)→ (PKV , SKV ).

– There exist PPT algorithms ProbGenESKE (x), ProbGenVSKV (x) such that:
if (σx, τx)← ProbGenSKE ,SKV (x), then
σx = σEx ← ProbGenESKE (x) and τx = τVx ← ProbGenVSKV (x).



Notice that for a split scheme one can generate valid values σx for any function f to be delegated
before knowing f , since σx is independent of f . This can be done by running (PKE , SKE) ←
KeyGenE(λ), and setting σx ← ProbGenESKE (x) before knowing f . The validity of this encoding

applies for all keys (PK,SK) = (PKE , PKV , SKE , SKV ) where (PKV , SKV )← KeyGenV (f, λ)
for any f .

We can now describe the experiment that is used to define adaptive security for split schemes.

Experiment ExpAdap−V erifA [VC, λ]

(PKE , SKE)← KeyGenE(λ);
For i = 1, . . . , `′ = poly′(λ):

x′i ← A(PKE , x
′
1, σ
′
1, . . . , x

′
i−1, σ

′
i−1);

σ′i ← ProbGenESKE (x);
f ← A(x′1, σ

′
1, . . . , x

′
`′ , σ

′
`′);

(PKV , SKV )← KeyGenV (f, λ);
(PK,SK)← (PKE , PKV , SKE , SKV );
For i = 1, . . . , ` = poly(λ):

xi ← APVerify(PK, x1, σ1, . . . , xi−1, σi−1);
(σi, τi)← ProbGenSK(xi);

(i, σ̂y)← APVerify(PK, x1, σ1, . . . , x`, σ`);
(âcc, ŷ)← VerifySK(τi, σ̂y);
If âcc = 1 and ŷ 6= f(xi), output ‘1’, else ‘0’.

Definition 7 (Adaptive Security). A split scheme VC is adaptively secure, if for any adversary
A running in probabilistic polynomial time,

Pr[ExpAdap−V erifA [VC, λ] = 1] ≤ negl(λ).

3 A Generic Solution

In this section we describe our generic solution to outsource computation over encrypted data.
As we discussed in the introduction, where we give an intuitive idea about how our scheme

works, we assume the existence of a FHE scheme, and a VC scheme to outsource the computation
of generic functions, secure even in the presence of verification queries. The latter can be achieved
using a variety of schemes, e.g. [26, 35, 12, 13].

Before proceeding with the actual construction, we give a description of the requirements we
ask for an FHE scheme

3.1 Homomorphic Encryption

A fully homomorphic (public-key) encryption (FHE) scheme is a tuple of PPT algorithms
FHE = (FHE.ParamGen,FHE.KeyGen,FHE.Enc,FHE.Dec,FHE.Eval) defined as follows.

FHE.ParamGen(λ). Define the parameters for the scheme, such as plaintext space M, ciphertext
space, keyspace, randomness distributions, etc. The output of ParamGen is assumed to be input
to any subsequent algorithm.

FHE.KeyGen(λ)→ (pk, evk, dk). Output a public encryption key pk, a public evaluation key evk,
and a secret decryption key dk.

FHE.Encpk(m)→ c. Encrypt message m ∈M under public key pk. Outputs ciphertext c.
FHE.Decdk(c)→ b. Decrypt ciphertext c using dk to a plaintext bit m ∈M.



FHE.Evalevk(g, c1, . . . , ct)→ c∗. Given the evaluation key evk, a circuit g : Mt →M, and a set of
t ciphertexts c1, . . . , ct, deterministically compute and output a ciphertext c∗.

An FHE should also satisfy the following properties.

Encryption Correctness. For all m ∈M we have:

Pr
[
FHE.Decdk(FHE.Encpk(m)) = m | (pk, evk, dk)

$← FHE.KeyGen(λ)
]

= 1.

Evaluation Correctness. For (pk, evk, dk)
$← FHE.KeyGen(λ), any ciphertexts c1, . . . , ct such that

FHE.Decdk(ci) = mi ∈M, and any circuit g :Mt →M, we have

FHE.Decdk(FHE.Evalevk(g, c1, . . . , ct)) = g(m1, . . . ,mt).

Succinctness. The ciphertext size is bounded by some fixed polynomial in the security parameter,
and is independent of the size of the evaluated circuit or the number of inputs it takes. I.e. there

exists some polynomial p such that, for any (pk, evk, dk)
$← FHE.KeyGen(λ), the output size of

FHE.Encpk and of Evalevk is bounded by p, for any choice of their inputs.

Semantic Security. An FHE is a semantically secure public-key encryption scheme, where we
consider the evaluation key evk as a part of the public key. I.e. for any PPT attacker A:

|Pr [A(λ, pk, evk, c0) = 1]− Pr [A(λ, pk, evk, c1) = 1]| ≤ negl(λ),

where the probability is over (pk, evk, dk)
$← KeyGen(λ), cb

$← FHE.Encpk(mb),m0,m1
$← M, and

the coins of A.

3.2 The Generic Scheme

Let FHE = (FHE.ParamGen,FHE.KeyGen,FHE.Enc,FHE.Dec,FHE.Eval) be an FHE scheme as de-
fined above. Also let VC = (KeyGen,ProbGen,Compute,Verify) be a VC scheme which is
correct, secure (resp. adaptively secure), and outsourceable, as defined in Section 2. In particu-
lar note that VC does not need to be private, and that the security (resp. adaptive security) is
guaranteed in the presence of verification queries.

We describe a new VC scheme PVC = (PrKeyGen,PrProbGen,PrCompute,PrVerify)
(for private VC) which uses the above two tools as follows.

PrKeyGen(f, λ)→ (PKP , SKP ):
– Run FHE.KeyGen(λ) to generate (pk, dk, evk) for FHE.
– Run KeyGen(evalf , λ) to generate the PK,SK for VC, where evalf is the function that

takes as input FHE.Encpk(x) and outputs FHE.Encpk(f(x)). Given pk, evk this function is
efficiently computable.

– Set PKP = (PK, pk, evk) and SKP = (PKP , SK, dk).
PrProbGenSKP (x)→ (σx, τx):

– Compute Cx = FHE.Encpk(x),
– Run ProbGenSK(Cx) to get (σx, τx).

PrComputePKP (σx) → σy: Run ComputePK(σx) to compute σy. Note that σy is an encoding
of Cy = FHE.Evalevk(f, Cx).

PrVerifySKP (τx, σy) → (acc, y): Run VerifySK(τx, σy) to get (acc, C). If acc = 0, reject. If
acc = 1, decrypt y = FHE.Decdk(C).



Theorem 1. If FHE is a semantically secure FHE, and VC is a correct, secure (resp. adaptively
secure), and outsourceable VC scheme, then PVC is a correct, secure (resp. adaptively secure),
outsourceable, and private VC scheme.

Proof. Correctness of PVC follows from the correctness of FHE and VC. Similarly the fact that VC
is secure (resp. adaptively secure), and outsourceable implies the same properties for PVC.

The one thing to argue then is privacy for PVC, and we prove that from the semantic security
of FHE. In other words we show that if an adversary A can learn any information about the input
x to PrProbGen in PVC then we can use A to break the semantic security of FHE.

Let us assume then that there exists A, f such that

Pr[ExpPrivA [VC, f, λ] = 1] ≥ ζ

where ζ = ζ(λ) is non-negligible in λ. We build a simulator S which is allowed to query A as an
oracle and such that∣∣Pr

[
SA(λ, pk, evk, c0) = 1

]
− Pr

[
SA(λ, pk, evk, c1) = 1

]∣∣ ≥ ζ
where the probability is over (pk, evk, dk)← KeyGen(λ), {cb ← FHE.Encpk(b)}b∈{0,1}, and the coins
of S.

On input pk, evk, cb the simulator S runs as follows:

1. Run KeyGen(evalf , λ) to generate the PK,SK for VC on evalf . It sets PKP = (PK, pk, evk).
2. Run A on PKP . Remember that in this step A is allowed two types of queries:

– Queries to PProbGen which S can answer since it knows the public key pk of FHE and
the secret key SK of VC

– Queries to PVerify which S can also answer since it knows the secret key SK of VC.
Remember that PVerify returns only the acceptance/rejection bit acc which S can calculate
using only SK. The secret key dk of FHE (which S does not have) is not needed to answer
these queries.

3. At some point A outputs two inputs x0 6= x1. Let us assume for now that x0 and x1 differ in
a single bit, for example the first. We will show later how to get rid of this assumption by a
standard hybrid argument. So let’s assume that x0 starts with 0 and x1 starts with 1.
S will construct Cxb by concatenating cb with the encryptions of all the other bits (which S can
compute using pk).
S will finish to run ProbGen on xb, to compute σxb , τxb and returns σxb to A. This part requires
only knowledge of SK so S can simulate it.

4. A will continue running and making queries to PProbGen and PVerify which the simulator
will be able to answer as above.

5. Finally A outputs a bit b̂ which is equal to b with probability 1/2 + ζ. S outputs the same bit,
and therefore S will also be correct with probability 1/2 + ζ.

To finish the proof we need to remove the assumption we made on the behavior of A in step
3. Let us assume that x0, x1 ∈ {0, 1}n and set xb = [xb,1xb,2 . . . xb,n]. Define the string x(j) =
[x1,1x1,2 . . . x1,jx0,j+1 . . . x0,n], so x(0) = x0 and x(n) = x1.

If A distinguishes between x0 and x1 with advantage ζ then by a standard hybrid argument
there must exists a j such that A distinguishes between x(j−1) and x(j) with advantage at least
ζ/n. Notice that in order to be the case we must have x0,j 6= x1,j . The proof then continues with
S guessing the bit j and placing the challenge ciphertext cb in position j of the ciphertext Cxb sent
to A. S will still guess the correct bit with non-negligible advantage.



Security vs Adaptive Security. Notice that a particular instantiation of our generic scheme
is split. For instance, consider the case in which the VC component of our generic solution is
implemented by using a SNARK (e.g. any of the protocols in [13, 26, 47, 10]). In those protocols
basically τx can be empty (as many of those protocols are publicly verifiable). As a consequence
our generic protocol in this case is adaptively secure (the encoding of x is just an FHE encryption
of x, and the secret key SK is the decryption key of the FHE scheme).

Hiding the Function. We point out that by outsourcing the universal circuit computing functions
of a given size, we can hide not only the input data, but also the function being computed, so our
scheme can be compiled into one which is also function private, according to definition 4, and
without a significant loss in performance.

4 Tools

In this section we describe a collection of tools that we will use to design our efficient verifiable
computation protocols for ad-hoc functions. The tools include: an adapted version of the BGV
homomorphic encryption scheme, a new notion and realizations of homomorphic hash functions,
and amortized closed-form efficient pseudorandom functions.

4.1 The BGV Homomorphic Encryption

In this section we describe a stripped down version of FHE scheme by Brakerski, Gentry, and
Vaikuntanathan [18] that we need for our construction. The version below is only somewhat homo-
morphic, and resembles the less recent scheme by Brakerski and Vaikuntanathan [19]. Also, since
we need to evaluate only polynomials of degree at most two, our description does not include the
KeySwitch and ModulusSwitch operations.

BGV.ParamGen(λ). The message space M is the ring Rp := Fp[X]/Φm(X), where Φm(X) is the
mth cyclotomic polynomial in Fp[X], of degree n = Φ(m). Operations inM are denoted with +
for addition and · for polynomial multiplication modulo Φ(X). The homomorphic properties of
the scheme are over Rp. We choose to represent elements in M as elements in Zn with infinity
norm bounded by p/2.

The ciphertext space is described as follows: pick a large q which is co-prime to p (the size of q
can be determined as it is done in [19], section 2), and define Rq := Z/qZ[X]/Φ(X). Ciphertexts
can be thought of as elements in Rq[Y ]: level 1 ciphertexts (those created by the encryption
procedure and eventually manipulated via additive operations only) are of degree 1, while
level 0 ciphertexts (ciphertext manipulated via one multiplication and possibly other different
homomorphic operations) are of degree 2. Operations on ciphertexts are the corresponding ring
operations of Rq[Y ].

(a0 + a1 · Y + a2 · Y 2) + (b0 + b1 · Y + b2 · Y 2) = (a0 + b0 + (a1 + b1) · Y + (a2 + b2) · Y 2)

(a0 + a1 · Y ) · (b0 + b1 · Y ) = (a0 · b0 + (a1 · b0 + b1 · a0) · Y + a1 · b1 · Y 2).

Notice we are interested only in multiplication of ciphertexts of level 1.

Finally, the algorithm defines the following probability distributions:

DZn,σ: the discrete Gaussian with parameter σ: it is the random variable over Zn obtained

from sampling x ∈ Rn with probability e−π·‖x‖2/σ
2

and then rounding at the nearest lattice
point. Again, we refer to [19] for the specific choice of σ.



ZOn: sample a vector x = (x1, . . . , xn) with xi ∈ {−1, 0,+1} and Pr[xi = −1] = 1/4; Pr[xi =
1] = 1/4; Pr[xi = 0] = 1/2.

In the following, we assume that the parameters generated here are inputs of any subsequent
algorithm.

BGV.KeyGen()→ (pk, dk). Sample a
$← Rq, and s, e

$← DZn,σ. Considering s and e as elements in
Rq, compute b← a · s+ p · e, and set dk← s and pk← (a, b).

BGV.Encpk(m, r)→ (c0, c1, c2 = 0). Given m ∈ Rp, and r
$← (ZOn, DZn,σ, DZn,σ), the message m is

parsed as an element in Rq with infinity norm bounded by p/2, and the randomness r is parsed
as r = (u, v, w) ∈ R3

q . The output is c = c0 + c1 · Y ∈ Rq[Y ], where c0 ← b · v + p · w + m and
c1 ← a · v + p · u.

BGV.Decdk(c)→ t mod p. Compute t ∈ Rq as t← c0 − s · c1 − s2 · c2. The output is then t mod p,
which is interpreted as an element in Rp.

Lemma 1 ([19], Lemma 4; and [19], Theorem 2).
For D = 1, 2, the public-key encryption scheme (BGV.ParamGen,BGV.KeyGen,BGV.Enc,BGV.Dec),
specified above, is semantically secure under the PLWE assumption, and it allows the computation
of any polynomial f of degree D such that

‖f‖∞ ·
(
p · σ · n1.5

)D ≤ q/2.
Batching. A nice capability of the BGV encryption scheme, which will be used extensively in our
implementations, is the ability to encrypt many “small” plaintexts (e.g. integers modulo a 32-bit
prime) into the same ciphertext: each small plaintext will then reside in its dedicated “slot” in the
ciphertext. This feature was firstly introduced by Smart and Vercauteren [54], and it is achieved as
follows (see [18, 54] for more details).

Two Lines about Number Theory. Let F ∈ Fp[X] be a monic polynomial of degree n such
that

F (X) =
s∏
i=1

Fi(X),

where Fi is irreducible over Fp and deg(Fi) = n/s =: d for all i. Let Ap := Fp[X]/F . Notice that:

Ap = Fp[X]/F = Fp[X]/(F1, . . . , Fs) ∼= Fp[X]/(F1)× · · · × Fp[X]/(Fs) ∼= Fpd × · · · × Fpd =
(
Fpd
)s
.

In detail, the ring operations over Ap are mapped to coordinate-wise ring operations over (Fpd)s.
Applicability to the Encryption Scheme. Let z be an integer, d = 2z, m = 2 · d, and p be
a prime such that p = 1 mod m. With this choice of parameters, the native plaintext space for
the BGV encryption scheme becomes M = Rp = Fp[X]/Φm(X) = Fp[X]/(Xd + 1). Moreover,
Xd+1 is monic, and it splits over Fp, so Rp ∼= (Fp)d, by the above observation. This means that Rp
can be thought of as an intermediary domain that homomorphically encodes d values in Fp. This
allows to encrypt and perform homomorphic operations on d “small” plaintexts over Fp, by first
encoding the d “small’ plaintexts into Rp and then applying the regular BGV encryption. Visually:

(Fp)d
∼= // Rp

BGV.Encpk// Rq[Y ]
f // Rq[Y ]

BGV.Decsk // Rp
∼= // (Fp)d

(m1, . . . ,md)
� // m � // BGV.Encpk(m) � // f(BGV.Encpk(m)) � // f(m) � // (f(m1), . . . , f(md)).

In the diagram above, mi is said to reside in the ith plaintext slot of the cryptosystem, and d is
the total number of admissible slots.



4.2 Homomorphic Hash Functions

In this section we introduce the notion of homomorphic hash functions and we propose two real-
izations that will be used throughout the paper. Informally, a family of keyed homomorphic hash
functions H with domain X and range Y consists of a tuple of algorithms (H.KeyGen,H,H.Eval)
such that:

– H.KeyGen generates the description of a function HK ,

– H computes the function,

– H.Eval allows to compute over Y.

In our case we are interested in computations of arithmetic circuits, and thus H.Eval allows to
compute additions and multiplications over Y.

In the following we propose a homomorphic hash whose key feature is that it allows to “com-
press” a BGV ciphertext µ ∈ Rq[Y ] into a single entry ν ∈ Z/qZ in such a way that H is a ring
homomorphism, hence H.Eval(f, (H(µ1), . . . ,H(µt)) = H(f(µ1, . . . , µt)). Turning our attention to
security, we show that this first construction is universal one-way. Next, we will show a variant of
this construction that maps into bilinear groups and can be proven collision-resistant.

A Universal One-Way Homomorphic Hash. Let q be a prime and Rq[Y ] = Z/qZ[X,Y ]/Φm(X)
be as in BGV. The family of hash functions (H.KeyGen,H,H.Eval) with domain Rq[Y ] and range
Z/qZ is defined as follows:

H.KeyGen: Pick α
$← Rq and β

$← Z/qZ, and set κ = (α, β).

Hκ(µ): On input µ ∈ Rq[Y ], the function Hα,β evaluates µ at Y = α and then evaluates µ(α) ∈
Rq = Z/qZ[X]/Φ(X) at β ∈ Z/qZ. More explicitly, Hα,β = evβ ◦ evα:

Rq[Y ] = Z/qZ[X,Y ]/Φm(X)
evα //

Hα,β

**
Z/qZ[X]/Φm(X)

evβ // Z/qZ

µ =
2∑
j=0

µjY
j � //

2∑
j=0

µjα
j =

2∑
j=0

n−1∑
i=0

(
µjα

j
)
i
Xi � //

2∑
j=0

n−1∑
i=0

(
µjα

j
)
i
βi.

H.Eval(fg, ν1, ν2): on input two values ν1, ν2 ∈ Z/qZ and an operation fg which is addition + or
multiplication ×, compute fg(ν1, ν2).

Theorem 2. The family of functions H defined above is homomorphic and universal one-way, i.e.,
for all µ 6= µ′:

Pr[Hα,β(µ) = Hα,β(µ′) : α
$← Rq, β

$← Z/qZ] ≤ 2/q2n + n/q

which is negligible for an appropriate choice of q.

Proof. To see the homomorphic property note that since ev is a ring homomorphism and H is a
composition of evα and evβ, then H is a ring homomorphism.

For security, note that from the homomorphic property of H, Hα,β(µ) = Hα,β(µ′) implies
Hα,β(µ− µ′) = 0. Also, since µ 6= µ′, µ− µ′ is a non trivial element in the kernel of Hα,β. Namely,
we obtain a non-zero polynomial ϕ(X,Y ) that evaluates to zero for Y = α and X = β. Over the
random choice of α ∈ Rq and β ∈ Z/qZ, the probability of this event, by a standard argument in
algebra, is bounded by degY (ϕ)/|Rq|+ degX(ϕ)/|Z/qZ| ≤ 2/q2n + n/q, which is negligible. ut



A Collision-Resistant Homomorphic Hash. Notice that the function Hα,β is secure only if the
key α, β is kept secret and the function is used only one time (otherwise information on α and β
is leaked). Below, we show how to obtain a slightly different version of Hα,β which can be proven
collision-resistant at the price of being “somewhat” homomorphic – the homomorphic property
holds only for degree-2 functions. Moreover, in this construction we restrict to the case in which q
is a prime.

Let bgpp = (q,G1,G2,GT , e, g, h) be some bilinear group parameters as described before, and
let Rq[Y ] be as in BGV.

The family of hash functions (Ĥ.KeyGen, Ĥ, Ĥ.Eval) with domain Rq[Y ] and range G1 ×G2 (or
GT ) is as follows:

Ĥ.KeyGen: To sample a member of the family, choose random α
$← Rq and β

$← Fq. Parse α as
(α1, . . . , αn) ∈ Fnq . Next, for i, j = 1, . . . , n k = 0, . . . , n − 1, compute gαi , hαi , gαiαj , hαiαj ,

gαiαjβ
k
, hαiαjβ

k
, and include them in K.

Output K and κ = (α, β).
Ĥ(µ). On input µ ∈ Rq[Y ] such that degY (µ) ≤ 2, the function Ĥ(µ) works as follows.

Let Hα,β be the function defined above. If degY (µ) ≤ 1, then compute (T,U)← (gHα,β(µ), hHα,β(µ)) ∈
G1 ×G2. If degY (µ) = 2, compute e(g, h)Hα,β(µ) ∈ GT .
Note that Ĥ can be computed in two different ways (the first one being computationally more
efficient): (1) by using the secret key κ, or (2) by using the values in the public key K.

Ĥ.Eval(fg, ν1, ν2) We show how to compute degree-2 functions on the outputs of Ĥ in a homomorphic
way. Intuitively speaking, we want to compute degree-2 polynomials f over Fq “in the exponent”.
To this end we rely on that the bilinear groups are isomorphic to Fq and simulate additions via
the group operation and multiplications by using the bilinear pairing.
More precisely, given (T1, U1), (T2, U2) (resp. T̂1, T̂2 ∈ GT ):
– Addition (in the exponent) is performed via (component-wise) group operation, i.e., (T ←
T1 · T2, U ← U1 · U2) (resp. T̂ ← T̂1 · T̂2).

– Multiplication by a constant c ∈ Fq is performed as (T c, U c) (resp. T̂ c).
– Multiplication of two values, is performed with the use of the bilinear pairing: T̂ ← e(T1, U2) ∈

GT .

In the following theorem we show that the function Ĥ described above is homomorphic, and it
is collision-resistant under the `-BDHI assumption which we recall below.

Definition 8 (`-BDHI Assumption [14]). Let G be a bilinear group generator, and let bgpp =

(q,G1,G2,GT , e, g, h)
$← G(1λ). Let z

$← Fq be chosen uniformly at random. We say that the `-BDHI
assumption holds for G if for every PPT adversary A and any ` = poly(λ) the probability

Pr[A(bgpp, g, h, gz, hz, gz
2
, hz

2
, . . . , gz

`
, hz

`
) = e(g, h)1/z] = negl(λ).

Theorem 3. The function Ĥ described above is homomorphic. Furthermore, if the (n + 1)-BDHI

assumption holds for G, then Ĥ is collision-resistant, i.e., for (K,κ)
$← Ĥ.KeyGen

Pr[Ĥ(µ) = Ĥ(µ′) ∧ µ 6= µ′ | (µ, µ′)← A(K)] = negl(λ).

Proof. The homomorphic property easily follows by observing that Ĥ.Eval computes the function
Hα,β in the exponent.

For security, assume for the sake of contradiction that there exists a PPT adversary A such

that Pr[Ĥ(µ) = Ĥ(µ′) : µ 6= µ′, (µ, µ′) ← A(K), (K,κ)
$← Ĥ.KeyGen] is non-negligible. We show



how to build a PPT algorithm B that uses such A to break the (n + 1)-BDHI assumption with
non-negligible probability.
B takes as input the tuple {(gzi , hzi)}n+1

i=1 , and its goal is to compute e(g, h)1/z ∈ GT .

First, B chooses random s, γ1, r1, . . . , γn, rn
$← Fq and simulates K by computing the following

values (for i, j = 1, . . . , n, k = 0, . . . , n− 1):

– gαi = (gz)γigri ,
– gαiαj = (gz

2
)γiγj (gz)γirj+γjrigrirj ,

– gαiαjβ
k

= [(gz
k+2

)γiγj (gz
k+1

)γirj+γjri(gz
k
)rirj ]s

k
,

– gβ
k

= (gz
k
)s
k
.

Respectively, B computes the values hαi , hαiαj and hαiαjβ
k

from the given {hzi}i. This way B
implicitly sets κ = (α, β), with

αi = zγi + ri and β = sz. (1)

Note that from the adversary’s view K, the vector γ, is information-theoretically hidden, i.e.,
γ is uniformly distributed over Fnq .

Next, B runs A on input K and with non-negligible probability obtains µ, µ′ ∈ Rq[Y ] such

that µ 6= µ′ and Ĥ(µ) = Ĥ(µ′). Without loss of generality, assume that degY (µ) = degY (µ′) = 2.
By letting δ = µ − µ′ ∈ Rq[Y ] the above collision means that Ĥ(δ) = e(g, h)Hα,β(δ) = 1 ∈ GT ,
i.e., Hα,β(δ) = 0 mod q. In other words, the (non-zero) polynomial δ evaluates to zero at Y = α,
X = β. Consider the functions α(Z) = Z · γ + r, and β(Z) = s ·Z. By equation 1, we get α(z) = α
and β(z) = β, therefore the following equalities hold:

0 = Hα,β(δ) = δ(X,Y )|Y=α,X=β = δ(X,Y )|Y=α(Z),X=β(Z),Z=z = δ(α(Z), β(Z))|Z=z. (2)

Define ω(Z) = δ(α(Z), β(Z)). First, notice that ω is a non-zero polynomial (over Fq) with
overwhelming probability, since δ is non-zero and γ, r, s are uniform, and second, notice that the
coefficients of ω are efficiently computable from γ, r, s, and δ.

Write ω(Z) = Zj(ωj + Z · ω′(Z)), for some j, where ωj 6= 0, ω′(Z) =
∑degZ(ω)

i=j ωi · Zi−j , and
degZ(ω) ≤ n + 1. Now, since ω(z) = 0 (by construction and by equation 2), and since z 6= 0, we
have ωj = −z · ω′(z). Therefore, B can compute

e

degZ(ω)∏
i=j

(gz
i−j

)ωi , h

−1/ωj = e(g, h)−ω
′(z)/ωj = e(g, h)1/z,

which concludes the proof. ut

4.3 Amortized closed-form Efficient Pseudorandom Functions

Here we recall the notion of pseudorandom functions with amortized closed-form efficiency [6] which
extend closed-form-efficient PRFs [11].

A PRF consists of two algorithms (F.KG,F) such that the key generation F.KG takes as input
the security parameter 1λ and outputs a secret key K and some public parameters pp that specify
domain X and range R of the function, and the function FK(x) takes input x ∈ X and uses the
secret key K to compute a value R ∈ R. As usual, a PRF must satisfy the pseudorandomness
property. Namely, we say that (F.KG,F) is secure if for every PPT adversary A we have that:

|Pr[AFK(·)(1λ, pp) = 1]− Pr[AΦ(·)(1λ, pp) = 1] | ≤ ε(λ)



where ε(λ) is negligible, (K, pp)
$← F.KG(1λ), and Φ : X → R is a random function.

For any PRF (F.KG,F) amortized closed-form efficiency is defined as follows.

Definition 9 (Amortized Closed-Form Efficiency [6]). Consider a computation Comp that
takes as input n random values R1, . . . , Rn ∈ R and a vector of m arbitrary values z = (z1, . . . , zm),
and assume that the computation of Comp(R1, . . . , Rn, z1, . . . , zm) requires time t(n,m).

Let L = (L1, . . . , Ln) be arbitrary values in the domain X of F such that each can be interpreted as
Li = (∆, τi). We say that a PRF (F.KG,F) satisfies amortized closed-form efficiency for (Comp,L)
if there exist algorithms CFEvaloff

Comp,τ and CFEvalon
Comp,∆ such that:

1. Given ω←CFEvaloff
Comp,τ (K, z), we have that

CFEvalon
Comp,∆(K,ω) = Comp(FK(∆, τ1), . . . ,FK(∆, τn), z1, . . . , zm)

2. the running time of CFEvalon
Comp,∆(K,ω) is o(t).

A Realization Based on Decision Linear in Bilinear Groups. Below we show a realization
of amortized closed-form efficient PRFs based on the decision linear assumption. The scheme is
obtained by adapting the one of [6] to work with asymmetric bilinear groups. This function will be
crucial to achieve efficiency for our schemes for quadratic multi-variate polynomials.

Let f : Ftq → Fq be a degree-2 arithmetic circuit, and without loss of generality, parse

f(Z1, . . . , Zt) =
t∑

i,j=1

ηi,j · Zi · Zj +
t∑

k=1

ηk · Zk, (3)

for some ηi,j , ηk ∈ Fq. We define f̂ : (G1 ×G2)
t → GT as the compilation of f on group elements

as:

f̂(A1, B1, . . . , At, Bt) =
t∏

i,j=1

e(Ai, Bj)
ηi,j ·

t∏
k=1

e(Ak, h)ηk . (4)

Below, we describe the PRF with amortized closed-form efficiency for Comp(R1, S1, . . . , Rt, St, f) =
f̂(R1, S1, . . . , Rt, St):

F.KG(1λ). Let bgpp be some bilinear group parameters, where g ∈ G1 and h ∈ G2 are generators.
– Choose two seeds K1,K2 for a family of PRFs F′K1,2

: {0, 1}∗ → F2
q .

– Output K = (K1,K2). The parameters define a function F with domain X = {0, 1}∗×{0, 1}∗
and range R = G1 ×G2, as described below.

FK(∆, τ).
– Generate values (u, v)←F′K1

(τ) and (a, b)←F′K2
(∆).

– Output R = gua+vb, S = hua+vb.
CFEvaloff

τ (K, f). Parse K = (K1,K2) as a secret key for the PRF, and f as a function Ftq → Fq.
– For i = 1 to t, compute (ui, vi)←F′K1

(τi), and interpret (ui, vi) as a linear form ρi that maps
(z1, z2) to ρi(zi, z2) = ui · z1 + vi · z2.

– Next, run ρ←f(ρ1, . . . , ρt), i.e. compute a (possibly quadratic) form ρ such that for all
z1, z2 ∈ Fq

ρ(z1, z2) = f(ρ1(z1, z2), . . . , ρt(z1, z2)).

– Finally, output ωf = ρ.



CFEvalon
∆ (K,ωf ). Parse K = (K1,K2) as a secret key and ωf = ρ as in the previous algorithm. The

online evaluation algorithm does the following:
– Generate (a, b)←F′K2

(∆).
– Compute w = ρ(a, b).
– Output W = e(g, h)w.

The function above is secure under the decision linear assumption in asymmetric bilinear groups,
that we recall below.

Definition 10 (Decision Linear [15]). Let G be a bilinear group generator, and let bgpp
$←

G(1λ). Let r0, r1, r2, x1, x2
$← Fq be chosen uniformly at random.

Let T = (g, h, gx1 , gx2 , gx1r1 , gx2r2 , hx1 , hx2 , hx1r1 , hx2r2).
We define the advantage of an adversary A in solving the decision linear problem as

AdvdlinA (λ) = |Pr[A(bgpp, T, gr1+r2 , hr1+r2) = 1]−
Pr[A(bgpp, T, gr0 , hr0) = 1]|

We say that the decision linear assumption holds for G if for every PPT algorithm A, AdvdlinA (λ)
is negligible.

Theorem 4. If the Decision Linear assumption holds for G, and F′ is a family of pseudorandom
functions, then the function F described above is a pseudorandom function with amortized closed-
form efficiency for Comp = f̂ as defined above.

The proof of theorem 4 follows the one of [6], theorem 2.

A Realization Based on DDH over 2k-Residues in Z∗N . here we propose another amortized
closed-form efficient PRF based on the DDH assumption in the subgroup of 2k-residues of Z∗N .

Let f : Zt
2k
→ Z2k be a linear function f(Z1, . . . , Zt) =

∑t
i=1 fi · Zi. We define f̂ : (Z∗N )t → Z∗N

as the compilation of f on Z∗N elements as:

f̂(A1, . . . , At) =
t∏
i=1

Afii mod N (5)

Below we describe the PRF with amortized closed-form efficiency for Comp(R1, . . . , Rt, f) = f̂(R1, . . . , Rt):

F.KG(1λ). Let N = pq be the product of two quasi-safe primes p = 2kp′ + 1 and q = 2kq′ + 1. Let

Rk be the following subgroup of Z∗N , Rk = {x2k : x ∈ Z∗N}, and let g ∈ Rk be a generator.

– Choose two seeds K1,K2 for a family of PRFs F′K1,2
: {0, 1}∗ → Zp′q′ .

– Output K = (K1,K2) and pp = (N, k). These parameters define a function F with domain
X = {0, 1}∗ × {0, 1}∗ and range Z∗N , as described below.

FK(∆, τ).
– Generate values v←F′K1

(τ) and b←F′K2
(∆).

– Output R = gvb mod N .
CFEvaloff

τ (K, f). Parse K = (K1,K2) as a secret key for the PRF, and f as a function (Z2k)t → Z2k .
– For i = 1 to t, compute vi←F′K1

(τi).
– Next, compute ρ←f(v1, . . . , vt) mod p′q′.
– Finally, output ωf = ρ.

CFEvalon
∆ (K,ωf ). Parse K = (K1,K2) as a secret key and ωf = ρ as in the previous algorithm. The

online evaluation algorithm does the following:



– Generate b←F′K2
(∆).

– Output W = gρb mod N .

The function above can be proven secure from the DDH assumption in Rk, that we recall below.

Definition 11 (DDH). Let N = pq be the product of two quasi-safe primes p = 2kp′ + 1 and

q = 2kq′ + 1. Define Rk = {x2k : x ∈ Z∗N}, and let g ∈ Rk be a generator. Let a, b, c
$← Zp′q′

be chosen uniformly at random. We define the advantage of an adversary A in solving the DDH
problem as

AdvddhA (λ) = |Pr[A(N, k, g, ga, gb, gab) = 1]− Pr[A(N, k, g, ga, gb, gc) = 1]|

We say that the DDH assumption holds in Rk if for every PPT algorithm A we have that AdvddhA (λ)
is negligible.

Theorem 5. If the DDH assumption holds for Rk, and F′ is a family of pseudorandom func-
tions, then the function F described above is a pseudorandom function with amortized closed-form
efficiency for Comp = f̂ as defined above.

Proof. The pseudo randomness property is immediate from the definition of the function and by
the random self reducibility of DDH.

To see the amortized closed-form efficiency, note that

W = gρb = gb
∑t
i=1 fivi = g

∑t
i=1 fi(bvi) =

t∏
i=1

(gbvi)fi

=
t∏
i=1

FK(∆, i)fi mod N = f̂(FK(∆, 1), . . . ,FK(∆, t))

ut

5 Computing Multi-Variate Polynomials of Degree 2

In this section we propose an efficient VC scheme for the case of multi-variate polynomials of degree
2. The basic idea of the construction is to apply the homomorphic MAC scheme of [6] to the BGV
homomorphic encryption, where (in this section) q is choosen to be prime. Such homomorphic MAC
indeed allows to authenticate degree-2 arithmetic computations over Fq and achieves amortized
efficient verification, i.e., after a pre-computation phase whose cost is the same as running f , every
output of f can be verified in constant time. However, a straightforward application of the scheme
[6] on top of BGV ciphertexts would require to: (1) authenticate each of the 2n Fq-components

of a BGV ciphertext, and (2) authenticate the BGV evaluation circuit f̂ : F2nt
q → F3n

q instead of
f : Ftq → Fq. Essentially, this would incur into a O(n) blowup in all algorithms.

In contrast, we significantly improve over this approach in two main ways. First, we apply our
collision-resistant homomorphic hash function Ĥ which allows to compress a BGV ciphertext into
a pair of group elements (T,U), yet it is a ring homomorphism for Rq[Y ]. Second, we modify the
homomorphic MAC scheme of [6] so that it can authenticate group elements (instead of Fq values).
Combining these two ideas allows us to avoid the O(n) blow-up (see section 10 for a concrete
comparison).

Our scheme VCquad is specified as follows:



KeyGen(f, λ)→ (PK,SK):

– Run BGV.ParamGen(λ) to get the description of the parameters for the BGV encryption

scheme; run (pk, dk)
$← BGV.KeyGen(). Let Rq := Fq[X]/Φm(X) be the polynomial ring

where Φm(X) is the mth cyclotomic polynomial in Fq[X] of degree n = Φ(m). The message
space M is the ring Rq[Y ].

– Run bgpp
$← G(1λ) to generate the description of asymmetric bilinear groups bgpp = (q,

G1,G2,GT , e, g, h), where G1,G2 and GT are groups of the same prime order q, g ∈ G1 and
h ∈ G2 are two generators, and e : G1 ×G2 is a non-degenerate bilinear map.

– Choose a random member of the hash function family Ĥ : Rq[Y ] → G1 × G2 by running

(κ, K̂)
$← Ĥ.KeyGen. For the convenience of our scheme we do not use the public key of Ĥ.

– Choose a random value a
$← Fq, and run (K, pp)

$← PRF.KeyGen(1λ) to obtain the seed
K of a function FK : {0, 1}∗ × {0, 1}∗ → G1 × G2. In particular, FK is supposed to be
computationally indistinguishable from a function that outputs (R,S) ∈ G1 ×G2 such that
DLogg(R) = DLogh(S) is uniform over Fq (i.e., e(R, h) = e(g, S)).

– Compute a concise verification information for f by using the offline closed-form efficient
algorithm of F, i.e., ωf←CFEvaloff

τ (K, f).

– Output the secret key SK = (pk, dk, κ, a,K, ωf ), and the public evaluation key PK =
(pk, pp, f).

ProbGenSK(x = (x1, . . . , xt))→ σx, τx:

– Choose an arbitrary string ∆ ∈ {0, 1}λ as an identifier for the input vector x.

– For i = 1 to t: first run µi
$← BGV.Encpk(xi) to obtain a BGV ciphertext µi ∈ R2

q , and

compute its hash value (Ti, Ui)←Ĥκ(µi). Next, run (Ri, Si)←FK(∆, i), compute

Xi ← (Ri · T−1i )1/a ∈ G1, Yi ← (Si · U−1i )1/a ∈ G2,

and set σi = (Ti, Ui, Xi, Yi, Λi = 1) ∈ (G1 ×G2)
2 ×GT .

– Output σx = (∆,µ1, σ1, . . . , µt, σt), and τx = ⊥.

Note that ProbGen can work in the streaming model in which every input item xi can be
processed separately.

ComputePK(σx)→ σy:

– Let f be an admissible circuit and σx = (∆,µ1, σ1, . . . , µt, σt).

– First, run µ←BGV.Evalpk(f, µ1, . . . , µt) to homomorphically evaluate f over the ciphertexts
(µi).

– Next, homomorphically evaluate f over the authentication tags (σ1, . . . , σt)). To do so,
proceed gate-by-gate over f as described below.

GateEval(fg, σ
(1), σ(2))→ σ . Parse σ(i) = (T (i), U (i), X(i), Y (i), Λ(i)) ∈ (G1 ×G2)

2 ×GT for
i = 1, 2, where fg equals + or ×. Compute σ = (T,U,X, Y, Λ) as:

Addition. If fg = +:

T ← T (1) · T (2), U ← U (1) · U (2), X ← X(1) ·X(2), Y ← Y (1) · Y (2), Λ← Λ(1) · Λ(2).

Multiplication by constant. If fg = × and one of the two inputs, say σ(2), is a
constant c ∈ Fq:

T ← (T (1))c, U ← (U (1))c, X ← (X(1))c, Y ← (Y (1))c, Λ← (Λ(1))c.



Multiplication. If fg = ×: if deg(µ(1)) > 1 or deg(µ(2)) > 1, reject; else:

T ← e(T (1), U (2)), U ← e(T (2), U (1)), Λ← e(X(1), Y (2)),

X ← e(X(1), U (2))e(X(2), U (2)), Y ← e(T (1), Y (2))e(T (2), Y (2)).

Note that after a multiplication, it is not necessary to keep U and Y , as since (for
honestly computed tags) T = U and X = Y . We keep them only for ease of descrip-
tion.

– Let σ be the authentication tag obtained after evaluating the last gate of f .
Output σy = (∆,µ, σ).

VerifySK(σy = (∆,µ, σ), τx)→ (acc, x′):
– Parse SK = (pk, dk, κ, a,K, ωf ) as the secret key where ωf is the concise verification in-

formation for f . Let σ = (T,U,X, Y, Λ) be the purported authentication tag for ciphertext
µ.

– First, compute ν̂ ← Ĥκ(µ).
– Next, run the online closed-form efficient algorithm of F on∆, to computeW←CFEvalon

∆ (K,ωf ).
– Finally, if deg(f) = 2, check the following equations:

T = U = ν̂ (6)

X = Y (7)

W = T−1 · (X)a · (Λ)a
2

(8)

If deg(f) = 1, replace equation (6) with e(T, h) = e(g, U)∧ (T,U) = Ĥ(µ), equation (7) with
e(X,h) = e(g, Y ), and equation (8) with W = Ĥ(µ) · e(X,h)a.
If all equations are satisfied set acc = 1 (accept). Otherwise, set acc = 0 (reject).

– If acc = 1, then set x′ ← BV.Decdk(µ). Otherwise set x′ = ⊥. Finally, return (acc, x′).

Theorem 6. If F is a pseudorandom function, Ĥ is a collision-resistant homomorphic hash func-
tion and BGV is a semantically secure homomorphic encryption scheme, then VCquad is correct,
adaptively secure and input private.

Proof. For correctness, if both the client and the server are honest, then we show that all three
verification equations are satisfied.

Let σx = (∆,µ,σ1, . . . , µt, σt) be an input encoding as generated by ProbGen on x = (x1, . . . , xt).
and let f : Ftq → Fq be an arithmetic circuit of degree-2. Without loss of generality, parse

f(Z1, . . . , Zt) =

t∑
i,j=1

ηi,j · Zi · Zj +

t∑
k=1

ηk · Zk, (9)

for some ηi,j , ηk ∈ Fq. Define f̂ : (G1 ×G2)
t → GT as the compilation of f on group elements as:

f̂(A1, B1, . . . , At, Bt) =

t∏
i,j=1

e(Ai, Bj)
ηi,j ·

t∏
k=1

e(Ak, h)ηk , (10)

Correctness of verification equation (6) is as follows

Ĥα,β(µ) = e(g, h)Hκ(BGV.Eval(ek,f,µ1,...,µt)) = e(g, h)f(Hα,β(µ1),...,Hα,β(µt)) = f̂(T1, U1, . . . , Tt, Ut) = T,



where the equality in the first line holds by the fact that Ĥ is homomorphic; the first equality in
the second line holds by equation (10), by construction of Ti and Ui in ProbGen (i.e., from that
e(Ti, h) = e(g, Ui)), and by the fact that Fq is isomorphic to the bilinear groups G1,G2,GT ; the
second equality in the second line holds by the definition of GateEval over the (Ti, Ui) pairs. Also,
the equality T = U (over GT ) holds in equation (6) by construction of Ti and Ui in ProbGen.

To see correctness of equation (7) we first observe that by construction of ProbGen we have
that DLogg(Xi) = DLogh(Yi) and DLogg(Ti) = DLogh(Ui). Second, we observe that such invariant
is preserved after every execution of GateEval.

To see correctness of equation (8) we proceed in an inductive way. Observe that one can see the
function f(z1, . . . , zt) as the composition of two functions fg(f1(z1, . . . , zt), f2(z1, . . . , zt)) in the last
gate fg of f . More generally, one can see every gate fg of f as computing the function fg (addition
or multiplication) of the two input functions.

So, we first note that by construction every σi = (Ti, Ui, Xi, Yi, Λi) satisfies equation (8) with
respect to the projection function πi(z1, . . . , zt) = zi:

Wi = π̂i(R1, S1, . . . , Rt, St) = e(Ri, h) = e(Ti, h)e(Xi, h)a = e(Ti, h)e(RiT
−1
i , h)

Next, assume that for i = 1, 2 σi = (Ti, Ui, Xi, Yi, Λi) satisfies equation (8) with respect to
fi(z1, . . . , zt). We show below that σ = GateEval(fg, σ1, σ2) satisfies equation (8) with respect to

f = fg(f1, f2). For i = 1, 2 let Wi = f̂i(R1, S1, . . . , Rt, St) and let Ŵ = f̂g(W1,W2). In the case
where fg is an addition or a multiplication by constant, it is easy to verify that

T−1 · (X)a · (Λ)a
2

= f̂g(T1, T2)
−1 · (f̂g(X1, X2))

a · (f̂g(Λ1, Λ2))
a2 = f̂g(W1,W2)

If fg is a multiplication, the inductive assumption essentially says that Xa
i = WiT

−1
i and

Y a
i = W̃iU

−1
i where Wi ∈ G1 and W̃i ∈ G2 is such that e(Wi, h) = e(g, W̃i). Therefore, we have:

T−1 · (X)a · (Λ)a
2

= e(T1, U2)
−1 · [e(X1, U2)e(U1, X2)]

a · [e(X1, Y2)]
a2

= e(T1, U2)
−1 · [e(W1T

−1
1 , U2)e(U1, W̃2T

−1
2 )]e(W1T

−1
1 , W̃2U

−1
2 )

= e(W1, W̃2) = W

To prove security we show the following sequence of games.

Game 0: this is the experiment ExpAdap−V erifA [VCquad, λ].
Game 1: this is like Game 0, except that when answering verification queries W is computed as

f̂(R1, S1, . . . , Rt, St), instead of using the closed-form efficient algorithm. By the correctness of
the closed-form efficient PRF Game 1 is identically distributed to Game 0.

Game 2: this game is the same as Game 1, except that the PRF is replaced by the function
R(∆, i) = (gr, hr) in which r is the output of a truly random function R′ : {0, 1}∗× [1, t]→ Fq.
Via a simple reduction to the security of the PRF it is possible to show that Game 2 is compu-
tationally indistinguishable from Game 1.

Game 3: this is like Game 2 except that the challenger answers with 0 (reject) every verification
query σy = (∆,µ, σ) in which ∆ was never chosen in a ProbGen query during the experiment.
It is possible to show that Game 3 is statistically close to Game 2 information theoretically.
To see this, observe that when verifying such a query the value W is = f̂(R1, S1, . . . , Rt, St)
which can also be written as W = e(g, h)f(r1,...,rt). Since ∆ was never queried before, every
ri = R′(∆, i) is freshly random. Hence, by Schwartz-Zippel Lemma we have that the probability
of f(r1, . . . , rt) hitting any given value of Fq is bounded by 2/q.



Game 4: this game is the same as Game 3 except for the following changes. First, on every
verification query σy = (∆,µ, σ) the challenger immediately rejects if equations (6) or (7)
are not satisfied. Otherwise, assume that ∆ was previously generated in a ProbGen query
(otherwise the query is rejected as well by the modification in game 3), and let µ̃1, σ̃1, . . . , µ̃t, σ̃t
be the corresponding values obtained in that ProbGen query. From such values compute
σ̃ = (T̃ , Ũ , X̃, Ỹ , Λ̃) and µ̃ = BGV.Eval(ek, µ̃1, . . . , µ̃t) as in the Compute algorithm. Next, if
σ = σ̃ (component-wise) the challenger accepts. Otherwise, if σ 6= σ̃ it checks if

T · (X)a · Λa2 = T̃ · (X̃)a · (Λ̃)a
2

(11)

and accepts if this equation is satisfied. Otherwise, it rejects.

By carefully analyzing the changes introduced in Game 3, we note that these are only syntactic
modifications. In particular, by the correctness of Compute replacing the check of equation (8)
with the equation (11) above leads to identically distributed answers: by correctness T̃ · (X̃)a ·
(Λ̃)a

2
is equal to the same W used to verify σy. Therefore, Game 4 is identically distributed as

Game 3.

Game 5: this game is like Game 4, except that if σ 6= σ̃ and equation (11) is satisfied, then Game
5 answers the query with 0 (reject), and sets an (initially false) flag bad to true.

It is easy to see that Game 5 is identical to Game 4 up to the event that the flag bad is set
to true. Let Bad5 be such event. We show in Claim 1 that Pr[Bad5] is negligible (information-
theoretically).

Game 6: this game is the same as Game 5 except for a change in answering the following ver-
ification queries. Let σy = (∆,µ, σ) be a query such that: ∆ was previously obtained from
ProbGen, σ = σ̃ (as described in Game 4), and bad was not true. Let T,U be the values in σ,
and without loss of generality, assume T = U ∈ GT . Since σ is verified correctly, by equation
(6) we have T = Ĥκ(µ).

Let σ̃ and µ̃ be the values computed as in Game 4. Since bad 6= true, we have that T̃ = T
and by correctness we have that T̃ = Ĥκ(µ̃). At this point, if the ciphertext µ provided by the
adversary is such that µ 6= µ̃, then the challenger answers 0 (reject) and sets an initially false
flag bad′←true.

It is easy to see that Game 6 is identical to Game 5 up to the event that the flag bad′ is set
to true. If we call Bad6 such event, we observe that occurrence of Bad6 immediately implies
a collision in the function Ĥ. Therefore, it is possible to show that the probability Pr[Bad6]
is negligible under the collision resistance of the function Ĥ. The reduction is straightforward
once observed that one can simulate the computations of Ĥ in Game 6 (for both ProbGen and
Verify queries) by using the public key of Ĥ.

To complete the proof of the theorem below in the following Claim we show that Pr[Bad5] is
negligible.

Claim 1 For any PPT adversary making at most Q verification queries in Game 5 it holds
Pr[Bad5] ≤ 2Q

q−2Q .

Proof. The basic idea of the proof is that in Game 5 the secret value a remains information-
theoretically hidden to the adversary. For every new authentication query, indeed notice that the
pairs (Xi, Yi) generated in ProbGen (in Game 5) are uniformly distributed over the set of pairs
(X,Y ) such that e(X,h) = e(g, Y ). Hence, a is only used to answer verification queries and more
precisely to check equation (11).



For every verification query i = 1 to Q, let Bi be the event that bad is set to true in the
i-th query but not before. By definition of Bi and by a union bound we have that Pr[Bad5] ≤∑Q

i=1 Pr[Bi|¬B1 ∧ · · · ∧ ¬Bi−1]. Now, observe that at the first verification query a is uniformly
distributed over Fq, and thus Pr[B1] ≤ 2/q. Then, at every query, if bad is not set true it means
that equation (11) was not satisfied. Namely, one can exclude at most two possible values of a, and
assume to add such values to a set A′. At the i-th query, if we condition on that Bj never occurred
in the previous queries we have that a is uniformly distributed over Fq \A′, and A′ contains at most
2(i − 1) elements. Hence, we have that Pr[Bi|¬B1 ∧ · · · ∧ ¬Bi−1] ≤ 2

q−2(i−1) . Therefore, we finally

obtain that Pr[Bad5] ≤ 2Q
q−2Q . ut

Finally, input privacy follows by defining a series of hybrid games in which we progressively
modify the output of ProbGen queries in such a way that every ciphertext µi returned by the
ProbGen oracle in the privacy game is replaced by an encryption of 0. By the semantic security of
the BGV encryption scheme, every two consecutive pairs of games are indistinguishable to a PPT
adversary. Moreover, note that in this proof the verification oracle can be easily simulated without
the knowledge of the BGV decryption key. ut

A Variant with Function Privacy. In this section we show that the previous scheme for multi-
variate quadratic polynomialscan be modified in order to achieve function privacy. Precisely, if we
see the polynomial f : Ftp → Fp as an arithmetic circuit, we can hide all the constants c occurring
in multiplication-by-constant gates that take inputs of degree 1.

To obtain this construction, the scheme VCquad is modified into VC∗quad as follows. Let f : Ftp →
Fp be a degree-2 arithmetic circuit. For every gate fg in f which is a multiplication by a constant

c ∈ Fp, compute γ
$← BGV.Encpk(c), νc←Hκ(γ) and (Tc, Uc)←ĤK(γ). Then we define the function

fpri : Ftq → Fq as the same as f except that every multiplication by a constant c is replaced by a
multiplication by the corresponding νc ∈ Fq computed as described above. fpub : Ftq → Fq is the
same as f except that every multiplication by a constant c is replaced by the corresponding (Tc, Uc)
computed as above.

In VC∗quad, KeyGen(f, λ) algorithm proceeds as before except that the value ωf is computed

from fpri, i.e., ωf←CFEvaloff
τ (K, fpri), and EK contains fpub instead of f . In ComputePK(σx) the

difference is that we slightly modify GateEval for multiplication-by-constant gates as follows:

Multiplication by constant. Let σ = (T (1), U (1), X(1), Y (1), Λ(1)) ∈ (G1×G2)
2×GT with Λ(1) =

1, and recall that the constant c ∈ Fp is (publicly) encoded as (Tc, Uc) ∈ G1 ×G2. We compute
σ = (T,U,X, Y, Λ) as:

T = e(T (1), Uc), U = e(Tc, U
(1)), X = e(X(1), Uc), Y = e(Tc, Y

(1))

Theorem 7. Let F be the class of arithmetic circuits in which multiplication by constants occur
only for inputs of degree 1. If F is a pseudorandom function, Ĥ is a collision-resistant homomorphic
hash function and BGV is a semantically secure homomorphic encryption scheme, then VC∗quad is
correct, adaptively secure, input private and function private with respect to F .

The proof of correctness, adaptive security and input privacy is essentially the same as in Theorem
6. Function privacy easily follows by defining a series of hybrid games in which in KeyGen we pro-
gressively replace every ciphertext γ encrypting a constant c by an encryption of 0. By the semantic
security of the BGV encryption scheme, every two consecutive pairs of games are indistinguishable
to a PPT adversary.



6 Computing Polynomials of Large Degree

We now look at the simpler task of delegation of univariate polynomials of large degree t, evaluated
on values x ∈ Fp that do not need to be private.

We still use BGV [18] for q prime, but without using its full power: we only need its additive
homomorphic property. We then apply the technique of [11] on the hashing Hα,β(γi), where γi is
the BGV encryption of gi, and g(x) =

∑t
i=0 gi ·xi is the function to compute. Again, acceptance or

rejection by the client depends only on the correct execution of the computation over the ciphertexts.
No useful decryption query is performed.

More in detail, we assume that, as in [11], the client and the server agreed on a group G of
prime order q in which the discrete logarithm problem is hard, and on a generator g for G.

Before the specifications of the scheme, we shall make a final observation: due to the noise
growth of the BGV scheme summarized in lemma 1 (for D = 1), in order to achieve correctness of
the result to be decoded by the client, we need q to be larger than 2 · p · xt · σ · n1.5, where x is
the evaluation point of the scheme. In the worst case, x = p, but we prefer to separate x and p, to
state a more general result, that can fit better for applications in which x is smaller than p.

The scheme VCpoly is specified as follows:

KeyGen(g0, . . . , gt, λ)→ (PK,SK):

– Run BGV.ParamGen(λ), (pk, dk)← BGV.KeyGen().

– Specify a group (G, ·) of order q and a generator g.

– Sample a uniform MAC key c← Fq, uniform k0, k ∈ Fq,
– Sample uniform α

$← Rq, β
$← Fq,

– Compute γi ← BV.Encpk(gi), Ti ← c · Hα,β(γi) + ki · k0, GT,i ← gTi ,

– Set PK = (pk, G, g, γ0, GT,0, . . . , γd, GT,t) and SK = (pk, G, g, dk, c, α, β, k, k0).

ProbGenSK(x)→ σx, τx:

– Set σx = x, and τx = x.

ComputePK(σx = x)→ σy:

– Compute γ ←
∑t

i=0 x
i · γi, and GT ←

∏t
i=0 (GT,i)

xi ,

– Set σy = γ,Gt
VerifySK(σy = γ,GT , τx = x)→ (acc, a′):

– Compute the element X in Fq such that:

X =
(
(x · k)t+1 − 1

)
· (x · k − 1)−1 ,

– If GT 6=
(
gHα,β(γ)

)c · (gk0)X , reject. Otherwise, accept and compute a′ ← BV.Decdk(γ).

Theorem 8. The scheme VCpoly is correct, adaptively secure, and function private.

Proof. For correctness, when both the client and the server are honest the verification step passes,
because of the following reasoning. Notice that:

GT =
t∏
i=0

(GT,i)
xi =

t∏
i=0

(
gTi
)xi

= g
∑t
i=0 Ti·xi = g

∑t
i=0(c·Hα,β(γi)+ki·k0)·xi =

= gc·
∑t
i=0 Hα,β(γi)·xi+

∑t
i=0 k

i·k0·xi = gc·Hα,β(γ) · gk0·
∑t
i=0(k·x)

i

,



by construction and using the fact that Hα,β is an homomorphism of rings (last step). Notice now
that:

t∑
i=0

(k · x)i =
(
(x · k)t+1 − 1

)
· (x · k − 1)−1 = X,

so GT = gc·Hα,β(γ) · gk0·X =
(
gHα,β(γ)

)c · gk0·X , therefore the check in the verification step passes.
Moreover, the client retrieves the correct value of the computation, because

BGV.Decdk(γ) = BGV.Decdk

(
t∑
i=0

γi · xi
)

= BGV.Decdk

(
t∑
i=0

BGV.Encpk(gi) · xi
)

=
t∑
i=0

gi · xi.

Notice that the bound on x makes the last equality hold, since that bound respects the inequality
in Theorem 1 (for D = 1).

For adaptive security, notice that σx = x, therefore the scheme is split. Moreover, adaptive
security reduces to regular security, as the adversary has full knowledge on the encodings that
can be queried in the adaptive game, even before seeing the public key of the verification scheme.
Regular security can be proven in a game-based fashion, using a similar approach to the one in
[11], Section 5.2:

Game0: The experiment in Definition 2.
Game1: As Game0, but in the verification the value X is computed via X ←

∑t
i=0 (k · x)i.

Game2: As Game1, but replacing the value ki · k0 by a uniform ri ∈ Fq, and the verification check

correspondingly to GT 6=
(
gHα,β(γ)

)c · g∑t
i=0 ri·xi , which maintains correctness.

As in [11], the change between Game1 and Game0 is merely syntactical, so the advantage of a
cheating server is the same. Moreover, the advantage of a cheating prover in Game2 is negligibly
close to the one in Game1, since the function ϕk0,k : i 7→ gk

i·k0 is a pseudorandom function (based
on the Strong Diffie-Helmann assumption), for uniform k0, k ∈ Fq.

An adversary Game2 if it provides γ′ and G′T that pass the verification check, but such that
BGV.Decdk(γ′) 6= BGV.Decdk(γ). By the correctness of the scheme, γ′ 6= γ. Let γ′ = γ + δ, with
0 6= δ ∈ Rq[Y ]. Moreover, let G′T = GT · gd, for d ∈ Fq. Since the verification check passes, then

Gt · gd =
(
gHα,β(γ+δ)

)c
· g

∑t
i=0 ri·xi .

Notice that the right hand side is equal to gc·Hα,β(γ+δ)+
∑t
i=0 ri·xi = gc·Hα,β(γ)+c·Hα,β(δ)+

∑t
i=0 ri·xi ,

since Hα,β is a ring homomorphism. This means that the right hand side equals Gt · gc·Hα,β(δ), by
the correctness of the scheme, so the above equality holds if and only if gd = gc·Hα,β(δ). There are
two scenarios in which this happens:

1. d 6= 0. In this case the adversary has to provide a polynomial γ′ = γ + δ, where Hα,β(δ) = d/c,
which happens with negligible probability, since d/c is uniform (because all the information
about c given to the adversary is hidden by the ri).

2. d = 0. In this case, the adversary has to provide γ′ = γ + δ, where Hα,β(δ) = 0, which is
equivalent to breaking the universal one-wayness of H, and happens with negligible probability.

Combining the two scenarios, and the various games, we get that any adversary wins the security
game with negligible probability.

Function privacy is guaranteed by a reduction to the semantic security of the scheme, similar
to the reduction done in the proof of Theorem 9. ut



7 Computing Linear Combinations

In this section we give a specialized construction for a particular setting. Namely, we are interested
in getting an input private and function private split scheme that is not necessarily outsourceable,
but that works in the streaming model. Our scheme is focused on the delegation of the computation
of secret linear functions on encrypted data – linearity over Rp, i.e. a function g to be computed

is described by g0, . . . gd ∈ Rp, and on an input x0, . . . , xd ∈ Rp, g outputs
∑d

i=0 gi · xi. Again, we
use BGV, but this time we require its somewhat homomorphic property for polynomials of degree
D = 2 (see lemma 1 for the parameter choice), and do not require q be prime. The scheme VCLC is
specified as follows.

KeyGen(g = g0, . . . gt, λ)→ (PK,SK):
– Run BGV.ParamGen(λ), (pk, dk)← BGV.KeyGen().

– Sample a uniform MAC key c
$← Rq, a key k for PRF, uniform values α

$← Rq, β
$← Z/qZ,

and compute ri ← PRFk(i).
– Compute γi ← BGV.Encpk(gi), and Ti ← c · Hα,β(γi) + ri ∈ Z/qZ,
– Set PK = (pk, γ0, T0, . . . , γt, Tt), and SK = (pk, dk, c, k, α, β).

ProbGenSK(x = x0, . . . , xt)→ σx, τx: for i = 0, . . . , t
– If σx, τx are not defined: initialize σx as the zero vector in Rt+1

q , and τx ← 0 ∈ Z/qZ.
– Compute µi ← BGV.Encpk(xi).
– Compute ri ← PRFk(i), as in the keygen algorithm.
– Set the i+ 1th entry of σx as µi.
– Update τx by adding ri · Hα,β(µi) to its previous value (i.e. τx+ = ri · Hα,β(µi)).

ComputePK(σx = µ0, . . . , µt)→ σy:

– Compute γ ←
∑t

i=0 γi · µi ∈ Rq[Y ], and τ ←
∑d

i=0 Ti · µi.
– Set σy = γ, τ .

VerifySK(τx, σy = γ, τ) → (acc, y′): If Hα,β(τ) 6= c · Hα,β(γ) + τx: reject. Otherwise: accept, and
compute y′ ← BGV.Decdk(γ).

Theorem 9. The scheme VCLC is correct, adaptively secure, function private, input private.

Proof. For correctness, if both the client and the server are honest, the client accepts:

Hα,β(τ) =

t∑
i=0

Ti · Hα,β(µi) =

t∑
i=0

(c · Hα,β(γi) + ri) · Hα,β(µi)

=
t∑
i=0

(c · Hα,β(γi) · Hα,β(µi) + ri · Hα,β(µi)) =
t∑
i=0

(c · Hα,β(γi · µi) + ri · Hα,β(µi))

= c ·

(
t∑
i=0

Hα,β(γi · µi)

)
+

t∑
i=0

ri · Hα,β(µi) = c · Hα,β

(
t∑
i=0

γi · µi

)
+ τx = c · Hα,β(γ) + τx.

Where all the equalities hold by the fact that Hα,β is a ring homomorphism and addition and
multiplication of polynomials distribute. Moreover, the output y′ is the desired one, since it equals:

BGV.Decdk(γ) = BGV.Decdk

(
t∑
i=0

γi · µi

)

= BGV.Decdk

(
t∑
i=0

BGV.Encpk(gi) · BGV.Encpk(xi)

)
=

t∑
i=0

gi · xi.



For adaptive security, we show firstly that the scheme is split: define PKE = SKE = pk,
and notice that σx consists of µi = BV.Encpk(wi), which are independent of f . Therefore, in the
security experiment the challenger can answer the encoding queries before the adversary choses
the function to attack on. At that point the challenger computes the remaining part of the public
and secret key. Secondly, we show that no adversary wins the adaptive security game with non-
negligible probability. Notice that the values c, α, β are statistically hidden to the server, because
Ti = c·Hα,β(γi)+ri, and ri is statistically close to uniform by the security property of the PRF. Now,
for the sake of contradiction, assume that there is an adversary who can win the adaptive security
game with non-negligible probability, i.e. suppose that a server could provide γ′, τ ′ with γ′ 6= γ, and
such that the verification passes. This would imply that Hα,β(τ ′) = c·Hα,β(γ′)+

∑t
i=0 ri ·µi, and that

Hα,β(τ ′)−Hα,β(τ) = c·(Hα,β(γ′)−Hα,β(γ)), which happens if and only if Hα,β(τ ′−τ−c·(γ′−γ)) = 0
(by the fact that Hα,β is an homomorphism of rings). There are two possible scenarios in which
this happens:

1. τ ′ − τ = c · (γ′ − γ). If this were the case, the server could compute c in polynomial time, by
dividing any Z/qZ-coordinate of τ ′ − τ by the corresponding Z/qZ-coordinate of γ′ − γ (this
division in Z/qZ is indeed possible, as we are guaranteed that τ ′ − τ is the product of c by
γ′ − γ). However, computing c in polynomial time is impossible, since c is statistically hidden
to the server, as argued earlier. That means that this case happens with negligible probability.

2. τ ′ − τ 6= c · (γ′ − γ), but Hα,β(τ ′ − τ − c · (γ′ − γ)) = 0. This is equivalent to breaking the
one-wayness of H, and happens with negligible probability.

Combining the above, we obtain that the overall probability that an adversary wins the adaptive
security game is negligible.

To show function privacy, we create a series of games:

Game0: This is the regular privacy game.
Gamei+1: Identical to Gamei, but replace gi with 0 (for i = 0, . . . , t).

Notice that for any game the verification oracle can be provided trivially, without the usage of sk.
By the semantic security of the BGV scheme, an adversary who wins Gamei with a given probability
p wins Gamei+1 with probability negligibly close to p (otherwise one could turn the adversary into
an effective attacker to the BGV semantic security). However, Gamet+1 is completely independent
of the function, therefore any adversary wins that game with negligible probability. By the series
of hybrids, no adversary can win the original function privacy game.

Input privacy can be proven in a similar fashion, and it is guaranteed by the fact that the
verification check is independent fo the encoded values. ut

On the Outsourceability of the Scheme. As we hinted in the opening paragraph, this scheme
is not outsourceable, but it has the desirable property that the input does not have to be processed
at once, and does not need to be stored on the client side during the processing phase. More in
detail, the xi are generated in rounds, and at each round ProbGen is called. This means that the
vector σx is formally initialized as the zero vector, and at round i it is updated by appending µi but
only µi is sent to the server at round i. Analogously, τx is created and stored by the client at round
0, and at round i it is updated by adding ri · Hα,β(µi). This allows the client to work with a short
memory: indeed, creating and sending µi requires O(log(q)) storage, which is the same memory
needed to create, update, and store τx.

Communication Complexity. In case of a sparse linear combination, say in which d̃ among the
xi are non-zero, the client has two choices:



Maintain full input security: If the client wants to completely hide the weights, then it must
pay O(d) to send a ciphertext µi for each index, as in the standard scheme.

Improve the communication complexity: It can pay O(d̃) by simply sending the non-zero
weights encrypted (and the indices they correspond to); in this case, however, it reveals which
indices are zero in the linear combination. Every piece of information on the non-zero indices is
preserved (by a simple reduction to the security of the standard scheme).

8 Computing Linear Functions over the ring Z2k

In this section we show another scheme that allows to compute multi-variate polynomials of degree-
1 over the ring Z2k . The scheme has properties similar to the scheme in section 5: it is input private,
and it allows for constant-time verification. The basic idea is to combine the linearly-homomorphic
encryption scheme recently proposed by Joye and Libert [40] with a linearly homomorphic MAC
with efficient verification. In particular, for the MAC we use the ideas in [6] to design a MAC that
allows us to authenticate linear computations over the group Z∗N which is the ciphertext space of
the encryption scheme [40]. In particular, a crucial tool to achieve efficiency is a new pseudorandom
function with amortized closed-form efficiency whose security relied on the DDH assumption in the
subgroup of 2k-residues of Z∗N .

A full description of the scheme VClin follows:

KeyGen(f, λ)→ (PK,SK) :

– Sample two large-enough quasi-safe primes p, q such that p = 2kp′ + 1 and q = 2kq′ + 1. Set

N = pq, and sample y
$← JN . Let us call Rk the subgroup of Z∗N : Rk = {x2k : x ∈ Z∗N}.

– Sample a random α
$← Z∗φ(N), and run (K, pp)

$← F.KG(1λ) to obtain the seed and the public

parameters of an ACF-efficient PRF FK : {0, 1}∗ × {0, 1}∗ → Rk.
– Compute a concise verification information for f by using the offline closed-form efficient

algorithm of F, i.e., ωf←CFEvaloff
τ (K, f).

– Output the secret key SK = (p, α,K, ωf ), and the public evaluation key EK = (N, y, k, pp, f).

ProbGenSK(x = (x1, . . . , xt))→ σx, τx:

– Choose an arbitrary string ∆ ∈ {0, 1}λ as an identifier for the input vector x ∈ (Z2k)t.

– For i = 1 to t: first sample ri
$← Z∗N and compute ci = yxir2

k

i mod N .

Next, compute Ri←FK(∆, i), and compute σi = cαi ·Ri mod N .

– Set σx = (∆, c1, σ1, . . . , ct, σt), and τx = ⊥.

It is worth noting that ProbGen can work in the so-called streaming model in which every
input item xi can be processed separately.

ComputePK(σx)→ σy:

– Let f = (f1, . . . , ft) ∈ (Z2k)t be a linear function and let σx = (∆, c1, σ1, . . . , ct, σt).

– First, compute c←
∏t
i=1 c

fi
i mod N to homomorphically evaluate f over the ciphertexts

(ci).

– Second, compute σ =
∏t
i=1 σ

fi
i mod N to homomorphically evaluate f over the authenti-

cation tags (σi).

– Output σy = (∆, c, σ).

VerifySK(σy = (∆, c, σ), τx)→ (acc, x′):

– Parse SK = (p, α,K, ωf ) as the secret key where ωf is the concise verification information
for f .

– First, run the online closed-form efficient algorithm of F, to compute W←CFEvalon
∆ (K,ωf ).



– Next, if the following equation is satisfied set acc = 1 (accept). Otherwise, set acc = 0
(reject).

σ = cα ·W mod N (12)

– If acc = 1, then compute
(
c
p

)
2k

= cp
′

mod N , and find x′ ∈ {0, 1}k such that [
(
y
p

)
2k

]x
′

= z

(see [40] for details).

If acc = 0 set x′ = ⊥. Finally, return (acc, x′).

Definition 12 (Gap-2k-Residuosity assumption [40]). Let N = pq be the product of two quasi-

safe primes p = 2kp′ + 1 and q = 2kq′ + 1. Define Rk = {x2k : x ∈ Z∗N}, and let JN the subgroup
of Z∗N of elements with Jacobi symbol 1, and let QRN ⊂ JN be the subgroup of quadratic residues

of Z∗N . Let x
$← Rk and y

$← JN \QRN . We say that the Gap-2k-Residuosity assumption holds if
for every PPT adversary A the following advantage is negligible:

AdvGap−2
k−res

A (λ) = |Pr[A(N, k, x) = 1]− Pr[A(N, k, y) = 1]|

In [40] it is shown that the Gap-2k-Residuosity assumption is implied by the more natural quadratic
residuosity and special Jacobi symbol assumptions.

Theorem 10. If F is a pseudorandom function and the Gap-2k-Residuosity assumption holds, then
VClin is correct, adaptively secure and input private.

Proof. For correctness observe that:

cα ·W mod N =

(
t∏
i=1

cfii

)α
·

(
t∏
i=1

FK(∆, i)fi

)
=

t∏
i=1

(cαi FK(∆, i))fi =

t∏
i=1

σfii = σ.

Below is a proof sketch for the security property.

Game 0: this is the experiment ExpAdap−V erifA [VClin, λ].

Game 1: this is like Game 0, except that when answering verification queries W is computed as∏t
i=1R

fi
i mod N with Ri←FK(∆, i), instead of using the online closed-form efficient algorithm.

By the correctness of the closed-form efficient PRF, Game 1 is identically distributed to Game
0.

Game 2: this game is the same as Game 1, except that the PRF is replaced by a truly random
function R : {0, 1}∗×[1, t]→ Rk. Via a simple reduction to the security of the PRF it is possible
to show that Game 2 is computationally indistinguishable from Game 1.

Game 3: this is the same as Game 2 except for changing the distribution of the public key by

sampling y
$← Rk. Note that at this point the encryption scheme becomes lossy. Also, by the

Gap-2k-Residuosity assumption Game 3 is computationally indistinguishable from Game 2.

Game 4: this is like Game 3 except that the challenger answers with 0 (reject) every verification
query σy = (∆, c, σ) in which ∆ was never chosen in a ProbGen query during the experiment
(and of course the function f is non-zero).

It is possible to show that, information theoretically, Game 4 is statistically close to Game 3.

Game 5: Change as follows the way to check verification queries (∆, c, σ) in which ∆ was previ-
ously generated in a ProbGen query (otherwise the query is rejected as well by the modifica-
tion in the previous game). Let c̃1, σ̃1, . . . , c̃t, σ̃t be the corresponding values obtained in that



ProbGen query. From such values compute σ̃ =
∏t
i=1 σ̃

fi
i and c̃ =

∏t
i=1 c̃

fi
i as in the Compute

algorithm. Check if

σ/σ̃ = (c/c̃)α

and if so accept, otherwise reject.
Note that by correctness, the above check is equivalent to the real verification. Hence Game 5
is identically distributed to Game 4.

Game 6: Simulate all ProbGen queries without using α, i.e., sample directly σi
$← Rk. Note

that from Game 3 the ciphertexts ci are in Rk (since y ∈ Rk. Hence, Game 6 is identically
distributed to Game 5.
It is worth noting that now α is used only for verification. If we imagine to sample α at the
time of the first verification query, then at that point α is uniformly distributed over Z∗φ(N).

Game 7: All verification queries where (c, σ) = (c̃, σ̃) are directly answered with 1, i.e., without
using α. If c 6= c̃, then answer with reject. We claim that Game 7 is statistically close to Game
6.
In particular, if we change only the answer to the first query, the distance is ε = Pr[(c/c̃)α = σ/σ̃]
taken over the random choice of α that is 1

|Z∗
φ(N)

| = 1
2k−1(p′−1)(q′−1) , which is negligible. By

extending this argument to all possible Q verification queries the distance is ≤ Q
|Z∗
φ(N)

|−Q .

Input privacy follows by defining a hybrid game in which the public element y is sampled
uniformly in Rk. Such change is computationally indistinguishable by the Gap-2k-Residuosity as-
sumption. Then, it is easy to see that the encryption is lossy, and thus no information on the plain
texts is leaked. Moreover, note that in this proof the verification oracle can be easily simulated
without the knowledge of the factorization of N . ut

9 Applications

9.1 Statistics on Encrypted Data Sets

Consider the problem in which a client stores several large data-sets x1, . . . ,xN on a server, and
wants to compute a collection of statistics on the outsourced data in a private and verifiable way.
By using our scheme for multi-variate quadratic polynomials of section 5, we can provide efficient
solutions for the computation of several statistical functions, such as average, variance, standard
deviation, RMS, covariance, linear regression, Pearson’s and uncentered correlation coefficient. Be-
low we show how these statistical functions can be decomposed into simpler non-rational functions
that we can authenticate using our scheme. For vectors x = (x1, . . . , xt), y = (y1, . . . , yt), we define
the following basic functions:

f1(x) = ‖x‖1 =

t∑
j=1

xj , f2(x,y) = 〈x,y〉 =

t∑
j=1

xj · yj ,

f3(x,y) = f1(x) · f1(y) =

(
t∑
i=1

xi

)
·

 t∑
j=1

yj


We now give a description that explains how to use our scheme in section 5 for the following

functions:



Average: Authenticate f1(x), since

avg(x) =

∑t
j=1 xj

t
=
f1(x)

t
.

Variance: Authenticate f1(x) and f2(x,x), since

var(x) =

∑t
j=1(xj − avg(x))2

t
=

∑t
j=1 x

2
j

t
−

(
∑t

i=1 xi)
2

t2

=
f2(x,x)

t
− f1(x)2

t2

Standard deviation: Since stdev(x) =
√

var(x), one can simply use the above method for au-
thenticating the variance function.

Root Mean Square: Authenticate f2(x,x), since

RMS(x) =

√∑t
j=1 x

2
j

t

Covariance: Authenticate f2(x,y) and f3(x,y), since

cov(x,y) =

∑t
j=1(xj − avg(x))(yj − avg(y))

t

=

∑t
j=1 xjyj

t
−

(
∑t

i=1 xi)(
∑t

j=1 yj)

t2

=
f2(x,y)

t
− f3(x,y)

t2

Linear Regression: Given two sets of observations as two vectors (x,y), the linear regression of
y as a function of x is defined by two coefficients α̂, β̂ such that

β̂ =

∑t
i=1(xi − avg(x))(yi − avg(y))∑t

i=1(xi − avg(x))2
=

cov(x,y)

var(x)
=
f2(x,y)− f3(x,y)/t

f2(x,x)− f1(x)/t

α̂ = avg(y)− β̂ · avg(x) = (f1(y)− β̂f1(x))/t

Hence, authenticate f1(x), f1(y), f2(x,y), f2(x,x), and f3(x,y).
Sample Pearson’s correlation coefficient: Authenticate f1(x), f1(y), f2(x,y), f2(x,x), f2(y,y),

f3(x,y), since

rx,y =

∑t
i=1(xi − avg(x))(yi − avg(y))√∑t

i=1(xi − avg(x))2 ·
√∑t

i=1(yi − avg(y))2
=

cov(x,y)

stdev(x)stdev(y)

=
f2(x,y)− f3(x,y)/t

t
√

(f2(x,x)/t− f1(x)2/t2)(f2(y,y)/t− f1(y)2/t2)

=
f2(x,y)− f3(x,y)/t√

f2(x,x)f2(y,y)− f2(x,x)f1(y)2/t− f1(x)2f2(y,y)/t+ f1(x)2f1(y)2/t2)

Uncentered correlation coefficient: Authenticate f2(x,y), f2(x,x), f2(y,y), since

rux,y =

∑t
i=1 xiyi√∑t

i=1 x
2
i ·
√∑t

i=1 y
2
i

=
f2(x,y)√

f2(x,x)f2(y,y)



9.2 Distance and Correlation Measures on Encrypted Data Sets

Consider the problem in which a client stores a large matrix X ∈ FL×Np on a server, and then wants

to compute the Euclidean distance between a given vector y ∈ FNp and each row of the matrix.
Namely, on input y from the client, the server computes a vector D = (D1, . . . , DL) where every
entry Di =

∑N
j=1(Xi,j − yj)2 is the (square of the) Euclidean distance3 between y and the i-th row

of X. For security, we are interested in a solution that guarantees both integrity and privacy, i.e.,
results are efficiently verifiable by the clients without having to store the matrix X, and the server
does not learn any information about neither X nor the queried vector y.

To achieve a solution for this application we can employ the function-private scheme VC∗quad for
degree-2 polynomials (by explicitly relying on its split version) as follows:

– First, the client generates the secret key for the input-encoding (PKE , SKE)
$← KeyGenE(λ).

– In a pre-processing phase, given the matrix X, the client computes σx,i
$← ProbGen(SKE ,Xi)

for all the rows of X. Precisely, we can use batching to encode s rows in the same σx,i. The cost
of this phase, which is performed only once is O(L ·N).

– Given the vector y, the client defines the function fy(z1, . . . , zN ) =
∑N

j=1(zj − yj)2, and runs

(EKfy , SKfy)
$← KeyGenV (fy, λ, PKE , SKE). Note that fy is an admissible function for

VC∗quad as it is of degree-2 and all the constants derived from the yj ’s multiply degree-1 terms.

Moreover, notice that the client can compactly send fy to the server by sending Ĥ(yi). The cost
of this phase is O(N).

– The server computes σDi←Compute(EKE , EKfy , σx,i) for every (packed) row of the encrypted
matrix, and returns (σD1 , . . . , σDL) to the client.

– Finally, the client obtains the verified result by running the verification algorithm on every
output encoding σDi . The cost of verifying each entry is O(1) which sums up to O(L).

To summarize, after the pre computation to outsource the matrix, the work performed by the
client to send y and verify the result is O(N + L), which outperforms the cost of running this
computation, which is O(L ·N). Note also that the pre computation cost can be amortized when
asking many queries y for the same matrix X. For privacy note that by input privacy and function
privacy the server does not learn information about the matrix X and the vector y respectively.

While the protocol above is described for the Euclidean distance, it is easy to see that the same
approach works also for other degree-2 functions with the same properties. Namely, for any f(y, Xi)
such that by fixing y, f is of degree-2 and multiplications by yi involve only degree-1 monomials.
For instance, this property holds when computing the covariance or the correlations coefficients
between y and every row of a matrix X.

9.3 Discrete Fourier Transform

The discrete Fourier transform (DFT) of a t-dimensional vector f is defined as the vector y =
(f(α1), . . . , f(αt)) where f is interpreted as the coefficients vector of a polynomial of degree (t−1),
and the αi’s are the t roots of unity. It is easy to see that by using our scheme for univariate
polynomials of section 6, a client can store encrypted vectors on a server and then request the DFT
transform of these vectors in a private and verifiable way. In particular, note that the delegation
and verification cost is optimal: O(t) (i.e., O(1) for every entry of y).

3 For simplicity, we assume that the final square root can be directly computed by the client.



10 Experimental Evaluation

To give the reader a glance at the practical applicability of our procedures, we implemented the
schemes in sections 5, 6, and 7, and reported the cost of each procedure.

10.1 Setup

Hardware and Software. Our timings were performed on a 2011 MacBook Pro (Intel Core i5-
2415M, 2 hyperthreaded cores at 2.30GHz, 8GB RAM at 1.333GHz), running Ubuntu (linux kernel
3.11, SMP, x86 64). All our implementations are single-threaded.

For our code, we made use of the following libraries:

– HElib [38], which implements the BGV scheme [18]. We tweaked some homomorphic operations
to avoid KeySwitch and ModulusSwitch.

– NTL [52], to perform operations over polynomial rings (e.g. evaluating Hα,β).
– PBC [45], to perform group and pairing operations (e.g. evaluating e(X(1), Y (2)) in the scheme

in section 5).

Input. Our schemes are targeted at the encryption of a database that can be thought of as a
big table. Each row of the table represents an input, and each column represents an attribute. An
example is given in table 3.

Day Bicycles Cars Trucks . . .

March 1 55 128 20 . . .
March 2 10 28 0 . . .

...
...

...
...

Table 3. Number of vehicles driving through Paper Street at a given time.

The schemes we implemented all use the BGV encryption scheme [18], which, as pointed out in
section 4.1 has the nice feature batching. Therefore, for the computation of the same function for
each attribute (e.g. in table 3, the average amount of bicycles, cars, trucks, etc, going through Paper
Street in March), it is natural to encrypt each entire row of the database into a single ciphertext,
encoding each data set element into a different slot.

Parameters selection. In our implementations we covered 80bit and 128bit security, and we
required the length of each data set item to be at most 32bit. These choices lead to the following
parameters (s denotes the number of slots):

Polynomials (Section 6 and 5): For 80bit (respectively 128bit) security, we chose log q = 173
(log q = 272), n = 5418 (n = 8820), s = 165 (s = 275).

Linear Combinations (Section 7): For 80bit (respectively 128bit) security, we chose log q =
123 (log q = 173), n = 4050 (n = 6370), s = 125 (s = 196).

10.2 Timings

We are now ready to present our timings. We introduce the concept of PCost (a shorthand for
“privacy cost”) of a process, defined as the ratio of the total execution time of the process over the



time taken by the process to compute authentication operations (i.e. excluding privacy operations
such as encryption, FHE evaluation, hashing, etc). PCost can therefore be seen as a measure for
the cost for bringing privacy to each operation of a VC scheme.

In the following, by “Amortized” cost, we mean the per-attribute cost, which equals the “Raw”
(or total) cost of an operation divided by the number of attributes, according to the above pa-
rameters choice. Moreover, costs associated with procedures followed by “∗” are obtained using
exponentiations with precomputation.



Multi-Variate Quadratic Polynomials.

Timing (ms) Raw Cost Amortized Cost PCost

Security 80bit 128bit 80bit 128bit 80bit 128bit

ProbGen 25d 75d 0.15d 0.27d 2.92 3.09
ProbGen∗ 21d 65d 0.13d 0.24d 5.08 8.00

Add 0.15 0.28 0.0009 0.001 2.21 3.45
Const. Mult. 16 28 0.09 0.01 1.10 1.08

Mult. 184 369 1.11 1.32 1.14 1.33
Verify 70 180 0.42 0.65 1.92 2.77

Verify∗ 62 166 0.37 0.60 2.14 3.23

Table 4. Summary of the costs associated with each procedure (ms) for the scheme described in section 5. We omitted
the cost of KeyGen, as that is dependent on the function to compute; see figure 1 for more information.

102101 104103 106105

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

106

f1

f2

f3

KeyGen1

KeyGen2
KeyGen3

ProbGen

Verify

T
im

e
(se

c
)

Database Size

– f1, f2, and f3 denote the cost of the corresponding function (see section 9.1 for more details). Notice
that the cost of f3 does not scale linearly with the database size (there is a constant cost of one
multiplication, which dominates for small databases).

– KeyGen1, KeyGen2, and KeyGen3 denote the cost of KeyGen for the corresponding function.
Here there is a constant term (BGV.ParamGen) and a linear term that depends on the cost of the
function.

– ProbGen, and Verify denote the cost of the corresponding function. Dashed lines depict costs
obtained using precomputation. Notice that the cost of Verify is constant.

Fig. 1. Summary of the raw costs for the scheme in section 5, with 80bit security.



Univariate Polynomials of Large Degree.

Timing (ms) Raw Cost Amortized Cost PCost

Security 80bit 128bit 80bit 128bit 80bit 128bit

KeyGen 1.35 + 20.7d 4.33 + 65d 0.008 + 0.125d 0.015 + 0.234d 5.29 8.26
KeyGen∗ 1.35 + 19.7d 4.33 + 63d 0.008 + 0.124d 0.015 + 0.233d 5.95 9.62
ProbGen N/A N/A N/A N/A N/A N/A
Compute 2d 4d 0.01d 0.01d 3.34 2.65

Verify 17 53 0.11 0.19 3.89 5.78
Verify∗ 16 51 0.10 0.18 4.76 7.46

Table 5. Summary of the costs associated with each procedure (ms) for the scheme described in section 6.

Linear Combinations.

Timing (ms) Raw Cost Amortized Cost PCost

Security 80bit 128bit 80bit 128bit 80bit 128bit

KeyGen 0.5 + 9.6d 1.4 + 21.7d 0.004 + 0.077d 0.007 + 0.111d 5.35 5.18
ProbGen 10d 22d 0.08d 0.11d 5.35 5.18
Compute 9d 24d 0.07d 0.12d 10.53 10.87

Verify 18 44 0.14 0.23 4.41 4.48

Table 6. Summary of the costs associated with each procedure (ms) for the scheme described in section 7.

On the Impact of Homomorphic Hashing. Our experiments showed the improvement obtained
by applying our technique of homomorphic hashing. We compared our ad-hoc protocols with some
of the best possible instantiations of our generic scheme and observed a remarkable speedup. For
instance, for the case of multivariate quadratic polynomials, one may use BGV to encrypt and then
use a homomorphic MAC [6] to authenticate each of the 2n ciphertext entries. However, this would
further require to authenticate bigger circuits: for example, one has to validate 2n additions over
Z/qZ for the addition of two ciphertexts, and at least 4(n log n) multiplications and 5n additions
over Z/qZ for a multiplication of ciphertexts (estimate obtained assuming FFT multiplication; using
a trivial method would lead to 4n2 multiplications and 5n additions). In contrast, by applying our
homomorphic hash we can use the same original circuit and the additional cost of computing the
hash becomes negligible.

In tables 7 and 8 we give a list of ratios between the cost of the alternate approach (tagging
without hashing) versus our approach (hashing and then tagging) in the schemes described in
sections 6 and 5 respectively.



KeyGen Compute Verify

80bit Security 304 3223 762
128bit Security 368 6641 951

Table 7. Ratios between the costs of tagging each single ciphertext entry versus “hashing and tagging” for the scheme
in section 6.

ProbGen Add1 Add2 Const. Mult. Mult. (FFT) Mult. (Trivial) Verify

80bit Security 774 2453 3680 4943 13632 73 · 106 7929
128bit Security 935 2555 3832 8144 18974 167 · 106 8519

Table 8. Ratios between the costs of tagging each single ciphertext entry versus “hashing and tagging” for the
scheme in section 5. Add1 represents the overhead of adding before multiplying, while Add2 represents the overhead
of adding after multiplying.
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