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Abstract. We propose a key-policy attribute-based encryption (KP-ABE) scheme with constant-size
ciphertexts, whose (selective) security is proven under the decisional linear (DLIN) assumption in the
standard model. The access structure is expressive, that is given by non-monotone span programs. It
also has fast decryption, i.e., a decryption includes only a constant number of pairing operations. As
an application of our KP-ABE construction, we also propose a fully secure attribute-based signatures
with constant-size secret (signing) key from the DLIN assumption. For achieving the above results, we
employ a hierarchical reduction technique on dual pairing vector spaces (DPVS), where a high-level
problem given on DPVS is used for proving the scheme security and then the security of the problem
is reduced to that of the DLIN problem.

1 Introduction

1.1 Backgrounds

The notion of attribute-based encryption (ABE) introduced by Sahai and Waters [26] is an advanced
class of encryption and provides more flexible and fine-grained functionalities in sharing and dis-
tributing sensitive data than traditional symmetric and public-key encryption as well as recent
identity-based encryption. In ABE systems, either one of the parameters for encryption and secret
key is a set of attributes, and the other is an access policy (structure) over a universe of attributes,
e.g., a secret key for a user is associated with an access policy and a ciphertext is associated with
a set of attributes. A secret key with a policy can decrypt a ciphertext associated with a set of
attributes, iff the attribute set satisfies the policy. If the access policy is for a secret key, it is called
key-policy ABE (KP-ABE), and if the access policy is for encryption, it is ciphertext-policy ABE
(CP-ABE).

All the existing practical ABE schemes have been constructed by (bilinear) pairing groups, and
the largest class of relations supported by the ABE schemes is (non-monotone) span programs (or
(non-monotone) span programs with inner-product relations [23]). While general (polynomial size)
circuits are supported [11, 13] recently, they are much less efficient than the pairing-based ABE
schemes and non-practical when the relations are limited to span programs. Since our aim is to
achieve constant-size ciphertexts in the sizes of attribute set or access policy in expressive ABE,
hereafter, we focus on pairing-based ABE with span program access structures. Here, “constant” is
valid as long as the description of the attribute or policy is not considered a part of the ciphertext,
which is a common assumption in the ABE application. Hence, we use “constant” in this sense
hereafter.

While the expressive access control (span programs) is very attractive, it also requires addi-
tional cost in terms of ciphertext size and decryption time. Emura et al. [10], and Herranz et al. [14]
constructed a CP-ABE with constant-size ciphertexts, but their access structures are very limited.
Attrapadung, Libert and de Panafieu [1] first constructed a KP-ABE scheme for span programs
with constant-size ciphertexts and fast decryption which needs only a constant-number of pairing
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Ciphertext size 3 |G| + 1 |GT | (|Γ | + 1) |G| + 1 |GT | 17 |G| + 1 |GT |

Decryption Pairing 3 2 17

cost Scalar mul. O(�n) O(�2) O(�n)

Table 1. Comparison of our scheme with large-universe KP-ABE schemes in [1, 15], where |G|, |GT |, |Γ |, n, �, and
q represent size of an element of a bilinear source group G, that of a target group GT , the number of attributes per
ciphertext, (the maximum of |Γ | in the system) + 1, the number of rows in access structure matrix for the secret key
(in decryption), and the maximum number of random oracle calls, respectively.

operations. Hohenberger and Waters [15] proposed an expressive KP-ABE scheme with fast decryp-
tion, but with no short ciphertexts, and their large universe scheme is secure only in the random
oracle model.

While Attrapadung et al.’s KP-ABE scheme shows an interesting approach to achieving constant-
size ciphertexts with expressive access structures, the security is proven only based on a q-type
assumption (n-DBDHE assumption with n the maximum number of attributes per ciphertext).
Previously, since the introduction by Mitsunari et al. [19] and Boneh et al. [4], various kinds of
q-type assumptions have been widely used in order to achieve (drastically) efficient cryptographic
primitives [3, 5, 12, 9, 14]. However, the assumptions (and also the associated schemes) suffered a
special attack which was presented by Cheon [7] at Eurocrypt 2006. More recently, Sakemi et
al. [27] have shown that the attack can be a real threat to q-type assumption-based cryptographic
primitives by executing a successful experiment. Consequently, it is very desirable that the above
schemes should be replaced by an efficiency-comparable alternative scheme based on a static (non-q
type) assumption instead of a q-type assumption.

In particular, to construct an expressive KP-ABE scheme with constant-size ciphertexts based
on a static assumption remains an interesting open problem in terms of practical and theoretical
aspects on ABE. Moreover, since there exists no attribute-based signatures (ABS) [17, 18, 25] with
constant-size secret keys, to construct ABS with constant-size secret keys is open.

1.2 Our Results

– We propose a KP-ABE scheme with constant-size ciphertexts, whose (selective) security is
proven from the DLIN assumption in the standard model (Section 4). The access structure
is expressive, that is given by non-monotone span programs. It also has fast decryption: a
decryption includes only a constant number of pairing operations, i.e., 17 pairings independently
on the sizes of attribute set in ciphertext and access structure in key. For the comparison of our
scheme with previous works on such large universe KP-ABE schemes, see Table 1.
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– As an application of our KP-ABE construction, we also propose a fully secure ABS scheme with
constant-size secret (signing) key from the DLIN assumption (Section 5 and Appendix E).

– For achieving the above results, we employ a hierarchical reduction technique on dual pairing
vector spaces (DPVS) [22, 23], where a high-level problem given on DPVS (Problem 1) is used
for proving the scheme’s security and then the security of the problem is reduced to that of the
DLIN problem in a hierarchical manner. For the details, see Sections 1.3 and 6.

1.3 Key Techniques

At the top level, we employ a sparse matrix key-generation on DPVS developed in [24], in which
constant-size ciphertext zero/non-zero inner-product encryption are constructed from DLIN. Based
on the basic construction [24], to achieve short ciphertexts in our KP-ABE, attributes Γ :=
{xj}j=1,...,n′ are encoded in an n-dimensional (with n ≥ n′ + 1) vector �y := (y1, . . . , yn) such
that

∑n−1
j=0 yn−jz

j = zn−1−n′ ∏n′
j=1(z − xj) where y1 = 1. Each attribute value vi (for i = 1, . . . , �)

associated with a row of access structure matrix M (in S) is encoded as �vi := (vn−1
i , . . . , vi, 1), so

�y ·�vi =
∏n−1
j=1 (vi−xj), i.e., the value of inner product is equal to zero iff vi = xj for some j. Here, the

relation between S and Γ is based on the multiple inner product values �y ·�vi for one vector �y which
is equivalent to Γ . Based on it, a ciphertext vector element c1 is encoded with ω�y (for random
ω), which is represented by twelve (constant in n) group elements (as well as �y), and key vector
elements k∗

i are encoded with �vi and shares si (i = 1, . . . , �) for a central secret s0, respectively
(see Section 4.2 for the key idea). A standard dual system encryption (DSE) approach consists of
isolations of a pair of vectors, (�y, si�e1 +θi�vi) or (�y, si�vi) with si are shares of a secret s0 and random
θi, and then randomness is amplified with preserving the inner product values based on a pairwise
independence argument. Since we must deal with a same �y in all the above pairs, we should modify
the original randomness amplification argument for our scheme. See Section 7 for the details.

For the purpose, we prove the security in a hierarchical manner. First, we establish an interme-
diate problem (Problem 1 in Section 4.5) to prove the scheme’s security, and then, the security of
the problem is proven from the DLIN assumption. Problem 1 is made for proving the selective se-
curity of our KP-ABE, which takes a target vector �y as input. Applying the problem to the queried
keys (and the challenge ciphertext) in the security game transforms them to semi-functional form
in DSE framework as given in Eq. (7) (in particular, w0 is uniformly distributed in Fq) since the
target attributes do not satisfy access structures for queried keys. Namely, the problem realizes a
partitioning type proof based on the DSE approach. (See [20] for a simpler example of this type
argument.)

Our main technical contribution is to prove that the security of the (intermediate) problem
is reduced from that of DLIN through multiple reduction steps (Lemma 3). The security proof
consists of hierarchical reductions as indicated in Figure 1 (Appendix B). A technical challenge for
the security of Problem 1 is to insert a polynomial number of random (sparse) matrices {Zj}j=1,...,n

of size n×n which fix �y i.e., �y = �y ·(Zj)T to key components {h∗
1,j,i} in sequence when the underlying

matrix for the basis B1 is sparse. The randomness {Zj}j=1,...,n are inserted consistently with the
security condition on the target �y and key queries. It is accomplished also in a dual system manner
using two (dual) blocks in the hidden subspace, in which, for j = 1, . . . , n in turn, vectors ρ�ei in the
first block of h∗

·,j,i (i = 1, . . . , n) are swapped to the second block and then conceptually changed to
ρ�eiZj based on a modified pairwise independence (or randomizing) lemma (Lemma 4). An outline
of the iterated process is given in Section 6.
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1.4 Notations

When A is a random variable or distribution, y R← A denotes that y is randomly selected from A

according to its distribution. When A is a set, y U← A denotes that y is uniformly selected from
A. We denote the finite field of order q by Fq, and Fq \ {0} by F

×
q . A vector symbol denotes a

vector representation over Fq, e.g., �x denotes (x1, . . . , xn) ∈ F
n
q . For two vectors �x = (x1, . . . , xn)

and �v = (v1, . . . , vn), �x · �v denotes the inner-product
∑n

i=1 xivi. The vector �0 is abused as the
zero vector in F

n
q for any n. XT denotes the transpose of matrix X. A bold face letter denotes an

element of vector space V, e.g., x ∈ V. When bi ∈ V (i = 1, . . . , n), span〈b1, . . . , bn〉 ⊆ V (resp.
span〈�x1, . . . , �xn〉) denotes the subspace generated by b1, . . . , bn (resp. �x1, . . . , �xn). For bases B :=
(b1, . . . , bN ) and B

∗ := (b∗1, . . . , b∗N ), (x1, . . . , xN )B :=
∑N

i=1 xibi and (y1, . . . , yN )B∗ :=
∑N

i=1 yib
∗
i .

�ej denotes the canonical basis vector (

j−1︷ ︸︸ ︷
0 · · · 0, 1,

n−j︷ ︸︸ ︷
0 · · · 0) ∈ F

n
q . GL(n,Fq) denotes the general linear

group of degree n over Fq.

2 Definition of Key-Policy Attribute-Based Encryption

2.1 Span Programs and Non-Monotone Access Structures

Definition 1 (Span Programs [2]). Let {p1, . . . , pn} be a set of variables. A span program over
Fq is a labeled matrix M̂ := (M,ρ) where M is a (� × r) matrix over Fq and ρ is a labeling of
the rows of M by literals from {p1, . . . , pn,¬p1, . . . , ¬pn} (every row is labeled by one literal), i.e.,
ρ : {1, . . . , �} → {p1, . . . , pn,¬p1, . . . , ¬pn}.

A span program accepts or rejects an input by the following criterion. For every input sequence
δ ∈ {0, 1}n define the submatrix Mδ of M consisting of those rows whose labels are set to 1 by
the input δ, i.e., either rows labeled by some pi such that δi = 1 or rows labeled by some ¬pi
such that δi = 0. (i.e., γ : {1, . . . , �} → {0, 1} is defined by γ(j) = 1 if [ρ(j) = pi] ∧ [δi = 1] or
[ρ(j) = ¬pi]∧ [δi = 0], and γ(j) = 0 otherwise. Mδ := (Mj)γ(j)=1, where Mj is the j-th row of M .)

The span program M̂ accepts δ if and only if �1 ∈ span〈Mδ〉, i.e., some linear combination of the
rows of Mδ gives the all one vector �1. (The row vector has the value 1 in each coordinate.) A span
program computes a Boolean function f if it accepts exactly those inputs δ where f(δ) = 1.

A span program is called monotone if the labels of the rows are only the positive literals {p1, . . . , pn}.
Monotone span programs compute monotone functions. (So, a span program in general is “non”-
monotone.)

We assume that no row Mi (i = 1, . . . , �) of the matrix M is �0. We now introduce a non-
monotone access structure with evaluating map γ that is employed in the proposed attribute-based
encryption schemes.

Definition 2 (Access Structures). U (⊂ {0, 1}∗) is a universe, a set of attributes, which is
expressed by a value of attribute, i.e., v ∈ F

×
q (:= Fq \ {0}).

We now define such an attribute to be a variable p of a span program M̂ := (M,ρ), i.e., p := v.
An access structure S is span program M̂ := (M,ρ) along with variables p := v, p′ := v′, . . ., i.e.,
S := (M,ρ) such that ρ : {1, . . . , �} → {v, v′, . . . ,¬v,¬v′, . . .}.

Let Γ be a set of attributes, i.e., Γ := {xj}1≤j≤n′. When Γ is given to access structure S, map
γ : {1, . . . , �} → {0, 1} for span program M̂ := (M,ρ) is defined as follows: For i = 1, . . . , �, set
γ(i) = 1 if [ρ(i) = vi] ∧ [vi ∈ Γ ] or [ρ(i) = ¬vi] ∧ [vi �∈ Γ ]. Set γ(i) = 0 otherwise.
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Access structure S := (M,ρ) accepts Γ iff �1 ∈ span〈(Mi)γ(i)=1〉.
We now construct a secret-sharing scheme for a non-monotone access structure or span program.

Definition 3. A secret-sharing scheme for span program M̂ := (M,ρ) is:

1. Let M be �×r matrix. Let column vector �fT := (f1, . . . , fr)T
U← F

r
q . Then, s0 := �1· �fT =

∑r
k=1 fk

is the secret to be shared, and �sT := (s1, . . . , s�)T := M · �fT is the vector of � shares of the secret
s0 and the share si belongs to ρ(i).

2. If span program M̂ := (M,ρ) accepts δ, or access structure S := (M,ρ) accepts Γ , i.e., �1 ∈
span〈(Mi)γ(i)=1〉 with γ : {1, . . . , �} → {0, 1}, then there exist constants {αi ∈ Fq | i ∈ I} such
that I ⊆ {i ∈ {1, . . . , �} | γ(i) = 1} and

∑
i∈I αisi = s0. Furthermore, these constants {αi} can

be computed in time polynomial in the size of the matrix M .

2.2 Key-Policy Attribute-Based Encryption (KP-ABE)

In key-policy attribute-based encryption (KP-ABE), encryption (resp. a secret key) is associated
with attributes Γ (resp. access structure S). Relation R for KP-ABE is defined as R(S, Γ ) = 1 iff
access structure S accepts Γ .

Definition 4 (Key-Policy Attribute-Based Encryption: KP-ABE). A key-policy attribute-
based encryption scheme consists of probabilistic polynomial-time algorithms Setup,KeyGen,Enc and
Dec. They are given as follows:

Setup takes as input security parameter 1λ and a bound on the number of attributes per ciphertext
n. It outputs public parameters pk and master secret key sk.

KeyGen takes as input public parameters pk, master secret key sk, and access structure S := (M,ρ).
It outputs a corresponding secret key skS.

Enc takes as input public parameters pk, message m in some associated message space msg, and
a set of attributes, Γ := {xj}1≤j≤n′. It outputs a ciphertext ctΓ .

Dec takes as input public parameters pk, secret key skS for access structure S, and ciphertext ctΓ
that was encrypted under a set of attributes Γ . It outputs either m′ ∈ msg or the distinguished
symbol ⊥.

A KP-ABE scheme should have the following correctness property: for all (pk, sk) R← Setup(1λ, n),
all access structures S, all secret keys skS

R← KeyGen(pk, sk,S), all messages m, all attribute sets Γ ,
all ciphertexts ctΓ

R← Enc(pk,m, Γ ), it holds that m = Dec(pk, skS, ctΓ ) if S accepts Γ . Otherwise,
it holds with negligible probability.

Definition 5. The model for defining the selectively payload-hiding security of KP-ABE under
chosen plaintext attack is given by the following game:

Setup The adversary output a challenge attribute set, Γ . The challenger runs the setup algorithm,
(pk, sk) R← Setup(1λ, n), and gives public parameters pk to the adversary.

Phase 1 The adversary is allowed to adaptively issue a polynomial number of key queries, S, to
the challenger provided that S does not accept Γ . The challenger gives skS

R← KeyGen(pk, sk,S)
to the adversary.
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Challenge The adversary submits two messages m(0),m(1). The challenger flips a coin b U← {0, 1},
and computes ct

(b)
Γ

R← Enc(pk,m(b), Γ ). It gives ct
(b)
Γ to the adversary.

Phase 2 Phase 1 is repeated with the restriction that no queried S accepts challenge Γ .
Guess The adversary outputs a guess b′ of b, and wins if b′ = b.

The advantage of adversary A in the above game is defined as AdvKP-ABE,PH
A (λ) := Pr[A wins ] −

1/2 for any security parameter λ. A KP-ABE scheme is selectively payload-hiding secure if all
polynomial time adversaries have at most a negligible advantage in the above game.

3 Special Matrix Subgroups

Lemmas 1 and 2 are key lemmas for the security proof for our KP-ABE and ABS schemes. For
positive integers w, n and �y := (y1, . . . , yn) ∈ F

n
q − span〈�en〉, let

H(n,Fq) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝
u u′1

. . .
...

u u′n−1

u′n

⎞⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
u, u′l ∈ Fq for l = 1, . . . , n,
a blank element in the matrix
denotes 0 ∈ Fq

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (1)

H�y(n,Fq) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

1 u′1
. . .

...
1 u′n−1

u′n

⎞⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
�u′ := (u′l)l=1,...,n ∈ F

n
q , �y · �u′ = yn

a blank element in the matrix
denotes 0 ∈ Fq

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (2)

Lemma 1. H�y(n,Fq) ⊂ H(n,Fq). H(n,Fq) ∩ GL(n,Fq) and H�y(n,Fq) ∩ GL(n,Fq) are subgroups
of GL(n,Fq).

Lemma 1 is directly verified from the definition of groups. ��
Let

L(w, n,Fq) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩X :=

⎛⎜⎝X1,1 · · · X1,w
...

...
Xw,1 · · · Xw,w

⎞⎟⎠
∣∣∣∣∣∣∣Xi,j :=

⎛⎜⎜⎜⎝
μi,j μ′i,j,1

. . .
...

μi,j μ
′
i,j,n−1

μ′i,j,n

⎞⎟⎟⎟⎠
∈ H(n,Fq)
for i, j =
1, . . . , w

⎫⎪⎪⎪⎬⎪⎪⎪⎭⋂
GL(wn,Fq). (3)

Lemma 2. L(w, n,Fq) is a subgroup of GL(wn,Fq).

The proof of Lemma 2 is given in Appendix A in the full version of [24].

4 Proposed KP-ABE Scheme with Constant Size Ciphertexts

4.1 Dual Pairing Vector Spaces by Direct Product of Symmetric Pairing Groups

In this paper, for simplicity of description, we will present the proposed schemes on the symmetric
version of dual pairing vector spaces (DPVS) [21, 22] constructed using symmetric bilinear pairing
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groups given in Definition 6. Owing to the abstraction of DPVS, the presentation and the security
proof of the proposed schemes are essentially the same as those on the asymmetric version of DPVS,
(q,V,V∗,GT ,A,A

∗, e), for which see Appendix A.2 of the full version of [23].The symmetric version
is a specific (self-dual) case of the asymmetric version, where V = V

∗ and A = A
∗.

Definition 6. “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple of a prime q, cyclic
additive group G and multiplicative group GT of order q, G �= 0 ∈ G, and a polynomial-time
computable nondegenerate bilinear pairing e : G×G→ GT i.e., e(sG, tG) = e(G,G)st and e(G,G) �=
1. Let Gbpg be an algorithm that takes input 1λ and outputs a description of bilinear pairing groups
(q,G,GT , G, e) with security parameter λ.

Definition 7. “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct product of sym-
metric pairing groups (q,G,GT , G, e) are a tuple of prime q, N -dimensional vector space V :=

N︷ ︸︸ ︷
G× · · · ×G over Fq, cyclic group GT of order q, canonical basis A := (a1, . . . ,aN ) of V, where

ai := (
i−1︷ ︸︸ ︷

0, . . . , 0, G,
N−i︷ ︸︸ ︷

0, . . . , 0), and pairing e : V × V → GT . The pairing is defined by e(x,y) :=∏N
i=1 e(Gi, Hi) ∈ GT where x := (G1, . . . , GN ) ∈ V and y := (H1, . . . , HN ) ∈ V. This is nonde-

generate bilinear i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then x = 0. For all
i and j, e(ai,aj) = e(G,G)δi,j where δi,j = 1 if i = j, and 0 otherwise, and e(G,G) �= 1 ∈ GT .
DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N) and N ∈ N, and outputs a description of
paramV := (q,V,GT ,A, e) with security parameter λ and N -dimensional V. It can be constructed
by using Gbpg.

4.2 Key Ideas in Constructing the Proposed KP-ABE Scheme

In this section, we will explain key ideas of constructing and proving the security of the proposed
KP-ABE scheme.

First, we will show how short ciphertexts and efficient decryption can be achieved in our scheme,
where the IPE scheme given in [24] is used as a building block. Here, we will use a simplified (or
toy) version of the proposed KP-ABE scheme, for which the security is no more ensured in the
standard model under the DLIN assumption.

A ciphertext in the simplified KP-ABE scheme consists of two vector elements, (c0, c1) ∈
G

5×G
n, and c3 ∈ GT . A secret-key consists of �+ 1 vector elements, (k∗

0,k
∗
1, . . . ,k

∗
� ) ∈ G

5× (Gn)�

for access structure S := (M,ρ), where the number of rows of M is � and k∗
i with i ≥ 1 cor-

responds to the i-th row. Therefore, to achieve constant-size ciphertexts, we have to compress
c1 ∈ G

n to a constant size in n. We now employ a special form of basis generation matrix,

X :=

⎛⎜⎜⎜⎝
μ μ′1

. . .
...

μ μ′n−1

μ′n

⎞⎟⎟⎟⎠ ∈ H(n,Fq) of Eq. (1) in Section 3, where μ, μ′1, . . . , μ′n
U← Fq and a blank in

the matrix denotes 0 ∈ Fq. The public key (DPVS basis) is B :=

⎛⎜⎜⎜⎝
b1
...

bn

⎞⎟⎟⎟⎠ :=

⎛⎜⎜⎜⎝
μG μ′1G

. . .
...

μG μ′n−1G
μ′nG

⎞⎟⎟⎟⎠.

Let a ciphertext associated with Γ := {x1, . . . , xn′} be c1 := (ω�y)B = ω(y1b1 + · · · + ynbn) =
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(y1ωμG, . . . , yn−1ωμG, ω(
∑n

i=1 yiμ
′
i)G), where ω U← Fq and �y := (y1, . . . , yn) such that

∑n−1
j=0 yn−jz

j =
zn−1−n′ ·∏n

j=1(z−xj). Then, c1 can be compressed to only two group elements (C1 := ωμG, C2 :=
ω(

∑n
i=1 yiμ

′
i)G) as well as �y, since c1 can be obtained by (y1C1, . . . , yn−1C1, C2) (note that

yiC1 = yiωμG for i = 1, . . . , n − 1). That is, a ciphertext (excluding �y) can be just two group
elements, or the size is constant in n.

Let B
∗ := (b∗i ) be the dual orthonormal basis of B := (bi), and B

∗ be the master secret
key in the simplified KP-ABE scheme. We specify (c0,k

∗
0, c3) such that e(c0,k

∗
0) = gζ−ωs0T and

c3 := gζTm ∈ GT with s0 is a center secret of shares {si}i=1,...,� associated with access structure S.
Using {si}i=1,...,�, we also set a secret-key for S as k∗

i := (si�e1+θi�vi)B∗ if ρ(i) = vi and k∗
i := (si�vi)B∗

if ρ(i) = ¬vi where �vi := (vn−1
i , . . . , vi, 1) and θi

U← Fq. From the dual orthonormality of B and B
∗,

if S accepts Γ , there exist a system of coefficients {αi}i∈I such that e(c1, k̃
∗) = gωs0T , where k̃∗ :=∑

i∈I ∧ ρ(i)=vi
αik

∗
i +

∑
i∈I ∧ ρ(i)=¬vi

αi(�y ·�vi)−1k∗
i . Hence, a decryptor can compute gωs0T if and only if

S accepts Γ , i.e., can obtain plaintext m. Since c1 is expressed as (y1C1, . . . , yn−1C1, C2) ∈ G
n and

k̃∗ is parsed as a n-tuple (D∗
1, . . . , D

∗
n) ∈ G

n, the value of e(c1, k̃
∗) is

∏n−1
i=1 e(yiC1, D

∗
i ) ·e(C2, D

∗
n) =∏n−1

i=1 e(C1, yiD
∗
i ) ·e(C2, D

∗
n) = e(C1,

∑n−1
i=1 yiD

∗
i ) ·e(C2, D

∗
n). That is, n−1 scalar multiplications in

G and two pairing operations are enough for computing e(c1, k̃
∗). Therefore, only a small (constant)

number of pairing operations are required for decryption.

We then explain how our full KP-ABE scheme is constructed on the above-mentioned simplified
KP-ABE scheme. The target of designing the full KP-ABE scheme is to achieve the (selective)
security under the DLIN assumption. Here, we adopt and extend a strategy initiated in [23], in which
the dual system encryption methodology is employed in a modular or hierarchical manner. That is,
one top level assumption, the security of Problem 1, is directly used in the dual system encryption
methodology and the assumption is reduced to a primitive assumption, the DLIN assumption.

To meet the requirements for applying to the dual system encryption methodology and reducing
to the DLIN assumption, the underlying vector space is six times greater than that of the above-
mentioned simplified scheme. For example, k∗

i := ( si�e1 + θi�vi, 02n, �ηi, 0n )B∗
1

if ρ(i) = vi, k∗
i :=

( si�vi, 02n, �ηi, 0n )B∗
1

if ρ(i) = ¬vi, c1 = ( ω�y, 02n, 02n, ϕ1�y )B1 , and X :=

⎛⎜⎝X1,1 · · · X1,6
...

...
X6,1 · · · X6,6

⎞⎟⎠ ∈
L(6, n,Fq) of Eq. (3) in Section 3, where each Xi,j is of the form of X ∈ H(n,Fq) in the simplified
scheme. The vector space consists of four orthogonal subspaces, i.e., real encoding part, hidden
part, secret-key randomness part, and ciphertext randomness part. The simplified KP-ABE scheme
corresponds to the first real encoding part.

A key fact in the security reduction is that L(6, n,Fq) is a subgroup of GL(6n,Fq) (Lemma 2),
which enables a random-self-reducibility argument for reducing the intractability of Problem 1 in
Definition 8 to the DLIN assumption. The property that H�y(n,Fq) ∩ GL(n,Fq) is a subgroup of
GL(n,Fq) is also crucial for a special form of pairwise independence lemma in this paper (Lemma
4), where a super-group H(n,Fq) ∩ GL(n,Fq)(⊃ H�y(n,Fq) ∩ GL(n,Fq)) is specified in L(6, n,Fq)

or X. Our Problem 1 employs the special form matrices {Uj U← H�y(n,Fq)∩GL(n,Fq)} and {Zj :=
(U−1

j )T}, and makes Lemma 4 applicable in our proof. Informally, our pairwise independence lemma
implies that, for all (�y,�v), a vector, �vZ, is uniformly distributed over F

n
q −span〈�en〉⊥ with preserving

the inner-product value, �y · �v, i.e., �vZ reveal no information but (�y and) �y · �v.
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4.3 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator GKP-ABE
ob below, which is used as a subroutine

in the proposed KP-ABE scheme.

GKP-ABE
ob (1λ, 6, n) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ), N0 := 5, N1 := 6n,
paramVt

:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG) for t = 0, 1,

ψ
U← F

×
q , gT := e(G,G)ψ, paramn := ({paramVt

}t=0,1, gT ),

X0 := (χ0,i,j)i,j=1,...,5
U← GL(N0,Fq), X1

U← L(6, n,Fq), hereafter,
{μi,j , μ′i,j,l}i,j=1,...,6;l=1,...,n denotes non-zero entries of X1 as in Eq. (3),

b0,i := (χ0,i,1, .., χ0,i,5)A =
∑5

j=1 χ0,i,jaj for i = 1, .., 5, B0 := (b0,1, .., b0,5),

Bi,j := μi,jG, B
′
i,j,l := μ′i,j,lG for i, j = 1, . . . , 6; l = 1, . . . , n,

for t = 0, 1, (ϑt,i,j)i,j=1,...,Nt := ψ · (XT
t )−1,

b∗t,i := (ϑt,i,1, .., ϑt,i,Nt)A =
∑Nt

j=1 ϑt,i,jaj for i = 1, .., Nt, B
∗
t := (b∗t,1, .., b∗t,Nt

),

return (paramn,B0,B
∗
0, {Bi,j , B′

i,j,l}i,j=1,...,6;l=1,...,n,B
∗
1).

Remark 1 Let

⎛⎜⎜⎝
b1,(i−1)n+1

...

b1,in

⎞⎟⎟⎠ :=

⎛⎜⎜⎜⎜⎜⎝
Bi,1 B′

i,1,1

. . .
...

Bi,1 B
′
i,1,n−1

B′
i,1,n

· · ·

Bi,6 B′
i,6,1

. . .
...

Bi,6 B
′
i,6,n−1

B′
i,6,n

⎞⎟⎟⎟⎟⎟⎠
for i = 1, . . . , 6,

B1 := (b1,1, . . . , b1,6n),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4)

where a blank element in the matrix denotes 0 ∈ G. B1 is the dual orthonormal basis of B
∗
1, i.e.,

e(b1,i, b
∗
1,i) = gT and e(b1,i, b

∗
1,j) = 1 for 1 ≤ i �= j ≤ 6n.

4.4 Construction

We note that attributes xj , vi are in F
×
q , i.e., nonzero.

Setup(1λ, n) : (paramn,B0,B
∗
0, {Bi,j , B′

i,j,l}i,j=1,...,6;l=1,...,n,B
∗
1)

R← GKP-ABE
ob (1λ, 6, n)),

B̂0 := (b0,1, b0,3, b0,5), B̂1 := (b1,1, . . . , b1,n, b1,5n+1, . . . , b1,6n) = {Bi,j , B′
i,j,l}i=1,6;j=1,...,6;l=1,...,n,

B̂
∗
0 := (b∗0,1, b

∗
0,3, b

∗
0,4), B̂

∗
1 := (b∗1,1, . . . , b

∗
1,n, b

∗
1,3n+1, . . . , b

∗
1,5n),

pk := (1λ, paramn, {B̂t}t=0,1), sk := {B̂∗
t }t=0,1, return pk, sk.

KeyGen(pk, sk, S := (M,ρ)) : �f
U← F

r
q , �s

T := (s1, . . . , s�)T := M · �fT, s0 := �1 · �fT, η0
U← Fq,

k∗
0 := (−s0, 0, 1, η0, 0)B∗

0
,
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for i = 1, . . . , �, �vi := (vn−1
i , . . . , vi, 1) for ρ(i) = vi or ¬vi, �ηi U← F

2n
q ,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷︸︸︷
if ρ(i) = vi ∈ F

×
q , θi

U← Fq, k∗
i := ( si�e1 + θi�vi, 02n, �ηi, 0n )B∗

1
,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷︸︸︷
if ρ(i) = ¬vi, k∗

i := ( si�vi, 02n, �ηi, 0n )B∗
1
,

return skS := (S,k∗
0,k

∗
1, . . . ,k

∗
� ).

Enc(pk, m, Γ := {x1, . . . , xn′ | xj ∈ F
×
q , n

′ ≤ n− 1}) :

ω, ϕ0, ϕ1, ζ
U← Fq, �y := (y1, . . . , yn) such that

∑n−1
j=0 yn−jz

j = zn−1−n′ ·∏n′
j=1(z − xj),

c0 := (ω, 0, ζ, 0, ϕ0)B0 ,

C1,j := ωB1,j + ϕ1B6,j , C2,j :=
∑n

l=1 yl(ωB
′
1,j,l + ϕ1B

′
6,j,l) for j = 1, . . . , 6,

c3 := gζTm, ctΓ := (Γ, c0, {C1,j , C2,j}j=1,...,6, c3). return ctΓ .

Dec(pk, skS := (S,k∗
0,k

∗
1, . . . ,k

∗
� ), ctΓ := (Γ, c0, {C1,j , C2,j}j=1,...,6, c3)) :

If S := (M,ρ) accepts Γ := {x1, . . . , xn′}, then compute I and {αi}i∈I such that
�1 =

∑
i∈I αiMi, where Mi is the i-th row of M, and

I ⊆ {i ∈ {1, . . . , �} | [ρ(i) = vi ∧ vi ∈ Γ ] ∨ [ρ(i) = ¬vi ∧ vi �∈ Γ ] },
�y := (y1, . . . , yn) such that

∑n−1
j=0 yn−jz

j = zn−1−n′ ·∏n′
j=1(z − xj),

(D∗
1, . . . , D

∗
6n) :=

∑
i∈I ∧ ρ(i)=vi

αik
∗
i +

∑
i∈I ∧ ρ(i)=¬vi

αi
�vi · �yk∗

i ,

E∗
j :=

∑n−1
l=1 yl−1D

∗
(j−1)n+l for j = 1, . . . , 6,

K := e(c0,k
∗
0) ·

∏6
j=1

(
e(C1,j , E

∗
j ) · e(C2,j , D

∗
jn)

)
, return m′ := c3/K.

Remark A part of the output of Setup(1λ, n), {Bi,j , B′
i,j,l}i=1,6;j=1,...,6;l=1,...,n, can be identified with

B̂1 := (b1,1, . . . , b1,n, b1,5n+1, .., b1,6n) through the form of Eq. (4), while B1 := (b1,1, . . . , b1,6n) is
identified with {Bi,j , B′

i,j,l}i,j=1,..,6; l=1,..,n by Eq. (4). Decryption Dec can be alternatively described
as:

Dec′(pk, skS := (S,k∗
0,k

∗
1, . . . ,k

∗
� ), ctΓ := (Γ, c0, {C1,j , C2,j}j=1,...,6, c3)) :

If S := (M,ρ) accepts Γ := {x1, . . . , xn′}, then compute I and {αi}i∈I such that
�1 =

∑
i∈I αiMi, where Mi is the i-th row of M, and

I ⊆ {i ∈ {1, . . . , �} | [ρ(i) = vi ∧ vi ∈ Γ ] ∨ [ρ(i) = ¬vi ∧ vi �∈ Γ ] },
�y := (y1, . . . , yn) such that

∑n−1
j=0 yn−jz

j = zn−1−n′ ·∏n′
j=1(z − xj),

n︷ ︸︸ ︷ n︷ ︸︸ ︷
c1 := ( y1C1,1, .., yn−1C1,1, C2,1, y1C1,2, .., yn−1C1,2, C2,2, · · ·

y1C1,5, .., yn−1C1,5, C2,5, y1C1,6, .., yn−1C1,6, C2,6 ),
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷

that is, c1 = ( ω�y, 02n, 02n, ϕ1�y )B1 ,
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K := e(c0,k
∗
0) · e

⎛⎝c1,
∑

i∈I ∧ ρ(i)=vi

αik
∗
i +

∑
i∈I ∧ ρ(i)=¬vi

αi
�vi · �yk∗

i

⎞⎠ ,

return m′ := c3/K.

[Correctness]

e(c0,k
∗
0)

∏
i∈I ∧ ρ(i)=vi

e(c1,k
∗
i )
αi ·∏i∈I ∧ ρ(i)=¬vi

e(c1,k
∗
i )
αi/(�vi·�y)

= g−ωs0+ζ
T

∏
i∈I ∧ ρ(i)=vi

gωαisi
T

∏
i∈I ∧ ρ(i)=¬vi

g
ωαisi(�vi·�y)/(�vi·�y)
T = g

ω(−s0+
P

i∈I αisi)+ζ

T = gζT .

4.5 Security

The DLIN assumption is given in Appendix A.

Theorem 1. The proposed KP-ABE scheme is selectively payload-hiding against chosen plaintext
attacks under the DLIN assumption.

For any adversary A, there is a probabilistic machine F , whose running time is essentially the
same as that of A, such that for any security parameter λ, AdvKP-ABE,PH

A (λ) ≤∑n
j=0

∑2
ι=1 AdvDLIN

Fj,ι
(λ)

+ε, where Fj,ι(·) := F(j, ι, ·) for j = 0, . . . , n; ι = 1, 2, ε := (ν� + 10n + 12)/q, and ν is the max-
imum number of A’s key queries, � is the maximum number of rows in access matrices M of the
key queries.

Proof Outline At the top level strategy of the security proof, the dual system encryption by Wa-
ters [30] is employed, where ciphertexts and secret keys have two forms, normal and semi-functional.
The real system uses only normal ciphertexts and normal secret keys, and semi-functional cipher-
texts and keys are used only in subsequent security games for the security proof.

To prove this theorem, we employ Game 0 (original selective-security game) through Game
2. In Game 1, the challenge ciphertext and all queried keys are changed to semi-functional form,
respectively. In Game 2, the challenge ciphertext is changed to non-functional form. In the final
game, the advantage of the adversary is zero. As usual, we prove that the advantage gaps between
neighboring games are negligible.

A normal secret key (with access structure S), is the correct form of the secret key of the proposed
KP-ABE scheme, and is expressed by Eq. (5). Similarly, a normal ciphertext (with attributes Γ ) is
expressed by Eq. (6). A semi-functional ciphertext is expressed by Eq. (8). A semi-functional key is
expressed by Eq. (7). A non-functional ciphertext is expressed by Eq. (9) (with c1 in Eq. (8)).

To prove that the advantage gap between Games 0 and 1 is bounded by the advantage of
Problem 1 (to guess β ∈ {0, 1}), we construct a simulator of the challenger of Game 0 (or 1)
(against an adversary A) by using an instance with β

U← {0, 1} of Problem 1. We then show that
the distribution of the secret keys and challenge ciphertext replied by the simulator is equivalent to
those of Game 0 when β = 0 and those of Game 1 when β = 1. That is, the advantage of Problem 1
is equivalent to the advantage gap between Games 0 and 1 (Lemma 5). The advantage of Problem
1 is proven to be equivalent to (2n+ 2)-times of that of the DLIN assumption (Lemma 3).

We then show that Game 1 can be conceptually changed to Game 2 (Lemma 6), by using the
fact that parts of bases, b0,2 and b∗0,3, are unknown to the adversary. In the conceptual change, we
use the fact that the challenge ciphertext and all queried keys are semi-functional, i.e., respective
coefficients of b0,2 and b∗0,2 are random.
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Key Lemmas We will show Lemmas 3 and 4 for the proof of Theorem 1.

Definition 8 (Problem 1). Problem 1 is to guess β, given (paramn, {B̂ι, B̂∗
ι }ι=0,1,h

∗
β,0, eβ,0,

{h∗
β,j,i}j=1,...,n; i=1,...,n, eβ,1)

R← GP1
β (1λ, n, �y), where

GP1
β (1λ, n, �y) : (paramn,B0,B

∗
0, {Bi,j , B′

i,j,l}i,j=1,...,6;l=1,...,n,B
∗
1)

R← GKP-ABE
ob (1λ, 6, n),

B̂0 := (b0,1, b0,3, . . . , b0,5), B̂
∗
0 := (b∗0,1, b

∗
0,3, . . . , b

∗
0,5),

B̂1 := (b1,1, .., b1,n, b1,3n+1, .., b1,6n) is calculated as in Eq. (1) from {Bi,j , B′
i,j,l}i,j=1,...,6;l=1,...,n,

B̂
∗
1 := (b∗1,1, .., b

∗
1,n, b

∗
1,3n+1, .., b

∗
1,6n),

δ, δ0, ω, ϕ0, ϕ1
U← Fq, τ, ρ

U← F
×
q , h∗

0,0 := (δ, 0, 0, δ0, 0)B∗
0
, h∗

1,0 := (δ, ρ, 0, δ0, 0)B∗
0
,

e0,0 := (ω, 0, 0, 0, ϕ0)B0 , e1,0 := (ω, τ, 0, 0, ϕ0)B0 ,

for j = 1, . . . , n; i = 1, . . . , n; �ei := (0i−1, 1, 0n−i) ∈ F
n
q ,

�δj,i
U← F

2n
q ,

Uj
U← H�y(n,Fq) ∩GL(n,Fq), Zj := (U−1

j )T,
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷

h∗
0,j,i := ( δ�ei, 02n, �δj,i, 0n )B∗

1

h∗
1,j,i := ( δ�ei, 0n, ρ�ei · Zj , �δj,i, 0n )B∗

1

e0,1 := ( ω�y, 02n, 02n, ϕ1�y )B1 ,
e1,1 := ( ω�y, τ�y, τ�y, 02n, ϕ1�y )B1 ,

return (paramn, {B̂ι, B̂∗
ι }ι=0,1,h

∗
β,0, eβ,0, {h∗

β,j,i}j=1,...,n; i=1,...,n, eβ,1),

for β
U← {0, 1}. For a probabilistic adversary B, we define the advantage of B as the quantity

AdvP1
B (λ) :=

∣∣∣Pr
[
B(1λ, �)→ 1

∣∣∣� R← GP1
0 (1λ, n)

]
− Pr

[
B(1λ, �)→ 1

∣∣∣� R← GP1
1 (1λ, n)

]∣∣∣ .
Lemma 3. Problem 1 is computationally intractable under the DLIN assumption.

For any adversary B, there are probabilistic machines Fj,ι (j = 0, . . . , n; ι = 1, 2), whose running
times are essentially the same as that of B, such that for any security parameter λ, AdvP1

B (λ) ≤∑n
j=0

∑2
ι=1 AdvDLIN

Fj,ι
(λ) + (10n+ 10)/q.

The proof of Lemma 3 is given in Appendix B. For an outline of the proof, see Section 6.
Next is a key lemma for applying the proof techniques in [23] to our KP-ABE and ABS schemes.

Lemma 4. For all �y ∈ F
n
q − span〈�en〉 and π ∈ Fq, let W�y,π := {�w ∈ F

n
q − span〈�en〉⊥ | �y · �w = π},

where span〈�en〉⊥ := {�w ∈ F
n
q | �w · �en = 0}.

For all (�y,�v) ∈ (
F
n
q − span〈�en〉

) × (
F
n
q − span〈�en〉⊥

)
, if Z is generated as U U← H�y(n,Fq) ∩

GL(n,Fq) and Z := (U−1)T where H�y(n,Fq) is defined by Eq. (2), then �vZ is uniformly distributed
in W�y,(�y·�v).

The proof of Lemma 4 is given in Appendix C.

12



Proof of Theorem 1 : To prove Theorem 1, we consider the following 3 games. In Game 0, a part
framed by a box indicates coefficients to be changed in a subsequent game. In the other games, a
part framed by a box indicates coefficients which were changed in a game from the previous game.

Game 0 : Original game. That is, the reply to a key query for access structure S := (M,ρ) is:

k∗
0 := (−s0, 0 , 1, η0, 0)B∗

0
,

for i = 1, . . . , �;
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷︸︸︷

if ρ(i) = vi, k∗
i := ( si�e1 + θi�vi, 0n, 0n , �ηi, 0n )B∗

1
,

if ρ(i) = ¬vi, k∗
i := ( si�vi, 0n, 0n , �ηi, 0n )B∗

1
,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(5)

where �f
U← F

r
q , �s

T := (s1, . . . , s�)T := M · �fT, s0 := �1 · �fT, (s′1, . . . , s′�)
U← F

�
q , θi, η0

U← Fq, �ηi
U←

F
n
q , �e1 = (1, 0, . . . , 0) ∈ F

n
q , and �vi := (vn−1

i , . . . , vi, 1) ∈ (F×
q )n. The challenge ciphertext for

challenge plaintexts (m(0),m(1)) and Γ := {x1, . . . , xn′} with n′ ≤ n− 1 is:

c0 := (ω, 0 , ζ , 0, ϕ0)B0 , c3 := gζTm
(b),

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
c1 := ( ω�y, 02n , 02n, ϕ1�y )B1 ,

⎫⎪⎪⎬⎪⎪⎭ (6)

where b
U← {0, 1};ω, ζ, ϕ0, ϕ1

U← Fq, and �y := (y1, . . . , yn) such that
∑n−1

j=0 yn−jz
j = zn−1−n′ ·∏n′

j=1(z − xj).
Game 1 : Same as Game 0 except that the reply to a key query for access structure S := (M,ρ)
are:

k∗
0 := (−s0, w0 , 1, η0, 0)B∗

0
,

for i = 1, . . . , �;
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷︸︸︷

if ρ(i) = vi, k∗
i := ( si�e1 + θi�vi, 0n, �wi, �ηi, 0n )B∗

1
,

if ρ(i) = ¬vi, k∗
i := ( si�vi, 0n, �wi, �ηi, 0n )B∗

1
,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(7)

where �g U← F
r
q , �r

T := (r1, . . . , r�)T := M · �gT, w0
U← Fq, ψi

U← Fq, �wi
U← {�wi ∈ F

n
q | �wi · �y =

(ri�e1 + ψi�vi) · �y}, �wi
U← {�wi ∈ F

n
q | �wi · �y = ri�vi · �y}, and the challenge ciphertext is:

c0 := (ω, τ , ζ, 0, ϕ0)B0 , c3 := gζTm
(b),

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
c1 := ( ω�y, τ�y, τ�y, 02n, ϕ1�y )B1 ,

⎫⎪⎪⎬⎪⎪⎭ (8)

where τ U← Fq, and all the other variables are generated as in Game 0.
Game 2 : Game 2 is the same as Game 1 except c0 (and c3) of the challenge ciphertext are

c0 := (ω, τ, ζ ′ , 0, ϕ0)B0 , c3 := gζTm
(b), (9)
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where ζ ′ U← Fq (i.e., independent from ζ
U← Fq), and all the other variables are generated as in

Game 1.
Let Adv

(0)
A (λ),Adv

(1)
A (λ), and Adv

(2)
A (λ) be the advantage of A in Game 0,1 and 2, respectively.

Adv
(0)
A (λ) is equivalent to AdvKP-ABE,PH

A (λ) and it is clear that Adv
(2)
A (λ) = 0 by Lemma 7.

We will show two lemmas (Lemmas 5 and 6) that evaluate the gaps between pairs of Adv
(0)
A (λ),

Adv
(1)
A (λ),Adv

(2)
A (λ). From these lemmas and Lemma 3, we obtain AdvKP-ABE

A (λ) = Adv
(0)
A (λ) ≤∣∣∣Adv

(0)
A (λ)− Adv

(1)
A (λ)

∣∣∣+∣∣∣Adv
(1)
A (λ)− Adv

(2)
A (λ)

∣∣∣ ≤ AdvP1
B (λ)+(ν�+2)/q ≤∑n

j=0

∑2
ι=1 AdvDLIN

Fj,ι
(λ)+

(ν�+ 10n+ 12)/q. This completes the proof of Theorem 1. ��
Lemma 5. For any adversary A, there exists a probabilistic machine B, whose running time is
essentially the same as that of A, such that for any security parameter λ, |Adv

(1)
A (λ)−Adv

(0)
A (λ)| ≤

AdvP1
B (λ) + (ν� + 1)/q, where ν is the maximum number of A’s key queries, � is the maximum

number of rows in access matrices M of key queries.

The proof of Lemma 5 is given in Appendix D.

Lemma 6. For any adversary A, for any security parameter λ, |Adv
(2)
A (λ)− Adv

(1)
A (λ)| ≤ 1/q.

Lemma 6 is proven in a similar manner to Lemma 7 in the full version of [23]. ��
Lemma 7. For any adversary A, for any security parameter λ, Adv

(2)
A (λ) = 0.

Proof. The value of b is independent from the adversary’s view in Game 2. Hence, Adv
(2)
A (λ) = 0.

��

5 Proposed Fully Secure Constant-Size Secret-Key ABS Scheme

We propose a fully secure (adaptive-predicate unforgeable and private) ABS scheme with constant-
size secret-keys in Appendix E.3. Proofs of Theorems 2 and 3 are given in Appendix E.4.

Theorem 2. The proposed ABS scheme is perfectly private.

Theorem 3. The proposed ABS scheme is unforgeable (adaptive-predicate unforgeable) under the
DLIN assumption and the existence of collision resistant hash functions.

6 Proof Outline of Lemma 3 (Iteration of Swapping and Conceptual Change)

Lemma 3 is proven by the hybrid argument through 2n+ 3 experiments (Appendix B).

Experiment 0 ⇒ Experiment 1 ⇒ Experiment 2-0 ⇒
for j = 1, . . . , n; Experiment 2-j-1 ⇒ Experiment 2-j-2

First, in a β = 0 instance of Problem 1 (Experiment 0), coefficients of the hidden parts of e1 and h∗
κ,i

(κ = 1, . . . , n) are all zero. Then, in the next Experiment 1, that of e1 is filled with (τ�y, τ�y) ∈ F
2n
q

as: (Hereafter, a blank indicates zero coefficients)

Coefficients of the hidden part of e1

in Experiment 0
Coefficients of the hidden part of e1

in Experiment 1

−→ τ�y τ�y

14



Then, in the next Experiment 2-0, the first n-dim. coefficient (block) of the hidden parts of h∗
κ,i

(κ = 1, . . . , n) are changed to ρ�ei ∈ F
n
q as

Coefficients of the hidden part of h∗
κ,i

in Experiment 1
Coefficients of the hidden part of h∗

κ,i

in Experiment 2-0

κ = 1
...
j
...
n

−→

κ = 1 ρ�ei
...

...
j
...
n ρ�ei

After that, in turn for j = 1, . . . , n, the coefficient vector ρ�ei ∈ F
n
q is swapped to the second block of

the hidden parts of h∗
j,i in Experiment 2-j-1 and the coefficient vector is conceptually (information-

theoretically) changed to ρ�eiZj in Experiment 2-j-2 by a conceptual basis change. The swapping
can be securely executed under the DLIN assumption. At the final Experiment 2-n-2, each ρ�eiZj
(j = 1, . . . , n) is embedded in the second block of hidden parts in h∗

j,i, i.e., an instance of Experiment
2-n-2 is equivalent to a β = 1 instance of Problem 1.

Coefficients of the hidden part of h∗
κ,i

in Experiment 2-(j − 1)-2
Coefficients of the hidden part of h∗

κ,i

in Experiment 2-j-1

→ ·· →

κ = 1 ρ�eiZ1
...

...
j ρ�ei
...

...
n ρ�ei

swap−→

κ = 1 ρ�eiZ1
...

...
j ρ�ei
...

...
n ρ�ei

Coefficients of the hidden part of h∗
κ,i

in Experiment 2-j-2
Coefficients of the hidden part of h∗

κ,i

in Experiment 2-n-2

insert
Zj−→

κ = 1 ρ�eiZ1
...

...
j ρ�eiZj
...

...
n ρ�ei

→ ·· →

κ = 1 ρ�eiZ1
...

...
j ρ�eiZj
...

...
n ρ�eiZn

7 Why We Use DSE Approach for Selective Security

Previously, the DSE approach was used for achieving adaptive security, not just selective security
[30, 16, 23]. From limited randomness in a public key of our scheme, we need the DSE approach for
(selective) security from DLIN. We will explain the reason below: Okamoto-Takashima [20] obtained
an efficient IPE scheme with selective security. We include the scheme description in Appendix F
for reference. (A simplified, no message, version of) the IPE scheme for n-dimensional (attribute
and predicate) vectors was constructed on (N := n + 3)-dimensional DPVS, and the following
intractable problem on the DPVS. Below, a part framed by a box indicates coefficients which are
different from each other in Definitions 9 and 10.

15



Definition 9 (Problem in [20] (for specific �e1)). Problem in [20] is to guess β, given (paramn,

B̂, B̂∗,h∗
β,1, eβ , {h∗

i }i=2,...,n)
R← GPOT13

β (1λ, n), where

GPOT13
β (1λ, n) : (B,B∗) : N -dimensional random dual bases using random matrix in GL(N,Fq),

B̂ := (b1, .., bn, bn+2, bn+3), B̂
∗ := (b∗1, .., b

∗
n, b

∗
n+2, b

∗
n+3),

δ, ω, ϕ
U← Fq, τ, ρ

U← F
×
q , for i = 1, . . . , n; �ei := (0i−1, 1, 0n−i) ∈ F

n
q , δi

U← Fq,

h∗
0,1 := ( δ�e1, 0, δ1, 0 )B∗ , h∗

1,1 := ( δ�e1, ρ , δ1, 0 )B∗ ,

for i = 2, . . . , n; h∗
i := ( δ�ei, 0 , δi, 0 )B∗ ,

e0 := ( ω�e1 , 0, 0, ϕ )B, e1 := ( ω�e1 , τ, 0, ϕ )B,

return (paramn, B̂, B̂
∗,h∗

β,1, {h∗
i }i=2,...,n, eβ),

for β U← {0, 1}.
The intractability of the problem can be easily reduced from that of DLIN [20] since the problem

is to distinguish two pairs of vector elements (h∗
0,1, e0) and (h∗

1,1, e1). For an arbitrary target vector
�y in the selective security game, we consider a generalized problem below using �y instead of a
specific �e1.

Definition 10 (Problem in [20] for general �y). Problem in [20] for general �y is to guess β,
given (paramn, B̂, B̂

∗, eβ , {h∗
β,i}i=1,...,n)

R← GP′
OT13

β (1λ, n, �y := (y1, . . . , yn)), where

GP′
OT13

β (1λ, n, �y := (y1, .., yn)) : (B,B∗) : N -dim. random dual bases using matrix in GL(N,Fq),

B̂ := (b1, .., bn, bn+2, bn+3), B̂
∗ := (b∗1, .., b

∗
n, b

∗
n+2, b

∗
n+3),

δ, ω, ϕ
U← Fq, τ, ρ

U← F
×
q , for i = 1, . . . , n; �ei := (0i−1, 1, 0n−i) ∈ F

n
q , δi

U← Fq,

for i = 1, . . . , n; h∗
0,i := ( δ�ei, 0, δi, 0 )B∗ , h∗

1,i := ( δ�ei, ρyi , δi, 0 )B∗ ,

e0 := ( ω�y , 0, 0, ϕ )B, e1 := ( ω�y , τ, 0, ϕ )B,

return (paramn, B̂, B̂
∗, {h∗

β,i}i=1,...,n, eβ),

for β U← {0, 1}.
In [20], an instance of the problem POT13 is transformed to that of P′

OT13 for a target �y, and
the transformed one is used in simulation for the selective security. For our constant-size CT KP-
ABE, a sparse matrix X1 is used for generating dual bases (B,B∗). It turns out that the above
transformation seems to be difficult in the sparse matrix setting. Also, we have no idea for directly
proving the security of P′

OT13 for arbitrary �y from that of DLIN. Thus, a straightforward extension
of the approach given in [20] is useless for obtaining a constant-size CT KP-ABE scheme from the
DLIN assumption.

Therefore, for proving the selective security with no transformation of a target �y into �e1, we
adopt the DSE approach since it is suitable for amplifying randomness by a conceptual change
without changing the target �y into some specific one. Moreover, since Problem 1 must use only
one ciphertext component eβ,1 for a specific target �y as explained above, two blocks in the semi-
functional space are used for piling up multiple amplified randomness {Zj}j=1,...,n for dealing with
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an arbitrary attribute value vi in a policy (M,ρ) such that ρ(i) = vi or ρ(i) = ¬vi. See Section 6
for the necessity of the two blocks.
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A Decisional Linear (DLIN) Assumption

Definition 11 (DLIN: Decisional Linear Assumption [4]). The DLIN problem is to guess
β ∈ {0, 1}, given (paramG, G, ξG, κG, δξG, σκG, Yβ)

R← GDLIN
β (1λ), where GDLIN

β (1λ) : paramG :=

(q,G,GT , G, e)
R← Gbpg(1λ), κ, δ, ξ, σ

U← Fq, Y0 := (δ + σ)G,Y1
U← G, return (paramG, G, ξG, κG,

δξG, σκG, Yβ), for β U← {0, 1}. For a probabilistic machine E, we define the advantage of E for the

DLIN problem as: AdvDLIN
E (λ) :=

∣∣∣Pr
[
E(1λ, �)→1

∣∣∣� R←GDLIN
0 (1λ)

]
−Pr

[
E(1λ, �)→1

∣∣∣� R← GDLIN
1 (1λ)

]∣∣ .
The DLIN assumption is: For any probabilistic polynomial-time adversary E, the advantage AdvDLIN

E (λ)
is negligible in λ.

B Proof of Lemma 3 (Security of Problem 1)

B.1 Key Lemmas (on Basic Problems)

We will show Lemmas 8, 9, and 10 for the proof of Lemma 3.

Definition 12 (Basic Problem 1). Basic Problem 1 is to guess β, given (paramn, {Bι, B̂∗
ι }ι=0,1,

{eβ,i}i=0,...,n)
R← GBP1

β (1λ, n), where

GBP1
β (1λ, n) : (paramn,B0,B

∗
0, {Bi,j , B′

i,j,l}i,j=1,...,6;l=1,...,n,B
∗
1)

R← GKP-ABE
ob (1λ, 6, n),

B1 := (b1,1, . . . , b
∗
1,6n) is calculated as in Eq. (1) from {Bi,j , B′

i,j,l}i,j=1,...,6;l=1,...,n,

B̂
∗
0 := (b∗0,1, b

∗
0,3, . . . , b

∗
0,5), B̂

∗
1 := (b∗1,1, . . . , b

∗
1,n, b

∗
1,3n+1, . . . , b

∗
1,6n),

ω, τ, ϕι
U← Fq for ι = 0, 1, e0,0 := (ω, 0, 0, 0, ϕ0)B0 , e1,0 := (ω, τ, 0, 0, ϕ0)B0 ,

for i = 1, . . . , n;
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷

e0,i := ( ω�ei, 02n, 02n, ϕ1�ei )B1 ,
e1,i := ( ω�ei, τ�ei, τ�ei, 02n, ϕ1�ei )B1 ,

return (paramn, {Bι, B̂∗
ι }ι=0,1, {eβ,i}i=0,...,n),

18



for β U← {0, 1}. For a probabilistic adversary C, the advantage of C for Basic Problem 1, AdvBP1
C (λ),

is similarly defined as in Definition 8.

Lemma 8. For any adversary C, there is a probabilistic machine F , whose running time is essen-
tially the same as that of C, such that for any security parameter λ, AdvBP1

C (λ) ≤ AdvDLIN
F (λ)+5/q.

Lemma 8 is proven in a similar manner to Lemma 4 in the full version of [24]. ��
Definition 13 (Basic Problem 2). Problem 2 is to guess β, given (paramn, {B̂ι,B∗

ι }ι=0,1, {h∗
β,i,

ei}i=0,...,n)
R← GBP2

β (1λ, n), where

GBP2
β (1λ, n) : (paramn,B0,B

∗
0, {Bi,j , B′

i,j,l}i,j=1,...,6;l=1,...,n,B
∗
1)

R← GKP-ABE
ob (1λ, 6, n),

B̂0 := (b0,1, b0,3, . . . , b0,5),

B̂1 := (b1,1, .., b1,n, b1,3n+1, .., b1,6n) is calculated as in Eq. (1) from {Bi,j , B′
i,j,l}i,j=1,...,6;l=1,...,n,

δ, δ0, ω
U← Fq, τ, ρ

U← F
×
q ,

h∗
0,0 := (δ, 0, 0, δ0, 0)B∗

0
, h∗

1,0 := (δ, ρ, 0, δ0, 0)B∗
0
, e0 := (ω, τ, 0, 0, 0)B0 ,

for i = 1, . . . , n; �ei := (0i−1, 1, 0n−i) ∈ F
n
q ,

�δi
U← F

2n
q ,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
h∗

0,i := ( δ�ei, 02n, �δi, 0n )B∗
1

h∗
1,i := ( δ�ei, ρ�ei, 0n, �δi, 0n )B∗

1

ei := ( ω�ei, τ�ei, τ�ei, 02n, 0n )B1 ,

return (paramn, {B̂ι,B∗
ι }ι=0,1, {h∗

β,i, ei}i=0,...,n),

for β U← {0, 1}. For a probabilistic adversary C, the advantage of C for Problem 2, AdvBP2
C (λ), is

similarly defined as in Definition 8.

Lemma 9. For any adversary C, there is a probabilistic machine F , whose running time is essen-
tially the same as that of C, such that for any security parameter λ, AdvBP2

C (λ) ≤ AdvDLIN
F (λ)+5/q.

Lemma 9 is proven in a similar manner to Lemma 5 in the full version of [24]. ��
Definition 14 (Basic Problem 3). Basic Problem 3 is to guess β, given (paramn,B0,B

∗
0,f

∗
0 , e0, B̂1,

B
∗
1, {f∗

i , f̃
∗
i ,h

∗
β,i, ei}i=1,...,n)

R← GBP3
β (1λ, n), where

GBP3
β (1λ, n) : (paramn,B0,B

∗
0, {Bi,j , B′

i,j,l}i,j=1,...,6;l=1,...,n,B
∗
1)

R← GKP-ABE
ob (1λ, 6, n),

B̂1 := (b1,1, .., b1,n, b1,3n+1, .., b1,6n) is calculated as in Eq. (1) from {Bi,j , B′
i,j,l}i,j=1,...,6;l=1,...,n,

τ, ρ
U← F

×
q , f∗

0 := ρb∗0,2, e0 := τb0,2,

for i = 1, . . . , n; �ei := (0i−1, 1, 0n−i) ∈ F
n
q ,

�δi
U← F

2n
q , f∗

i := ρb∗1,n+i, f̃∗
i := ρb∗1,2n+i,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
h∗

0,i := ( 0n, ρ�ei, 0n, �δi, 0n )B∗
1

h∗
1,i := ( 0n, 0n, ρ�ei, �δi, 0n )B∗

1

ei := ( 0n, τ�ei, τ�ei, 02n, 0n )B1 ,

return (paramn,B0,B
∗
0,f

∗
0 , e0, B̂1,B

∗
1, {f∗

i , f̃
∗
i ,h

∗
β,i, ei}i=1,...,n),
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Fig. 1. Structures of Reductions for the Proof of Lemma 3.

for β U← {0, 1}. For a probabilistic adversary C, the advantage of C for Basic Problem 3, AdvBP3
C (λ),

is similarly defined as in Definition 8.

Lemma 10. For any adversary C, there are probabilistic machines F1,F2, whose running times are
essentially the same as that of C, such that for any security parameter λ, AdvBP3

C (λ) ≤ AdvDLIN
F1

(λ)+
AdvDLIN

F2
(λ) + 10/q.

The proof of Lemma 10 is given in Appendix B.3.

B.2 Proof of Lemma 3

To prove Lemma 3, we consider the following 2n+ 3 experiments. For a probabilistic adversary B,
we define Experiment 0, Exp0

B, using Problem 1 generator GP1
0 (1λ, n, �y) in Definition 8 as follows:

1. B is given � R← GP1
0 (1λ, n, �y).

2. Output β′ R← B(1λ, �).

Based on Experiment 0, we define the other experiments below.
In Experiment 0, a part framed by a box indicates coefficients to be changed in a subsequent

game. In the other games, a part framed by a box indicates coefficients which were changed in a
game from the previous game.
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Experiment 0 (Exp0
B) : Experiment 0 is defined by using β = 0 instance of Problem 1 as above.

That is, δ, δ0, ω, ϕ0, ϕ1
U← Fq, τ, ρ

U← F
×
q , and

h∗
0 := (δ, 0 , 0, δ0, 0)B∗

0
, e0 := (ω, 0 , 0, 0, ϕ0)B0 ,

for j = 1, . . . , n; i = 1, . . . , n; �ei := (0i−1, 1, 0n−i) ∈ F
n
q ,

�δj,i
U← F

2n
q ,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
h∗
j,i := ( δ�ei, 02n , �δj,i, 0n )B∗

1

e1 := ( ω�y, 02n , 02n, ϕ1�y )B1 ,

Below, we describe coefficients of the hidden part, i.e., span〈b1,n+1, . . . , b1,3n〉 (resp. span〈b∗1,n+1,
. . . , b∗1,3n〉) of e1 (resp. h∗

κ,i) w.r.t. these bases vectors for κ = 1, . . . , n. Non-zero coefficients are
colored by light gray, and those which were changed from the previous experiment are colored by
dark gray.

Coefficients of the hidden part of e1

in Experiment 0
Coefficients of the hidden part of h∗

κ,i

in Experiment 0

κ = 1
...
j
...
n

Experiment 1 (Exp1
B) : Same as Experiment 0 except that e0, e1 are:

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
e0 := (ω, τ , 0, 0, ϕ0)B0 , e1 := ( ω�y, τ�y, τ�y , 02n, ϕ1�y )B1 ,

where τ U← Fq, and all the other variables are generated as in Experiment 0.

Coefficients of the hidden part of e1

in Experiment 1
Coefficients of the hidden part of h∗

κ,i

in Experiment 1

τ�y τ�y

κ = 1
...
j
...
n

Experiment 2-0 (Exp2-0
B ) : Experiment 2-0 is the same as Experiment 1 except that h∗

0,h
∗
j,i are:

h∗
0 := (δ, ρ , 0, δ0, 0)B∗

0
,

for j = 1, . . . , n; i = 1, . . . , n; �ei := (0i−1, 1, 0n−i) ∈ F
n
q ,

�δj,i
U← F

2n
q ,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
h∗
j,i := ( δ�ei, ρ�ei , 0n, �δj,i, 0n )B∗

1
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where ρ U← Fq, and all the other variables are generated as in Experiment 1.

Coefficients of the hidden part of e1

in Experiment 2-0
Coefficients of the hidden part of h∗

κ,i

in Experiment 2-0

τ�y τ�y

κ = 1 ρ�ei
...

...
j
...
n ρ�ei

Coefficients of the hidden part of e1

in Experiment 2-(j − 1)-2
Coefficients of the hidden part of h∗

κ,i

in Experiment 2-(j − 1)-2

τ�y τ�y

κ = 1 ρ�eiZ1
...

...
j ρ�ei
...

...
n ρ�ei

Experiment 2-j-1 (Exp2-j-1
B , j = 1, . . . , n) : Experiment 2-0-2 is Experiment 2-0. Experiment

2-j-1 is the same as Experiment 2-(j − 1)-2 except the j-th component h∗
j,i are:

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
for i = 1, . . . , n; h∗

j,i := ( δ�ei, 0n, ρ�ei , �δj,i, 0n )B∗
1

where all the variables are generated as in Game 2-(j − 1)-2.

Coefficients of the hidden part of e1

in Experiment 2-j-1
Coefficients of the hidden part of h∗

κ,i

in Experiment 2-j-1

τ�y τ�y

κ = 1 ρ�eiZ1
...

...
j ρ�ei
...

...
n ρ�ei

Experiment 2-j-2 (Exp2-j-2
B , j = 1, . . . , n) : Experiment 2-j-2 is the same as Experiment 2-j-1

except the j-th component h∗
j,i are:

for i = 1, . . . , n; Uj
U← H�y(n,Fq) ∩GL(n,Fq), Zj := (U−1

j )T,
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷

h∗
j,i := ( δ�ei, 0n, ρ�ei · Zj , �δj,i, 0n )B∗

1
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where all the other variables are generated as in Game 2-j-1.

Coefficients of the hidden part of e1

in Experiment 2-j-2
Coefficients of the hidden part of h∗

κ,i

in Experiment 2-j-2

τ�y τ�y

κ = 1 ρ�eiZ1
...

...
j ρ�eiZj
...

...
n ρ�ei

We note that an instance of Experiment 2-n-2 is equivalent of a β = 1 instance of Problem 1.

Coefficients of the hidden part of e1

in Experiment 2-n-2
Coefficients of the hidden part of h∗

κ,i

in Experiment 2-n-2

τ�y τ�y

κ = 1 ρ�eiZ1
...

...
j ρ�eiZj
...

...
n ρ�eiZn

We will show four lemmas (Lemmas 11-14) that evaluate the gaps between pairs of Pr[Exp0
B(λ)→

1],Pr[Exp1
B(λ)→ 1],Pr[Exp2-0

B (λ)→ 1] and Pr[Exp2-j-ι
B (λ)→ 1] for j = 1, . . . , n; ι = 1, 2. From these

lemmas and Lemmas 8–10, we obtain AdvP1
B (λ) = |Pr[Exp0

B(λ) → 1] − Pr[Exp2-n-2
B (λ) → 1]| ≤

AdvBP1
C0-1

(λ) + AdvBP2
C0-2

(λ) +
∑n

j=1

∑2
ι=1 AdvBP2

Cj-ι
(λ) ≤ ∑n

j=0

∑2
ι=1 AdvDLIN

Fj,ι
(λ) + (10n + 10)/q. This

completes the proof of Lemma 3. ��
Lemma 11. For any adversary B, there exists a probabilistic machine C0-1, whose running time
is essentially the same as that of B, such that for any security parameter λ, |Pr[Exp1

B(λ) → 1] −
Pr[Exp0

B(λ)→ 1]| ≤ AdvBP1
C0-1

(λ).

Proof. C0-1 is given a BP1 instance (paramn, {Bι, B̂∗
ι }ι=0,1, {eβ,i}i=0,...,n) and a target vector �y. C0-1

then calculates (paramn, {B̂ι, B̂∗
ι }ι=0,1,h

∗
0, {h∗

j,i}j=1,...,n; i=1,...,n) in Experiment 0, and calculates
e′

0 := eβ,0, e
′
1 :=

∑n
ι=1 yιeβ,ι, sends � := (paramn, {B̂ι, B̂∗

ι }ι=0,1,h
∗
0, e

′
0, {h∗

j,i}j=1,...,n; i=1,...,n, e
′
1) to

B. C0-1 outputs β′ ∈ {0, 1} if B outputs β′. The distribution of � is equivalent to that in Experiment
0 (resp. 1) when β is 0 (resp. 1). This completes the proof of Lemma 11. ��
Lemma 12. For any adversary B, there exists a probabilistic machine C0-2, whose running time
is essentially the same as that of B, such that for any security parameter λ, |Pr[Exp2-0

B (λ) →
1]− Pr[Exp1

B(λ)→ 1]| ≤ AdvBP2
C0-2

(λ).

Proof. C0-2 is given a BP2 instance (paramn, {B̂ι,B∗
ι }ι=0,1, {h∗

β,i, ei}i=0,...,n) and a target vector
�y. C0-2 then calculates (paramn, {B̂ι, B̂∗

ι }ι=0,1, e0, e
′
1 :=

∑n
ι=1 yιeι) in Experiment 1, and calcu-

lates h ′ ∗
0 := h∗

β,0, {h∗
j,i := h∗

β,i +
∑n

ι=1 δj,ιb1,3n+ι}j=1,...,n; i=1,...,n with δj,ι
U← Fq, sends � :=

(paramn, {B̂ι, B̂∗
ι }ι=0,1,h

′ ∗
0 , e0, {h∗

j,i}j=1,...,n; i=1,...,n, e
′
1) to B. C0-2 outputs β′ ∈ {0, 1} if B outputs

β′. The distribution of � is equivalent to that in Experiment 1 (resp. 2-0) when β is 0 (resp. 1). This
completes the proof of Lemma 12. ��
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Lemma 13. For any adversary B, there exists a probabilistic machine C, whose running time is
essentially the same as that of B, such that for any security parameter λ, |Pr[Exp

2-(j−1)-2
B (λ) →

1]− Pr[Exp2-j-1
B (λ)→ 1]| ≤ AdvBP3

Cj
(λ), where Cj(·) := C(j, ·) (j ≥ 1).

Proof. C is given a BP3 instance (paramn,B0,B
∗
0,f

∗
0 , e0, B̂1,B

∗
1, {f∗

i , f̃
∗
i ,h

∗
β,i, ei}i=1,...,n), a target

vector �y and an index j. C then calculates (paramn, {B̂ι, B̂∗
ι }ι=0,1,h

′ ∗
0 := δb∗0,1 + f∗

0 + δ0b
∗
0,5, e

′
0 :=

ωb0,1+e0+ϕ0b0,5, e
′
1 :=

∑n
ι=1 yι(ωb1,ι+eι+ϕ1b1,5n+ι)) in Experiment 2-(j−1)-2 with δ, δ0, ω, ϕ0, ϕ1

U←
Fq, and calculates

if κ < j; for i = 1, . . . , n, h ′ ∗
κ,i := δb∗1,i +

∑n
ι=1(zκ,i,ιf̃

∗
ι + δκ,ιb

∗
1,3n+ι)

where Zκ
U← (H�y(n,Fq) ∩ GL(n,Fq))T, (zκ,i,1, . . . , zκ,i,n) := �ei · Zκ, δκ,ι U← Fq,

if κ = j; for i = 1, . . . , n, h ′ ∗
j,i := δb∗1,i + h∗

β,i +
∑n

ι=1 δj,ιb
∗
1,3n+ι where δj,ι

U← Fq,

if κ > j; for i = 1, . . . , n, h ′ ∗
κ,i := δb∗1,i + f∗

i +
∑n

ι=1 δκ,ιb
∗
1,3n+ι where δκ,ι

U← Fq,

and sends � := (paramn, {B̂ι, B̂∗
ι }ι=0,1,h

′ ∗
0 , e′

0, {h ′ ∗
j,i}j=1,...,n; i=1,...,n, e

′
1) to B. C outputs β′ ∈ {0, 1}

if B outputs β′. The distribution of � is equivalent to that in Experiment 2-(j − 1)-2 (resp. 2-j-1)
when β is 0 (resp. 1). This completes the proof of Lemma 13. ��

Lemma 14. For any adversary B, for any security parameter λ, Pr[Exp2-j-1
B (λ)→ 1] = Pr[Exp2-j-2

B (λ)→
1].

Proof. To prove Lemma 14, we will show distribution (paramn, {B̂ι, B̂∗
ι }ι=0,1,h

∗
0, e0, {h∗

j,i}j=1,...,n; i=1,...,n,
e1) in Experiments 2-j-1 and 2-j-2 are equivalent. For that purpose, we define new subbases
d1,2n+1, . . . ,d1,3n and d∗

1,2n+1, . . . ,d
∗
1,3n of V1 as follows:

For the target vector �y := (y1, . . . , yn), we generate U U← H�y(n,Fq) ∩ GL(n,Fq) and Z :=
(U−1)T. We note that �y · U = �y. Then we set (d1,2n+1, . . . ,d1,3n)T := Z · (b1,2n+1, . . . , b1,3n)T and
(d∗

1,2n+1, . . . , d∗
1,3n)

T := U · (b∗1,2n+1, . . . , b
∗
1,3n)

T and

D1 := (b1,1, . . . , b1,2n,d1,2n+1, . . . ,d1,3n, b1,3n+1, . . . , b1,6n),
D
∗
1 := (b∗1,1, . . . , b

∗
1,2n,d

∗
1,2n+1, . . . ,d

∗
1,3n, b

∗
1,3n+1, . . . , b

∗
1,6n).

We then easily verify that D1 and D
∗
1 are dual orthonormal, and are distributed the same as the

original bases, B1 and B
∗
1. Keys {h∗

j,i} in Experiment 2-j-1 are expressed over bases B
∗
1 and D

∗
1 as

follows.

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
if κ < j; for i = 1, . . . , n; h∗

κ,i = ( δ�ei, 0n, ρ�ei · Zκ, �δκ,i, 0n )B∗
1

= ( δ�ei, 0n, ρ�ei · Zκ · Z, �δκ,i, 0n )D∗
1
,

if κ = j; for i = 1, . . . , n; h∗
j,i = ( δ�ei, 0n, ρ�ei, �δj,i, 0n )B∗

1

= ( δ�ei, 0n, ρ�ei · Z, �δj,i, 0n )D∗
1
,

if κ > j; for i = 1, . . . , n; h∗
κ,i = ( δ�ei, ρ�ei, 0n, �δκ,i, 0n )B∗

1

= ( δ�ei, ρ�ei, 0n, �δκ,i, 0n )D∗
1
,
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where Zj := Z and {Z ′
κ := Zκ ·Z}κ<j are independently and uniformly distributed in (H�y(n,Fq) ∩

GL(n,Fq))T since H�y(n,Fq) ∩ GL(n,Fq) is a subgroup of GL(n,Fq) (Lemma 1). Since �y · U = �y,
e1 has the same representations over both B1 and D1.

Therefore, the distribution of (paramn, {B̂ι, B̂∗
ι }ι=0,1,h

∗
0, e0, {h∗

j,i}j=1,...,n; i=1,...,n, e1) in Experi-
ments 2-j-1 and 2-j-2 are equivalent. This completes the proof of Lemma 14. ��

B.3 Proof of Lemma 10 (Security of Basic Problem 3)

To prove Lemma 10, we use an intermediate problem, Basic Problems 4, as indicated below.

Definition 15 (Basic Problem 4). Basic Problem 4 is to guess β, given (paramn,B0,B
∗
0, e0, B̂1,B

∗
1,

{h∗
β,i, ei}i=1,...,n)

R← GBP4
β (1λ, n), where

GBP4
β (1λ, n) : (paramn,B0,B

∗
0, {Bi,j , B′

i,j,l}i,j=1,...,6;l=1,...,n,B
∗
1)

R← GKP-ABE
ob (1λ, 6, n),

B̂1 := (b1,1, .., b1,n, b1,3n+1, .., b1,6n) is calculated as in Eq. (1) from {Bi,j , B′
i,j,l}i,j=1,...,6;l=1,...,n,

τ
U← F

×
q , θ, ψ

U← Fq, e0 := τb0,2,

for i = 1, . . . , n; �ei := (0i−1, 1, 0n−i) ∈ F
n
q ,

�δi
U← F

n
q ,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
h∗

0,i := ( 0n, 02n, ψ�ei, �δi, 0n )B∗
1

h∗
1,i := ( 0n, θ�ei, −θ�ei, ψ�ei, �δi, 0n )B∗

1

ei := ( 0n, τ�ei, τ�ei, 02n, 0n )B1 ,

return (paramn,B0,B
∗
0, e0, B̂1,B

∗
1, {h∗

β,i, ei}i=1,...,n),

for β U← {0, 1}. For a probabilistic adversary D, the advantage of D for Basic Problem 4, AdvBP4
D (λ),

is similarly defined as in Definition 8.

Lemma 15. For any adversary C, there are probabilistic machine D1 and D2, whose running
times are essentially the same as that of C, such that for any security parameter λ, AdvBP3

C (λ) ≤
AdvBP4

D1
(λ) + AdvBP4

D2
(λ).

Lemma 16. For any adversary D, there is a probabilistic machine F , whose running time is
essentially the same as that of D, such that for any security parameter λ, AdvBP4

D (λ) ≤ AdvDLIN
F (λ)+

5/q.

From Lemmas 15 and 16, we obtain Lemma 10. ��
Below, we give proofs of Lemmas 15 and 16 in turn.

Proof of Lemma 15 To prove Lemma 15, we consider the following experiments. Problem 3 is the
hybrid of the following Experiments 0, . . . , 3, i.e., AdvBP3

C (λ) =
∣∣Pr

[
Exp0

C(λ)→ 1
]− Pr

[
Exp3

C(λ)→ 1
]∣∣.

For a probabilistic adversary C, we define Experiment 0, Exp0
C , using Problem BP3 generator

GBP3
0 (1λ, n) in Definition 14 as follows:

1. C is given � R← GBP3
0 (1λ, n).
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2. Output β′ R← C(1λ, �).
Based on Experiment 0, we define Experiments 0–3 below.

Experiment 0 (Exp0
C) : β = 0 case of Basic Problem 3. That is,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
for i = 1, . . . , n, h∗

i := ( 0n, ρ�ei, 0n, �δi, 0n )B∗
1

where all variables are generated as in Basic Problem 3.

Experiment 1 (Exp1
C) : Same as Experiment 0 except that

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
for i = 1, . . . , n, h∗

i := ( 0n, (ρ+ θ)�ei, −θ�ei, �δi, 0n )B∗
1
,

where θ U← Fq, and all the other variables are generated as in Experiment 0.

Experiment 2 (Exp2
C) : Same as Experiment 1 except that

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
for i = 1, . . . , n, h∗

i := ( 0n, θ�ei, (ρ− θ)�ei, �δi, 0n )B∗
1
,

where θ U← Fq, and all the other variables are generated as in Experiment 1.

Experiment 3 (Exp3
C) : Same as Experiment 2 except that

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
for i = 1, . . . , n, h∗

i := ( 0n, 0n, ρ�ei, �δi, 0n )B∗
1
,

where all variables are generated as in Experiment 2.

Lemma 17. For any adversary C, there exists a probabilistic machine D1, whose running time
is essentially the same as that of C, such that for any security parameter λ, |Pr[Exp1

C(λ) → 1] −
Pr[Exp0

C(λ)→ 1]| ≤ AdvBP4
D1

(λ).

Proof. Given a BP4 instance (paramn,B0,B
∗
0, e0, B̂1,B

∗
1, {h∗

β,i, ei}i=1,...,n), D1 calculates ρ U← Fq,

f∗
0 := ρb∗0,2, for i = 1, . . . , n, f∗

i := ρb∗1,n+i, f̃∗
i := ρb∗1,2n+i, h̃∗

i := h∗
β,i + ρb∗1,n+i + r∗ where r∗ U←

span〈b∗1,3n+1, . . . , b
∗
1,5n〉. D1 then gives � := (paramn,B0,B

∗
0,f

∗
0 , e0, B̂1,B

∗
1, {f∗

i , f̃
∗
i , h̃

∗
β,i, ei}i=1,...,n)

to C, and outputs β′ ∈ {0, 1} if C outputs β′. When β = 0 (resp.β = 1), the distribution of � is
exactly same as that of instances in Experiment 0 (resp. Experiment 1). This completes the proof
of Lemma 17. ��
Lemma 18. For any adversary C, for any security parameter λ, Pr[Exp2

C(λ)→ 1] = Pr[Exp1
C(λ)→

1].

Proof. Because the distributions ( ρ, ρ+ θ, −θ ) and ( ρ, θ, ρ− θ ) with ρ, θ U← Fq are equivalent.
��
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Lemma 19. For any adversary C, there exists a probabilistic machine D2, whose running time
is essentially the same as that of C, such that for any security parameter λ, |Pr[Exp3

C(λ) → 1] −
Pr[Exp2

C(λ)→ 1]| ≤ AdvBP4
D2

(λ).

Proof. Lemma 19 is proven in a similar manner to Lemma 17. ��

Proof of Lemma 16 To prove Lemma 16, we use an intermediate problem, Basic Problems 5, as
indicated below.

Definition 16 (Basic Problem 5). Basic Problem 5 is to guess β, given (paramn,B0,B
∗
0, B̂1,B

∗
1,

{h∗
β,i}i=1,...,n)

R← GBP5
β (1λ, n), where

GBP5
β (1λ, n) : (paramn,B0,B

∗
0, {Bi,j , B′

i,j,l}i,j=1,...,6;l=1,...,n,B
∗
1)

R← GKP-ABE
ob (1λ, 6, n),

B̂1 := (b1,1, .., b1,n, b1,3n+1, .., b1,6n) is calculated as in Eq. (1) from {Bi,j , B′
i,j,l}i,j=1,...,6;l=1,...,n,

θ, ψ
U← Fq,

for i = 1, . . . , n; �ei := (0i−1, 1, 0n−i) ∈ F
n
q ,

�δi
U← F

n
q ,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
h∗

0,i := ( 0n, 02n, ψ�ei, �δi, 0n )B∗
1

h∗
1,i := ( 0n, θ�ei, 0n, ψ�ei, �δi, 0n )B∗

1

return (paramn,B0,B
∗
0, B̂1,B

∗
1, {h∗

β,i}i=1,...,n),

for β U← {0, 1}. For a probabilistic adversary E, the advantage of E for Basic Problem 5, AdvBP5
E (λ),

is similarly defined as in Definition 8.

Lemma 20. For any adversary D, there is a probabilistic machine E, whose running time is es-
sentially the same as that of D, such that for any security parameter λ, AdvBP4

D (λ) ≤ AdvBP5
E (λ).

Proof. Given a BP5 instance (paramn,B0,B
∗
0, B̂1,B

∗
1, {h∗

β,i}i=1,...,n), E calculates τ U← Fq, e0 :=
τb0,2, ei := τb1,2n+i for i = 1, . . . , n and B̂

′
1 := (b1,1, . . . , b1,n, b1,3n+1, . . . , b1,6n).

E defines new dual orthonormal bases D1 := (b1,1, . . . , b1,2n,d1,2n+1, . . . ,d1,3n, b1,3n+1, . . . , b1,6n)
and D

∗
1 := (b∗1,1, . . . , b∗1,n,d∗

1,n+1, . . . ,d
∗
1,2n, b

∗
1,2n+1, . . . , b

∗
1,6n), where d1,2n+i := b1,2n+i − b1,n+i and

d∗
1,n+i := b∗1,n+i + b∗1,2n+i for i = 1, . . . , n. We note that D1 is compatible with subbasis B̂

′
1.

E then gives � := (paramn,B0,B
∗
0, e0, B̂

′
1,D

∗
1, {h∗

β,i, ei}i=1,...,n) to D, and outputs β′ ∈ {0, 1} if
D outputs β′.

Claim 1 When β = 0 (resp.β = 1), the distribution of � is exactly same as that of instances from
GBP4

0 (resp.GBP4
1 ).

Proof. (h∗
0,i,h

∗
1,i, ei) are expressed over bases (B1,B

∗
1) and (D1,D

∗
1) as

h∗
0,i = ( 0n, 02n, ψ�ei, �δi, 0n )B∗

1
= ( 0n, 02n, ψ�ei, �δi, 0n )D∗

1

h∗
1,i = ( 0n, θ�ei, 0n, ψ�ei, �δi, 0n )B∗

1
= ( 0n, θ�ei, −θ�ei, ψ�ei, �δi, 0n )D∗

1

ei = ( 0n, 0n, τ�ei, 02n, 0n )B1 , = ( 0n, τ�ei, τ�ei, 02n, 0n )D1 .

This completes the proof of Claim 1. ��
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Claim 1 completes the proof of Lemma 20. ��

Lemma 21. For any adversary E, there is a probabilistic machine F , whose running time is essen-
tially the same as that of E, such that for any security parameter λ, AdvBP5

E (λ) ≤ AdvDLIN
F (λ)+5/q.

Lemma 21 is proven in a similar manner to Lemma 4 in the full version of [24]. ��

C Proof of Lemma 4

Let

⎛⎜⎜⎜⎝
1 u′1

. . .
...

1 u′n−1

u′n

⎞⎟⎟⎟⎠ := U,

⎛⎜⎜⎜⎝
1

. . .
1

−(u′n)−1u′1 . . . −(u′n)−1u′n−1 (u′n)−1

⎞⎟⎟⎟⎠ := (U−1)T := Z, and �u′ :=

(u′1, . . . , u′n). Note that �u′ · �y = yn. For �y := (y1, . . . , yn) and �v := (v1, . . . , vn) with vn �= 0, let

�w := �vZ = (v1 − u′1(u′n)−1vn, . . . , vn−1 − u′n−1(u
′
n)

−1vn, (u′n)
−1vn)

= (u′n)
−1vn ·

((
u′n(v1v

−1
n )− u′1

)
, . . . ,

(
u′n(vn−1v

−1
n )− u′n−1

)
, 1

)
= (u′n)

−1vn · (ũ1, . . . , ũn−1, 1),

where ũj := u′n(vjv−1
n )− u′j for j = 1, . . . , n− 1 and yn := �y · �u′. Then,

�y · �v = (u′n)
−1 vn

(∑n−1
j=1 yj ũj + yn

)
= �y · �w. (10)

Case that �y · �v �= 0 : Since �y ·�v �= 0, �u′ can be generated as: (ũ1, . . . , ũn−1)
U← {(ũj)j=1,...,n−1 ∈

F
n−1
q | ∑n−1

j=1 yj ũj + yn �= 0}, u′n := vn(
∑n−1

j=1 yj ũj + yn)/(�y · �v), and u′j := u′n(vjv−1
n ) − ũj for

j = 1, . . . , n − 1. We note that the condition
∑n−1

j=1 yj ũj + yn �= 0 among ũj (j = 1, . . . , n − 1) is
equivalent to the condition u′n �= 0.

Since (ũ1, . . . , ũn−1)
U← {(ũj)j=1,...,n−1 ∈ F

n−1
q | ∑n−1

j=1 yj ũj+yn �= 0} and u′n := vn(
∑n−1

j=1 yj ũj+
yn)/(�y · �v), �w := (u′n)

−1 vn · (ũ1, . . . , ũn−1, 1) is uniformly distributed in W�y,(�y·�v).
Case that �y · �v = 0 : Since �y ·�v = 0, Eq. (10) is given as

∑n−1
j=1 yj ũj+yn = 0. Since �y �∈ span〈�en〉,

there exists an index j0 ∈ {1, . . . , n−1} such that yj0 �= 0. Using the index j0, �u′ can be generated as:

ũj
U← Fq (j = 1, . . . , j0−1, j0+1, . . . , n−1), u′j0 := (−∑

j=1,...,j0−1,j0+1,n−1 yju
′
j−yn)/yj0 , u′n U← F

×
q

and u′j := u′n(vjv−1
n )− ũj for j = 1, . . . , n− 1.

Since (ũ1, . . . , ũn−1)
U← {(ũj)j=1,...,n−1 ∈ F

n−1
q | ∑n−1

j=1 yj ũj + yn = 0} and u′n
U← F

×
q , �w :=

(u′n)
−1 vn · (ũ1, . . . , ũn−1, 1) is uniformly distributed in W�y,0. ��

D Proof of Lemma 5

In order to prove Lemma 5, we construct a probabilistic machine B against Problem 1 using an
adversary A in a security game (Game 0 or 1) as a black box as follows:

1. B plays a role of the challenger in the security game against adversary A.
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2. When B (or challenger) obtains challenge attributes Γ where Γ := {x1, . . . , xn′} with n′ ≤
n − 1 in the first step of the game, B selects (challenge) bit b U← {0, 1}. B calculates �y :=
(y1, . . . , yn) such that

∑n−1
j=0 yn−jz

j = zn−1−n′ ·∏n′
j=1(z−xj), and B is given a Problem 1 instance,

(paramn, {B̂ι, B̂∗
ι }ι=0,1,h

∗
β,0, eβ,0, {h∗

β,j,i}j=1,...,n; i=1,...,n, eβ,1)
R← GP1

β (1λ, n, �y). B provides A a
public key pk := (1λ, paramn, {B̂′

t}t=0,1) of Game 0 (and 1), where B̂
′
0 := (b0,1, b0,3, b0,5) and

B̂
′
1 := (b1,1, . . . , b1,n, b1,5n+1, . . . , b1,6n), that are obtained from the Problem 1 instance.

3. When the h-th key query is issued for access structure S := (M,ρ), B answers as follows (h =
1, . . . , ν): B generates �f,�g U← F

r
q , (s1, . . . , s�)

T := M · �fT, (r1, . . . , r�)T := M ·�gT, s0 := �1· �fT, r0 :=
�1 · �gT, (ξi)i=1,...,n

U← {(ξi)i=1,...,n ∈ F
n
q |

∑n
i=1 ξi = 1}, and calculates k∗

0 := −s0b∗0,0 − r0h∗
β,0,

k∗
i :=

∑
ι=1,...,n(v

′
i,ιb

∗
1,ι + v ′

i,ι(
∑n

j=1 ξjh
∗
β,j,ι)) where �vi := (vn−1

i , . . . , vi, 1), �v ′
i := (v ′

i,ι)ι=1,...,n :=
si�e1 + θi�vi if ρ(i) = vi and �v ′

i := (v ′
i,ι)ι=1,...,n := si�vi if ρ(i) = ¬vi, and �v ′′

i := (v ′′
i,ι)ι=1,...,n :=

ri�e1 + ψi�vi if ρ(i) = vi and �v ′′
i := (v ′

i,ι)ι=1,...,n := ri�vi if ρ(i) = ¬vi. B send the generated key
skS := (S,k∗

0,k
∗
1, . . . ,k

∗
� ) to A.

4. When B receives an encryption query with challenge plaintexts (m(0),m(1)) from A, B computes
the challenge ciphertext ctΓ := (Γ, c0 := eβ,0 + ζb0,3, c1 := eβ,0, c3 := gζTm

(b)) where ζ U← Fq,
and {eβ,ι}ι=0,1, b0,3 is a part of the Problem 1 instance.

5. When a key query is issued by A after the encryption query, B executes the same procedure as
that of step 3.

6. A finally outputs bit b′. If b = b′, B outputs β′ := 1. Otherwise, B outputs β′ := 0.

Claim 2 If β = 0 (resp.β = 1), the distribution of ctΓ and skS generated in steps 4 and 3, 5 is the
same as that in Game 0 (resp.Game 1 except with probability (ν�+ 1)/q).

Proof of Claim 2. When β = 0, it is clear that the distribution of ctΓ and skS generated in steps 4
and 3, 5 is the same as that in Game 0.

When β = 1, let h̃
∗ (h)
1,ι :=

∑n
j=1 ξjh

∗
1,j,ι for the h-th key query in step 3. We remark that

since {ξj} are freshly random for each key query and
∑n

j=1 ξj = 1, {h̃∗ (h)
1,ι } have a freshly ran-

dom sparse matrix Z(h) :=
∑n

j=1 ξjZj in the hidden subspace. We note that {Zj}j=1,...,n (given
by {�u′j := (u′j,1, . . . , u

′
j,n)}j=1,...,n) forms a basis of H�y(n,Fq)T except that the determinant of

(u′j,2, . . . , u
′
j,n)j=1,...,n−1 are nonzero, i.e., except for probability 1/q. At that time, Z(h) is inH�y(n,Fq)T

∩GL(n,Fq) except for probability 1/q for each h = 1, . . . , ν�.
Let �v ′′(h)

i := r
(h)
i �e1 +ψ

(h)
i �v

(h)
i if ρ(i) = vi and �v ′′(h)

i := r
(h)
i �v

(h)
i if ρ(i) = ¬vi for h = 1, . . . , ν; i =

1, . . . , �. From Lemma 4, {�v ′′(h)
i Z(h)}h=1,...,ν; i=1,...,� are uniformly and independently distributed in

W
�y, �y·�v ′′(h)

i

.

Claim 2 is proven in a similar manner to Claim 1 in [23]. In the above simulation, coefficients in
semi-functional part of a queried key {k∗

i }i=1,...,� are given as �wi
U← {�wi|�wi · �y = (ri�e1 + ψ̃i�vi) · �y} if

ρ(i) = vi, �wi
U← {�wi|�wi ·�y = ri�vi ·�y} if ρ(i) = ¬vi. Therefore, if ρ(i) = vi∧�y ·�vi �= 0, �wi is uniformly

distributed in F
n
q , and if ρ(i) = ¬vi ∧ �y · �vi = 0, �wi

U← {�wi|�wi · �y = 0}. Then, ri obtained from
the other indexes i are independent from a central secret r0. From this independence, the above
distribution with β = 0 (resp.β = 1) is the same as that in Game 0 (resp. Game 1). This completes
the proof of Claim 2. ��

From Claim 2, when β = 0 (resp.β = 1), the view of A is equivalent to that in Game 0 (resp. 1).
This completes the proof of Lemma 5. ��
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E Proposed Fully Secure Constant-Size Secret-Key ABS Scheme

E.1 Attribute-Based Signatures

Definition 17 (Attribute-Based Signatures : ABS). An attribute-based signature scheme con-
sists of four algorithms.

Setup This is a randomized algorithm that takes as input security parameter and a bound on the
number of attributes per ciphertext n. It outputs public parameters pk and master key sk.

KeyGen This is a randomized algorithm that takes as input a set of attributes, Γ := {xj}1≤j≤n′, pk
and sk. It outputs signature generation key skΓ .

Sig This is a randomized algorithm that takes as input message m, access structure S := (M,ρ), sig-
nature generation key skΓ , and public parameters pk such that S accepts Γ . It outputs signature
σ.

Ver This takes as input message m, access structure S, signature σ and public parameters pk. It
outputs boolean value accept := 1 or reject := 0.

An ABS scheme should have the following correctness property: for all (sk, pk) R← Setup(1λ, n),
all messages m, all attribute sets Γ , all signing keys skΓ

R← KeyGen(pk, sk, Γ ), all access structures
S such that S accepts Γ , and all signatures σ R← Sig(pk, skΓ ,m,S), it holds that Ver(pk,m,S, σ) = 1
with probability 1.

Definition 18 (Perfect Privacy). An ABS scheme is perfectly private, if, for all (sk, pk) R←
Setup(1λ, n), all messages m, all attribute sets Γ1 and Γ2, all signing keys skΓ1

R← KeyGen(pk,

sk, Γ1) and skΓ2

R← KeyGen(pk, sk, Γ2), all access structures S such that S accepts Γ1 and S accepts
Γ2, distributions Sig(pk, skΓ1 ,m, S) and Sig(pk, skΓ2 ,m,S) are equal.

For an ABS scheme with prefect privacy, we define algorithm AltSig(pk, sk,m,S) with S and
master key sk instead of Γ and skΓ : First, generate skΓ

R← KeyGen(pk, sk, Γ ) for arbitrary Γ which
satisfies S, then σ R← Sig(pk, skΓ , m, S). return σ.

Since the correct distribution on signatures can be perfectly simulated without taking any
private information as input, signatures must not leak any such private information of the signer.

Definition 19 (Unforgeability). For an adversary, A, we define AdvABS,UF
A (λ) to be the success

probability in the following experiment for any security parameter λ. An ABS scheme is existentially
unforgeable if the success probability of any polynomial-time adversary is negligible:

1. Run (sk, pk) R← Setup(1λ, n) and give pk to the adversary.
2. A may adaptively makes a polynomial number of queries of the following type:

– [ Create key ] A asks the challenger to create a signing key for an attribute set Γ . The
challenger creates a key for Γ without giving it to A.

– [ Create signature ] A specifies a key for predicate Γ that has already been created, and asks
the challenger to perform a signing operation to create a signature for a message m and an
access structure S that accepts Γ . The challenger computes the signature without giving it
to the adversary.

– [ Reveal key or signature ] A asks the challenger to reveal an already-created key for an
attribute set Γ , or an already-created signature for an access structure S.
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Note that when key or signature creation requests are made, A does not automatically see the
created key or signature. A sees it only when it makes a reveal query.

3. At the end, the adversary outputs (m′,S′, σ′).

We say the adversary succeeds if a correctly-created signature for (m′,S′) was never revealed to
the adversary, S

′ does not accept any Γ queried to the create key and reveal (key) oracles, and
Ver(pk,m′,S′, σ′) = 1.

Remark 2 Since a signing query in the unforgeability definition in [18, 25] is made only with an
access structure S, the challenger should find an attribute set Γ that satisfies S, and generate a
key skΓ with Γ and a signature with S using (Γ, skΓ ). In general, however, the challenger may not
always find a suitable Γ from S in a polynomial time since it includes the problem of solving the
satisfiability for any DNF and CNF formulas with polynomial sizes. In this sense, the definition of
unforgeability in [18, 25] is problematic.

To address this issue, our definition of unforgeability introduces four types of queries, create
and reveal queries for keys and signatures, in a manner similar to the security definition for key-
delegation by Shi and Waters [28]. Here, to obtain a signature for S from the challenger, the
adversary is required to give an attribute set Γ that satisfies S to the challenger in advance (i.e.,
the challenger has no need to find a suitable Γ by itself.)

E.2 Building Blocks for the Proposed ABS

Dual Orthonormal Basis Generator We describe random dual orthonormal basis generator
GABS

ob below, which is used as a subroutine in the proposed ABS scheme.

GABS
ob (1λ, 6, n) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ), N0 := 4, N1 := 6n, N2 := 7,
paramVt

:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG) for t = 0, 1, 2,

ψ
U← F

×
q , gT := e(G,G)ψ, paramn := ({paramVt

}t=0,1, gT ),

Xt := (χt,i,j)i,j=1,...,Nt

U← GL(Nt,Fq) for t = 0, 2, X1
U← L(6, n,Fq), hereafter,

{μi,j , μ′i,j,l}i,j=1,...,6;l=1,...,n denotes non-zero entries of X1 as in Eq. (3),

b∗t,i := (χt,i,1, .., χt,i,Nt)At =
∑Nt

j=1 χt,i,jaj for i = 1, .., Nt, B
∗
t := (b∗t,1, .., b∗t,Nt

) for t = 0, 2,

B∗
i,j := μi,jG, B

′ ∗
i,j,l := μ′i,j,lG for i, j = 1, . . . , 6; l = 1, . . . , n,

for t = 0, 1, 2, (ϑt,i,j)i,j=1,...,Nt := ψ · (XT
t )−1,

bt,i := (ϑt,i,1, .., ϑt,i,Nt)A =
∑Nt

j=1 ϑt,i,jaj for i = 1, .., Nt, Bt := (bt,1, .., bt,Nt),

return (paramn,B0,B
∗
0,B1, {B∗

i,j , B
′ ∗
i,j,l}i,j=1,...,6;l=1,...,n,B2,B

∗
2).

Remark 3 From Remark 1, {B∗
i,j , B

′ ∗
i,j,l}i,j=1,...,6;l=1,...,n is identified with basis B

∗
1 := (b∗1,1, . . . ,

b∗1,6n) dual to B1.

Collision Resistant (CR) Hash Functions Let λ ∈ N be a security parameter. A collision
resistant (CR) hash function family, H, associated with Gbpg and a polynomial, poly(·), specifies
two items:
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– A family of key spaces indexed by λ. Each such key space is a probability space on bit strings
denoted by KHλ. There must exist a probabilistic polynomial-time algorithm whose output
distribution on input 1λ is equal to KHλ.

– A family of hash functions indexed by λ, hk
R← KHλ and D := {0, 1}poly(λ). Each such hash

function Hλ,Dhk maps an element of D to an element of F
×
q with q that is the first element of

output paramG of Gbpg(1λ). There must exist a deterministic polynomial-time algorithm that
on input 1λ, hk and � ∈ D, outputs Hλ,Dhk (�).

Let F be a probabilistic polynomial-time machine. For all λ, we define
AdvH,CR

F (λ) := Pr[(�1, �2) ∈ D2 ∧ �1 �= �2 ∧ Hλ,Dhk (�1) = Hλ,Dhk (�2)], where D := {0, 1}poly(λ), hk
R←

KHλ, and (�1, �2)
R← F(1λ, hk,D). H is a collision resistant (CR) hash function family if for any

probabilistic polynomial-time adversary F , AdvH,CR
F (λ) is negligible in λ.

E.3 Construction

Setup(1λ, n) : hk
R← KHλ,

(paramn,B0,B
∗
0,B1, {B∗

i,j , B
′ ∗
i,j,l}i,j=1,...,6;l=1,...,n,B2,B

∗
2)

R← GABS
ob (1λ, 6, n),

B̂0 := (b0,1, b0,4), B̂1 := (b1,1, . . . , b1,n, b1,4n+1, . . . , b1,6n), B̂2 := (b2,1, b2,2, b2,7),

B̂
∗
1 := (b∗1,1, . . . , b

∗
1,n, b

∗
1,3n+1, . . . , b

∗
1,4n) = {B∗

i,j , B
′ ∗
i,j,l}i=1,4;j=1,...,6;l=1,...,n,

B̂
∗
2 := (b∗2,1, b

∗
2,2, b

∗
2,5, b

∗
2,6),

return sk := b∗0,1, pk := (1λ, hk, param�n, {B̂t}t=0,1,2, {B̂∗
t }t=1,2, b

∗
0,3).

KeyGen(pk, sk, Γ := {x1, . . . , xn′ | xj ∈ F
×
q }) :

ω, ϕ0, ϕ1
U← Fq, �y := (y1, . . . , yn) such that

∑n−1
j=0 yn−jz

j = zn−1−n′ ·∏n′
j=1(z − xj),

k∗
0 := (ω, 0, ϕ0, 0)B∗

0
,

L∗
1,j := ωB∗

1,j + ϕ1B
∗
4,j , L∗

2,j :=
∑n

l=1 yl(ωB
′ ∗
1,j,l + ϕ1B

′ ∗
4,j,l) for j = 1, . . . , 6,

k∗
2,1 := (ω(1, 0), 0, 0, ϕ2,1,1, ϕ2,1,2, 0)B∗

2
, k∗

2,2 := (ω(0, 1), 0, 0, ϕ2,2,1, ϕ2,2,2, 0)B∗
2
,

return skΓ := (Γ,k∗
0, {L∗

1,j , L
∗
2,j}j=1,...,6, {k∗

2,ι}ι=1,2).
Remark From {L∗

1,j , L
∗
2,j}j=1,...,6 and �y, k∗

1 is defined as
n︷ ︸︸ ︷ n︷ ︸︸ ︷

k∗
1 := ( y1L

∗
1,1, .., yn−1L

∗
1,1, L

∗
2,1, y1L

∗
1,2, .., yn−1L

∗
1,2, L

∗
2,2, · · ·

y1L
∗
1,5, .., yn−1L

∗
1,5, L

∗
2,5, y1L

∗
1,6, .., yn−1L

∗
1,6, L

∗
2,6 ),

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 2n︷ ︸︸ ︷
that is, k∗

1 = ( ω�y, 02n, ϕ1�y, 02n )B∗
1
,

Sig(pk, skΓ , m, S := (M,ρ)) : If S := (M,ρ) accepts Γ := {xj}j=1,...,n′ ,

then compute �y := (y1, . . . , yn) such that
∑n−1

j=0 yn−jz
j = zn−1−n′ ·∏n′

j=1(z − xj),
I and {αi}i∈I such that

∑
i∈I αiMi = �1, and

I ⊆ {i ∈ {1, . . . , �}| [ρ(i) = vi ∧ vi ∈ Γ ] ∨ [ρ(i) = ¬vi ∧ vi �∈ Γ ] },
ξ

U← F
×
q , (βi)

U← {(β1, . . . , β�) |
∑�

i=1 βiMi = �0},
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s∗0 := ξk∗
0 + r∗

0, where r∗
0

U← span〈b∗0,3〉,
s∗i := γi · ξk∗

1 +
∑n

ι=1wi,ι · b∗t,ι + r∗
i , �vi := (vn−1

i , . . . , vi, 1) for i = 1, . . . , �,

where r∗
i

U← span〈b∗1,3n+1, . . . , b
∗
1,4n〉, and γi, �ui := (ui,1, . . . , ui,n) are defined as

if i ∈ I ∧ ρ(i) = vi, γi := αi, �ui
U← {�ui | �ui · �vi = 0 ∧ ui,1 = βi},

if i ∈ I ∧ ρ(i) = ¬vi, γi := αi/(�vi · �y), �ui
U← {�ui | �ui · �vi = βi},

if i �∈ I ∧ ρ(i) = vi, γi := 0, �ui
U← {�ui | �ui · �vi = 0 ∧ ui,1 = βi},

if i �∈ I ∧ ρ(i) = ¬vi, γi := 0, �ui
U← {�ui | �ui · �vi = βi},

s∗�+1 := ξ(k∗
2,1 + Hλ,Dhk (m ||S) · k∗

2,2) + r∗
�+1, where r∗

�+1
U← span〈b∗2,5, b∗2,6〉,

return �s∗ := (s∗0, . . . , s
∗
�+1).

Ver(pk, m, S := (M,ρ), �s∗) : �f
R← F

r
q, �s

T := (s1, . . . , s�)T := M · �fT,

s0 := �1 · �fT, η0, η�+1, θ�+1, s�+1
U← Fq, c0 := (−s0 − s�+1, 0, 0, η0)B0 ,

for 1 ≤ i ≤ �, �vi := (vn−1
i , . . . , vi, 1), �e1 := (1, 0, . . . , 0),

if ρ(i) = vi, return 0 if s∗i �∈ V1, else θi
U← Fq, �ηi

U← F
2n
q ,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 2n︷ ︸︸ ︷
ci := ( si�e1 + θi�vi, 02n, 0n, �ηi )B1 ,

if ρ(i) = ¬vi, return 0 if s∗i �∈ Vt, else �ηi
U← F

2n
q ,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 2n︷ ︸︸ ︷
ci := ( si�vi, 02n, 0n, �ηi )B1 ,

c�+1 := (s�+1 − θ�+1 · Hλ,Dhk (m ||S), θ�+1, 0, 0, 0, 0, η�+1)B2 ,

return 0 if e(b0,1, s
∗
0) = 1,

return 1 if
∏�+1
i=0 e(ci, s

∗
i ) = 1, return 0 otherwise.

E.4 Security

Theorem 2. The proposed ABS scheme is perfectly private.

Theorem 2 is proven in a similar manner to Theorem 1 in the full version of [25] (privacy of
ABS scheme in [25]).

Theorem 3. The proposed ABS scheme is unforgeable (adaptive-predicate unforgeable) under
the DLIN assumption and the existence of collision resistant hash functions.

For any adversary A, there exist probabilistic machines F0, . . . ,F4, whose running times are
essentially the same as that of A, such that for any security parameter λ,

AdvABS,UF
A (λ) ≤ AdvDLIN

F0
(λ) +

∑2
l=1

∑ν1
h=1(AdvDLIN

Fl,h,0
(λ) +

∑n
j=1

∑2
ι=1 AdvDLIN

Fl,h,j,ι
(λ))

+
∑ν2

h=1(AdvDLIN
F3,h

(λ) + AdvH,CR
F4,h

(λ)) + ε,
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where Fl,h,0(·) := Fl(h, 0, ·),Fl,h,j,ι(·) := Fl(h, j, ι, ·) for l = 1, 2, Fl,h(·) := Fl(h, ·) for l = 3, 4, ν1

(resp. ν2) is the maximum number of A’s reveal key (resp. signature) queries, � is the maximum
number of rows in access matrices M of key queries, and ε := (2ν1�+ 20ν1n+ 12ν1 + 5ν2 + 10)/q.

Key Lemmas We will show Lemmas 3 and 4 for the proof of Theorem 1.

Definition 20 (Problem 2). Problem 2 is to guess β, given (paramn, {Bι, B̂∗
ι }ι=0,1,2, {eβ,i}i=0,...,n+1,

f) R← GP2
β (1λ, n), where

GP2
β (1λ, n) : (paramn,B0,B

∗
0,B1, {B∗

i,j , B
′ ∗
i,j,l}i,j=1,...,6;l=1,...,n,B2,B

∗
2)

R← GABS
ob (1λ, 6, n),

B̂
∗
0 := (b∗0,1, b

∗
0,3, b

∗
0,4),

B̂
∗
1 := (b∗1,1, .., b

∗
1,n, b

∗
1,3n+1, .., b

∗
1,6n) is calculated as in Eq. (1) from {B∗

i,j , B
′ ∗
i,j,l}i,j=1,...,6;l=1,...,n,

B̂
∗
2 := (b∗2,1, b

∗
2,2, b

∗
2,5, .., b

∗
2,7), δ, δ0

U← Fq, ρ
U← F

×
q , �z

U← F
2
q ,

e0,0 := (δ, 0, 0, δ0)B0 , e1,0 := (δ, ρ, 0, δ0)B0 ,

for i = 1, . . . , n; �ei := (0i−1, 1, 0n−i) ∈ F
n
q ,

�δj,i
U← F

2n
q ,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 2n︷ ︸︸ ︷
e0,i := ( δ�ei, 02n, 0n, �δj,i )B1 ,

e1,i := ( δ�ei, ρ�ei, 0n, 0n, �δj,i )B1 ,

e0,n+1 := (δ, 0, 02, 02, δ0)B2 , e1,n+1 := (δ, 0, �z, 02, δ0)B2 , f := δb2,2,

return (paramn, {Bι, B̂∗
ι }ι=0,1,2, {eβ,i}i=0,...,n+1,f),

for β U← {0, 1}. For a probabilistic machine B, the advantage of B for Problem 2, AdvP2
B (λ), is

similarly defined as in Definition 8.

Lemma 22. For any adversary B, there is a probabilistic machine F , whose running time is essen-
tially the same as that of B, such that for any security parameter λ, AdvP2

B (λ) ≤ AdvDLIN
F (λ) + 5/q.

Lemma 22 is proven similarly to Lemma 1 in [23]. ��

Definition 21 (Problem 3). Problem 3 is to guess β, after running the following 2-step game:

1. The challenger generates

(paramn,B0,B
∗
0,B1, {B∗

i,j , B
′ ∗
i,j,l}i,j=1,...,6;l=1,...,n,B2,B

∗
2)

R← GABS
ob (1λ, 6, n),

B̂0 := (b0,1, b0,3, b0,4), B̂1 := (b1,1, .., b1,n, b1,3n+1, .., b1,6n),

B̂
∗
1 := (b∗1,1, .., b

∗
1,n, b

∗
1,3n+1, .., b

∗
1,6n) is calculated as in Eq. (1) from {B∗

i,j , B
′ ∗
i,j,l}i,j=1,...,6;l=1,...,n,

and gives (paramn, B̂0,B
∗
0, B̂1, B̂

∗
1,B2,B

∗
2) to the adversary.
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2. The adversary gives the target vector �y to the challenger. The challenger then generates

δ, δ0, ω, ϕ0, ϕ1
U← Fq, τ, ρ

U← F
×
q ,

h∗
0,0 := (ω, 0, 0, ϕ0, 0)B∗

0
, h∗

1,0 := (ω, τ, 0, ϕ0, 0)B∗
0
, e0 := (δ, ρ, 0, 0, δ0)B0 ,

for j = 1, . . . , n; i = 1, . . . , n; �ei := (0i−1, 1, 0n−i) ∈ F
n
q ,

�δj,i
U← F

2n
q ,

Uj
U← H�y(n,Fq) ∩GL(n,Fq), Zj := (U−1

j )T,
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 2n︷ ︸︸ ︷

h∗
0,1 := ( ω�y, 02n, ϕ1�y, 02n )B∗

1
,

h∗
1,1 := ( ω�y, τ�y, τ�y, ϕ1�y, 02n )B∗

1
,

e0,j,i := ( δ�ei, ρ�ei, 0n, 0n, �δj,i )B1 ,

e1,j,i := ( δ�ei, 0n, ρ�ei · Zj , 0n, �δj,i )B1 ,

for β U← {0, 1}, and returns � := (h∗
β,0, e0,h

∗
β,1, {eβ,j,i}j=1,...,�; i=1,...,n) to the adversary.

For a probabilistic adversary B, we define the advantage of B as the quantity AdvP3
B (λ) :=

|Pr [B outputs 1 |� with β = 0 is given to B ]− Pr[B outputs 1 |� with β = 1 is given to B ]| .
Lemma 23. For any adversary B, there are probabilistic machines F0,Fj,ι (j = 1, . . . , n; ι = 1, 2),
whose running times are essentially the same as that of B, such that for any security parameter λ,
AdvP3

B (λ) ≤ AdvDLIN
F0

(λ) +
∑n

j=1

∑2
ι=1 AdvDLIN

Fj,ι
(λ) + (10n+ 5)/q.

Lemma 23 is proven in a similar manner to Lemma 3.

Definition 22 (Problem 4). Problem 4 is to guess β ∈ {0, 1}, given (param�n, {B̂t,B∗
t }t=0,d+1,

{Bt,B∗
t }t=1,..,d,h

∗
β,0, e0, {h∗

t,i}t=1,..,d;i=1,..,nt , {h∗
β,d+1,i, ed+1,i}i=1,2)

R← GP4
β (1λ, n), where

GP4
β (1λ, n) : (paramn,B0,B

∗
0,B1, {B∗

i,j , B
′ ∗
i,j,l}i,j=1,...,6;l=1,...,n,B2,B

∗
2)

R← GABS
ob (1λ, 6, n),

B̂0 := (b0,1, b0,3, b0,4), B̂2 := (b2,1, b2,2, b2,5, . . . , b2,7),
B
∗
1 := (b∗1,1, .., b

∗
1,6n) is calculated as in Eq. (1) from {B∗

i,j , B
′ ∗
i,j,l}i,j=1,...,6;l=1,...,n,

σ, τ
U← F

×
q , ω, δ, δ0

U← Fq, h∗
0,0 := (δ, 0, δ0, 0)B∗

0
, h∗

1,0 := (δ, σ, δ0, 0)B∗
0
, e0 := (ω, τ, 0, 0)B0 ,

h∗
1,i := δb∗1,i for i = 1, . . . , n, U

U← GL(2,Fq), Z := (U−1)T,

for i = 1, 2; �ei := (0i−1, 1, 02−i), �δi
U← F

2
q ,

h∗
0,2,i := ( δ�ei, 02 �δi, 0 )B∗

2
,

h∗
1,2,i := ( δ�ei, σ�eiU, �δi, 0 )B∗

2
,

e2,i := ( ω�ei, τ�eiZ, 02, 0 )B2 ,

return (paramn, {B̂t,B∗
t }t=0,2,B1,B

∗
1,h

∗
β,0, e0, {h∗

1,i}i=1,..,n, {h∗
β,2,i, e2,i}i=1,2),

for β U← {0, 1}. For a probabilistic machine B, the advantage of B for Problem 4, AdvP4
B (λ), is

similarly defined as in Definition 8.

Lemma 24. For any adversary B, there is a probabilistic machine F , whose running time is essen-
tially the same as that of B, such that for any security parameter λ, AdvP4

B (λ) ≤ AdvDLIN
F (λ) + 5/q.

Lemma 24 is proven similarly to Lemma 2 in [23]. ��
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Proof of Theorem 3 : To prove Theorem 3, we consider the following (2ν1 + ν2 + 3) games. In
Game 0, a part framed by a box indicates coefficients to be changed in a subsequent game. In the
other games, a part framed by a box indicates coefficients which were changed in a game from the
previous game.

Game 0 : Original game. That is, the reply to a reveal key query for Γ := {xj}j=1,...,n′ is:

k∗
0 := (ω, 0 , ϕ0, 0)B∗

0
, (11)

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 2n︷ ︸︸ ︷
k∗

1 := ( ω�y, 02n , ϕ1�y, 02n )B∗
1
,

(12)

where b U← {0, 1};ω, ϕ0, ϕ1
U← Fq, and �y := (y1, . . . , yn) such that

∑n−1
j=0 yn−jz

j = zn−1−n′ ·∏n′
j=1(z−

xj). The reply to a reveal signature query for (m,S) with S := (M,ρ) are:

s∗0 := ( δ̃, 0 , σ0, 0 )B∗
0
, (13)

s∗i := ( �zi, 02nt , �σi, 02n )B∗
1

for i = 1, . . . , �, (14)

s∗�+1 := ( δ̃(1,Hλ,Dhk (m ||S)), 02 , �σ�+1, 0 )B∗
2
, (15)

where, δ̃ U← F
×
q , σ0

U← Fq, �σi
U← F

n
q , �σ�+1

U← F
2
q , (ζi)

U← {(ζi) | ∑�
i=1 ζiMi = �1}, and for

i = 1, . . . , �, if ρ(i) = vi, then �zi
U← {�zi | �zi · �vi = 0, zi,1 = δ̃ζi}, if ρ(i) = ¬vi, then �zi

U← {�zi |
�zi ·�vi = δ̃ζi} with �vi := (vn−1

i , . . . , vi, 1) ∈ F
n
q . The verification text for (m′,S′) with S

′ := (M,ρ) is:

c0 := ( −s0 − s�+1 , 0 , 0, η0 )B0 ,

for i = 1, . . . , �,
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷︸︸︷ 2n︷ ︸︸ ︷

if ρ(i) = vi, ci := ( si�e1 + θi�vi, 02n , 0n, �ηi )B1 ,

if ρ(i) = ¬vi, ci := ( si�vi, 02n , 0n, �ηi )B1 ,

c�+1 := ( s�+1�e1 + θ�+1(−Hλ,Dhk (m′ ||S′), 1), 02 , 02, η�+1 )B2 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(16)

where �f
U← F

r
q , �s

T := (s1, . . . , s�)T := M · �fT, s0 := �1 · �fT, θi, s�+1, η0, η�+1
U← Fq, �ηi

U← F
2n
q , �e1 =

(1, 0, . . . , 0) ∈ F
n
q , and �vi := (vn−1

i , . . . , vi, 1) ∈ F
n
q .

Game 1 : Same as Game 0 except that the verification text for (m′,S′) with S
′ := (M,ρ) is:

c0 := (−s0 − s�+1, −r0 − r�+1 , 0, η0)B0 , (17)

for i = 1, . . . , �,
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷︸︸︷ 2n︷ ︸︸ ︷

if ρ(i) = vi, ci := ( si�e1 + θi�vi, ri�e1 + ψi�vi , 0n, 0n, �ηi )B1 ,

if ρ(i) = ¬vi, ci := ( si�vi, ri�vi , 0n, 0n, �ηi )B1 ,

⎫⎪⎪⎬⎪⎪⎭ (18)

c�+1 := ( s�+1�e1 + θ�+1(−Hλ,Dhk (m′ ||S′), 1),

r�+1�e1 + ψ�+1(−Hλ,Dhk (m′ ||S′), 1) , 02, η�+1 )B2 , (19)

where �g U← F
r
q , �r

T := (r1, . . . , r�)T := M ·�gT, r0 := �1 ·�gT, r�+1, ψi
U← Fq, and all the other variables

are generated as in Game 0.
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Game 2-h-1 (h = 1, . . . , ν1) : Game 2-0-2 is Game 1. Game 2-h-1 is the same as Game
2-(h− 1)-2 except the reply to the h-th key query for Γ are:

k∗
0 := (ω, τ ′ , ϕ0, 0)B∗

0
, (20)

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 2n︷ ︸︸ ︷
k∗

1 := ( ω�y, τ�y, τ�y , ϕ1�y, 02n )B∗
1
,

where τ, τ ′ U← Fq, and the i-th component (i = 1, . . . , �) of the verification text for (m′,S′) with
S
′ := (M,ρ) is:

for i = 1, . . . , �,
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷︸︸︷ 2n︷ ︸︸ ︷

if ρ(i) = vi, ci := ( si�e1 + θi�vi, 0n, �wi , 0n, �ηi )B1 ,

if ρ(i) = ¬vi, ci := ( si�vi, 0n, �wi , 0n, �ηi )B1 ,

⎫⎪⎪⎬⎪⎪⎭ (21)

where �wi
U← {�wi ∈ F

n
q | �wi · �y = (ri�e1 + ψi�vi) · �y}, �wi

U← {�wi ∈ F
n
q | �wi · �y = ri�vi · �y}, all the other

variables are generated as in Game 2-(h− 1)-2.
Game 2-h-2 (h = 1, . . . , ν1) : Game 2-h-2 is the same as Game 2-h-1 except the i-th component
ci of the verification text for (m′,S′) with S

′ := (M,ρ) are given by Eq. (18), and the component
k∗

1 of the reply to the h-th key query for Γ is given by Eq. (12) (and k∗
0 is given by Eq. (20)). all

the other variables are generated as in Game 2-h-1.
Game 3-h (h = 1, . . . , ν2) : Game 3-0 is Game 2-ν1-2. Game 3-h is the same as Game 3-(h−1)
except that s∗0, s∗�+1 of the reply to the h-th AltSig query for (m,S) are:

s∗0 := ( δ̃, π0 , σ0, 0 )B∗
0
,

s∗�+1 := ( δ̃(1,Hλ,Dhk (m ||S)), �π�+1 , �σ�+1, 0 )B∗
2
,

}
(22)

where π0
U← Fq, �π�+1

U← F
2
q , and all the other variables are generated as in Game 3-(h− 1).

Game 4 : Same as Game 3-ν2 except that c0 generated in Ver for verifying the output of the
adversary is:

c0 := ( s̃0 , −r0 − r�+1, 0, η0 )B0 , (23)

where s̃0
U← Fq (i.e., independent from all the other variables) and all the other variables are

generated as in Game 3-ν2.
Let Adv

(0)
A (λ),Adv

(1)
A (λ),Adv

(2-h-ι)
A (λ),Adv

(3-h)
A (λ), and Adv

(4)
A (λ) be the advantage of A in Game

0,1,2-h-ι,3-h and 4, respectively. Adv
(0)
A (λ) is equivalent to AdvABS,UF

A (λ) and it is obtained that
Adv

(4)
A (λ) = 1/q by Lemma 30.
We will show five lemmas (Lemmas 25–29) that evaluate the gaps between pairs of subse-

quent games. From these lemmas and Lemmas 22–24, we obtain AdvABS,UF
A (λ) = Adv

(0)
A (λ) ≤∣∣∣Adv

(0)
A (λ)− Adv

(1)
A (λ)

∣∣∣+∑ν1
h=1(

∣∣∣Adv
(2-(h−1)-2)
A (λ)− Adv

(2-h-1)
A (λ)

∣∣∣+∣∣∣Adv
(2-h-1)
A (λ)− Adv

(2-h-2)
A (λ)

∣∣∣)+∑ν2
h=1

∣∣∣Adv
(3-(h−1))
A (λ)− Adv

(3-h)
A (λ)

∣∣∣ +
∣∣∣Adv

(3-ν2)
A (λ)− Adv

(4)
A (λ)

∣∣∣ + Adv
(4)
A (λ) ≤ AdvDLIN

F0
(λ)+∑2

l=1

∑ν1
h=1(AdvDLIN

Fl,h,0
(λ) +

∑�
j=1

∑2
ι=1 AdvDLIN

Fl,h,j,ι
(λ)) +

∑ν2
h=1(AdvDLIN

F3,h
(λ) + AdvH,CR

F4,h
(λ)) + (2ν1� +

20ν1n+ 12ν1 + 5ν2 + 10)/q. This completes the proof of Theorem 3. ��
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Lemma 25. For any adversary A, there exists a probabilistic machine B0, whose running time is
essentially the same as that of A, such that for any security parameter λ, |Adv

(1)
A (λ)−Adv

(0)
A (λ)| ≤

AdvP2
B0

(λ).

Lemma 25 is proven in a similar manner to Lemma 6 in the full version of [25]. ��

Lemma 26. For any adversary A, there exists a probabilistic machine B1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-h-1)
A (λ) −

Adv
(2-(h−1)-2)
A (λ)| ≤ AdvP3

B1,h
(λ) + (�+ 1)/q, where B1,h(·) := B1(h, ·) and � is the maximum number

of rows in access matrices M of key queries.

Lemma 26 is proven in a similar manner to Lemma 5. ��

Lemma 27. For any adversary A, there exists a probabilistic machine B2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-h-2)
A (λ) −

Adv
(2-h-1)
A (λ)| ≤ AdvP3

B2,h
(λ) + (� + 1)/q. where B2,h(·) := B2(h, ·) and � is the maximum number

of rows in access matrices M of key queries.

Lemma 27 is proven in a similar manner to Lemma 5. ��

Lemma 28. For any adversary A, there exist probabilistic machines B3 and F4, whose running
times are essentially the same as that of A, such that for any security parameter λ, |Adv

(3-h)
A (λ)−

Adv
(3-(h−1))
A (λ)| ≤ AdvP4

B3,h
(λ) + AdvH,CR

F4,h
(λ) + 3/q, where B3,h(·) := B3(h, ·) and F4,h(·) := F4(h, ·).

Lemma 29 is proven in a similar manner to Lemma 16 in the full version of [25]. ��

Lemma 29. For any adversary A, for any security parameter λ, |Adv
(4)
A (λ)− Adv

(3-ν2)
A (λ)| ≤ 1/q.

Lemma 29 is proven in a similar manner to Lemma 17 in the full version of [25]. ��

Lemma 30. For any adversary A, for any security parameter λ, Adv
(4)
A (λ) = 1/q.

Lemma 30 is proven in a similar manner to Lemma 18 in the full version of [25]. ��

F Selectively Secure Efficient IPE Scheme in [20]

We describe random dual orthonormal basis generator GIPE
ob below, which is used as a subroutine

in the proposed IPE scheme [20].

GIPE
ob (1λ, N) : param′

V
:= (q,V,GT ,A, e)

R← Gdpvs(1λ, N),

ψ
U← F

×
q , gT := e(G,G)ψ, paramV := (param′

V
, gT ),

X := (χi,j)
U← GL(N,Fq), (ϑi,j) := ψ · (XT)−1,

bi :=
∑N−1

j=0 χi,jaj ,B := (b0, . . . , bN−1), b∗i :=
∑N−1

j=0 ϑi,jaj ,B
∗ := (b∗0, . . . , b∗N−1),

return (paramV,B,B
∗).
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Construction

Setup(1λ, n) :

(paramV,B := (b0, . . . , bn+3),B∗ := (b∗0, . . . , b∗n+3))
R← GIPE

ob (1λ, n+ 4),

B̂ := (b0, . . . , bn, bn+3), B̂
∗ := (b∗0, . . . , b∗n, b∗n+2), return pk := (1λ, paramV, B̂), sk := B̂

∗.

KeyGen(pk, sk, �v ∈ F
n
q \ {�0}) : σ, η

U← Fq,
n︷ ︸︸ ︷

k∗ := ( 1, σ�v, 0, η, 0 )B∗ , return sk�v := k∗.
Enc(pk, m, �x ∈ F

n
q \ {�0}) : ω, ϕ, ζ

U← Fq,
n︷ ︸︸ ︷

c1 := ( ζ, ω�x, 0, 0, ϕ )B, c2 := gζTm, return ct�x := (c1, c2).
Dec(pk, sk�v := k∗, ct�x := (c1, c2)) : m′ := c2/e(c1,k

∗), return m′.

[Correctness] If �v · �x = 0, then e(c1,k
∗) = gζ+ωσ�v·�xT = gζT .

Theorem 4. The proposed IPE scheme is selectively fully-attribute-hiding against chosen plaintext
attacks under the DLIN assumption.

For any adversary A, there exist probabilistic machines D1 and D2, whose running times
are essentially the same as that of A, such that for any security parameter λ, AdvIPE,AH

A (λ) ≤
AdvDLIN

D1
(λ) + AdvDLIN

D2
(λ) + ε, where ε := 12/q.

The proof of Theorem 4 is given in [20].
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