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Abstract

This paper develops two methods for exploring the structure of the stream cipher TRIVIUM. We consider
whether it is possible to compute the algebraic normal form (ANF) of such functions. Since the key and the
IV together make up 160 variables, doing this directly is not possible. Instead, one can choose a subset of the
key and IV variables of size n and fix the other variables to constants.

As an application of this tool, we run some randomness experiments on the first output bit of TRIVIUM.
Three types of tests were conducted on full (and reduced) round TRIVIUM. For the tests done, we fix a
subset of n key variables and vary the remaining 160− n key and IV bit positions. The first test tried to find
polynomials which are non-random in some sense. This is along the line of work done by Aumasson et. al. on
their work on cube testers. However, here we do not use any cube. We try to find polynomials corresponding to
the first output bit of TRIVIUM which are non-random. Our experiments did reveal a number of polynomials
which showed deviation from randomness.

The second test conducted checks the balancedness amongst the first l output bits of TRIVIUM. A proper
statistical model for conducting such a test is proposed. Tests results shows that the first 8 output bits are
unbalanced.

For the third test we consider N random choices of the constant values keeping the n key variables fixed. A
simple test of hypothesis is applied to detect possible non-randomness in the distributions. Mostly, the results
are negative. In a few cases, the results seem to indicate the presence of possible non-randomness, though,
nothing conclusive can be inferred from this test.

The symbolic computation tool developed here can conceivably be used for exploring other features of
TRIVIUM. Further, the idea behind the development of the tool can be used to build similar tools for other
ciphers.

Keywords : Multivariate Polynomial Multiplication, Boolean Functions, Algebraic Normal Form (ANF),
Stream Ciphers, TRIVIUM.

1 Introduction

TRIVIUM is a hardware oriented synchronous stream cipher that was submitted to the Profile II (hardware)
of the eSTREAM competition by its authors Christophe De Cannière and Bart Preneel [DCP]. TRIVIUM
maintains an internal state S of size 288 bits. The state S is further subdivided into 3 shorter shift registers S1,
S2 and S3 of sizes 93, 84 and 111 bits each. It uses a simple quadratic state update function. At each round
of the state update, 3 bits are computed using the state update function which are then fed into the three shift
registers S1, S2 and S3, while the three most significant bits of S1, S2 and S3 are discarded. TRIVIUM uses
1152 rounds of key initialization. During key generation step, TRIVIUM uses the same state update function in
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addition to producing a bit, which is XOR of 6 state bits. Over the years it has received much attention from
the research community due to its simple structure. However, there is still no known attack on full version of
TRIVIUM which works better than exhaustive search.

To gain a better understanding of the full cipher, scaled-down variants, such as Bivium A and Bivium B
[Rad06], have been suggested and studied. Apart from side channel attacks, the attacks on TRIVIUM can be
broadly classified into two categories. The first one analyses these scaled-down variants like Bivium A and Bivium
B, both of which uses two shift registers as their internal state instead of three and tries to extrapolate these
results to the full TRIVIUM. The second approach has been to study the reduced-round variants of the cipher,
i.e., TRIVIUM with ‘r’ rounds of key initialization where r ≤ 1152. In this article we will be concentrating on
the reduced-variant only.

In [O’N07], O’Neal claimed that TRIVIUM with 1152 rounds of key initialization may not be secure and
thus proposed that the initialization rounds for TRIVIUM must be increased to 4 × 1152 = 4608 rounds in
order to make it secure. After that the first attack on reduced-round variant of TRIVIUM was the cube attack
[DS09]. In [DS09], Dinur and Shamir used the newly invented cube attack to successfully recover the key after
767 initialization rounds with 245 bit operations and then showed that this can be further reduced to 236 bit
operations. In [ADMS09], Aumasson et. al. introduced a new class of attacks called the cube testers and
developed distinguisher’s that distinguished 790 rounds of TRIVIUM from random with 230 complexity and were
also able to detect non-randomness over 885 rounds in 227 complexity, improving on the original 767-round cube
attack.

Recently in [FV13], Fouque and Vannet increased the number of attacked initialization rounds by improving
the time complexity of computing cube. They were able to find a key recovery attack requiring 239 queries for
784 initialization rounds and were also able to provide another key recovering attack up to 799 rounds with
a complexity of 240 for queries and 262 for the exhaustive search part. In their attack they used the Moebius
Transform discussed in [Jou09], to improve on the time taken in the pre-processing stage of cube attack. The
algorithm used in [FV13] first finds the truth table of the boolean function corresponding to the first output
bit and then uses the algorithm given in [Jou09] to convert the truth table into its corresponding ANF. The
second algorithm (Method - 2) given in this paper uses the same idea to compute the ANF of the boolean
function corresponding to the first output bit of TRIVIUM. But instead of concentrating on cube attack this
work concentrates on the randomness behavior of these boolean functions.

Our Results: The best attack so far in terms of the number of rounds attacked on reduced-round variants of
TRIVIUM is the one given by Aumasson et. al. in [ADMS09]. In their work the input (key and IV) variables
were divided into cube variables (CV) and superpoly variables (SV). Suppose f(x1, . . . , xc; y1, . . . , ys) denote a
boolean function in c + s variables, where CV = {x1, . . . , xc} and SV = {y1, . . . , ys}. Then superpoly sCV of f
corresponding to a cube of size c is defined as

sCV (y1, y2, . . . , ys) = ⊕(x1,x2,...,xc)∈GF (2)cf(x1, x2, . . . , xc; y1, y2, . . . , ys),

which is an s-variable boolean function in the variables SV. For the cubes listed in the appendix of [DS09], the
authors of the paper then checked for the following properties for every superpoly found:

1. Whether the truth table corresponding to the superpoly is balanced.

2. Whether the superpoly is a constant function.

3. Used the test by Alon et al. [AKK+03] to check whether the superpoly is of degree d.

4. Checked whether a particular variable in SV occurs in the superpoly as a linear term.

5. Lastly to check whether a particular variable in SV is absent in the ANF of the superpoly.
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Failing any one of these test, the authors termed the corresponding superpoly as non-random. With this the
authors obtained the best result so far on reduced-round variant of TRIVIUM by detecting non-randomness over
885 rounds of TRIVIUM. The authors showed that for a cube of size 27 mentioned in [DS09], the key variables
1, 4, 5 are absent in the corresponding superpoly, when the remaining other key bits are set to zero. It is argued
that this is an evidence of non-randomness. This forms the motivation of our work.

In this paper instead using cubes we concentrated on the truth table representation and ANF of the first
output bit after full (and reduced) round TRIVIUM. The paper uses two types of measurements for detecting
non-randomness, which are different from those mentioned in [ADMS09]. The first one tries to find examples
of polynomials which are non-random whereas the second one uses an aggregated measurement to look for any
structural weakness. The first type is similar to the work of Aumasson et. al. [ADMS09], as both tries to find
examples of polynomials which are non-random. However, this paper does not compute superpoly’s to get such
examples of non-random polynomials.

TRIVIUM uses very simple state update functions which are actually quadratic boolean functions. Since
the state is updated over many initialization rounds, the boolean functions representing the output bits has a
complex dependence on the key and IV variables. In our endeavor to finding non-randomness for full TRIVIUM
we also addressed the problem of whether it is possible to explicitly write down the boolean functions for the
state and the output bits in terms of the key and IV variables. If we consider all 160 key and IV variables, then
this is practically impossible to do. Instead, we retain n of the key and IV variables and fix all the other variables
to constants. For n up to 30, it is then possible to explicitly express each of the state bits and the first output
bit (and also other output bits) as a boolean function of the n variables.

The paper gives two methods to symbolically compute the first output bit of TRIVIUM in n variables.
The methods select n bits out of 160 and treats them as variables. The rest 160 − n are randomly fixed to
constants. Method - 1 treats each state bit as a polynomial in n variables. The state bits are represented in their
ANF. Method - 1 then computes the state after full (and reduced) round TRIVIUM by multiplying thrice two
polynomials of n variables in their ANF using the Algorithm mentioned in [Sam13] at each step. Method - 1
then outputs the first output bit which is the XOR of six state bits. To get the truth table representation of the
first output bit, Method - 1 uses the Algorithm mentioned in [Jou09] to convert the ANF into its corresponding
truth table.

Method - 2, does the opposite of Method - 1. It first constructs the truth table of the first output bit. To
do that it first computes the first output bit for all possible values of the n bits, which are to be treated as
variables, keeping the remaining 160− n bits fixed to a constant value. Thus we run TRIVIUM for 2n possible
key and IV inputs to get 2n first output bits. This corresponds to the truth table of first output when viewed
as a n variable polynomial. Method - 2 then converts this truth table into its corresponding ANF by using the
Algorithm mentioned in [Jou09].

The simulation tools developed are then used to carry out some randomness experiments on TRIVIUM. A
total of n key variables are chosen and the rest of the key variables and all the IV variables are randomly fixed
to constants. The first output bit after full (or reduced) round is then an n-variable boolean function. Different
random choices of the constants lead to different boolean functions. One can then consider the distribution of
the monomials in these boolean functions. Similarly, one can also consider the distribution of number of zeroes
and ones in its truth table representation, i.e., the balancedness of the first output bit. This notion was further
extended to consider the balancedness amongst the first l output bits of TRIVIUM.

Simple tests are employed to detect possible non-randomness in this distribution. The tests done in this
paper can be broadly classified into three types. The first type looks to identify a particular polynomial which
in some sense is non-random. Some polynomials which failed the tests are reported. We detected Non-random
polynomials even after full round of TRIVIUM. The second test was done to check for balancedness amongst
the first l output bits. A proper statistical model for conducting such a test is given. Experiments were done
by taking n = 20, 30 and l = 8. The results suggests that the first 8 output bits are unbalanced. Lastly, an
aggregated test was done to detect non-randomness in the first output bit of TRIVIUM. For small values of r, the
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test routinely detected the presence of non-randomness. However once r grows, the test mostly reports the lack
of non-randomness. In a few cases though the test seems to indicate the presence of possible non-randomness.
Nothing conclusive, however, can be said from the aggregated test.

The idea behind the simulation tool that we have built for TRIVIUM can be easily adapted to build simulation
tools for other ciphers. In fact, the state bits and the output bits of any cipher can be expressed as boolean
functions of the key and IV bits. Further, any operation on the state bits can be expressed in terms of XOR
and multiplication of the polynomials representing the state bits. So, using an efficient algorithm one can build
a simulation tool for any cipher along the lines of what we have done for TRIVIUM.

2 A Brief Description of TRIVIUM

TRIVIUM maintains a 288-bit internal state “S” denoted by S = (s1, s2, . . . , s288) and uses two algorithms,
namely a key initialization algorithm, which we call the key and IV setup, and a key stream generation algorithm.
The state S is further divided into 3 shift registers, namely S1 = (s1, s2, . . . , s93), S2 = (s94, s95, . . . , s177) and
S3 = (s178, s179, . . . , s288).

2.1 Key and IV Setup

The algorithm is initialized by loading an 80-bit key into the first 80-bits of the state S, i.e., s1, s2, . . . , s80 and
an 80-bit IV into the state bits s94, s95, . . . , s173 and setting all remaining bits to 0, except for s286, s287, and
s288, which are set to 1. Each round of the iterative process extracts the values of 15 specific state bits and uses
them to update 3 bits of the state. This is repeated for 4 × 288 = 1152 times. This can be summarized by the
following pseudo-code (Algorithm 1):

Algorithm 1: TRIVIUM - Key and IV Setup.

(s1, s2, . . . , s93) �(K1,K2, . . . ,K80, 0, . . . , 0)
(s94, s95, . . . , s177) �(IV1, IV2, . . . , IV80, 0, 0, 0, 0)
(s178, s179, . . . , s288) �(0, . . . 0, 1, 1, 1)
for i = 1 to 4 · 288 do

t1 �s66 ⊕ s91 · s92 ⊕ s93 ⊕ s171
t2 �s162 ⊕ s175 · s176 ⊕ s177 ⊕ s264
t3 �s243 ⊕ s286 · s287 ⊕ s288 ⊕ s69
(s1, s2, . . . , s93) �(t3, s1, . . . , s92)
(s94, s95, . . . , s177) �(t1, s94, . . . , s176)
(s178, s179, . . . , s288) �(t2, s178, . . . , s287)

end

2.2 Key Stream Generation

The key stream generation algorithm is similar to that of the key initialization algorithm except that at each
round, a single bit which is a linear function of six state bits, is output before the state update. This process
repeats itself until the requested N ≤ 264 bits of key stream is generated. The complete description is given by
the following pseudo-code (Algorithm 2):
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Algorithm 2: TRIVIUM - Key Stream Generation.

for i = 1 to N do
t1 �s66 ⊕ s93
t2 �s162 ⊕ s177
t3 �s243 ⊕ s288
zi �t1 ⊕ t2 ⊕ t3
t1 �t1 ⊕ s91 · s92 ⊕ s171
t2 �t2 ⊕ s175 · s176 ⊕ s264
t3 �t3 ⊕ s286 · s287 ⊕ s69
(s1, s2, . . . , s93) �(t3, s1, . . . , s92)
(s94, s95, . . . , s177) �(t1, s94, . . . , s176)
(s178, s179, . . . , s288) �(t2, s178, . . . , s287)

end

3 Multiplication of Algebraic Normal Forms

In this section, we give a brief description of the Algorithm used to multiply two boolean functions in their
ANF’s. The crux of the algorithm is the observation that for all variables x involved, the fact that x2 = x can be
utilized in reducing the number of multiplications involved at the cost of extra additions. This idea immediately
gives a recursive algorithm to multiply two boolean functions given by their ANFs. In [Sam13], the authors
then converted this recursive algorithm into a tree based algorithm and then used some known programming
techniques to arrive at an efficient implementation.

3.1 Basic Idea

Let, p (x1, . . . , xn) , q (x1, . . . , xn) ∈ R, where R = GF (2) [x1, x2, . . . , xn] /
〈
x21− x1, . . . , x

2
n − xn

〉
. Write,

p (x1, . . . , xn) = xn · p1 (x1, . . . , xn−1)⊕ p0 (x1, . . . , xn−1)

q (x1, . . . , xn) = xn · q1 (x1, . . . , xn−1)⊕ q0 (x1, . . . , xn−1) .

Then,

pq = (p1q1)x
2
n ⊕ (p1q0 ⊕ p0q1)xn ⊕ p0q0

= (p1q1 ⊕ p1q0 ⊕ p0q1)xn ⊕ p0q0;
[
Since, x2n = xn in R.

]
= {(p1 ⊕ p0) (q1 ⊕ q0)⊕ p0q0}xn ⊕ p0q0.

Thus, the number of (n − 1)-variate multiplications required is 2 instead of 4 at the cost of one extra addition.
This immediately gives a recursive algorithm to multiply two boolean functions in their ANF’s.

Directly applied, this idea leads to a recursive algorithm. The recursive algorithm can be modified to obtain
an iterative algorithm. It turns out that the iterative algorithm can be seen to work as follows. The ANF of the
two polynomials are converted to the truth table formats; the truth table formats are multiplied; and then the
truth table format of the product is converted to the ANF format. The conversions between ANF and truth table
formats are the same as the algorithm described at [Jou09, SRD]. For the sake of completeness the algorithm
details and the implementation used in this paper are given in Appendix C.
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4 Symbolically Computing the ANF of the First Output Bit of TRIVIUM

In this section, we give details of how to symbolically compute TRIVIUM. Two such methods, namely Method
- 1 and Method - 2, are given. Parallels can be drawn for other ciphers.

4.1 Method - 1

Let us denote the key K by (k1, k2, . . . , k80) and the IV by (iv1, iv2, . . . , iv80). We consider each state bit of
TRIVIUM as an n-variable boolean function. From Algorithm 1, it can be seen that TRIVIUM uses an 80-bit
key and an 80-bit IV. If instead of bits, we consider the key and the IV as variables then the state is initialized
as follows:

(s1, s2, . . . , s93) �(k1, k2, . . . , k80, 0, . . . , 0),

(s94, s95, . . . , s177) �(iv1, iv2, . . . , iv80, 0, 0, 0, 0),

(s178, s179, . . . , s288) �(0, . . . 0, 1, 1, 1).

Then during each state update (or iteration), these state bits gets multiplied and added in the boolean function
ring defined over the variables K and IV . Thus, considering each state bit as a boolean function in n = 80+80 =
160 variables, one can view each state update as performing 3 multiplications (1 for each ti, i = 1, 2, 3.) and 9
additions (3 for each ti, i = 1, 2, 3.) in the boolean function ring defined over the variables K and IV . Addition
in the boolean function ring defined over the variables K and IV , is just bitwise XOR, whereas for multiplication
corresponds to multiplication of two boolean functions in their ANF’s. We illustrate this with an example. After
state initialization, notice that s66 = k66, s91 = 0, s92 = 0, s93 = 0 and s171 = iv78. Therefore during the first
state update,

t1 = k66 ⊕ iv78.

Also, during state update,
(s1, s2, . . . , s93) �(t3, s1, . . . , s92)

(s94, s95, . . . , s177) �(t1, s94, . . . , s176)

(s178, s179, . . . , s288) �(t2, s178, . . . , s287).

Doing this naively means copying 2n bits 288 times, which is very costly. Hence, to avoid copying we use
another array, SI say, of integer of size 288, initialized with the identity permutation, i.e., SI [i] = i, for all
i = {1, 2, . . . , 288}. Also the computation of t1, t2 and t3 are done on the state bits s93, s177 and s288 itself, since
these bits are discarded. Then after each round, instead of copying the state bits, we just do the following simple
operations to simulate the state update.

SI [i+ 1] = SI [i], for all i = 1, . . . , 288 such that i 6= 93, 177, 288;

SI [1] = t3; SI [94] = t1; SI [177] = t2.

Notice that n = 160 is infeasible on current computers. Also because of memory restrictions, we cannot go
beyond 30. Hence, we randomly select the key and IV bit positions which we want to treat as variables. These
selected bit positions are then renamed as variables k1, k2, . . . , knk

and iv1, iv2, . . . , ivniv , such that nk + niv =
n(≤ 30). The rest of the key and IV bit positions are then set randomly to either 0 or 1. We then symbolically
compute the full (or reduced) round TRIVIUM and get the state bits as polynomials in k1, k2, . . . , knk

and
iv1, iv2, . . . , ivniv after r rounds of key initialization. We then consider the first output bit which is the bitwise
XOR of six state bits, namely s66, s93, s162, s177, s243 and s288 and hence a polynomial in k1, k2, . . . , knk

and
iv1, iv2, . . . , ivniv .

Initially we implemented this algorithm in the software ‘SAGE’. But we found that ‘SAGE’ uses a quadratic
time algorithm to multiply two boolean functions. Hence, our implementation was quite slow. In fact, the
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implementation could not handle dense polynomials, i.e., polynomials with number of monomials of the order
of 2n−1 (where n = number of variables), for n ≥ 18. Thus, the implementation ran out of memory when the
number of initialization rounds were increased to 600 or so. So, we needed a fast implementation of multiplication
of two boolean functions in their ANFs. We used the implementation MultANF64 of multiplication described in
Appendix C.4. As mentioned earlier, using this algorithm, two 30-variable boolean functions can be multiplied
in less than 2 seconds on a 3 GHz processor. Carrying out the simulation of full 1152 rounds of TRIVIUM with
n = 30 requires 3456 multiplications and the entire simulation requires about one-and-half hours.

4.2 Method - 2

The previous section, gave a method to symbolically compute TRIVIUM up to r rounds of key initialization using
the MultANF64. This section, gives a different method for symbolically computing TRIVIUM. Algorithm 3 (in
Appendix A) converts the ANF of an n-variable boolean function to its corresponding truth table representation
and Algorithm 4 (in Appendix A) converts the truth table representation to its corresponding ANF. Method - 2
first constructs the truth table of the first output bit z1. It then uses Algorithm 4 to transform the truth table
representation of z1 into its corresponding ANF.

Method - 2 randomly chooses n bit positions and fixes the remaining 160 − n bits to a fixed constant value
as before. Then for each of the possible 2n values of the selected n bit positions, the first output bit of full round
TRIVIUM is obtained. This output bit is then inserted into the appropriate position of the 2n bit size truth
table corresponding to the first output bit z1. After repeating the above procedure 2n times, the truth table
corresponding to the first output bit z1 is obtained. To improve on time, a fast implementation of TRIVIUM is
used, where 64 rounds of TRIVIUM are computed in parallel. The truth table obtained is then converted to the
ANF using Algorithm 9 (given in Appendix C.2). Thus, computing the ANF of z1.

We explain this new procedure with the help of an example, where n = 10. All the n bits are se-
lected from the key bits. Let the selected 10 key bit positions be 1, 4, 22, 38, 42, 44, 53, 56, 61, 78, i.e., the
key bits k1, k4, k22, k38, k42, k44, k53, k56, k61, k78 are treated as variables. Assume that the remaining 70 bits
of key are fixed to the constant value OX01C87E277448253F4 and the 80 bit IV is fixed to the constant
value OX49DA7EF6B4EC27037844, where the numbers are given in hexadecimal. Now the 10 key bit posi-
tions can take all possible 210 = 1024 values from 0 to 1023. Iterate over all possible values of the key bits
k1, k4, k22, k38, k42, k44, k53, k56, k61, k78 and keep the remaining 70 bits of key and the 80 bits of IV fixed to the
constant values. This produces 1024 different 80-bit key and 1 80-bit IV common for all these 80-bit keys. For
each of these 1024 80 bit keys and the 80 bit IV, the first output bit (or any other bit) of full (or reduced) round
of TRIVIUM is computed using a fast 64-bit implementation of TRIVIUM.

The truth table corresponding to 10 variables is of size 1024 bits. We therefore take a 1024 bit array.
The truth table is then constructed by inserting in the appropriate position the value of the first output bit
computed using a 64-bit implementation of TRIVIUM. Let b denote the first output bit when the variables
k1, k4, k22, k38, k42, k44, k53, k56, k61, k78 take the integer value i. Then the truth table is constructed by inserting
b in the ith bit position of the truth table. The truth table once constructed is then converted to its corresponding
ANF using Algorithm 9 of Appendix C. Thus, computing the ANF of z1 when it is viewed as a function of the
variables k1, k4, k22, k38, k42, k44, k53, k56, k61, k78 and the remaining key and IV bits fixed to the above mentioned
constant.

5 Randomness Experiments

In this section, we utilize the symbolic computation tools developed in the previous section, to conduct some
basic randomness tests on full (or reduced) round TRIVIUM. The focus is the first output bit of TRIVIUM,
which according to the previous discussion, is an n-variable boolean function in nk key variables and niv IV
variables. The goal is to look for any structural defect in the first output bit of TRIVIUM. To be specific, we
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studied whether the first output polynomial behaves like a random polynomial or not. There were two types of
experiments we looked into. In addition to the this, another test was also conducted to check for balancedness
amongst the first l output bits of TRIVIUM. To be specific experiments were conducted by taking l = 8.

For the tests performed in this paper random samples were generated by randomly selecting n = nk, (niv = 0)
key bit positions. Keeping these n bit positions fixed, the rest 160− n bit positions were randomly set to either
0 or 1. Let the key variables be ki1 , . . . , kin and denote the rest of the 160 − n key and IV variables by v.
If Sr denotes the state after r rounds, then z1 is the XOR of the polynomials corresponding to the state bits
Sr[66], Sr[93], Sr[162], Sr[177], Sr[243] and Sr[288]. Thus,

z1 = Sr[66]⊕ Sr[93]⊕ Sr[162]⊕ Sr[177]⊕ Sr[243]⊕ Sr[288].

Then z1 can be written in the following form.

z1 = f(ki1 , . . . , kin ,v). (1)

Choose independent and uniform random values for the variables in v. Then z1 can be considered to be a
random polynomial in the variables ki1 , . . . , kin . Each such value of the variables in v corresponds to a different
polynomial in the variables ki1 , . . . , kin .

5.1 Test for Finding Non-Random First Bit Polynomials

Keep the n bit positions fixed and select independent and uniform random values for the variables in v. For each
such value of v, we have selected two test criteria.

1. The first one checks whether the number of zeroes and ones in the truth table of z1 are close to expected
value 2n−1 or not. This is because a random function is expected to contain as many zeroes as ones in its
truth table, i.e., the number of zeroes and ones are expected to be close to 2n−1.

2. The second test checks whether for a particular degree d (0 ≤ d ≤ n) and a particular polynomial, the
number of monomials of degree d deviates significantly away from the expected value, which for a random
polynomial is 1

2

(
n
d

)
. The test also does the same for the total number of monomials present in a particular

polynomial. In this case the expected number of monomials is 2n−1.

We have reported those polynomials that have failed at least one of these criteria.
Denote by u∗ a uniform random n-variable polynomial. For a random polynomial the probability of occur-

rences of each monomial m is 1
2 . Then the occurrences of a particular monomial in the random polynomial u∗

defines a Bernoulli process with p = 1
2 . Therefore the number of monomials for a given degree d (0 ≤ d ≤ n)

follows Binomial B
((
n
d

)
, 12
)

distribution. The total number of monomials follows Binomial B
(
2n, 12

)
distribution.

Again for a random polynomial u∗, the probability of the tth (0 ≤ i ≤ 2n−1) entry of its truth table being zero is
1
2 . Therefore the total number of zeroes and ones in the truth table both follows Binomial B

(
2n, 12

)
distribution.

Consider the test on the weight of the function. Given a probability α there is an interval Iα, such that, the
weight of a random function u∗ lies in the interval Iα with probability α. So, if the observed value of the weight
of the first output bit function f (see equation 1) lies outside Iα, then this may be taken as an indication of
non-randomness of f . Similarly, one can test for the total number of monomials and the number of monomials
of a fixed degree.

For values of 2n and
(
n
d

)
greater than or equal to 30, binomial distributions for the number of monomials of a

particular degree, weight and the total number of zeroes in the truth table are all well approximated by the normal

distributions N
(
1
2

(
n
d

)
, 12

√(
n
d

))
and N

(
2n−1, 2

n−2
2

)
. Hence, for all values of d except for d = 0, 1, n − 1, n, the

distribution for the number of monomials of a particular degree is well approximated by the normal distribution.
Let Nd be the random variable corresponding to the observed values of the number of monomials of degree d. And
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let NT and NT0 denote the random variables corresponding to the observed values for total number of monomials
and number of zeroes in the truth table, respectively. Then all the random variables except N0, N1, Nn−1, Nn

approximately follows the normal distribution.

The test statistic for the random variable Nd is
Nd− 1

2(nd)√
1
4(nd)

, whereas the test statistic corresponding to the

random variables NT and NT0 are given by R−2n−1
√
2n−2

, where R is either NT or NT0. For a given α, the test then

checks whether the observed values of these random variables lie in the interval corresponding to α or not. Thus,
if [−uα, uα] denotes the interval corresponding to α, then the test corresponds to checking whether the observed
absolute value of the test statistic nd (2 ≤ d ≤ n− 2) or nT or nT0 is greater than uα or not.

5.1.1 Experimental Results

The experiments where conducted by taking values of n = 10, 20 and 30. Also, for all the experiments six values
of alpha were taken, namely,

α1 =

(
1− 1

22

)
, α2 =

(
1− 1

23

)
, α3 =

(
1− 1

24

)
,

α4 =

(
1− 1

25

)
, α5 =

(
1− 1

26

)
, α6 =

(
1− 1

27

)
. (2)

The values in (2) roughly corresponds to 75%, 87.5%, 93.75%, 96.88%, 98.44% and 99.22%, respectively. For
a standard normal distribution Iα1 = [−1.15, 1.15] , Iα5 = [−2.15, 2.15] and Iα6 = [−2.66, 2.66]. The size of Iα
increases with the increase in the value of α. So for the test corresponding to the weight of the function f at
level α6, the test fails if the absolute value of the observed NT is greater than 2.66. In other words the test
fails if | nT |> 2.66. Also if a observed value lies outside the interval Iα then the observed value is further away
from the expected value when the value of α (say α6) is high rather than when its value is low (say α1). This
immediately implies that the tests corresponding to the six values of alpha are not independent. Since α2 > α1,
rejection in case of α2 automatically implies rejection for α1, as the interval corresponding to α2 is a superset of
the interval corresponding to α1. Thus, if the test fails for α6 then the test also fails for all other values of α.
Also failing at α6 implies that the observed value is significantly away form the expected value and hence can be
considered as an evidence of non-randomness.

Although we did not find any polynomial for which most of these test fails, we were able to get some
polynomials which fails the test for certain parameters. The following tables list some of these polynomials.

Table 1 gives some polynomials for n = 10, 20, 30, whose truth table representations has number of zeroes
lying outside the interval Iα6 . In the Table the column “Key Variables” indicate the key bit positions that were
treated as variables. The columns “Key Constant” and “IV Constant” gives the values of 80− n and 80 bits of
the key and IV bits which were set to constant values.

Table 1: Table showing list of some polynomials with number of zeroes and one’s lying outside the interval for
α = α6. The values given in the table are for n = 10, 20, 30 and 1152 key initialization rounds of TRIVIUM.

n Key Variables Key Constant IV Constant
Number
of 0’s

10 1, 4, 22, 38, 42, 44, 53, 56, 61, 78

OX452D5AA716418A9CC OXBC925DE125682B159CB4 465

OX1476803AD7850AD36 OXA1D62667224E6CF221CF 465

OX31D5EC5914E3D922F OXE24571405777B5521A 555

OX54CD8D3B53FC0A114 OXD4702BB150946D98D944 556

OX238009F2E69728CB8 OX68131089DB607D1981F1 556

Continued on next page
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Table 1 – Continued from previous page

n Key Variables Key Constant IV Constant
Number
of 0’s

10
1, 4, 22, 38, 42, 44, 53, 56, 61, 78

OX53DB1C63D36BB4FD2 OXCF5050997F8601AB88EF 558

OX42F216A6B2AFCEC17 OX30E66D573F151F784B58 560

OX17485DC470A73061E OXD54A1D5A59055062EFB6 571

15, 16, 20, 27, 31, 37, 41, 45, 58, 73 OX27F50AF693342B6F9 OX706CCD7801037A0A49 437

20
0, 1, 9, 10, 14, 19, 27, 29, 41, 42,

52, 55, 62, 64, 68, 69, 71, 75, 78, 79

OX3625E972822DB6A OXB2D91DF4E87047E9B8C6 522657

OX80F5C4876AADE17 OXA380363693475CFCCEB 522768

OXB7521EE35C15C4B OX309D70CFFD406A96299A 522860

OXBCEFBB60D3A6BAF OXB0EC6893275307067F03 522862

OXCD8AC4B29BEE0B1 OX1DFF5B9FFE4363C2F1A3 522902

30

1, 4, 7, 9, 10, 12, 13, 14, 15, 21,
25, 27, 30, 31, 32, 33, 34, 44, 52, 54,
55, 56, 58, 59, 62, 66, 69, 70, 74, 79

OX290C10B0294D2 OX586A33527C2928DDE2C6 536920658

7, 15, 20, 21, 22, 26, 29, 30, 32, 33,
34, 41, 42, 49, 52, 54, 55, 56, 57, 59,
60, 63, 64, 65, 66, 72, 75, 76, 78, 79

OX1FD41217D312F OXC8C051B0D49C69D1A7DD 536822130

OX12C5E491E4B6F OX99E4748853D60D6617EC 536920867

Table 2, gives some polynomials for n = 10, 20, 30, whose total number of monomials in its ANF lies outside
interval Iα6 . In the table the column “Monomial Degrees” refers to the degree of monomials for which in addition
to the total number of monomials, the number of monomials for that particular degree also fails the tests at level
α6.

Table 2: Table showing list of some polynomials with its total number of monomials lying outside the interval
for α = α6. The values given in the table are for n = 10, 20, 30 and 1152 key initialization rounds of TRIVIUM.

n Key Variables Key Constant IV Constant
Monomial
Degrees

10 1, 4, 22, 38, 42, 44, 53, 56, 61, 78

OX37FE4B0255D1D295C OXD70079FAE0F0308EC206 6, 8

OX457B6B0466DE7552E OXD167CC3093E7E699466 None

OX0484EB9A3E80085D OX9B10785F6BF67CA8D5CB None

OX243E3DFA82D00EE44 OXB4526FDF61F96D7FCAE3 None

15, 16, 20, 27, 31, 37, 41, 45, 58, 73 OX5EE252240CE406D5 OX3F0E2249DE7C031CF797 None

20
0, 1, 9, 10, 14, 19, 27, 29, 41, 42,

52, 55, 62, 64, 68, 69, 71, 75, 78, 79

OX56B4A18579E0D3E OXAC576EF0BDDE67E72619 None

OXFC12A46241151AD OX10E6744E590F46973ADD 13

OXADC520A5DA98587 OX77EC7B17675B6489CAD8 None

OXC6AFA4B133A47F7 OX61207A01BCC272B683F9 None

OX43ED55256B3CFF5 OX822E158DE22B7390747F None

OXAA1BE875BC0B948 OXE49D3F5E9DF3726567A 10

OX44B684623514BE0 OX9CB0767A4B911C07655B 13

OXF9BB1A903D2B55A OXBEFF617BF05E74ED8172 11

30

7, 15, 20, 21, 22, 26, 29, 30, 32, 33,
34, 41, 42, 49, 52, 54, 55, 56, 57, 59,
60, 63, 64, 65, 66, 72, 75, 76, 78, 79

OXE65F1294C96A OXEB482AFBDFE04F8DAD56 14

OX128D80C2688E3 OX3CF5643BE9AD30EAC0C8 None

OX199D831A8D833 OX9F7651D0129823F00C61 None

OX1DBD945A6AD33 OXDB855A93A2834AC2FE5C 15
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Apart form this, the experiment found examples of many polynomials which failed the six tests for monomials
of certain degrees at level α6. However, we could not find a single polynomial which fails all the six tests for both
balancedness, total number of monomials and monomials of certain degree. However, more and more examples
of polynomials failing the tests for balancedness, total number of monomials and monomials of certain degree
can be found, as the value of α is decreased form α6 to α1

For example let us consider the case when α = α4. Table 6 (Appendix D) gives a list of few polynomials
which not only fails the test for balancedness but also the test for the total number of monomials at level α4.
In addition, the table also gives the monomial degrees for which the test fails. The column “Monomial Degrees”
is similar to the one in Table 2. In our experiments we found 3 polynomials for n = 10 and 2 polynomials for
n = 30 which had failed the test. However we could not find any example for n = 20.

If the value of α was further relaxed then we get more examples of polynomials where all the three conditions
fail. Tables 5, 6, 7, 8, 9 (Appendix D) gives examples of such polynomials which fails all the three tests at level
α5, α4, α3, α2 and α1, respectively. In case of α = α5, we can see from Table 5 that corresponding to n = 10 we
have only two polynomials which failed the tests, whereas we could not find any such examples for n = 20, 30.
However, when the value of α was relaxed to α1, we found 45, 61 and 28 polynomials for n = 10, 20 and 30,
respectively. The tables also show a steady increase in the number of monomials of a particular degree failing
the test as α decreases.

5.2 Balancedness Test for the First l Output Bits

This section generalizes the first test of Section 5.1, where tests were done on the weight of the truth table
corresponding to the first output bit z1. In this section, instead of taking just one bit, test were done on
the first l output bits of TRIVIUM. Let Xi ∈ {0, 1} , i ∈ {1, 2, 3, . . . , l} denote the random variable corre-
sponding to the ith output bit of TRIVIUM and xi its corresponding observer value at a particular run of

TRIVIUM. Then for random polynomials, Xi
i.i.d.∼ Ber

(
1
2

)
, i ∈ {1, 2, 3, . . . , l}, where i.i.d. means indepen-

dently and identically distributed and Ber (p) stands for Bernoulli distribution with probability of success p.
Therefore, Pr [X1 = x1, X2 = x2, . . . , Xl = xl] = 1

2l
, for all (x1, x2, . . . , xl) ∈ Fl2. Thus the joint distribution of

(X1, X2, . . . , Xl) is an uniform distribution over Fl2. Let, (a1, a2, . . . , al) denote a particular value of the l-tuple.
Define,

Y(a1,a2,...,al) =

{
1; if (x1, x2, . . . , xl) = (a1, a2, . . . , al) ;
0; if (x1, x2, . . . , xl) 6= (a1, a2, . . . , al) ;

Then Y(a1,a2,...,al) ∼ Ber
(
1
2l

)
. For a particular instance of TRIVIUM, n bits are treated as variables and the

remaining 160− n are fixed to constants. The truth table of the all the ith output function zi, i ∈ {1, 2, 3, . . . , l},
is generated by 2n runs of TRIVIUM. Let N = 2n. Define,

Y(a1,a2,...,al) =
N−1∑
i=0

Yi,(a1,a2,...,al),

where Yi,(a1,a2,...,al) denote the random variable Y(a1,a2,...,al) corresponding to the ith run of TRIVIUM. Therefore,

expectation E
[
Y(a1,a2,...,al)

]
= N

2l
and variance V ar

(
Y(a1,a2,...,al)

)
=

N(2l−1)
22l

, for all (a1, a2, . . . , al) ∈ Fl2. Hence

for large N , Y(a1,a2,...,al) ∼ N
(
N
2l
,

√
N(2l−1)

22l

)
, for all (a1, a2, . . . , al) ∈ Fl2. This gives, for a particular confidence

level (1−α), an interval Iα = [−zα, zα], such that Pr

∣∣∣∣∣∣Y(a1,a2,...,al)−
N

2l√
N(2l−1)

22l

∣∣∣∣∣∣ ≤ zα
 = 1−α. Thus, balancedness check

for a particular choice of (a1, a2, . . . , al) boils down to testing the following null hypothesis

H0 : p =
1

2l
= p0 (say)
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against the alternate hypothesis

HA : p 6= 1

2l
.

5.2.1 Experimental Results

Experiments were done by taking values of n = 20, 30 and l = 8. For n = 20, Y(a1,a2,...,a8) ∼ N
(
212, 22

√
255
)

and

for n = 30, Y(a1,a2,...,a8) ∼ N
(
214, 27

√
255
)

for all (a1, a2, . . . , a8) ∈ F8
2. Hypothesis tests were done to check for

balancedness for all 256 possible choices of (a1, a2, . . . , a8). The confidence level was set at 0.95, i. e., α was set at
0.05. For each n = 20 and 30, the bits to be treated as variables were fixed. The remaining 160−n bits positions
were varied to generate 1000 different polynomials zi (for all i ∈ {1, 2, . . . , 8}) after full round key initialization
of TRIVIUM. The experiments revealed for each of n = 20 and 30 for almost all the choices of 160− n bits, the
balancedness test fails for some choices of (a1, a2, . . . , a8). Table 3, gives 10 such examples for n = 20, 30. In
the table, the column corresponding to “Strings failing the hypothesis test” gives the integer value of the string
(a1, a2, . . . , a8) for which the hypothesis test had failed. Thus, a the value of “61” in the column corresponds to
the binary string whose hexadecimal representation if given by “OX3D”.

Table 3: Table showing a list of 10 polynomials each for n = 20, 30 and l = 8, all of which had failed the
Balancedness test for some of the strings (a1, a2, . . . , a8) ∈ F8

2.

n Key Variables Key Constant IV Constant
Strings failing

the hypothesis test

20
8, 18, 19, 20, 23, 28, 29, 30, 39, 40,
41, 47, 48, 53, 56, 59, 64, 70, 72, 73

OXA21768F225AE936 OX74B078DB62E31BA54359 61, 110, 149, 182, 209, 253

OX3BE24042DB0C421 OXAA567C4955D946047304
28, 35, 43, 49, 50, 53, 65, 94, 114, 118, 162, 168, 178,

183, 1194, 213, 249

OX88F3FEC0318538E OX2B87779A19863BB18905 107, 112, 142, 143, 168, 239, 252

OX36D00CE2606D134 OX8EB134639711212E2CAA
4, 9, 33, 38, 43, 78, 101, 110, 122, 130, 135, 146, 164,

191, 204, 216

OX424625207D56F6 OX738C279B7471D987F4C 0, 16, 37, 38, 54, 123, 141, 175, 248

OXA7BFA8E42BC4D73 OX58673EABBD7642461C9A
15, 74, 77, 90, 120, 127, 132, 174, 185, 188, 207, 210,

221, 237, 239

OXF2556362F79482A OX17BF3C9AF7E3312DA8FF
20, 21, 41, 43, 59, 60, 66, 99, 118, 135, 141, 143, 153,

155, 158, 161, 176, 180, 185, 216, 234, 236

OXDFB9A8909C9A446 OXADB914D021983A6F88E8 32, 76, 96, 125, 140, 156, 180, 245

OXF6865827A5FEA40 OX9DCA24B3F9315AB9097 45, 94, 97, 133, 152, 155, 167, 180, 196, 225, 231

OX1D633C22B81B580 OX1CA17053918671838005
10, 12, 40, 82, 94, 107, 114, 116, 122, 126, 132, 162,

192, 207, 219, 220, 240

30

1, 2, 4, 6, 10, 11, 13, 18, 20, 21,
22, 27, 29, 30, 35, 38, 39, 42, 45, 48,
50, 51, 53, 54, 56, 63, 68, 69, 74, 78

OX106BA503BA685 OX1A778F3E4684B2757A8
23, 29, 51, 59, 105, 110, 114, 133, 146, 147, 173, 198,

237

OX2C04D2321BEDC OXBF571F23FA7F36149C19
14, 60, 61, 68, 88, 117, 118, 138, 143, 144, 151, 186,

194, 216, 240

OX132E52C33FBF2 OXDC1353073BD8705A0D7C 5, 41, 48, 77, 88, 98, 104, 157, 162, 167, 177

OX301DE482002B9 OX97BF60A02F1A42824416 16, 29, 74, 83, 101, 113, 154, 196, 249

OX381CB23A685B3 OX80456D9C2C25542DEC70 18, 56, 71, 80, 165, 243

OX2F5B96D7CBC82 OXA59A226B1EF14F604E03 4, 7, 8, 23, 27, 40, 50, 188, 214, 239, 241

OX261570967C24B OXA81B2FF2CB216187FFDA 8, 55, 66, 90, 93, 108, 117, 139, 163, 199, 209

OX26AD5652E935E OX9C7D56FDF873804C19 15, 21, 57, 68, 83, 99, 117, 129, 134, 152, 219, 246

OX1E6FC6E452F65 OX5BDB3100E0B26DCA4981 7, 22, 33, 52, 225

OXFD990AD8A539 OX770A7F52CAE040BC7DAD
1, 3, 5, 7, 17, 20, 80, 101, 114, 136, 146, 171, 177,

180, 196, 223, 230, 239, 247, 255
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5.3 Aggregate Tests

Consider any monomial m. Then the probability that m occurs in u∗ defines a Bernoulli trial with probability
p = 1

2 . The total number of monomials of degree d follows Binomial B
((
n
d

)
, 12
)

distribution and the total
number of monomials occurring in u∗ follows B

(
2n, 12

)
distribution. We conducted a simple test of hypothesis to

determine whether z1 behaves like a uniform random polynomial in the following manner. A total of N = 1000
(except for n = 30, for which N = 544 was taken) independent and uniform random choices of constant
values were made for the variables in v. Each such value gives rise to a different polynomial z1: denote the
polynomials so formed by z1,1, . . . , z1,N . For each z1,i, we recorded the distribution of monomials together with
the total number of monomials, i.e., we recorded the number of occurrences nd, of degree d monomials, for

each d = 0, 1, . . . , n together with the total number of monomials
∑n

i=0 nd. Let, X̃ =
(
X̃1, X̃2, . . . X̃N

)
where

each X̃i = (Xi,0, Xi,1, . . . , Xi,n, Xi,2n) ; i = 1, 2, . . . , N and Xi,j = number of monomials of degree j in z1,i for

j = 0, 1, 2, . . . , N ; and Xi,2n = total number of monomials in z1,i. Consider the random variables Td =
∑N

i=1Xi,d

(0 ≤ d ≤ n) and T∑N
i=1
Xi,2n . Recall, that independent and uniform random choices were made for the variables

in v. Hence, Xi,d
i.i.d∼ B

((
n
d

)
, 12
)

for all 0 ≤ d ≤ n and Xi,2n
i.i.d∼ B

(
2n, 12

)
. Therefore, Td ∼ B

(
N ·

(
n
d

)
, 12
)

for all
0 ≤ d ≤ n and T2n ∼ B

(
N · 2n, 12

)
.

Separate tests were carried out to determine whether monomials of degree d occur with probability p = 1/2
and also whether the distribution of all monomials (without degree restriction) is with probability p = 1/2. In
each case, we tested the null hypothesis

H0 : p =
1

2
= p0 (say)

against the alternate hypothesis

HA : p 6= 1

2
.

For sufficiently large N , the binomial distributions B
(
N ·

(
n
d

)
, 12
)

and B
(
N · 2n, 12

)
are well approximated by

normal N
(
N ·

(
n
d

)
· p0,

√
N ·

(
n
d

)
· p0 · (1− p0)

)
and N

(
N · 2n · p0,

√
N · 2n · p0 · (1− p0)

)
, respectively. There-

fore, for sufficiently large N ,

Td ∼ N

(
N ·

(
n

d

)
· p0,

√
N ·

(
n

d

)
· p0 · (1− p0)

)

and
T2n ∼ N

(
N · 2n · p0,

√
N · 2n · p0 · (1− p0)

)
.

The test statistic T ′d corresponding to the degree d monomials is then given by

T ′d =
Td −N ·

(
n
d

)
· p0√

N ·
(
n
d

)
· p0 · (1− p0)

and the test statistic corresponding to the total number of monomials is given by

T ′2n =
T2n −N · 2n · p0√
N · 2n · p0 · (1− p0)

,

where both T ′d (0 ≤ d ≤ n) and T ′2n follows N (0, 1).
By the argument presented above all of these T ′i , i = 0, 1, . . . , n, 2n follow normal N (0, 1). The null hypothesis

was tested at 95% interval, which boils down to checking whether the absolute value of the observed test statistic
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t′d is less than 1.96 (since, for a random variable X, following normal N (0, 1) ,Pr[−1.96 ≤ X ≤ 1.96] = 0.95) or
not. Thus for a particular sample x̃, we check if | t′d |≤ 1.96 or not. The above experiment was repeated for each
n = 10, 15, 16, 20 and r = 576, 767, 864, 885, 1152 (full round) rounds of key initialization. For n = 30, we have
considered only the full round TRIVIUM.

5.3.1 Experimental Results

The results of the randomness test described above are given in Table 4. In the table, the column corresponding
to “Key Variables” gives the bit positions which were taken as variables in the experiment. The column cor-
responding to “Rejected Monomial Degrees” denote the degrees of monomials for which, in the corresponding
experiment, the hypothesis test failed. Also, the last column “Total Reject” answers the question whether the
hypothesis test for the total number of monomials failed or not. In the table “None” means that none of the
hypothesis tests corresponding to different monomial degrees failed. In the table, by rejection of degree zero, we
imply that there was an imbalance in the constant term of the polynomials occurring in those particular samples.

Let, us explain what we mean with the help of an example. Consider the case when number of ini-
tialization rounds r = 1152, n = 10 and the position of the key bits which are treated as variables are
6, 9, 12, 15, 23, 26, 33, 35, 57, 61. In Table 4, there are 2 rows corresponding to this entry. In the first row, it
is observed that the randomness test failed for degree 5 only whereas in the later case it was found that none
of the tests had failed. For degree 5, the test suggest that we accept the null hypothesis if the value of the
test statistic based on the current data lies in the interval [125508.04, 126491.96], otherwise we reject the null
hypothesis. In the first case, the value of the test statistics was 125481, while in the second case it was 125819.
We can see that these values are close to the lower bound of the acceptance region. This shows that the results
of the tests are dependent on the current random sample.

Table 4: Table Showing the Results of the Randomness Test.

r n(= nk)
Key Rejected Monomial Total

Variables Degrees Reject?

576

10 3, 5, 11, 20, 35, 36, 41, 46, 58, 69 7, 8, 9, 10 Yes

15 3, 5, 8, 11, 19, 20, 28, 30, 35, 36, 41, 46, 58, 69, 75 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 Yes

16 3, 5, 8, 11, 19, 20, 28, 30, 35, 36, 41, 46, 58, 63, 69, 75 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 Yes

20
5, 10, 11, 12, 16, 19, 20, 23, 28, 29, 30, 35, 36, 41, 52,

53, 58, 59, 69, 71
1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 Yes

767

10 3, 5, 11, 20, 35, 36, 41, 46, 58, 69 6 No

15 3, 5, 8, 11, 19, 20, 28, 30, 35, 36, 41, 46, 58, 69, 75 2 No

16 3, 5, 8, 11, 19, 20, 28, 30, 35, 36, 41, 46, 58, 63, 69, 75 None No

20
5, 10, 11, 12, 16, 19, 20, 23, 28, 29, 30, 35, 36, 41, 52,

53, 58, 59, 69, 71
13 No

864

10 3, 5, 11, 20, 35, 36, 41, 46, 58, 69 6 No

15 3, 5, 8, 11, 19, 20, 28, 30, 35, 36, 41, 46, 58, 69, 75 5 No

16 3, 5, 8, 11, 19, 20, 28, 30, 35, 36, 41, 46, 58, 63, 69, 75 None No

20
5, 10, 11, 12, 16, 19, 20, 23, 28, 29, 30, 35, 36, 41, 52,

53, 58, 59, 69, 71
5, 17 No

885

10 3, 5, 11, 20, 35, 36, 41, 46, 58, 69 None No

15

0, 2, 4, 10, 13, 20, 22, 28, 29, 44, 46, 50, 62, 64, 79 8, 14 No

3, 5, 8, 11, 19, 20, 28, 30, 35, 36, 41, 46, 58, 69, 75 4 No

6, 9, 23, 24, 26, 27, 33, 49, 50, 55, 56, 66, 72, 76, 78 None No

7, 12, 13, 22, 24, 29, 30, 48, 49, 50, 53, 55, 56, 63, 77 None No

10, 18, 22, 25, 27, 29, 35, 47, 53, 65, 69, 73, 74, 76, 77 14 No

Continued on next page
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Table 4 – Continued from previous page

r n(= nk)
Key Rejected Monomial Total

Variables Degrees Reject?

885

16

3, 5, 8, 11, 19, 20, 28, 30, 35, 36, 41, 46, 58, 63, 69, 75 2 No

3, 6, 9, 16, 37, 40, 46, 47, 52, 53, 58, 70, 71, 72, 75, 77 3 No

3, 9, 18, 19, 21, 32, 35, 39, 50, 52, 57, 58, 60, 70, 71, 72 None No

6, 13, 15, 21, 30, 31, 41, 42, 47, 50, 51, 54, 64, 69, 70, 79 9, 15 No

7, 12, 25, 38, 49, 50, 54, 55, 59, 60, 61, 63, 70, 71, 74, 78 12, 13, 14 No

20

5, 10, 11, 12, 16, 19, 20, 23, 28, 29, 30, 35, 36, 41, 52,
53, 58, 59, 69, 71

11, 13 No

8, 11, 12, 17, 19, 21, 26, 27, 38, 39, 44, 45, 47, 59, 63,
69, 70, 73, 74, 75

0, 14, 15 No

4, 6, 8, 14, 15, 29, 37, 38, 40, 41, 43, 47, 49, 50, 52,
57, 59, 61, 63, 71

None No

1, 8, 9, 14, 18, 22, 24, 29, 32, 33, 36, 38, 47, 49, 57,
59, 62, 68, 78, 79

None No

4, 7, 13, 14, 18, 21, 32, 37, 38, 49, 52, 54, 59, 61, 68,
69, 73, 74, 76, 78

None No

1152

10

2, 4, 14, 16, 18, 29, 36, 53, 55, 73 10 No

3, 5, 11, 20, 35, 36, 41, 46, 58, 69 8 No

4, 15, 26, 38, 39, 53, 58, 62, 65, 69 5 No

4, 13, 22, 53, 67, 68, 70, 76, 78, 79 None No

6, 9, 12, 15, 23, 26, 33, 35, 57, 61
5 No

None No

6, 13, 32, 34, 36, 41, 43, 57, 67, 79 None No

8, 15, 21, 25, 37, 38, 44, 45, 48, 62 6 No

15

0, 2, 14, 38, 39, 45, 50, 52, 55, 62, 64, 68, 74, 78, 79 13, 15 No

1, 3, 20, 26, 36, 40, 43, 50, 55, 57, 58, 62, 72, 73, 79 8 No

2, 3, 8, 16, 19, 24, 25, 29, 30, 31, 45, 48, 51, 68, 71 None No

2, 5, 8, 12, 21, 35, 37, 41, 53, 56, 57, 64, 69, 73, 74 8 No

3, 5, 8, 11, 19, 20, 28, 30, 35, 36, 41, 46, 58, 69, 75 None No

16

1, 6, 7, 10, 12, 20, 26, 29, 34, 36, 39, 51, 52, 70, 72, 79 5, 9 No

3, 5, 8, 11, 19, 20, 28, 30, 35, 36, 41, 46, 58, 63, 69, 75 None No

5, 6, 10, 16, 23, 39, 44, 49, 52, 62, 65, 67, 73, 75, 76, 78 10 Yes

7, 9, 18, 19, 27, 29, 38, 39, 40, 43, 55, 66, 67, 74, 76, 77 0, 2 No

23, 24, 26, 32, 36, 37, 41, 48, 49, 50, 52, 55, 57, 58, 71, 74 None No

20

0, 5, 8, 9, 12, 13, 17, 21, 24, 30, 32, 33, 36, 41, 49,
56, 59, 65, 69, 77

None No

0, 7, 19, 22, 28, 29, 31, 32, 33, 34, 36, 42, 56, 60, 62,
63, 64, 65, 66, 77

5 No

3, 5, 20, 31, 32, 34, 35, 36, 37, 41, 49, 50, 59, 61, 63,
68, 70, 71, 72, 79

16 No

4, 8, 12, 17, 18, 21, 28, 34, 35, 39, 43, 44, 45, 47, 52,
64, 65, 66, 69, 77

0 No

5, 10, 11, 12, 16, 19, 20, 23, 28, 29, 30, 35, 36, 41, 52,
53, 58, 59, 69, 71

None No

30
7, 15, 20, 21, 22, 26, 29, 30, 32, 33, 34, 41, 42, 49, 52,
54, 55, 56, 57, 59, 60, 63, 64, 65, 66, 72, 75, 76, 78, 79

23, 25 No

6 Conclusion

In this we paper proposed two methods to symbolically compute TRIVIUM. We have conducted some random-
ness tests on the polynomial representing the first output bit. The first tests gives examples of non-random
polynomials. This study is along the line of cube testers [ADMS09], where the authors found examples of such
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polynomials using cube attack techniques. The second study checks for balancedness across the first l output bits
of TRIVIUM. Experimental results are reported for l = 8. It was noticed that the first 8 bits of TRIVIUM are
in general not balanced. In the third study we have conducted an aggregated randomness test using Hypothesis
testing techniques. The results of the experiments mostly indicate the absence of any overall non-randomness.
By overall non-randomness we mean that there is no clinching evidence which may suggest that probability of
occurrence of monomials of a particular degree d is not equal to half.

Acknowledgement We would like to thank Sanjay Bhattacherjee and Raju Maiti for those insightful discus-
sions and the anonymous referees for comments that helped improve the presentation of this paper.
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A Iterative Algorithms

Algorithm 3: PRE PROCESS (A, B, n, i)

Input: A,B, n, i
for i = 0, 1, 2, . . . , n− 1 do

for j = 0, 1, 2, . . . , 2i − 1 do
for k = 0, 1, . . . , 2n−i−1 − 1 do

A[2n−i−1 + j · 2n−i + k] = A[2n−i−1 + j · 2n−i + k]⊕A[j · 2n−i + k]
B[2n−i−1 + j · 2n−i + k] = B[2n−i−1 + j · 2n−i + k]⊕B[j · 2n−i + k]

end

end

end

Algorithm 4: POST PROCESS (C, n, i)

Input: C, n, i
for i = n− 1, n− 2, n− 3, . . . , 0 do

for j = 0, 1, 2, . . . , 2i − 1 do
for k = 0, 1, . . . , 2n−i−1 − 1 do

C[2n−i−1 + j · 2n−i + k] = C[2n−i−1 + j · 2n−i + k]⊕ C[j · 2n−i + k]
end

end

end

B MultANFw

C Multiplication of Algebraic Normal Forms and its Implementation

C.1 Conversion from ANF to Truth Table

Polynomials in R are represented using a sequence of bits. In this sequence, the presence of every monomial is
denoted by a single bit. Since the number of such possible monomials in R is 2n, 2n bits are used to represent
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Algorithm 5: PRE PROCESSw (A, B, n, i)

Input: A,B, n, i
for j = 0, 1, 2, . . . , 2i − 1 do

for k = 0, 1, . . . , 2n−i−1 − 1 do
A[2n−i−1 + j · 2n−i + k] = A[2n−i−1 + j · 2n−i + k]⊕A[j · 2n−i + k]
B[2n−i−1 + j · 2n−i + k] = B[2n−i−1 + j · 2n−i + k]⊕B[j · 2n−i + k]

end

end

Algorithm 6: UNPACK (X, n) : Unpacks a w-bit word to a byte array.

Input: a w-bit word X; n := log2w − 3.
for i = 0, 1, 2, . . . , n− 1 do

temp = Bit-wise AND of X and Mi+1

temp = SHIFT right temp by 2n+3−i−1 (according to our assumption, the left-most bit is the LSB)
X = temp XOR X

end

any polynomial in R.
It is clear that one can compute the values of p0, (p0 ⊕ p1) , q0 and (q0 ⊕ q1) independently and then multiply

them to get the required p0q0 and (p0 ⊕ p1) ·(q0 ⊕ q1) . Thus one needs to compute p0 and p0⊕p1 (respectively, q0
and q0⊕q1) from p (respectively, q). This is explained by the pseudo-code presented as Algorithm 3 in Appendix
A, where the input polynomials p and q are given as 2n bit arrays A and B, respectively. It is repeated for both
the polynomials p and q.

C.2 Multiplication of Truth Table

After the PRE PROCESS step, notice that the arrays A and B, contains the truth table representation of
the corresponding polynomials p and q. This is because, at each iteration of the algorithm the polynomial p
(respectively q) is divided into p0 (respectively q0) and p0 ⊕ p1 (respectively q0 ⊕ q1). Now, p0 (respectively
q0) corresponds to the situation when xn = 0, and p0 ⊕ p1 (respectively q0 ⊕ q1) corresponds to the situation
when xn = 1. Thus, after n such steps the bit value A[i] (respectively, B[i]) corresponds to the values of p
(respectively, q) evaluated at x1 = i1, x2 = i2, . . . , xn = in, where i1i2 . . . in is the binary representation of i
and i ∈ {0, 1, 2, . . . , 2n − 1}. The Algorithm then does a bit-wise AND of the arrays A and B and stores the
corresponding results in another array C. This corresponds to multiplication of the truth tables of q with that
of q.

As extracting a bit from a byte is costly table lookups are used. Here instead of going all the way down to
the nth level, the algorithm stops at level n−β and use table lookups to perform multiplication of two β-variable
polynomials. The value of β is taken to be 3, because the table corresponding to β = 4 becomes very large. Thus
the polynomials p and q are packed into byte arrays and byte level XOR’s are used to multiply them.

C.3 Conversion of Truth Table to Algebraic Normal Form

This step is similar to the one described in Section C.1. The only difference is that in this step as opposed to
Section C.1 one traverses from the leaf to the root of the computation tree. In other words the outer loop runs
from n− 1 to 0 instead of 0 to n− 1 in Section C.1. Algorithm 4 of Appendix A, gives the corresponding pseudo
code.



C MULTIPLICATION OF ALGEBRAIC NORMAL FORMS AND ITS IMPLEMENTATION 19

Algorithm 7: EXTRACT AND LOOKUP (X, Y , Z, n) : Extracts bytes from w-bit words X and Y ,
does a table look-up and stores the result in the corresponding byte of Z.

Input: w-bit words X, Y , Z; table T ; n := log2w − 3
for i = 0, 1, . . . , 2n − 1 do

if i = 0 then
Z := T [X AND B1][Y AND B1]

end
else

temp := T [(X AND Bi+1) SHIFT left by i · 23 bits.][(Y AND Bi+1) SHIFT left by i · 23 bits.]
(According to our assumption the left-most bit is the LSB).
Z := temp XOR Z

end

end

Algorithm 8: PACK (Z, n) : Packs a w-bit word into a byte array.

Input: a w-bit word Z; n := log2w − 3.
for i = n− 1, n− 2, n− 3, . . . , 0 do

temp = Bit-wise AND of Z and Mi+1

temp = SHIFT right temp by 2n+3−i−1 (according to our assumption, the left-most bit is the LSB)
Z = temp XOR Z

end

C.4 The Implementation

One may use w-bit XOR instead of 8-bit, assuming the architecture allows w-bit word arithmetic, where w =
2k, k ≥ 3. The motivation is to save on the number of 8-bit XOR’s. Thus, using one w-bit XOR, one can save
2log2 w−3 many XOR’s. However, doing it this way one can only go up to n − log2w level, since, as mentioned
in the previous section, maintaining a table of size greater than 3-variables is not feasible. Hence using w-bit
words, involves, an additional task of UNPACKING and PACKING the w-bit word into bytes so that one can
use the 8-bit table lookup.

Instead of directly copying the w-bit words to and back from byte arrays, a constant amount of extra space is
used to get an algorithm which not only saves the cost of copying but also saves on the number of XOR’s. The idea
is to use 2log2 w−3 many w-bit word masks, say M1, . . .M2log2 w−3 plus an additional temporary variable “temp”,
where Mi contains 1 in the bit positions j · 2log2 w−i +k, j ∈

{
0, 2, 4, . . . 2i − 2

}
and k ∈

{
0, 1, 2, . . . , 2log2 w−i − 1

}
and 0 elsewhere. The Mi’s actually simulate each level of the PRE PROCESS and POST PROCESS described
above for n = log2w and corresponding to each w-bit word.

Algorithm 9: POST PROCESSw (C, n, i)

Input: C, n, i
for j = 0, 1, 2, . . . , 2i − 1 do

for k = 0, 1, . . . , 2n−i−1 − 1 do
C[2n−i−1 + j · 2n−i + k] = C[2n−i−1 + j · 2n−i + k]⊕ C[j · 2n−i + k]

end

end
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Algorithm 10: MultANFw (T , A, B, C, n, w) : A non recursive algorithm to multiply two boolean
functions in their ANF’s.

Input: 8-bit Look-up Table T ; Two polynomials A and B; C for Result; number of varibles n; word
size w

Output: C := Product of A and B
for i = 0, 1, 2, . . . , n− log2w − 1 do

PRE PROCESSw(A,B, n− log2w, i)
end

for i = 0, 1, 2, . . . , 2n−log2 w − 1 do
UNPACK (A[i], log2w − 3)
UNPACK (B[i], log2w − 3)
EXTRACT AND LOOKUP (A[i], B[i], C[i], log2w − 3)
PACKING (C[i], log2w − 3)

end
for i = n− log2w − 1, n− log2w − 2, n− log2w − 3, . . . , 0 do

POST PROCESSw(C, n− log2w, i)
end

We summarize our discussion by giving the w-bit non-recursive algorithm, MultANFw (see Algorithm 10 of
Appendix B) as presented in [Sam13]. The routine MultANFw takes as input T , A, B, n, w, where A and B
are the corresponding w-bit word representation of two n-variate polynomials (n > log2w ≥ 3) and T256×256 is
a 8-bit table look-up. MultANFw multiplies the polynomials A and B with the help of table T and stores the
result in C.

To do this, the MultANFw routine calls the subroutines “PRE PROCESSw” (Algorithm 5 of Appendix
B), “UNPACK” (Algorithm 6 of Appendix B), “EXTRACT AND LOOKUP” (Algorithm 7 of Appendix B),
“PACK” (Algorithm 8 of Appendix B) and “POST PROCESSw” (Algorithm 9 of Appendix B). The subrou-
tine PRE PROCESSw corresponds to the operations while descending down the recursion tree, whereas the
subroutine “POST PROCESS w” corresponds to the operations while ascending up the recursion tree. Notice
that the subroutine ‘UNPACK” is called twice once each for the w-bit words A[i] and C[i]. The subroutine
EXTRACT AND LOOKUP extracts each byte from the w-bit words A and B; does the corresponding table
lookup and then stores the value returned by the table in the exact byte position of C.

One can choose different values of w. For w = 64, the implementation MultANF64 is particularly fast. It is
reported in Table 1 of [Sam13] that two 30-variable boolean functions can be multiplied in less than 2 seconds
on a 3GHz processor. We later use MultANF64 to build our simulation tool for TRIVIUM.

D Tables

Table 5: Table showing list of some polynomials with its total number of monomials and the number of zeroes
in its truth table lie outside the interval for α = α5. The values given in the table are for n = 10, 20, 30 and 1152
key initialization rounds of TRIVIUM.

n Key Variables Key Constant IV Constant
Monomial
Degrees

10 1, 4, 22, 38, 42, 44, 53, 56, 61, 78
OX37BDD3EAD0BAFABC0 OXDB565D9DB98F4E3389C5 None

OX47E214EB5727E04C9 OXD34F684B1055DAECE93 7
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Table 6: Table showing list of some polynomials with its total number of monomials and the number of zeroes
in its truth table lie outside the interval for α = α4. The values given in the table are for n = 10, 20, 30 and 1152
key initialization rounds of TRIVIUM.

n Key Variables Key Constant IV Constant
Monomial
Degrees

10 1, 4, 22, 38, 42, 44, 53, 56, 61, 78

OX37BDD3EAD0BAFABC0 OXDB565D9DB98F4E3389C5 None

OX47E214EB5727E04C9 OXD34F684B1055DAECE93 7

OX4547D85442C8D68CF OXD08829A188F6241E7C2D 5, 8

30

7, 15, 20, 21, 22, 26, 29, 30, 32, 33,
34, 41, 42, 49, 52, 54, 55, 56, 57, 59,
60, 63, 64, 65, 66, 72, 75, 76, 78, 79

OX11D3963CFE658 OXE9F618EC66862A0DEB4E 12

OX191766116C74F OX1E8B7D71045E0F56A4EA 4, 24

Table 7: Table showing list of some polynomials with its total number of monomials and the number of zeroes
in its truth table lie outside the interval for α = α3. The values given in the table are for n = 10, 20, 30 and 1152
key initialization rounds of TRIVIUM.

n Key Variables Key Constant IV Constant
Monomial
Degrees

10 1, 4, 22, 38, 42, 44, 53, 56, 61, 78

OX37BDD3EAD0BAFABC0 OXDB565D9DB98F4E3389C5 None

OX47E214EB5727E04C9 OXD34F684B1055DAECE93 2, 7

OX4547D85442C8D68CF OXD08829A188F6241E7C2D 5, 8

20
0, 1, 9, 10, 14, 19, 27, 29, 41, 42,

52, 55, 62, 64, 68, 69, 71, 75, 78, 79

OX6725535534737CA OXDDAE21B901422A1643A None

OXDDAE21B901422A1643A OXF51C70E932C18D17D41 None

30

7, 15, 20, 21, 22, 26, 29, 30, 32, 33,
34, 41, 42, 49, 52, 54, 55, 56, 57, 59,
60, 63, 64, 65, 66, 72, 75, 76, 78, 79

OX11D3963CFE658 OXE9F618EC66862A0DEB4E 12

OX3C25D092EFEF9 OXEE0C5AA49BA676F04E05 14, 15

OX613242AFA99E OX74996C308B57426EC1FF 4, 13

OX191766116C74F OX1E8B7D71045E0F56A4EA 4, 24

Table 8: Table showing list of some polynomials with its total number of monomials and the number of zeroes
in its truth table lie outside the interval for α = α2. The values given in the table are for n = 10, 20, 30 and 1152
key initialization rounds of TRIVIUM.

n Key Variables Key Constant IV Constant
Monomial
Degrees

10 1, 4, 22, 38, 42, 44, 53, 56, 61, 78

OX37BDD3EAD0BAFABC0 OXDB565D9DB98F4E3389C5 3, 4

OX47E214EB5727E04C9 OXD34F684B1055DAECE93 2, 7

OX4547D85442C8D68CF OXD08829A188F6241E7C2D 4, 5, 8

OX22C82FA5C4FF1FFA7 OX8E6C7CCC6DA42DE02582 6

OX46F73734324A8C3CF OXED6F602BFE6161C4B002 5, 7, 8

OX548E1A39B23F3483B OX2C2B1447188F2DF15053 6, 8

OX52A20EB6B6861FD2B OX69EF224FC6FB72AC6C37 2, 3

OX243E3DFA82D00EE44 OXB4526FDF61F96D7FCAE3 5, 6

OX21FEF73EB0DC5739A OX7598278A31B96B6E06F5 3

Continued on next page
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Table 8 – Continued from previous page

n Key Variables Key Constant IV Constant
Monomial
Degrees

10 1, 4, 22, 38, 42, 44, 53, 56, 61, 78

OX36B1281D43A9240B3 OXE58A191A1E6C333C8EFD 3, 5

OX1185DD59742FE8169 OX89B62A60C21C42A0E6B2 4,

OX37FE4B0255D1D295C OXD70079FAE0F0308EC206 6, 7, 8

20
0, 1, 9, 10, 14, 19, 27, 29, 41, 42,

52, 55, 62, 64, 68, 69, 71, 75, 78, 79

OX6725535534737CA OXDDAE21B901422A1643A 8, 12, 15, 17

OXC481FD7BC1F523 OXC37057969DFB005C79DC 5, 6, 8, 9

OXDF7305B0CFDB228 OXC9C17DF5198908297669 8

OX3480FFC0AD084D6 OXF51C70E932C18D17D41 9, 15

OX80A26F93FFE786E OX49025F652E977970AAA3 3, 5, 6, 9

OX99997304FBA97AB OX91A0123D835369D66539 3, 10, 11

OX1438B4C6E410610 OXEC881E225AE17BE12D06 6, 16

OX2B8619E6B23FD69 OXF24C75F66F5957352674 None

OX2E93E577A837AAC OXF50C2B06C5B100F1D712 2, 14

OXFDAFFE872B1ECA6 OX63F0791A5BD92EA49167 2, 7, 10

OX1E15EFE0723A1A0 OXAFF45320480C32FE05AD 11, 12, 13, 14, 17

OX94252897FEBA OX40B53BED60BA2A4EF7BD 7

OX5A4644E0DCF37F1 OXAFE71BE0360E0C918B9C 3, 9, 13

OXAA07D7C6F262C91 OX4F821468B1891D2AD371
2, 3, 4,

12

OX748AA0B4C4431F6 OX6BB3415153E252D74428 9

OX82641E96DDFE210 OXA045545ADF754FE49440 4, 16, 17

30

7, 15, 20, 21, 22, 26, 29, 30, 32, 33,
34, 41, 42, 49, 52, 54, 55, 56, 57, 59,
60, 63, 64, 65, 66, 72, 75, 76, 78, 79

OX11D3963CFE658 OXE9F618EC66862A0DEB4E 12, 15, 18

OX3C25D092EFEF9 OXEE0C5AA49BA676F04E05 14, 15, 23

OXCDCA70B4903D OX28094F93A84519B6030
2, 12, 21,

26

OX613242AFA99E OX74996C308B57426EC1FF 4, 13, 15, 19, 24, 26, 27

OX191766116C74F OX1E8B7D71045E0F56A4EA 4, 18, 24, 25

Table 9: Table showing list of some polynomials with its total number of monomials and the number of zeroes
in its truth table lie outside the interval for α = α1. The values given in the table are for n = 10, 20, 30 and 1152
key initialization rounds of TRIVIUM.

n Key Variables Key Constant IV Constant
Monomial
Degrees

10 1, 4, 22, 38, 42, 44, 53, 56, 61, 78

OX37BDD3EAD0BAFABC0 OXDB565D9DB98F4E3389C5 2, 3, 4, 5

OX22C82FA5C4FF1FFA7 OX8E6C7CCC6DA42DE02582 6

OX47E214EB5727E04C9 OXD34F684B1055DAECE93 2, 4, 7

OX4547D85442C8D68CF OXD08829A188F6241E7C2D 4, 5, 8

OX46F73734324A8C3CF OXED6F602BFE6161C4B002 5, 7, 8

OX548E1A39B23F3483B OX2C2B1447188F2DF15053 6, 7, 8

OX25999FA70096CE14A OX534E7B0E0099371CEC2B 7

OX32C3B8564711127E2 OXC3B65FA580064682A886 2, 5, 6, 7, 8

OX36700C6F525F4A15E OX76C0CA72E4037279E52 2, 5, 7

OX1104F75E2114D99C6 OX99545A9EDB9B664CF25E 5, 6

OX52A20EB6B6861FD2B OX69EF224FC6FB72AC6C37 2, 3, 6
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10 1, 4, 22, 38, 42, 44, 53, 56, 61, 78

OX243E3DFA82D00EE44 OXB4526FDF61F96D7FCAE3 5, 6, 7

OX21FEF73EB0DC5739A OX7598278A31B96B6E06F5 2, 3

OX36B1281D43A9240B3 OXE58A191A1E6C333C8EFD 2, 3, 5

OX373444186660E5FF4 OXEB195ADDBE903C2D1056 2

OX1185DD59742FE8169 OX89B62A60C21C42A0E6B2 4

OX13C98DD112B9E4345 OXC02E2FE44559226743EA 2, 6

OX25964FF8044895C95 OXCFC776D1C4E100F35C85 2, 4, 5

OX2628BA81850F8F769 OX1FCF571CE4612534B608 4, 8

OX043DACA1A2026DBDA OXBDC5DCD77F921AABDF6 4, 7

OX2126745C279E5A10C OX1248772E03E133CE0B7B 2, 7

OX586B4E14496FAC82 OX9C2138672ABB3DDDC1F2 5

OX368252990744C0C7 OX74DF32D819F351C27B0E 2, 3, 4

OX532D3BE97067D5129 OX7BED67B3ABB91C35FA5D 5

OX1382D64B413855656 OX95972A312ED14A3BF60 6

OX52FFFC0FF6FD88EBD OXF66572321FFA19728935 3, 7

OX439C148480CEF8257 OX74FB1106EE59338B8704 3

OX14B0825030BA0A96B OX207C5A11622E7FE89689 2, 3, 7

OX568F9EDC3FA5CFC5 OXCD8D6086AF815B848C24 3, 6, 8

OX37A8A2D3F4AD45193 OXD49B28D3ABC66F27C37E 3, 6

OX457B6B0466DE7552E OXD167CC3093E7E699466 5, 6

OX2CE451DE26F01574 OX1C1342B3181C132E7CCF 8

OX2188425AC63CCD33F OX90C929DD67D3678472EE 2, 4, 5, 6, 8

OX2454FEF2819CFDFE8 OX9E71576A5F36051743D5 6, 7

OX04D00A4F9785AC8C4 OX8DCA7A16BF435CE5940B 5

OX37FE4B0255D1D295C OXD70079FAE0F0308EC206 4, 6, 7, 8

OX53CD508F74BBC7DBE OXC37E2A7F2F8164D022BB 5, 7, 8

OX048DAFF69510A4B0E OX3A1A19897D5D77691BDB 5

OX4708A09334FCAFE4F OX4A4C60F2FECB3B1FFA4F 2, 3, 5

OX4559C324D7A96E402 OX76093CA6A6820F188476 6

OX11CCD131147B71B01 OX82C85493CE4525CC267A 4, 7

OX43C5AE65F459310FF OXE29F6C5FF9B122017D55 6

OX074D96A9360193375 OXFA274E2AFE2E68F3ECE6 6

OX073A6C0377AF88B83 OX6351165578DB3B77F014 3, 5

OX11D7C2096469B8D59 OX85164E66AB350C5BCD85 2

20
0, 1, 9, 10, 14, 19, 27, 29, 41, 42,

52, 55, 62, 64, 68, 69, 71, 75, 78, 79

OXCD8AC4B29BEE0B1 OX1DFF5B9FFE4363C2F1A3 2, 5, 8, 13, 17

OX6725535534737CA OXDDAE21B901422A1643A 8, 12, 15, 16, 17

OXC481FD7BC1F523 OXC37057969DFB005C79DC 5, 6, 8, 9, 14

OXDF7305B0CFDB228 OXC9C17DF5198908297669 4, 6, 8, 17, 18

OXE8EF47A657A1A10 OX47B07462C84600BBD4C3 8, 12, 17

OX3480FFC0AD084D6 OXF51C70E932C18D17D41 4, 6, 9, 14, 15

OXF79DC891384AFF0 OXDDAF2C635F1725E5722C 2, 3, 5, 11, 15, 17

OX63CBCE13DFA0AFF OXC314A7271C748FEB77B 3, 11, 15

OX80A26F93FFE786E OX49025F652E977970AAA3 3, 4, 5, 6, 9, 14
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20
0, 1, 9, 10, 14, 19, 27, 29, 41, 42,

52, 55, 62, 64, 68, 69, 71, 75, 78, 79

OX99997304FBA97AB OX91A0123D835369D66539 3, 10, 11

OX1438B4C6E410610 OXEC881E225AE17BE12D06 2, 6, 7, 9, 16

OX2B8619E6B23FD69 OXF24C75F66F5957352674 10, 13

OX3907E66406C1230 OXCC4F643389D174E09308 9, 11, 12, 17

OX8DC9AD07E1DD5B7 OX6F925A43AABE3589016F 2, 9, 18

OX1C2904C43FF6577 OXE73A4739E4C117D70E8E 7, 11, 12, 13, 16, 17

OX2E93E577A837AAC OXF50C2B06C5B100F1D712 2, 3, 5, 13, 14

OXFDAFFE872B1ECA6 OX63F0791A5BD92EA49167 2, 5, 7, 10, 15

OX1B3537B58870F55 OXA33A411FC4173976088F 2, 3, 5, 8, 9, 10, 14, 15, 18

OX1E15EFE0723A1A0 OXAFF45320480C32FE05AD 2, 6, 11, 12, 13, 14, 15, 17

OX137AD462B48819D OXECFE45F642EA682545D6 7, 10, 17

OX94252897FEBA OX40B53BED60BA2A4EF7BD 7, 10, 11

OX2EEDD3E63910450 OX33953B8FBB3E5DB89240 6, 7, 17

OX7E51F8E40591536 OXB9C6CEF795453064BE6 9, 10, 14, 15, 17

OXD241FF6460C6208 OX5C725E6A96F9353ECCE8 2, 5, 12, 14, 18

OX895517354CC7691 OX9099444B625C731D4A9F 4, 13

OX18093FF2EA21B89 OX3627A654C272E098ABA 8, 15, 17

OX69219DE1A75C6B5 OX59FB6A44546208BBA473 5, 8, 9, 12, 13, 15

OX8CA5215750A80AE OXBBFE302CAEC030A95C66 2, 7, 11, 18

OX48F6A050FA29FD4 OXF13127F0DE9243B0AA33 10, 12

OXA869C2C7AE9EEDD OXFC4D4C6DE13E62F8530E 2, 6, 7

OX54D805626D001BA OXCC3F38A3216216E4DD16 10, 15

OXFF859A14E90D2D3 OX2AC86B44BBEF20B3A8EB 3

OX92E4EE44F4AA9B0 OXB2E35370E80D3FA438FE 5, 7, 8, 9, 10, 11, 12, 14

OXC906517717370E8 OX407C62FEAAD57DE22435 6, 8, 9, 15

OX81ABA2F10E414F1 OXD8DC3E5436B30D553DFF 13, 15

OX5E2587E52504105 OX492770685C260EB94076 3, 4, 5, 7, 9, 11, 14

OX66BE1B647D74852 OXE2B64E025081086192F3 2, 4, 5, 7, 8, 11, 13

OXC987FF2679818EA OXECBC1922F4E82FE0E298 3, 9, 14, 15, 16

OX399995668AA5766 OXADDE1B907E417C75C073 9, 18

OXA01F4042A39D2AF OXB42E343741AE2885A4B8 8, 10, 11, 15, 16

OXEB000173340180D OX9D4811B44D956C1C4122 9, 10

OX6FEDB601C5D0F7 OXACF51C7A59AC427CBA18 2, 4, 13, 14, 16, 17, 18

OX349068A2D3BE11B OXF51A7B67A45C5173EDB0 2, 6, 9, 10, 11, 12

OX9904566610C1359 OX5C921B727602478B4F1F 2, 11, 13, 18

OX631BFA24A283F98 OX8BEE5BDF986177DEFCB7 2, 4, 7, 8, 14, 15, 17

OX41B6D6E060B45 OXF4301269A0A373516F83 4, 6, 7, 9, 15

OX6AE3E77490E6D0B OXED4B6FCC7E5B1FFAA681 2, 6, 12, 15, 17

OXF9BB1A903D2B55A OXBEFF617BF05E74ED8172 6, 9, 11, 18

OXADB103911781696 OX78001622345E7535AF89 2, 3, 10, 12, 13, 14

OXD4BAF7074479E09 OX3CB7239F46CD1A18C135 5, 6, 13, 16, 18

OX31C341E7D2823C0 OX44E6375DA9C323B5EFCF 15, 16, 17

OX5A4644E0DCF37F1 OXAFE71BE0360E0C918B9C 3, 9, 13
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20
0, 1, 9, 10, 14, 19, 27, 29, 41, 42,

52, 55, 62, 64, 68, 69, 71, 75, 78, 79

OXBCF4D6769BCEFB OX6D344C7B4AC745BC07FC 10, 11, 12, 18

OXD989E1257E60721 OX85F9933760D63491E6D 2, 8, 13, 18

OXFE4EC2B5DF70C87 OX7E0D7707ABF24E5811D8 4, 7, 8, 10, 11,14, 17

OX6BB3225B97D099 OX5BD374B78F0F10E1F552 6

OX3666DCC1529A055 OX998A7DC1F1F94C9CAFB0 3, 9

OXAA07D7C6F262C91 OX4F821468B1891D2AD371 2, 3, 4, 5, 7, 12

OXCDB760C050E0196 OX2FDE16E5A5517466E581 10, 16, 18

OX748AA0B4C4431F6 OX6BB3415153E252D74428 9, 17

OX82641E96DDFE210 OXA045545ADF754FE49440 4, 12, 13, 16, 17

30

7, 15, 20, 21, 22, 26, 29, 30, 32, 33,
34, 41, 42, 49, 52, 54, 55, 56, 57, 59,
60, 63, 64, 65, 66, 72, 75, 76, 78, 79

OX2A3B12E5B3AAA OX9107625D556D1E48A3B5 3, 7, 13, 16, 17, 18, 20, 23, 25

OX11D3963CFE658 OXE9F618EC66862A0DEB4E 9, 12, 13, 14, 15, 18

OXF8534CF8A0C4 OXCEDD5CCE04F12DF6FA42 7, 9, 10, 14, 15, 18

OXE0D05859F75D OXDE0D17F6F4A032F4345A 2, 4, 5, 8, 13, 15, 16, 18

OX1767659F97A78 OXDB0E189FAA7523B7F38C 3, 5, 11, 12, 13, 16, 18, 19, 24

OX3C25D092EFEF9 OXEE0C5AA49BA676F04E05 4, 8, 10, 14, 15, 23, 24

OX358F63BC9862E OX2B8A12AF7C7513BFB545 4, 5, 8, 10, 14, 15, 16, 23, 25

OXCDCA70B4903D OX28094F93A84519B6030 2, 6, 12, 16, 21, 24, 26

OX186E1140CAE7A OXE5893222F3CF2AD91C84 3, 10, 17, 21, 24

OXF5633C0E0766 OX3A2161ED1A9A6C545C99 6, 8, 14, 16, 17, 18, 23, 25

OX3EF1C76CC3786 OX91441019D7A5F99C0E2 5, 8, 15, 16, 19, 22, 26, 27

OX1E3305EE66BF7 OX84052206580263DB7246 3, 9, 12, 14, 23

OX2BFEF0DB6F4F7 OX21D64C13071A1E0AA4DF 10, 14, 24, 28

OX22BE07DCB8255 OX14B48826D4E3EE8AA4A 10, 11, 13, 14, 17, 22, 24, 25

OX2C53E5CA904F8 OX4CF8318FB91A7BD1C2D0 4, 5, 8, 14, 17, 18, 19, 22, 24, 27

OX93726691E2D0 OX2C4C389C765606937AF4 6, 10, 15, 18, 19, 13, 16

OX3ED1D244BD2B1 OXBB5B758E8FB029E57666 2, 6, 7, 8, 15, 23, 25

OX2DF6C79AE5433 OX920D16223BEE4EB5822E 3, 4, 8, 9, 12, 13, 20

OX378C02C3FDF2B OX77681A2286592408308D 3, 10, 11, 13, 15, 22, 23, 26, 28

OX3B97E24D24147 OX694F280DCB2B108F1385 2, 9, 11, 12, 24, 28

OXC7294829B50A OXF303799BF930108F4B0F 4, 8, 11, 15, 16

OX378763FE6C96 OX2FBC5FB87C8125734B6E 2, 3, 6, 7, 8, 12, 16, 18, 23, 25, 28

OX3BECF5CC75818 OXC3B33304C9FD300B28F3 5, 12, 14, 17, 19, 21, 22, 23, 24

OX3049A0E2FB512 OX50986952B94273E8F099 9, 13, 16, 24, 26

OX313C07B28B127 OX30005763E511714B24C0 10, 11, 17, 18, 25, 26

OX613242AFA99E OX74996C308B57426EC1FF
4, 5, 8, 11, 12, 13, 15, 17, 19, 21, 22, 24, 25, 26,

27

OX5AE80FC1F4DB OXD5776A122F7F7B0049B1 3, 10, 15, 21, 23, 24

OX191766116C74F OX1E8B7D71045E0F56A4EA 4, 13, 17, 18, 24, 25


