
Some Randomness Experiments on TRIVIUM

Subhabrata Samajder and Palash Sarkar
Applied Statistics Unit

Indian Statistical Institute
203, B.T.Road, Kolkata, India - 700108.
{subhabrata r,palash}@isical.ac.in

Abstract

The first output bit of TRIVIUM can be considered to be a boolean function of 80 key and 80 IV
variables. Choose n (n ≤ 30) of the key variables and set the other variables to constant values. This
gives an n-variable boolean function. In this work, we experimentally find examples of such boolean
functions which deviate from a uniform random n-variable boolean function in a statistically significant
manner. This improves upon the previously reported experimental ‘non-randomness’ result using the
cube testing methodology by Aumasson et al in 2009 for TRIVIUM restricted to 885 rounds. In contrast,
we work with full TRIVIUM and instead of using the cube methodology we directly find the algebraic
normal form of the restricted version of the first output bit of TRIVIUM. We note, however, that our
work does not indicate any weakness of TRIVIUM. On the other hand, the kind of experiments that we
conduct for TRIVIUM can also be conducted for other ciphers.

Keywords : stream ciphers, TRIVIUM, statistical test, non-randomness.

1 Introduction

TRIVIUM is a hardware oriented synchronous stream cipher that was submitted to the Profile II (hardware)
of the eSTREAM competition by Christophe De Cannière and Bart Preneel [DCP]. TRIVIUM maintains
an internal state of size 288 bits. The state is subdivided into 3 shift registers of sizes 93, 84 and 111
bits each. It uses a simple quadratic state update function with 3 AND operations as the only non-linear
operations per round. There are 1152 initialization rounds. During the key generation, at each step, the
state is updated and a single key bit is produced. This key bit is the XOR of 6 state bits. Over the years
TRIVIUM has received much attention from the research community due to its simple structure. However,
there is still no known attack on full version of TRIVIUM which works better than exhaustive search.

To gain a better understanding of the full cipher, scaled-down variants, such as Bivium A and Bivium
B [Rad06], have been studied. Both Bivium A and Bivium B uses two shift registers as their internal
state unlike TRIVIUM which uses three. The attacks on TRIVIUM can be broadly classified into two
categories. The first type analyses the scaled-down variants (Bivium A and Bivium B [Rad06]) and tries to
extrapolate their results to the full TRIVIUM. The second approach has been to study the reduced-round
variants of the cipher, i.e., TRIVIUM with ‘r’ rounds of key initialization where r ≤ 1152. In this article
we will be concentrating on the reduced-variant only.

Early results on TRIVIUM can be found in [TK07] and [Vie07]. In [TK07], Turan et al used Matsui’s
linear cryptanalysis method to get a linear approximation with a bias 2−31 for 288 rounds of key initializa-
tion. Whereas in [Vie07], Vielhaber used an IV resynchronization attack with 26 IV’s to break 576 rounds
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of TRIVIUM. Englund et al in [EJT07], experimentally showed statistical weakness in the keystream of
TRIVIUM when reduced to 736 rounds of key initialization. In [O’N07], O’Neal claimed that TRIVIUM
with 1152 rounds of key initialization may not be secure and proposed that the initialization rounds for
TRIVIUM should be increased to 4× 1152 = 4608 rounds. Fischer et al in [FKM08] used a framework for
chosen IV statistical distinguishing analysis of stream ciphers to extract few key bits of TRIVIUM when
reduced to 672 rounds of key initializations.

The cube attack was proposed in [DS09] by Dinur et al and used to recover the key after 767 initialization
rounds. The attack required 245 bit operations and the authors showed that this can be further reduced
to 236 bit operations. In [ADMS09], Aumasson et al introduced a new class of attacks called cube testers
and developed distinguishers for 790 rounds of TRIVIUM with 230 complexity and were able to detect
non-randomness over 885 rounds in 227 complexity, improving on the original 767-round cube attack.

Recently in [FV13], Fouque and Vannet increased the number of attacked initialization rounds by
improving the time complexity of computing cube. They were able to find a key recovery attack requiring
239 queries for 784 initialization rounds and were also able to provide another key recovery attack up to
799 rounds with a complexity of 240 for queries and 262 for the exhaustive search part. In their attack,
they used the Moebius Transform to improve on the time taken in the pre-processing stage of cube attack.

Our Results: The motivation for our work is the discovery of non-randomness after 885 rounds of
TRIVIUM reported in [ADMS09]. We briefly discuss this result. The input key and IV variables are
divided into two groups called cube variables (CV) and superpoly variables (SV). Suppose g(x1, . . . , xc;
y1, . . . , ys) denotes the boolean function representing the first keystream bit of TRIVIUM. There are c+ s
input variables, where CV = {x1, . . . , xc} and SV = {y1, . . . , ys}. Then superpoly sCV of g corresponding
to a cube of size c is defined as

sCV (y1, y2, . . . , ys) =
⊕

(x1,x2,...,xc)∈Fc
2

g(x1, x2, . . . , xc; y1, y2, . . . , ys),

which is an s-variable boolean function in the variables SV. The details about the non-randomness of 885
rounds of TRIVIUM reported in [ADMS09] is a bit sketchy. We try to provide some more details. A cube
of size 27 of IV variables mentioned in [DS09] was considered. Set all other IV variables to 0. It was
experimentally discovered that in the superpoly corresponding to this cube, the key variables 1, 4 and 5 are
neutral (i.e., changing their values does not affect the outcome of the polynomial). It is mentioned that the
zero key was used which would imply that all key bits other than 1, 4 and 5 were set to zero. It was argued
that the discovery of such a polynomial in the structure of TRIVIUM is an evidence of non-randomness.
This claim is also well accepted in the literature.

In general terms the above example can be viewed as follows. Let g(x1, . . . , xc; y1, . . . , ys) be the first
output bit of TRIVIUM (after 885 rounds). The authors discover a transformation Φ such that the key
bits 1, 4 and 5 are neutral for the boolean function Φ(g). The transformation Φ consists of applying the
cube, setting IV and the other key bits to 0.

The above kind of experimentally discovered ‘non-randomness’ after 885 rounds reported in [ADMS09]
forms the motivation for our work. We ask the question as to whether it is possible to experimentally
discover some kind of ‘non-randomness’ in full TRIVIUM. As above, if g denotes the boolean function
representing the first output bit, our goal is to discover a transformatiion Ψ such that the boolean function
Ψ(g) shows some statistically quantifiable deviation from a uniform random function. The Ψ that we
consider does not involve evaluating a cube. The function g depends on 80 key and 80 IV variables.
The transformation Ψ consists of choosing n key variables and setting the other key and IV variables to
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constant values. As a result Ψ(g) is a boolean function on n variables. We are able to experimentally
obtain examples of Ψ(g) whose deviation from a uniform boolean function is statistically significant. Here
n is a parameter which is at most 30.

The main computational challenge is to obtain the algebraic normal form (ANF) of Ψ(g). For this
we discuss two methods. The first one symbolically evolves TRIVIUM over the full 1152 rounds. This
requires a fast algorithm for multiplying two boolean functions given by their ANFs and for this task we
use the implementation reported in [Sam13]. The second method proceeds by first obtaining the truth
table representation for Ψ(g) and then using the Moebius transformation to obtain the ANF. Either of the
methods yields both the ANF and also the truth table representation of Ψ(g).

Suppose u∗ is a uniform random boolean function of n variables. The weight of u∗ is a random variable
with mean 2n−1. Given a probability α, there is an interval Iα such that the weight of u∗ is in Iα with
probability at least α. We say that Ψ(g) is unbalanced at level α if its weight lies outside the internal
Iα. Similar notions of algebraic unbalancedness for Ψ(g) can be defined with respect to the total number
of monomials in the ANF of Ψ(g) and also with respect to the number of monomials of degree d in the
ANF of Ψ(g). We also define a notion of unbalancedness over an l-dimensional uniform and independent
random vectorial boolean function ũ∗. Further details of the corresponding statistical tests are provided
later.

In this work, we experimentally find concrete examples of Ψ(g) for n = 10, 20 and 30 which are
unbalanced, algebraically unbalanced with respect to the total number of monomials and also with respect
to monomials of certain specific degrees. We also give concrete examples of Ψ(g̃) for n = 20, 30 (where g̃
denotes a l dimensional vectorial boolean function) which are unbalanced. These results are obtained for
level α corresponding to more than 99% probability. For lower values of α, we are able to obtain examples
of Ψ(g) which simultaneously fail several of the statistical tests. Our experiments consist of randomly
selecting the n key variables and choosing the values for the other 160 − n key and IV variables. This in
effect randomly chooses the transformation Ψ. The reported results are obtained by randomly choosing
possibilities for Ψ several thousands of times.

We make no claims that our results exhibit a weakness of TRIVIUM. There are two implications of
our work. First, our results show that to experimentally discover some ‘non-random’ polynomial in the
structure of TRIVIUM, the complicated cube analysis technique of [ADMS09] is unnecessary. Instead one
can simply look at the boolean function representing the first output bit by setting 160 − n of the input
variables to constant values. Second, our work discovers ‘non-randomness’ in TRIVIUM after the full 1152
rounds of initialization whereas [ADMS09] reported results only after 885 rounds.

The method described here is not particular to TRIVIUM. It can be applied to any cipher. Whether
the results will be similar to that obtained for TRIVIUM is not clear and exploring this can form possible
future work.

Related Work: We are not the first to consider applying statistical tests to the algebraic normal form of
the output bits of a stream cipher. An early work by Filio [Fil02] and later follow-up in [Saa06] had explored
this possibility. Our approach, however, differs from that of [Fil02, Saa06] in the following way. The work
considered the ANFs of the first N output bits of a stream cipher and investigated the distribution of
monomials of degree d in these ANFs for d ≤ 3. The study was thus aggregated and unlike the specific
‘non-randomness’ example reported in [ADMS09].
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2 A Brief Description of TRIVIUM

TRIVIUM maintains a 288-bit internal state “S” denoted by S = (s1, s2, . . . , s288) and uses two algorithms,
namely a key initialization algorithm, which we call the key and IV setup, and a key stream generation
algorithm. The state S is further divided into 3 shift registers, namely S1 = (s1, s2, . . . , s93), S2 = (s94, s95,
. . . , s177) and S3 = (s178, s179, . . . , s288).

2.1 Key and IV Setup

The algorithm is initialized by loading an 80-bit key into the first 80-bits of the state S, i.e., s1, s2, . . . , s80
and an 80-bit IV into the state bits s94, s95, . . . , s173 and setting all remaining bits to 0, except for s286, s287,
and s288, which are set to 1. Each round of the iterative process extracts the values of 15 specific state
bits and uses them to update 3 bits of the state. This is repeated for 4 × 288 = 1152 times. This can be
summarized by the following pseudo-code (Algorithm 1):

Algorithm 1: TRIVIUM - Key and IV Setup.

(s1, s2, . . . , s93) �(K1,K2, . . . ,K80, 0, . . . , 0)
(s94, s95, . . . , s177) �(IV1, IV2, . . . , IV80, 0, 0, 0, 0)
(s178, s179, . . . , s288) �(0, . . . 0, 1, 1, 1)
for i = 1 to 4 · 288 do

t1 �s66 ⊕ s91 · s92 ⊕ s93 ⊕ s171
t2 �s162 ⊕ s175 · s176 ⊕ s177 ⊕ s264
t3 �s243 ⊕ s286 · s287 ⊕ s288 ⊕ s69
(s1, s2, . . . , s93) �(t3, s1, . . . , s92)
(s94, s95, . . . , s177) �(t1, s94, . . . , s176)
(s178, s179, . . . , s288) �(t2, s178, . . . , s287)

end

2.2 Key Stream Generation

The key stream generation algorithm is similar to that of the key initialization algorithm except that at
each round, a single bit which is a linear function of six state bits, is output before the state update. This
process repeats itself until the requested N ≤ 264 bits of key stream is generated. The complete description
is given by the following pseudo-code (Algorithm 2):

3 Algebraic Normal Forms of the Output Bits of TRIVIUM

Let us denote the key K by (k1, k2, . . . , k80) and the IV by (iv1, iv2, . . . , iv80). If instead of bits, we consider
the key and the IV as variables then the state is initialized as follows:

(s1, s2, . . . , s93) �(k1, k2, . . . , k80, 0, . . . , 0),

(s94, s95, . . . , s177) �(iv1, iv2, . . . , iv80, 0, 0, 0, 0),

(s178, s179, . . . , s288) �(0, . . . 0, 1, 1, 1).



3 ALGEBRAIC NORMAL FORMS OF THE OUTPUT BITS OF TRIVIUM 5

Algorithm 2: TRIVIUM - Key Stream Generation.

for i = 1 to N do
t1 �s66 ⊕ s93
t2 �s162 ⊕ s177
t3 �s243 ⊕ s288
zi �t1 ⊕ t2 ⊕ t3
t1 �t1 ⊕ s91 · s92 ⊕ s171
t2 �t2 ⊕ s175 · s176 ⊕ s264
t3 �t3 ⊕ s286 · s287 ⊕ s69
(s1, s2, . . . , s93) �(t3, s1, . . . , s92)
(s94, s95, . . . , s177) �(t1, s94, . . . , s176)
(s178, s179, . . . , s288) �(t2, s178, . . . , s287)

end

During each state update these state bits get multiplied and added in the boolean function ring defined
over the variables K and IV . Thus, considering each state bit as a boolean function in 80 + 80 = 160
variables, one can view each state update as performing 3 multiplications (1 for each ti, i = 1, 2, 3.) and 9
additions (3 for each ti, i = 1, 2, 3.). Addition is just bitwise XOR, whereas multiplication is that of two
boolean functions given by their ANF’s.

Handling the ANF of a boolean function on 160 variables is infeasible. Hence, we reduce the number
of variables in the following manner. The key and IV bit positions which are to be treated as variables
are randomly selected. These selected bit positions are then renamed as variables k1, k2, . . . , knk

and
iv1, iv2, . . . , ivniv , such that nk + niv = n. We work with n ≤ 30. The rest of the key and IV bit positions
are then set randomly to either 0 or 1. The outputs bits of TRIVIUM can then be considered to be boolean
functions of n variables. We provide two methods to compute the ANFs of the output bits.

3.1 Method - 1

A symbolic computation of TRIVIUM is carried out where the state bits are treated as polynomials in
k1, k2, . . . , knk

and iv1, iv2, . . . , ivniv . As a result, the first output bit which is the bitwise XOR of six state
bits, namely s66, s93, s162, s177, s243 and s288 is also a polynomial in these variables.

The main time-consuming step in the above symbolic computation is that of multiplying the ANFs of
two boolean functions. We used the implementation MultANF64 of multiplication described in [Sam13].
Using this algorithm, two 30-variable boolean functions can be multiplied in less than 2 seconds on a 3
GHz processor. Carrying out the simulation of full 1152 rounds of TRIVIUM with n = 30 requires 3456
multiplications and the entire computation requires about one-and-half hours.

3.2 Method - 2

The second method first constructs the truth table of the first output bit z1 which is a polynomial in n
variables as mentioned above. A fast implementation of TRIVIUM is used to evaluate z1 on all possible
2n input combinations. This provides the truth table representation of z1. This is converted into the ANF
format using the Moebius transformation (see [Jou09] for a description of this algorithm).
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4 Some Elementary Statistics

Let X1, . . . , Xn be independent Bernoulli distributed random variables with Pr[Xi = 0] = p. Then X =
X1 + · · · + XN follows Bin(N, p) with expected value Np. Given a probability α, there is an interval Iα
which is symmetric about the mean, such that Pr[X ∈ Iα] ≥ α. If N is large enough, then the binomial
distribution is well approximated by the normal distribution and it is quite routine to use the normal
approximation to obtain Pr[X ∈ Iα]. Further, given α, the interval Iα is found by converting to standard
normal and then using tables for the standard normal distribution.

Denote by u∗ a uniform random n-variable polynomial. For our study, we will follow the above statistical
approach for u∗ in the following settings.

Total number of monomials in u∗: Any particular monomial occurs in u∗ with probability 1/2 and
is independent of the occurrence of any other monomial. If we denote the 2n possible monomials of n
variables as m0, . . . ,m2n−1, then we have 2n random variables X0, . . . , X2n−1 where Xi is 1 if mi is present
in u∗ and 0 otherwise. The random variables X0, . . . , X2n−1 are independent Bernoulli distributed variables
with Pr[Xi = 1] = 1/2. The number of monomials in u∗ is X = X0 + · · ·+X2n−1 and follows Bin(2n, 1/2).

Number of monomials of degree d in u∗: Consider the number of monomials of degree d in u∗. There
are a total of

(
n
d

)
such monomials. In a manner similar to the above case, the number of monomials of

degree d in u∗ follows Bin
((
n
d

)
, 1/2

)
.

Weight of u∗: For any input, the output of u∗ is 0 or 1 with probability 1/2 and this is independent of
the output of u∗ on any other input. So, as in the case of total number of monomials, the weight of u∗

follows Bin(2n, 1/2).

Determining whether a given polynomial is ‘non-random’: Given a particular n-variable boolean
function f , we can compute the total number of monomials in f . If the number of monomials turns out
to be ‘significantly’ away from 2n−1, then this is usually taken as an indication of some kind of non-
randomness in f . We will use the term algebraically unbalanced to express the idea that the total number
of monomials in f deviates significantly from the expected number of monomials in a uniform random
polynomial. Statistical tests will be conducted as follows. For a probability α, we first compute the
interval Iα such that the total number of monomials in u∗ will be in Iα with probability at least α. Then
the total number of monomials in the given function f is calculated. If this lies outside the interval Iα, then
we say that the function f fails the algebraic balancedness test for probability α, or that f is algebraically
unbalanced at level α written as AUα.

In a similar manner we conduct tests on f for monomials of degree d, the weight of f and the weight
of l-bit vectorial boolean function f̃ . Given an α, the interval Iα for the weight of f will be the same
as that for the total number of monomials. On the other hand, when considering monomials of degree

d, the interval I
(d)
α will depend on d. This is because the number of trials in the binomial distribution

corresponding to monomials of degree d is
(
n
d

)
. For the weight of f̃ the interval Iα will be of the form[

0, χ2 (l)α
]

and will depend upon the degrees of freedom, which is equal to the dimension of f̃ in this

case. If the number of monomials of degree d in f is outside the interval I
(d)
α , then we will say that f is

d-algebraically unbalanced at level α, written as d-AUα. Similarly, if the weight of f is outside the interval
Iα, then we say that f is unbalanced at level α, written as Uα.
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5 Unbalancedness Over First l Output Bits

This section generalizes the test for unbalancedness of a boolean function f , written as Uα (see Section 4),
to vectorial boolean functions of dimension l. An l-dimensional vectorial boolean function is defined as
f̃ : Fn2 → Fl2, such that

f̃ (x1, x2, . . . , xn) = (f1 (x1, x2, . . . , xn) , f2 (x1, x2, . . . , xn) , . . . , fl (x1, x2, . . . , xn))

where each fi (x1, x2, . . . , xn), i = 1, 2, . . . , l are n variable boolean functions. Denote a uniform random
vectorial boolean function by ũ∗, where each of its coordinates u∗i , i = 1, 2, . . . , l behaves as uniformly and
independently distributed n-variable polynomials.

Statistics Involved: Let Xi,j ∈ {0, 1} , i ∈ {1, 2, 3, . . . , l} and j ∈ {1, 2, 3, . . . , N} denote random vari-

ables such that Xi,j
i.i.d.∼ Ber (pi) for all j ∈ {1, 2, . . . , N}. Let Xi =

∑N
j=1Xi,j , i ∈ {1, 2, 3, . . . , l}. Then

Xi
i.i.d.∼ Bin (N, pi). For large N , i.e., N ≥ 30, Xi’s are well approximated by normal distribution with

mean Npi and variance Npi (1− pi). Let Yi = Xi−Npi√
Npi(1−pi)

. Then Yi
i.i.d.∼ N (0, 1) and hence Y 2

i
i.i.d.∼ χ2 (1)

(Chi-squared distribution with 1 degree of freedom) for all i ∈ {1, 2, . . . , l}. Therefore
∑l

i=1 Y
2
i ∼ χ2 (l)

(Chi-squared distribution with l degree of freedom). For a given α and l degrees of freedom, we therefore

can get an interval Iα =
[
0, χ2 (l)α

]
such that Pr

[∑l
i=1 Y

2
i ∈ Iα

]
= α.

Weight of ũ∗: For any input and any coordinate i (i ∈ {1, 2, . . . , l}), the output of u∗i is 0 or 1 with
probability 1/2 and this is independent on any other input and coordinate i. For a given coordinate i we
denote the 2n (= N) possible outputs of the n-variable boolean function u∗i as Xi,0, Xi,1, . . . , Xi,2n−1, where
Xi,j is 1 if the jth output of u∗i is 0 and 0 otherwise. Given i, the random variables Xi,0, Xi,1, . . . , Xi,2n−1
are independent Bernoulli distributed variables with Pr[Xi,j = 1] = 1/2. Thus the number of zeros in the

2n outputs of u∗i is Xi =
∑2n−1

j=0 Xi,j and follows Bin(2n, 1/2). For n >= 5, Xi’s are well approximated by

N
(
2n−1, 2n−2

)
. Hence, Y 2

i =
(
Xi−2n−1
√
2n−2

)2 i.i.d.∼ χ2 (1) and
∑l

i=1 Y
2
i
i.i.d.∼ χ2 (l).

Determining a l-dimensional vectorial boolean function is ‘non-random’: Given an l-dimensional
vectorial boolean function f̃ in variables x1, x2, . . . , xn, we construct its l-dimensional truth table. For
each of the 2n possible values of the variables x1, x2, . . . , xn, we consider the corresponding values of
f̃ (x1, x2, . . . , xn). This corresponds to the l-dimensional truth table of f̃ . Each coordinate i of this
l-dimensional truth table individually corresponds to the truth table of fi. Let ni denote the num-

ber of zeros in the truth table corresponding to fi. Compute
∑l

i=1

(
ni−2n−1
√
2n−2

)2
For a given α and l, if∑l

i=1

(
ni−2n−1
√
2n−2

)2
> χ2 (l)α then we say that the l-dimensional vectorial boolean function f̃ is unbalanced

at level α, written as Ul,α

6 Searching for (Algebraically) Unbalanced Polynomials

As mentioned earlier, the first output bit of Trivium can be written as a boolean function of 80 key and
80 IV variables. Since, it is infeasible to handle 160-variable boolean functions, we have used the following
strategy to search for unbalanced polynomials.
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1. Fix n to be an integer which is at most 30.

2. Out of the 80 key variables, choose n key variables.

3. Set the remaining 80 − n key variables and 80 IV variables to random binary values. This defines
the first output bit to be a function f of the n key variables.

4. Use either Method-1 or Method-2 to obtain both the truth table representation and the algebraic
normal form of the first output bit.

5. Determine whether f is AUα, d-AUα, Uα or Ul,α. For all the test except Ul,α we have used 6 values
α1, . . . , α6 with αi = 1−1/2i+1 to conduct the tests. These values roughly correspond to 75%, 87.5%,
93.75%, 96.88%, 98.44% and 99.22% probabilities respectively. For Ul,α the value of α was set at
99.5%.

Note that the above method randomly searches for a function f which fails one or more of the tests. For
a fixed n, Steps 2 and 3 above perform the task of selecting an f ; Step 4 performs the task of generating
the ANF of f ; and finally Step 6 performs the test on f . If f fails one or more of the tests, then this f is
reported.

The tests for different values of α are not independent. For i > j, αi > αj and so, Iαi ⊃ Iαj . As a
consequence, if a function f is AUαi then it is also AUαj . Similar comments hold for d-AUα and Uα.

6.1 Experimental Results

The experiments were conducted by taking values of n = 10, 20 and 30. Table 1 gives some polynomials
for n = 10, 20, 30, which are Uα6 , i.e., these polynomials are unbalanced at level α6. In the Table the
column “Key Variables” indicate the key bit positions that were treated as variables. The columns “Key
Constant” and “IV Constant” gives the values of 80− n and 80 bits of the key and IV bits which were set
to constant values.

Consider once more what it means for a polynomial to be unbalanced at level α6. With probability
α6, i.e., with about 99% probability, the weight of a uniform random function will be in the interval
Iα6 . Here we report examples of f whose weight lies outside the interval Iα6 . This indicates significant
unbalancedness.

Table 1: Table showing list of some polynomials with number of zeroes and one’s lying outside the interval
for α = α6. The values given in the table are for n = 10, 20, 30 and 1152 key initialization rounds of
TRIVIUM.

n Key Variables Key Constant IV Constant
Number
of 0’s

10
1, 4, 22, 38, 42, 44, 53, 56, 61, 78

OX452D5AA716418A9CC OXBC925DE125682B159CB4 465

OX1476803AD7850AD36 OXA1D62667224E6CF221CF 465

OX31D5EC5914E3D922F OXE24571405777B5521A 555

OX54CD8D3B53FC0A114 OXD4702BB150946D98D944 556

OX238009F2E69728CB8 OX68131089DB607D1981F1 556

OX53DB1C63D36BB4FD2 OXCF5050997F8601AB88EF 558

OX42F216A6B2AFCEC17 OX30E66D573F151F784B58 560

Continued on next page
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Table 1 – Continued from previous page

n Key Variables Key Constant IV Constant
Number
of 0’s

OX17485DC470A73061E OXD54A1D5A59055062EFB6 571

15, 16, 20, 27, 31, 37, 41, 45, 58, 73 OX27F50AF693342B6F9 OX706CCD7801037A0A49 437

20
0, 1, 9, 10, 14, 19, 27, 29, 41, 42,

52, 55, 62, 64, 68, 69, 71, 75, 78, 79

OX3625E972822DB6A OXB2D91DF4E87047E9B8C6 522657

OX80F5C4876AADE17 OXA380363693475CFCCEB 522768

OXB7521EE35C15C4B OX309D70CFFD406A96299A 522860

OXBCEFBB60D3A6BAF OXB0EC6893275307067F03 522862

OXCD8AC4B29BEE0B1 OX1DFF5B9FFE4363C2F1A3 522902

30

1, 4, 7, 9, 10, 12, 13, 14, 15, 21,
25, 27, 30, 31, 32, 33, 34, 44, 52, 54,
55, 56, 58, 59, 62, 66, 69, 70, 74, 79

OX290C10B0294D2 OX586A33527C2928DDE2C6 536920658

7, 15, 20, 21, 22, 26, 29, 30, 32, 33,
34, 41, 42, 49, 52, 54, 55, 56, 57, 59,
60, 63, 64, 65, 66, 72, 75, 76, 78, 79

OX1FD41217D312F OXC8C051B0D49C69D1A7DD 536822130

OX12C5E491E4B6F OX99E4748853D60D6617EC 536920867

Table 2, gives some polynomials for n = 10, 20, 30, which are AUα6 , i.e., these polynomials are al-
gebraically unbalanced at level α6. Further, the entries d in the column “Monomial Degrees” indicate
that the corresponding function is also d-AUα6 . Again we note that the reported functions show algebraic
unbalancedness at a level corresponding to 99.22% probability which indicates a significant deviation.

Table 2: Table showing list of some polynomials with its total number of monomials lying outside the
interval for α = α6. The values given in the table are for n = 10, 20, 30 and 1152 key initialization rounds
of TRIVIUM.

n Key Variables Key Constant IV Constant
Monomial
Degrees

10 1, 4, 22, 38, 42, 44, 53, 56, 61, 78

OX37FE4B0255D1D295C OXD70079FAE0F0308EC206 6, 8

OX457B6B0466DE7552E OXD167CC3093E7E699466 None

OX0484EB9A3E80085D OX9B10785F6BF67CA8D5CB None

OX243E3DFA82D00EE44 OXB4526FDF61F96D7FCAE3 None

15, 16, 20, 27, 31, 37, 41, 45, 58, 73 OX5EE252240CE406D5 OX3F0E2249DE7C031CF797 None

20
0, 1, 9, 10, 14, 19, 27, 29, 41, 42,

52, 55, 62, 64, 68, 69, 71, 75, 78, 79

OX56B4A18579E0D3E OXAC576EF0BDDE67E72619 None

OXFC12A46241151AD OX10E6744E590F46973ADD 13

OXADC520A5DA98587 OX77EC7B17675B6489CAD8 None

OXC6AFA4B133A47F7 OX61207A01BCC272B683F9 None

OX43ED55256B3CFF5 OX822E158DE22B7390747F None

OXAA1BE875BC0B948 OXE49D3F5E9DF3726567A 10

OX44B684623514BE0 OX9CB0767A4B911C07655B 13

OXF9BB1A903D2B55A OXBEFF617BF05E74ED8172 11

30

7, 15, 20, 21, 22, 26, 29, 30, 32, 33,
34, 41, 42, 49, 52, 54, 55, 56, 57, 59,
60, 63, 64, 65, 66, 72, 75, 76, 78, 79

OXE65F1294C96A OXEB482AFBDFE04F8DAD56 14

OX128D80C2688E3 OX3CF5643BE9AD30EAC0C8 None

OX199D831A8D833 OX9F7651D0129823F00C61 None

OX1DBD945A6AD33 OXDB855A93A2834AC2FE5C 15
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Experiments to test Ul,α were done by taking values of n = 20, 30 and l = 8. Here instead of the first
output bit the truth table corresponding to the first 8 output bits were considered. Tests were done by
setting α = 0.995. Table 3 gives examples of polynomials which are U8,0.995 for n = 20, 30. For n = 20 we
found 4 such polynomials whereas for n = 30 we found 6 polynomials.

Table 3: Table showing U8,0.995-unbalanced polynomials for n = 20, 30.

n Key Variables Key Constant IV Constant

20
0, 4, 10, 11, 18, 19, 20, 21, 29, 30,
32, 35, 38, 41, 42, 43, 45, 56, 66, 69

OXE83EDFD172DA59E OXD6985433DD11269B7EEC

OX8976F5F031C8922 OX7F8322315CFB6675E72C

OX671FA8E37FA1559 OX52CCAD8EF5C7C69766A

OX25FB47658CE713C OX73D27D4741280A814760

30

0, 2, 3, 4, 7, 8, 12, 19, 23, 26,
30, 33, 35, 37, 38, 39, 42, 43, 44, 49,
54, 58, 60, 62, 63, 64, 65, 70, 72, 76

OX3646D112845B2 OXB1E95646DCFA6FF10729

OX259294BDB83A1 OX6028CA379F720ABC080

OX11C4515398DDF OXCEB11DDCCDCE6CD72BC1

OX188CF40F48433 OXE2F81539EA2F476236B3

0, 1, 5, 6, 7, 12, 13, 14, 21, 24,
36, 37, 40, 43, 47, 52, 55, 56, 58, 61,
63, 64, 65, 68, 72, 73, 75, 77, 78, 79

OX1067524FF3553 OXD91F545A23C53ADC5796

OX2588D2C38E8BF OX388A1E1866F8247F8D51

We note that our experiments did not find any polynomial which simultaneously fail the tests for
balancedness, total number of monomials and monomials of certain degrees at level α6. On the other hand,
as we go down from level α1 to level α6, the experiments find more and more examples of polynomials
simultaneously failing the tests for balancedness, total number of monomials and monomials of certain
degree. Some examples are noted below and the details are given in the appendix.

1. Table 5 (Appendix A) gives a few polynomials which simultaneously fails the test for balancedness
and the test for the total number of monomials at level α4. In addition, the table also gives the
monomial degrees for which the test fails. We found 3 polynomials for n = 10 and 2 polynomials for
n = 30 which had failed the test. However, we did not find any example for n = 20.

2. Tables 4, 5, 6, 7, 8 (Appendix A) give examples of polynomials which simultaneously fail the three
tests at levels α5, α4, α3, α2 and α1, respectively. In case of α = α5, we can see from Table 4 that
corresponding to n = 10 we have only two polynomials which failed the tests, whereas we could not
find any such examples for n = 20, 30. However, when the value of α was relaxed to α1, we found 45,
61 and 28 polynomials for n = 10, 20 and 30, respectively. The tables also show a steady increase in
the number of monomials of a particular degree failing the test as α decreases.

7 Conclusion

In this paper, we have reported results of experiments conducted on the boolean function representing
the first output bit of full TRIVIUM. These results show that by suitably restricting some of the input
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variables to constant values, it is possible to obtain polynomials which deviate from a uniform random
polynomial is a statistically quantifiable manner. Our results may be considered as showing some kind
of ‘non-randomness’ in full TRIVIUM. This is to be contrasted with the experimental evidence of ‘non-
randomness’ after 885 rounds reported in [ADMS09] using the complicated machinery of cube testers. We
note on the one hand, that our results do not indicate any weakness in TRIVIUM, and on the other hand,
that similar tests can be carried out on other ciphers.
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A Tables

Table 4: Table showing list of some polynomials with its total number of monomials and the number
of zeroes in its truth table lie outside the interval for α = α5. The values given in the table are for
n = 10, 20, 30 and 1152 key initialization rounds of TRIVIUM.

n Key Variables Key Constant IV Constant
Monomial
Degrees

10 1, 4, 22, 38, 42, 44, 53, 56, 61, 78
OX37BDD3EAD0BAFABC0 OXDB565D9DB98F4E3389C5 None

OX47E214EB5727E04C9 OXD34F684B1055DAECE93 7

Table 5: Table showing list of some polynomials with its total number of monomials and the number
of zeroes in its truth table lie outside the interval for α = α4. The values given in the table are for
n = 10, 20, 30 and 1152 key initialization rounds of TRIVIUM.

n Key Variables Key Constant IV Constant
Monomial
Degrees

10 1, 4, 22, 38, 42, 44, 53, 56, 61, 78

OX37BDD3EAD0BAFABC0 OXDB565D9DB98F4E3389C5 None

OX47E214EB5727E04C9 OXD34F684B1055DAECE93 7

OX4547D85442C8D68CF OXD08829A188F6241E7C2D 5, 8

30

7, 15, 20, 21, 22, 26, 29, 30, 32, 33,
34, 41, 42, 49, 52, 54, 55, 56, 57, 59,
60, 63, 64, 65, 66, 72, 75, 76, 78, 79

OX11D3963CFE658 OXE9F618EC66862A0DEB4E 12

OX191766116C74F OX1E8B7D71045E0F56A4EA 4, 24

Table 6: Table showing list of some polynomials with its total number of monomials and the number
of zeroes in its truth table lie outside the interval for α = α3. The values given in the table are for
n = 10, 20, 30 and 1152 key initialization rounds of TRIVIUM.

n Key Variables Key Constant IV Constant
Monomial
Degrees

10 1, 4, 22, 38, 42, 44, 53, 56, 61, 78

OX37BDD3EAD0BAFABC0 OXDB565D9DB98F4E3389C5 None

OX47E214EB5727E04C9 OXD34F684B1055DAECE93 2, 7

OX4547D85442C8D68CF OXD08829A188F6241E7C2D 5, 8

20
0, 1, 9, 10, 14, 19, 27, 29, 41, 42,

52, 55, 62, 64, 68, 69, 71, 75, 78, 79

OX6725535534737CA OXDDAE21B901422A1643A None

OXDDAE21B901422A1643A OXF51C70E932C18D17D41 None

30

7, 15, 20, 21, 22, 26, 29, 30, 32, 33,
34, 41, 42, 49, 52, 54, 55, 56, 57, 59,
60, 63, 64, 65, 66, 72, 75, 76, 78, 79

OX11D3963CFE658 OXE9F618EC66862A0DEB4E 12

OX3C25D092EFEF9 OXEE0C5AA49BA676F04E05 14, 15

OX613242AFA99E OX74996C308B57426EC1FF 4, 13

OX191766116C74F OX1E8B7D71045E0F56A4EA 4, 24
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Table 7: Table showing list of some polynomials with its total number of monomials and the number
of zeroes in its truth table lie outside the interval for α = α2. The values given in the table are for
n = 10, 20, 30 and 1152 key initialization rounds of TRIVIUM.

n Key Variables Key Constant IV Constant
Monomial
Degrees

10 1, 4, 22, 38, 42, 44, 53, 56, 61, 78

OX37BDD3EAD0BAFABC0 OXDB565D9DB98F4E3389C5 3, 4

OX47E214EB5727E04C9 OXD34F684B1055DAECE93 2, 7

OX4547D85442C8D68CF OXD08829A188F6241E7C2D 4, 5, 8

OX22C82FA5C4FF1FFA7 OX8E6C7CCC6DA42DE02582 6

OX46F73734324A8C3CF OXED6F602BFE6161C4B002 5, 7, 8

OX548E1A39B23F3483B OX2C2B1447188F2DF15053 6, 8

OX52A20EB6B6861FD2B OX69EF224FC6FB72AC6C37 2, 3

OX243E3DFA82D00EE44 OXB4526FDF61F96D7FCAE3 5, 6

OX21FEF73EB0DC5739A OX7598278A31B96B6E06F5 3

OX36B1281D43A9240B3 OXE58A191A1E6C333C8EFD 3, 5

OX1185DD59742FE8169 OX89B62A60C21C42A0E6B2 4,

OX37FE4B0255D1D295C OXD70079FAE0F0308EC206 6, 7, 8

20
0, 1, 9, 10, 14, 19, 27, 29, 41, 42,

52, 55, 62, 64, 68, 69, 71, 75, 78, 79

OX6725535534737CA OXDDAE21B901422A1643A 8, 12, 15, 17

OXC481FD7BC1F523 OXC37057969DFB005C79DC 5, 6, 8, 9

OXDF7305B0CFDB228 OXC9C17DF5198908297669 8

OX3480FFC0AD084D6 OXF51C70E932C18D17D41 9, 15

OX80A26F93FFE786E OX49025F652E977970AAA3 3, 5, 6, 9

OX99997304FBA97AB OX91A0123D835369D66539 3, 10, 11

OX1438B4C6E410610 OXEC881E225AE17BE12D06 6, 16

OX2B8619E6B23FD69 OXF24C75F66F5957352674 None

OX2E93E577A837AAC OXF50C2B06C5B100F1D712 2, 14

OXFDAFFE872B1ECA6 OX63F0791A5BD92EA49167 2, 7, 10

OX1E15EFE0723A1A0 OXAFF45320480C32FE05AD 11, 12, 13, 14, 17

OX94252897FEBA OX40B53BED60BA2A4EF7BD 7

OX5A4644E0DCF37F1 OXAFE71BE0360E0C918B9C 3, 9, 13

OXAA07D7C6F262C91 OX4F821468B1891D2AD371
2, 3, 4,

12

OX748AA0B4C4431F6 OX6BB3415153E252D74428 9

OX82641E96DDFE210 OXA045545ADF754FE49440 4, 16, 17

30

7, 15, 20, 21, 22, 26, 29, 30, 32, 33,
34, 41, 42, 49, 52, 54, 55, 56, 57, 59,
60, 63, 64, 65, 66, 72, 75, 76, 78, 79

OX11D3963CFE658 OXE9F618EC66862A0DEB4E 12, 15, 18

OX3C25D092EFEF9 OXEE0C5AA49BA676F04E05 14, 15, 23

OXCDCA70B4903D OX28094F93A84519B6030
2, 12, 21,

26

OX613242AFA99E OX74996C308B57426EC1FF 4, 13, 15, 19, 24, 26, 27

OX191766116C74F OX1E8B7D71045E0F56A4EA 4, 18, 24, 25
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Table 8: Table showing list of some polynomials with its total number of monomials and the number
of zeroes in its truth table lie outside the interval for α = α1. The values given in the table are for
n = 10, 20, 30 and 1152 key initialization rounds of TRIVIUM.

n Key Variables Key Constant IV Constant
Monomial
Degrees

10 1, 4, 22, 38, 42, 44, 53, 56, 61, 78

OX37BDD3EAD0BAFABC0 OXDB565D9DB98F4E3389C5 2, 3, 4, 5

OX22C82FA5C4FF1FFA7 OX8E6C7CCC6DA42DE02582 6

OX47E214EB5727E04C9 OXD34F684B1055DAECE93 2, 4, 7

OX4547D85442C8D68CF OXD08829A188F6241E7C2D 4, 5, 8

OX46F73734324A8C3CF OXED6F602BFE6161C4B002 5, 7, 8

OX548E1A39B23F3483B OX2C2B1447188F2DF15053 6, 7, 8

OX25999FA70096CE14A OX534E7B0E0099371CEC2B 7

OX32C3B8564711127E2 OXC3B65FA580064682A886 2, 5, 6, 7, 8

OX36700C6F525F4A15E OX76C0CA72E4037279E52 2, 5, 7

OX1104F75E2114D99C6 OX99545A9EDB9B664CF25E 5, 6

OX52A20EB6B6861FD2B OX69EF224FC6FB72AC6C37 2, 3, 6

OX243E3DFA82D00EE44 OXB4526FDF61F96D7FCAE3 5, 6, 7

OX21FEF73EB0DC5739A OX7598278A31B96B6E06F5 2, 3

OX36B1281D43A9240B3 OXE58A191A1E6C333C8EFD 2, 3, 5

OX373444186660E5FF4 OXEB195ADDBE903C2D1056 2

OX1185DD59742FE8169 OX89B62A60C21C42A0E6B2 4

OX13C98DD112B9E4345 OXC02E2FE44559226743EA 2, 6

OX25964FF8044895C95 OXCFC776D1C4E100F35C85 2, 4, 5

OX2628BA81850F8F769 OX1FCF571CE4612534B608 4, 8

OX043DACA1A2026DBDA OXBDC5DCD77F921AABDF6 4, 7

OX2126745C279E5A10C OX1248772E03E133CE0B7B 2, 7

OX586B4E14496FAC82 OX9C2138672ABB3DDDC1F2 5

OX368252990744C0C7 OX74DF32D819F351C27B0E 2, 3, 4

OX532D3BE97067D5129 OX7BED67B3ABB91C35FA5D 5

OX1382D64B413855656 OX95972A312ED14A3BF60 6

OX52FFFC0FF6FD88EBD OXF66572321FFA19728935 3, 7

OX439C148480CEF8257 OX74FB1106EE59338B8704 3

OX14B0825030BA0A96B OX207C5A11622E7FE89689 2, 3, 7

OX568F9EDC3FA5CFC5 OXCD8D6086AF815B848C24 3, 6, 8

OX37A8A2D3F4AD45193 OXD49B28D3ABC66F27C37E 3, 6

OX457B6B0466DE7552E OXD167CC3093E7E699466 5, 6

OX2CE451DE26F01574 OX1C1342B3181C132E7CCF 8

OX2188425AC63CCD33F OX90C929DD67D3678472EE 2, 4, 5, 6, 8

OX2454FEF2819CFDFE8 OX9E71576A5F36051743D5 6, 7

OX04D00A4F9785AC8C4 OX8DCA7A16BF435CE5940B 5

OX37FE4B0255D1D295C OXD70079FAE0F0308EC206 4, 6, 7, 8

OX53CD508F74BBC7DBE OXC37E2A7F2F8164D022BB 5, 7, 8

OX048DAFF69510A4B0E OX3A1A19897D5D77691BDB 5

Continued on next page
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Table 8 – Continued from previous page

n Key Variables Key Constant IV Constant
Monomial
Degrees

10 1, 4, 22, 38, 42, 44, 53, 56, 61, 78

OX4708A09334FCAFE4F OX4A4C60F2FECB3B1FFA4F 2, 3, 5

OX4559C324D7A96E402 OX76093CA6A6820F188476 6

OX11CCD131147B71B01 OX82C85493CE4525CC267A 4, 7

OX43C5AE65F459310FF OXE29F6C5FF9B122017D55 6

OX074D96A9360193375 OXFA274E2AFE2E68F3ECE6 6

OX073A6C0377AF88B83 OX6351165578DB3B77F014 3, 5

OX11D7C2096469B8D59 OX85164E66AB350C5BCD85 2

20
0, 1, 9, 10, 14, 19, 27, 29, 41, 42,

52, 55, 62, 64, 68, 69, 71, 75, 78, 79

OXCD8AC4B29BEE0B1 OX1DFF5B9FFE4363C2F1A3 2, 5, 8, 13, 17

OX6725535534737CA OXDDAE21B901422A1643A 8, 12, 15, 16, 17

OXC481FD7BC1F523 OXC37057969DFB005C79DC 5, 6, 8, 9, 14

OXDF7305B0CFDB228 OXC9C17DF5198908297669 4, 6, 8, 17, 18

OXE8EF47A657A1A10 OX47B07462C84600BBD4C3 8, 12, 17

OX3480FFC0AD084D6 OXF51C70E932C18D17D41 4, 6, 9, 14, 15

OXF79DC891384AFF0 OXDDAF2C635F1725E5722C 2, 3, 5, 11, 15, 17

OX63CBCE13DFA0AFF OXC314A7271C748FEB77B 3, 11, 15

OX80A26F93FFE786E OX49025F652E977970AAA3 3, 4, 5, 6, 9, 14

OX99997304FBA97AB OX91A0123D835369D66539 3, 10, 11

OX1438B4C6E410610 OXEC881E225AE17BE12D06 2, 6, 7, 9, 16

OX2B8619E6B23FD69 OXF24C75F66F5957352674 10, 13

OX3907E66406C1230 OXCC4F643389D174E09308 9, 11, 12, 17

OX8DC9AD07E1DD5B7 OX6F925A43AABE3589016F 2, 9, 18

OX1C2904C43FF6577 OXE73A4739E4C117D70E8E 7, 11, 12, 13, 16, 17

OX2E93E577A837AAC OXF50C2B06C5B100F1D712 2, 3, 5, 13, 14

OXFDAFFE872B1ECA6 OX63F0791A5BD92EA49167 2, 5, 7, 10, 15

OX1B3537B58870F55 OXA33A411FC4173976088F 2, 3, 5, 8, 9, 10, 14, 15, 18

OX1E15EFE0723A1A0 OXAFF45320480C32FE05AD 2, 6, 11, 12, 13, 14, 15, 17

OX137AD462B48819D OXECFE45F642EA682545D6 7, 10, 17

OX94252897FEBA OX40B53BED60BA2A4EF7BD 7, 10, 11

OX2EEDD3E63910450 OX33953B8FBB3E5DB89240 6, 7, 17

OX7E51F8E40591536 OXB9C6CEF795453064BE6 9, 10, 14, 15, 17

OXD241FF6460C6208 OX5C725E6A96F9353ECCE8 2, 5, 12, 14, 18

OX895517354CC7691 OX9099444B625C731D4A9F 4, 13

OX18093FF2EA21B89 OX3627A654C272E098ABA 8, 15, 17

OX69219DE1A75C6B5 OX59FB6A44546208BBA473 5, 8, 9, 12, 13, 15

OX8CA5215750A80AE OXBBFE302CAEC030A95C66 2, 7, 11, 18

OX48F6A050FA29FD4 OXF13127F0DE9243B0AA33 10, 12

OXA869C2C7AE9EEDD OXFC4D4C6DE13E62F8530E 2, 6, 7

OX54D805626D001BA OXCC3F38A3216216E4DD16 10, 15

OXFF859A14E90D2D3 OX2AC86B44BBEF20B3A8EB 3

OX92E4EE44F4AA9B0 OXB2E35370E80D3FA438FE 5, 7, 8, 9, 10, 11, 12, 14

OXC906517717370E8 OX407C62FEAAD57DE22435 6, 8, 9, 15

Continued on next page
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Table 8 – Continued from previous page

n Key Variables Key Constant IV Constant
Monomial
Degrees

20
0, 1, 9, 10, 14, 19, 27, 29, 41, 42,

52, 55, 62, 64, 68, 69, 71, 75, 78, 79

OX81ABA2F10E414F1 OXD8DC3E5436B30D553DFF 13, 15

OX5E2587E52504105 OX492770685C260EB94076 3, 4, 5, 7, 9, 11, 14

OX66BE1B647D74852 OXE2B64E025081086192F3 2, 4, 5, 7, 8, 11, 13

OXC987FF2679818EA OXECBC1922F4E82FE0E298 3, 9, 14, 15, 16

OX399995668AA5766 OXADDE1B907E417C75C073 9, 18

OXA01F4042A39D2AF OXB42E343741AE2885A4B8 8, 10, 11, 15, 16

OXEB000173340180D OX9D4811B44D956C1C4122 9, 10

OX6FEDB601C5D0F7 OXACF51C7A59AC427CBA18 2, 4, 13, 14, 16, 17, 18

OX349068A2D3BE11B OXF51A7B67A45C5173EDB0 2, 6, 9, 10, 11, 12

OX9904566610C1359 OX5C921B727602478B4F1F 2, 11, 13, 18

OX631BFA24A283F98 OX8BEE5BDF986177DEFCB7 2, 4, 7, 8, 14, 15, 17

OX41B6D6E060B45 OXF4301269A0A373516F83 4, 6, 7, 9, 15

OX6AE3E77490E6D0B OXED4B6FCC7E5B1FFAA681 2, 6, 12, 15, 17

OXF9BB1A903D2B55A OXBEFF617BF05E74ED8172 6, 9, 11, 18

OXADB103911781696 OX78001622345E7535AF89 2, 3, 10, 12, 13, 14

OXD4BAF7074479E09 OX3CB7239F46CD1A18C135 5, 6, 13, 16, 18

OX31C341E7D2823C0 OX44E6375DA9C323B5EFCF 15, 16, 17

OX5A4644E0DCF37F1 OXAFE71BE0360E0C918B9C 3, 9, 13

OXBCF4D6769BCEFB OX6D344C7B4AC745BC07FC 10, 11, 12, 18

OXD989E1257E60721 OX85F9933760D63491E6D 2, 8, 13, 18

OXFE4EC2B5DF70C87 OX7E0D7707ABF24E5811D8 4, 7, 8, 10, 11,14, 17

OX6BB3225B97D099 OX5BD374B78F0F10E1F552 6

OX3666DCC1529A055 OX998A7DC1F1F94C9CAFB0 3, 9

OXAA07D7C6F262C91 OX4F821468B1891D2AD371 2, 3, 4, 5, 7, 12

OXCDB760C050E0196 OX2FDE16E5A5517466E581 10, 16, 18

OX748AA0B4C4431F6 OX6BB3415153E252D74428 9, 17

OX82641E96DDFE210 OXA045545ADF754FE49440 4, 12, 13, 16, 17

30

7, 15, 20, 21, 22, 26, 29, 30, 32, 33,
34, 41, 42, 49, 52, 54, 55, 56, 57, 59,
60, 63, 64, 65, 66, 72, 75, 76, 78, 79

OX2A3B12E5B3AAA OX9107625D556D1E48A3B5 3, 7, 13, 16, 17, 18, 20, 23, 25

OX11D3963CFE658 OXE9F618EC66862A0DEB4E 9, 12, 13, 14, 15, 18

OXF8534CF8A0C4 OXCEDD5CCE04F12DF6FA42 7, 9, 10, 14, 15, 18

OXE0D05859F75D OXDE0D17F6F4A032F4345A 2, 4, 5, 8, 13, 15, 16, 18

OX1767659F97A78 OXDB0E189FAA7523B7F38C 3, 5, 11, 12, 13, 16, 18, 19, 24

OX3C25D092EFEF9 OXEE0C5AA49BA676F04E05 4, 8, 10, 14, 15, 23, 24

OX358F63BC9862E OX2B8A12AF7C7513BFB545 4, 5, 8, 10, 14, 15, 16, 23, 25

OXCDCA70B4903D OX28094F93A84519B6030 2, 6, 12, 16, 21, 24, 26

OX186E1140CAE7A OXE5893222F3CF2AD91C84 3, 10, 17, 21, 24

OXF5633C0E0766 OX3A2161ED1A9A6C545C99 6, 8, 14, 16, 17, 18, 23, 25

OX3EF1C76CC3786 OX91441019D7A5F99C0E2 5, 8, 15, 16, 19, 22, 26, 27

OX1E3305EE66BF7 OX84052206580263DB7246 3, 9, 12, 14, 23

OX2BFEF0DB6F4F7 OX21D64C13071A1E0AA4DF 10, 14, 24, 28

OX22BE07DCB8255 OX14B48826D4E3EE8AA4A 10, 11, 13, 14, 17, 22, 24, 25

Continued on next page
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Table 8 – Continued from previous page

n Key Variables Key Constant IV Constant
Monomial
Degrees

30

7, 15, 20, 21, 22, 26, 29, 30, 32, 33,
34, 41, 42, 49, 52, 54, 55, 56, 57, 59,
60, 63, 64, 65, 66, 72, 75, 76, 78, 79

OX2C53E5CA904F8 OX4CF8318FB91A7BD1C2D0 4, 5, 8, 14, 17, 18, 19, 22, 24, 27

OX93726691E2D0 OX2C4C389C765606937AF4 6, 10, 15, 18, 19, 13, 16

OX3ED1D244BD2B1 OXBB5B758E8FB029E57666 2, 6, 7, 8, 15, 23, 25

OX2DF6C79AE5433 OX920D16223BEE4EB5822E 3, 4, 8, 9, 12, 13, 20

OX378C02C3FDF2B OX77681A2286592408308D 3, 10, 11, 13, 15, 22, 23, 26, 28

OX3B97E24D24147 OX694F280DCB2B108F1385 2, 9, 11, 12, 24, 28

OXC7294829B50A OXF303799BF930108F4B0F 4, 8, 11, 15, 16

OX378763FE6C96 OX2FBC5FB87C8125734B6E 2, 3, 6, 7, 8, 12, 16, 18, 23, 25, 28

OX3BECF5CC75818 OXC3B33304C9FD300B28F3 5, 12, 14, 17, 19, 21, 22, 23, 24

OX3049A0E2FB512 OX50986952B94273E8F099 9, 13, 16, 24, 26

OX313C07B28B127 OX30005763E511714B24C0 10, 11, 17, 18, 25, 26

OX613242AFA99E OX74996C308B57426EC1FF
4, 5, 8, 11, 12, 13, 15, 17, 19, 21, 22, 24, 25, 26,

27

OX5AE80FC1F4DB OXD5776A122F7F7B0049B1 3, 10, 15, 21, 23, 24

OX191766116C74F OX1E8B7D71045E0F56A4EA 4, 13, 17, 18, 24, 25


