
Remarks on the Pocklington and Padró-Sáez Cube Root

Algorithm in Fq

Geon Heo†, Seokhwan Choi†, Kwang Ho Lee†, Namhun Koo‡ and Soonhak Kwon‡

Gyeonggi Science High School for the Gifted, Suwon, S. Korea†

Dept. of Mathematics, Sungkyunkwan University, Suwon, S. Korea‡

shkwon@skku.edu

Abstract

We clarify and generalize a cube root algorithm in Fq proposed by Pocklington [1],
and later rediscovered by Padró and Sáez [2]. We correct some mistakes in [2] and give
a full generalization of the result in [1, 2] for the cube root algorithm. We also give
the comparison of the implementation of Pocklington and Padró-Sáez algorithm with two
most popular cube root algorithms, namely the Adleman-Manders-Miller algorithm and
the Cipolla-Lehmer algorithm. To the authors’ knowledge, our comparison is the first one
which compares three basic algorithms together.

Keywords : cube root algorithm, finite field, Pocklington algorithm, Adleman-Manders-
Miller algorithm, Cipolla-Lehmer algorithm

1 Introduction

Pocklington [1] proposed a new square and cube root algorithms in the finite field Fq with q a
prime, which are different from the two most well-known algorithms nowadays; the Adleman-
Manders-Miller algorithm [4, 5, 6, 7] and the Cipolla-Lehmer [8, 9, 10, 11] algorithm. Later,
the algorithm of Pocklington is rediscovered by Peralta [3] for the case of the square root and
by Padró and Sáez [2] for the case of the cube root.

Both Peralta and Padró-Sáez were unaware of the work of Pocklington at the time of
their results (See also [12]). Padró and Sáez, knowing the result of Peralta [3], gave a cubic
version of the Peralta square root algorithm, and their algorithm has a more general form (with
the estimation of the success probability) than the original version of Pocklington. However
it contains some flaws (in Proposition 3.5 of [2]) where some cases which cannot happen
are considered. Moreover, no available literature including the review of the paper [2] in
MathSciNet [13] notices this error.

Our aim in this paper is to correct the errors in the result of Padró-Sáez [2] and to present
a refinement of the cube root algorithm extending both the result of Pocklington and Padró-
Sáez. We also give the result of the software implementations (using SAGE) of the Pocklington
and Padró-Sáez algorithm and two other standard algorithms; the Adleman-Manders-Miller
algorithm and the Cipolla-Lehmer algorithm. To the authors’ knowledge, our comparison is
the first one ever which compares all three algorithms together. Our result shows that the
Pocklington and Padró-Sáez algorithm is consistently superior to the Cipolla-Lehmer algo-
rithm, and is also superior to the Adleman-manders-Miller algorithm when s is large, where s
is the largest integer satisfying 3s|q − 1.

1



2 Pocklington and Padró-Sáez Cube Root Method

Both Pocklington [1] and Padró-Sáez [2] considered the finite field Fq with prime q. However
their approaches are also good for the general finite field. Therefore we assume that q is a
power of a prime and let Fq be a finite field with q elements. Let a ̸= 0 ∈ Fq be a cubic residue
in Fq, i.e., there exists x ∈ Fq such that x3 = a.

Note that when q ≡ 2 (mod 3), a cube root of a is given as a
2q−1

3 , and when q ≡ 0 (mod 3)
(i.e., when q = 3s), then a cube root of a ∈ F3s is given as a3

s−1
. Therefore a cube root of

a can be found easily when q ≡ 0, 2 (mod 3). When q ≡ 1 (mod 3), there exists a primitive
cube root of unity ϵ ∈ Fq satisfying ϵ3 = 1. From now on, we will only consider the finite field
Fq with q ≡ 1 (mod 3), and a primitive cube root of unity ϵ is fixed throughout this paper.

For a given cube root x ∈ Fq of a, the other two cube roots of a are given as ϵx and ϵ2x,
and we have the polynomial identity

X3 − a = (X − x)(X − ϵx)(X − ϵ2x) ∈ Fq[X].

We also have the following isomorphism of rings

Fq[X]/⟨X3 − a⟩ ∼= Fq × Fq × Fq, (1)

where the isomorphism is given as

φ : Fq[X]/⟨X3 − a⟩ −→ Fq × Fq × Fq

α+ βX + γX2 7→ (α+ βx+ γx2, α+ βϵx+ γϵ2x2, α+ βϵ2x+ γϵx2) (2)

For a detailed explanation, see [2]. We also need the norm of z = α+βX+γX2 ∈ Fq[X]/⟨X3−
a⟩, N(z), defined as the product of all the conjugates of z,

N(z) = zz̄ ¯̄z ∈ Fq,

where z̄ = α+ βϵX + γϵ2X2. Then the following is well-known;

N(z) = (α+ βX + γX2)(α+ βϵX + γϵ2X2)(α+ βϵ2X + γϵX2)

= (α+ βx+ γx2)(α+ βϵx+ γϵ2x2)(α+ βϵ2x+ γϵx2) (3)

Define the set of invertible elements as F×
q and (Fq[X]/⟨X3−a⟩)×. Then from the equations

(2) and (3), we have
N(z) ̸= 0⇐⇒ φ(z) ∈ F×

q × F×
q × F×

q ,

which implies that we also have the isomorphism between the sets of invertible elements;

(Fq[X]/⟨X3 − a⟩)× ∼= F×
q × F×

q × F×
q (4)

For a given z = α+ βX + γX2 ∈ Fq[X]/⟨X3 − a⟩, the norm of z is the determinant of the
linear transformation ℓz : Fq[X]/⟨X3 − a⟩ −→ Fq[X]/⟨X3 − a⟩ with ℓz(w) = wz, and it can be
computed as follows.

Lemma 1. One has

N(z) =

∣∣∣∣∣∣
α β γ
aγ α β
aβ aγ α

∣∣∣∣∣∣ = α3 + aβ3 + a2γ3 − 3aαβγ. (5)

2



Proof. By expanding the product in the equation (3), and using the properties x3 = a and
1 + ϵ + ϵ2 = 0, one gets the right side of the equation (5), which can also be written as a
determinant form.

Note that the cost of computing N(z) is 11 multiplications in Fq and is negligible compared
with the cost of the exponentiation zt when t is large.

Now we are ready to present the original version of the Proposition given in [2].

Proposition 1 (Proposition 3.5 in [2]). Let a ̸= 0 ∈ Fq be a cubic residue and z = α+βX+γX2

be an element of Fq[X]/⟨X3 − a⟩ where at least two of the coefficients α, β and γ are nonzero.
Then

(1) If z3 = α′ with α′ ∈ F×
q , then

(1a) if β and γ are nonzero, then 3
√
a = α

β ,

(1b) if β = 0 and α, γ are nonzero, then 3
√
a = 1

a(
α
γ )

2,

(1c) if γ = 0 and α, β are nonzero, then 3
√
a = −α

β ,

(2) If z3 = β′X with β′ ∈ F×
q , then

3
√
a = N(z)

β′

(3) If z3 = γ′X2 with γ′ ∈ F×
q , then

3
√
a = N(z)2

γ′2a

3 New Refined Algorithm

As a result of the various mathematical softwares (such as MAPLE and SAGE) implemen-
tations, we found out that the cases (1b) and (1c) of Proposition 3.5 in [2] never appear in
practice. We also found out that the cases (2) and (3) do happen only when q ≡ 1 (mod 9).
These contradicting implementation results can be explained rigorously by the following math-
ematical analysis.

Lemma 2. Assuming the same conditions in Proposition 3.5 of [2],

(1) The cases (1b) and (1c) cannot happen. In other words, the assumption of (1b) [β = 0 and
α, γ are nonzero] or the assumption of (1c) [γ = 0 and α, β are nonzero] imply z3 ̸∈ Fq.

(2) The cases (2) and (3) do happen only when q ≡ 1 (mod 9).

Proof. (1) Our proof relies on the following identity in Fq[X]/⟨X3 − a⟩,

z3 = (α+ βX + γX2)3

= (α3 + aβ3 + a2γ3 + 6aαβγ) + 3(αγ2a+ β2γa+ α2β)X + 3(α2γ + αβ2 + βγ2a)X2. (6)

From the above identity, letting β = 0, one has

z3 = (α+ γX2)3 = α3 + γ3a2 + 3αγ2aX + 3α2γX2. (7)

Therefore α ̸= 0, γ ̸= 0 implies z3 /∈ Fq, which contradicts the assumption of (1) of Proposition
3.5 saying z3 = α′ ∈ Fq. In the same way, letting γ = 0 in the equation (6), we have

z3 = (α+ βX)3 = α3 + β3a+ 3α2βX + 3αβ2X2. (8)

3



Therefore α ̸= 0, β ̸= 0 implies z3 /∈ Fq, which also contradicts the assumption of (1) of
Proposition 3.5 in [2].

(2) Now we will show that the cases (2) and (3) of Proposition 3.5 can happen only when
q ≡ 1 (mod 9). Since q ≡ 1 (mod 3), we may write

q = 3(3k +m) + 1 = 9k + 3m+ 1, for some k ∈ Z and m ∈ {0, 1, 2}.

From the isomorphism in the equation (4), we have zq−1 = 1 for all z ∈ (Fq[X]/⟨X3 − a⟩)×.
Therefore the case (2) z3 = β′X implies that

1 = zq−1 = (z3)
q−1
3 = (β′X)3k+m = (β′)3k+makXm ∈ Fq.

Consequently we get m = 0 and q = 9k + 1. In the same way, the case (3) z3 = γ′X2 implies
that

1 = zq−1 = (z3)
q−1
3 = (γ′X2)3k+m = (γ′)3k+ma2kX2m ∈ Fq.

Since the possible values of X2m are 1, X2, X4 = aX, we also get m = 0 and q = 9k + 1.

Because of this observation, Proposition 3.5 in [2] should be modified, and the corrected
and extended version is given here.

Proposition 2 (Corrected and Extended Version of Proposition 3.5 in [2]). Let a ̸= 0 ∈ Fq be
a cubic residue and let z = α+ βX + γX2 be a nonzero element of Fq[X]/⟨X3 − a⟩.

(1) If z3 = α′ with α′ ∈ F×
q where at least two of α, β, γ are nonzero, then all three α, β, γ

are nonzero and all three distinct cube roots of a are given as α
β ,

β
γ and aγ

α .

(2) If z3 = β′X or z3 = γ′X2 for some β′, γ′ ∈ F×
q , then all three α, β, γ are nonzero and

(2a) if z3 = β′X, then 3
√
a = −9aαβγ

β′ .

(2b) if z3 = γ′X2, then 3
√
a = − γ′

9αβγ .

Proof. (1) From the equations (7) and (8), we already showed that two nonzero coefficients
α, γ with β = 0 or α, β with γ = 0 produce z3 /∈ Fq. The remaining case where β, γ are nonzero
and α = 0 can be understood from the following identity derived from the equation (6),

z3 = (βX + γX2)3 = γ3a2 + β3a+ 3aβ2γX + 3aβγ2X2, (9)

which shows z3 /∈ Fq. Therefore, if at least two of α, β and γ are nonzero and if z3 ∈ Fq, then

one must have all nonzero α, β and γ. The fact that a =
(
α
β

)3
is already shown both in [1]

and [2]. Since z3 = α′ ∈ Fq, from the equation (6), we get

αγ2a+ β2γa+ α2β = 0, (10)

α2γ + αβ2 + βγ2a = 0. (11)

Then γ×(10)−β×(11)= α(γ3a−β3) = 0, from which we get a =
(
β
γ

)3
. Also α×(10)−γa×(11)=

β(α3 − γ3a2) = 0, from which we have a =
(γa

α

)3
. Also notice that β×(10)−α×(11)=

4



γ(β3a − α3) = 0, which says a =
(
α
β

)3
. All three cube roots α

β ,
β
γ ,

aγ
α are different because

α
β + β

γ + aγ
α = 1

αβγ (α
2γ + αβ2 + βγ2a) = 0 from the equation (11).

(2) In view of Lemma 1, the constant term of the equation (6) is N(z)+ 9aαβγ. Therefore
one has N(z) = −9aαβγ if z3 = β′X or z3 = γ′X2. For the case (2a), by taking norm to

β′X = z3, we get β′3a = N(z)3 = (−9aαβγ)3 and thus a =
(
−9aαβγ

β′

)3
. For the case (2b),

by taking norm to z3X = γ′a, we get N(z)3a = γ′3a3 and thus a =
(
− γ′

9αβγ

)3
. Note that

αβγ ̸= 0, because one gets a = 0 if αβγ = 0.

The fact β
γ is a root of X3 − a = 0 is also noticed in [1], but the fact that aγ

α is the other

root of X3−a = 0 different from α
β and β

γ are not mentioned in both [1] and [2]. Also note that
computing aαβγ requires 3 multiplications while computing N(z) requires 11 multiplications.

Proposition 3. Let q be a prime power with q−1 = 3st and gcd(3, t) = 1. Let 0 ≤ m ≤ s−1.
Then the probability that a randomly chosen invertible z ∈ Fq[X]/⟨X3 − a⟩ satisfies z3

mt =
α′ + β′X + γ′X2 with exactly 2 zero coefficients is 1

32s−2m−1 .

Proof. We have to find the probability that z3
mt = α′ or z3

mt = β′X or = γ′X2. Note that
these three cases are independent cases.
Case 1. z3

mt = α′: Due to the isomorphism in the equation (4), we may assume φ(z) =
(a, b, c) ∈ F×

q × F×
q × F×

q and (α′, α′, α′) = φ(z3
mt) = φ(z)3

mt = (a3
mt, b3

mt, c3
mt). Thus from

a3
mt = b3

mt = c3
mt ∈ F×

q , we get
(
b
a

)3mt
= 1 and

(
c
a

)3mt
= 1. Therefore such (a, b, c) can be

parameterized as (a, b, c) = (a, aζ, aζ ′) with a ∈ F×
q and ζ, ζ ′ ∈ C, where C is a unique (cyclic)

subgroup of order 3mt in F×
q . Consequently the number of such (a, b, c) is (q − 1)32mt2.

Case 2. z3
mt = β′X: In the same way, we may assume φ(z) = (a, b, c) ∈ F×

q × F×
q × F×

q

and (β′x, β′xϵ, β′xϵ2) = φ(z3
mt) = φ(z)3

mt = (a3
mt, b3

mt, c3
mt). Thus we get

(
b
a

)3mt
= ϵ and(

c
a

)3mt
= ϵ2. Since m + 1 ≤ s (i.e., 3m+1t|q − 1 = 3st), there is a primitive 3m+1t-th root of

unity µ such that either µ3mt = ϵ or ϵ2. Therefore letting (θ, θ′) = (µ, µ2) or (µ2, µ), one has

(θ3
mt, θ′3

mt) = (ϵ, ϵ2) which implies
(

b
aθ

)3mt
= 1 and

(
c
aθ′

)3mt
= 1. Similarly as in the Case 1,

such a, b, c can be parimetrized as (a, b, c) = (a, aθζ, aθ′ζ ′) where a ∈ F×
q , ζ, ζ

′ ∈ C, and the
number of such (a, b, c) is also (q − 1)32mt2.

Case 3. z3
mt = γ′X2: This case can be dealt in the same manner with the Case 2 so that the

number of possible cases of z is (q − 1)32mt2.

Therefore the desired probability is 3·32mt2(q−1)
(q−1)3

= 3·32mt2

(q−1)2
= 3·32mt2

32st2
= 1

32s−2m−1 .

As a special case, when m = 0, we get the probability that zt = α′ or β′X or γ′X2 as 1
32s−1 ,

which is the result of Proposition 3.7 in [2] . Also note that this result does not contradict
Lemma 2–(2), because zt = β′X, γ′X2 are possible since 3 ̸ |t.

Our observations on Proposition 2 and 3 lead to a cube root algorithm shown in Algorithm
1, whose complexity is O(log3 q) since the cost of the algorithm is several exponentiations in
Fq. In the algorithm, we try random invertible z ∈ Fq[X]/⟨X3−a⟩ until we find zt with at least
two nonzero coefficients. Then, we apply repeated cubings to zt until we have z3

mt ∈ Fq or
Fq ·X or Fq ·X2 for some 1 ≤ m ≤ s. Note that, since z3

st = zq−1 = 1 when z is invertible, such
m always exists once we have zt with at least two nonzero coefficients. Because of Proposition
3, the probability of having only one nonzero coefficient in Step 6 is 1

32s−1 , and the probability
of finding a cube root exactly after m-th iteration of the while-loop is 1

32s−(2m+1) − 1
32s−(2m−1)

5



for 1 ≤ m ≤ s − 1. The probability of finding a cube root after full iterations (i.e., after s-th
iteration) is 2

3 . Therefore the expected number of iterations of the while-loop is

s−1∑
m=1

m

(
1

32s−(2m+1)
− 1

32s−(2m−1)

)
+ s

(
1− 1

3

)
= s−

s∑
m=1

1

32m−1
= s− 3

8

(
1− 1

9s

)
.

Algorithm 1 Refined Pocklington and Padró-Sáez Cube Root Algorithm

Input : A cube a in Fq with q − 1 = 3st, gcd(3, t) = 1

Output : x satisfying x3 = a in Fq

1: if q ≡ 4 (mod 9) then x← a
2q+1

9

2: if q ≡ 7 (mod 9) then x← a
q+2
9

3: Choose random α, β, γ ∈ Fq and let z := α+ βX + γX2 ∈ Fq[X]/⟨X3 − a⟩
4: if N(z) = 0 then go to STEP 3
5: z ← zt

6: if α = β = 0 or β = γ = 0 or γ = α = 0 then go to STEP 3
7: while αβ ̸= 0 or βγ ̸= 0 or γα ̸= 0 do //while at least two of α, β, γ are nonzero//
8: z0 := α0 + β0X + γ0X

2 ← z (i.e., α0 ← α, β0 ← β, γ0 ← γ)
9: z ← z3

10: if β = γ = 0 then x← α0
β0

11: else if γ = α = 0 then x← −9aα0β0γ0
β

12: else then x← − γ
9α0β0γ0

13: return x

In the given algorithm, the probability that a randomly chosen z ∈ Fq[X]/⟨X3 − a⟩ is

invertible (i.e., N(z) ̸= 0) is
(
1− 1

q

)3
. Therefore when the finite field Fq is very large, one may

safely assume N(z) ̸= 0, and thus the STEP 4 in the algorithm may be omitted with error

probability 1−
(
1− 1

q

)3
≈ 3

q . In the event of the extremely unlucky case N(z) = 0, omitting

the STEP 4 gives endless while-loop because one has zq−1 ̸= 1 if and only if N(z) = 0. Any
way, the computational cost of the STEP 4 is just 11 multiplications in Fq and is negligible
compared with the total cost of the algorithm. Also, the probability that one may go back to
the STEP 3 in the STEP 6 is 1

32s−1 ≤ 1
27 , since one reaches the STEP 6 only if s ≥ 2 (i.e., if

q ≡ 1 (mod 9)).

4 Comparison Results

We compared our proposed algorithm with two most well-known cube root algorithms in
the finite field Fq; the AMM (Adleman-Manders-Miller) algorithm [4, 5, 6, 7] and the CM
(Cipolla-Lehmer) algorithm [8, 9, 10, 11]. The complexity of the AMM cube root algorithm is
O(log3 q + s2 log2 q) where q − 1 = 3st with gcd(3, t) = 1, and the complexity of the CM cube
root algorithm is O(log3 q) which is same to the Pocklington and Padró-Sáez algorithm.

We used a standard version in [7] for the AMM implementation. For the Cipolla-Lehmer
implementation, we used two algorithms; the algorithm of H. C. Williams [10] and the algorithm
of K. S. Williams and K. Hardy [11]. The algorithm in [10] is a generalization to the r-
th root extraction (with the recurrence relation technique) of the original Cipolla-Lehmer

6



Table 1: Running time (in seconds) for cube root computation with p ≈ 22000

s 50 100 150 200 250 300

AMM [6, 7] 0.082 0.148 0.297 0.498 0.781 1.084

CM [10] 0.495 0.495 0.498 0.497 0.488 0.492

CM [11] 0.282 0.284 0.284 0.285 0.276 0.282

Proposed Alg. 0.236 0.235 0.235 0.236 0.234 0.233

Table 2: Running time (in seconds) for cube root computation with p ≈ 23000

s 50 100 150 200 250 300

AMM [6, 7] 0.150 0.292 0.519 0.842 1.294 1.746

CM [10] 1.363 1.350 1.395 1.382 1.352 1.465

CM [11] 0.756 0.744 0.790 0.778 0.750 0.796

Proposed Alg. 0.655 0.655 0.654 0.651 0.651 0.648

square root algorithm [8, 9], and the algorithm in [11], a refinement of the algorithm in [10],
has a better complexity for small values of r. Tables 1 and 2 show the comparison of the
implementation results with SAGE of the above mentioned 3 algorithms and our proposed
one. The implementation was performed on Intel Core i7-4770 3.40GHz with 8GB memory.

For convenience, we used prime fields Fp with two different size of primes p: 2000 and
3000 bits. Average timings of the cube root computations for 5 different inputs of cubic rsidue
a ∈ Fp are computed for those cases s = 50, 100, 150, · · · , etc. As one can see in the tables,
the timings of the AMM increase drastically as s becomes larger, while the timings of the CM
algorithms and our algorithm are independent of s. The tables also show that our proposed
algorithm is consistently faster than the Cipolla-Lehmer. For example, when p ≈ 23000, the
average timing of the Cipolla-Lehmer in [11] is 0.769 (seconds) which are 20% slower than the
average timing 0.652 (seconds) of the proposed algorithm.

5 Conclusion

We corrected some errors in the Pocklington and Padró-Sáez cube root algorithm in [2], and
proposed a refined algorithm. The implementation result shows that the proposed algorithm
is faster than the Adleman-Manders-Miller algorithm for large values of s, and is also con-
sistintly faster than the Cipolla-Lehmer algorithm. The difference between the Pocklington
and Padró-Sáez algorithm and the Cipolla-Lehmer algorithm is that, though they have the
same complexity, the Pocklington and Padró-Sáez algorithm relies on the ring arithmetic in
Fq[X]/⟨X3 − a⟩ which is isomorphic to Fq × Fq × Fq, while the Cipolla-Lehmer algorithm re-
lies on the arithmetic in the extension filed Fq3 . Therefore, to find a cube root, essentially
one only needs to compute zq−1 in the Pocklington and Padró-Sáez while one has to compute

z
q3−1
q−1 = zq

2+q+1 in the Cipolla-Lehmer [10, 11]. This difference of the exponents (of z) explains
the superior performance of the Pocklington and Padró-Sáez over the Cipolla-Lehmer. For the
quadratic case, there is no such difference, i.e., zq−1 in the Pocklington and Padró-Sáez versus

7



zq+1 in the Cipolla-Lehmer. We finally remark that, as far as we know, our implementation of
the 3 major algorithms (the Adleman-Manders-Miller, the Cipolla-Lehmer and the Pocklington
and Padró-Sáez) is the first one available in the literature.

References

[1] H. C. Pocklington, “The direct solution of the quadratic and cubic binomial congruences
with prime moduli”, Proceedings of the Cambridge Philosophical Society, vol. 19, pp. 57-
59, 1917.

[2] C. Padró and G. Sáez, “Taking cube roots in Zm”, Applied Mathematics Letters, vol. 15,
pp. 703-708, 2002.

[3] R. C. Peralta, “A simple and fast probabilistic algorithm for computing square roots
modulo a prime number”, IEEE Transactions on Information Theory, vol. 32, pp. 846-
847, 1986.

[4] D. Shanks “Five number-theoretic Algorithms,” Proceeding of Second Manitoba Confer-
ence of Numerical Mathematics, pp.51-70, 1972.

[5] A. Tonelli, “Bemerkung über die Auflösung Quadratischer Congruenzen”, Göttinger
Nachrichten, pp.344-346, 1891.

[6] L. Adleman, K. Manders and G. Miller, “On taking roots in finite fields”, Proc. 18th IEEE
Symposium on Foundations on Computer Science (FOCS), pp. 175-177, 1977.

[7] Z. Cao, Q. Sha, and X. Fan, “Adlemen-Manders-Miller root extraction method revisited”,
preprint, available at http://arxiv.org/abs/1111.4877, 2011.

[8] M. Cipolla, “Un metodo per la risolutione della congruenza di secondo grado”, Rendiconto
dell‘Accademia Scienze Fisiche e Matematiche, Napoli, Ser. 3, vol. IX, pp. 154-163, 1903.

[9] D. H. Lehmer, “Computer technology applied to the theory of numbers”, In Studies in
Number Theory, Prentice-Hall Enblewood Cliffs, NJ, pp.117-151, 1969.

[10] H. C. Williams, “Some algorithm for solving xq ≡ N (mod p)”, Proc. 3rd Southeastern
Conf. on Combinatorics, Graph Theory, and Computing, Florida Atlantic University, pp.
451-462, 1972.

[11] K. S. Williams and K. Hardy, “A refinement of H. C. Williams’ qth root algorithm”,
Mathematics of Computation, Vol.61, pp. 475-483, 1993.

[12] D. Bernstein, “Faster square roots in annoying finite fields”, preprint, available at
http://cr.yp.to/papers/sqroot.pdf.

[13] American Mathematical Society, “MathSciNet Review”, available at
http://www.ams.org/mathscinet.

8


