Remarks on the Pocklington and Padró-Sáez Cube Root Algorithm in \mathbb{F}_q

Geon Heo[†], Seokhwan Choi[†], Kwang Ho Lee[†], Namhun Koo[‡] and Soonhak Kwon[‡] Gyeonggi Science High School for the Gifted, Suwon, S. Korea[†] Dept. of Mathematics, Sungkyunkwan University, Suwon, S. Korea[‡] shkwon@skku.edu

Abstract

We clarify and generalize a cube root algorithm in \mathbb{F}_q proposed by Pocklington [1], and later rediscovered by Padró and Sáez [2]. We correct some mistakes in [2] and give a full generalization of the result in [1, 2] for the cube root algorithm. We also give the comparison of the implementation of Pocklington and Padró-Sáez algorithm with two most popular cube root algorithms, namely the Adleman-Manders-Miller algorithm and the Cipolla-Lehmer algorithm. To the authors' knowledge, our comparison is the first one which compares three basic algorithms together.

Keywords : cube root algorithm, finite field, Pocklington algorithm, Adleman-Manders-Miller algorithm, Cipolla-Lehmer algorithm

1 Introduction

Pocklington [1] proposed a new square and cube root algorithms in the finite field \mathbb{F}_q with q a prime, which are different from the two most well-known algorithms nowadays; the Adleman-Manders-Miller algorithm [4, 5, 6, 7] and the Cipolla-Lehmer [8, 9, 10, 11] algorithm. Later, the algorithm of Pocklington is rediscovered by Peralta [3] for the case of the square root and by Padró and Sáez [2] for the case of the cube root.

Both Peralta and Padró-Sáez were unaware of the work of Pocklington at the time of their results (See also [12]). Padró and Sáez, knowing the result of Peralta [3], gave a cubic version of the Peralta square root algorithm, and their algorithm has a more general form (with the estimation of the success probability) than the original version of Pocklington. However it contains some flaws (in Proposition 3.5 of [2]) where some cases which cannot happen are considered. Moreover, no available literature including the review of the paper [2] in MathSciNet [13] notices this error.

Our aim in this paper is to correct the errors in the result of Padró-Sáez [2] and to present a refinement of the cube root algorithm extending both the result of Pocklington and Padró-Sáez. We also give the result of the software implementations (using SAGE) of the Pocklington and Padró-Sáez algorithm and two other standard algorithms; the Adleman-Manders-Miller algorithm and the Cipolla-Lehmer algorithm. To the authors' knowledge, our comparison is the first one ever which compares all three algorithms together. Our result shows that the Pocklington and Padró-Sáez algorithm is consistently superior to the Cipolla-Lehmer algorithm, and is also superior to the Adleman-manders-Miller algorithm when s is large, where s is the largest integer satisfying $3^s|q-1$.

2 Pocklington and Padró-Sáez Cube Root Method

Both Pocklington [1] and Padró-Sáez [2] considered the finite field \mathbb{F}_q with prime q. However their approaches are also good for the general finite field. Therefore we assume that q is a power of a prime and let \mathbb{F}_q be a finite field with q elements. Let $a \neq 0 \in \mathbb{F}_q$ be a cubic residue in \mathbb{F}_q , i.e., there exists $x \in \mathbb{F}_q$ such that $x^3 = a$.

Note that when $q \equiv 2 \pmod{3}$, a cube root of a is given as $a^{\frac{2q-1}{3}}$, and when $q \equiv 0 \pmod{3}$ (i.e., when $q \equiv 3^s$), then a cube root of $a \in \mathbb{F}_{3^s}$ is given as $a^{3^{s-1}}$. Therefore a cube root of a can be found easily when $q \equiv 0, 2 \pmod{3}$. When $q \equiv 1 \pmod{3}$, there exists a primitive cube root of unity $\epsilon \in \mathbb{F}_q$ satisfying $\epsilon^3 = 1$. From now on, we will only consider the finite field \mathbb{F}_q with $q \equiv 1 \pmod{3}$, and a primitive cube root of unity ϵ is fixed throughout this paper.

For a given cube root $x \in \mathbb{F}_q$ of a, the other two cube roots of a are given as ϵx and $\epsilon^2 x$, and we have the polynomial identity

$$X^{3} - a = (X - x)(X - \epsilon x)(X - \epsilon^{2}x) \in \mathbb{F}_{q}[X].$$

We also have the following isomorphism of rings

$$\mathbb{F}_q[X]/\langle X^3 - a \rangle \cong \mathbb{F}_q \times \mathbb{F}_q \times \mathbb{F}_q, \tag{1}$$

where the isomorphism is given as

$$\varphi: \mathbb{F}_q[X]/\langle X^3 - a \rangle \longrightarrow \qquad \mathbb{F}_q \times \mathbb{F}_q \times \mathbb{F}_q \\ \alpha + \beta X + \gamma X^2 \mapsto (\alpha + \beta x + \gamma x^2, \alpha + \beta \epsilon x + \gamma \epsilon^2 x^2, \alpha + \beta \epsilon^2 x + \gamma \epsilon x^2)$$
(2)

For a detailed explanation, see [2]. We also need the norm of $z = \alpha + \beta X + \gamma X^2 \in \mathbb{F}_q[X]/\langle X^3 - a \rangle$, N(z), defined as the product of all the conjugates of z,

$$N(z) = z\bar{z}\bar{\bar{z}} \in \mathbb{F}_q$$

where $\bar{z} = \alpha + \beta \epsilon X + \gamma \epsilon^2 X^2$. Then the following is well-known;

$$N(z) = (\alpha + \beta X + \gamma X^2)(\alpha + \beta \epsilon X + \gamma \epsilon^2 X^2)(\alpha + \beta \epsilon^2 X + \gamma \epsilon X^2)$$

= $(\alpha + \beta x + \gamma x^2)(\alpha + \beta \epsilon x + \gamma \epsilon^2 x^2)(\alpha + \beta \epsilon^2 x + \gamma \epsilon x^2)$ (3)

Define the set of invertible elements as \mathbb{F}_q^{\times} and $(\mathbb{F}_q[X]/\langle X^3-a\rangle)^{\times}$. Then from the equations (2) and (3), we have

$$N(z) \neq 0 \Longleftrightarrow \varphi(z) \in \mathbb{F}_q^{\times} \times \mathbb{F}_q^{\times} \times \mathbb{F}_q^{\times},$$

which implies that we also have the isomorphism between the sets of invertible elements;

$$(\mathbb{F}_q[X]/\langle X^3 - a \rangle)^{\times} \cong \mathbb{F}_q^{\times} \times \mathbb{F}_q^{\times} \times \mathbb{F}_q^{\times}$$
(4)

For a given $z = \alpha + \beta X + \gamma X^2 \in \mathbb{F}_q[X]/\langle X^3 - a \rangle$, the norm of z is the determinant of the linear transformation $\ell_z : \mathbb{F}_q[X]/\langle X^3 - a \rangle \longrightarrow \mathbb{F}_q[X]/\langle X^3 - a \rangle$ with $\ell_z(w) = wz$, and it can be computed as follows.

Lemma 1. One has

$$N(z) = \begin{vmatrix} \alpha & \beta & \gamma \\ a\gamma & \alpha & \beta \\ a\beta & a\gamma & \alpha \end{vmatrix} = \alpha^3 + a\beta^3 + a^2\gamma^3 - 3a\alpha\beta\gamma.$$
(5)

Proof. By expanding the product in the equation (3), and using the properties $x^3 = a$ and $1 + \epsilon + \epsilon^2 = 0$, one gets the right side of the equation (5), which can also be written as a determinant form.

Note that the cost of computing N(z) is 11 multiplications in \mathbb{F}_q and is negligible compared with the cost of the exponentiation z^t when t is large.

Now we are ready to present the original version of the Proposition given in [2].

Proposition 1 (Proposition 3.5 in [2]). Let $a \neq 0 \in \mathbb{F}_q$ be a cubic residue and $z = \alpha + \beta X + \gamma X^2$ be an element of $\mathbb{F}_q[X]/\langle X^3 - a \rangle$ where at least two of the coefficients α, β and γ are nonzero. Then

- (1) If $z^3 = \alpha'$ with $\alpha' \in \mathbb{F}_q^{\times}$, then
 - (1a) if β and γ are nonzero, then $\sqrt[3]{a} = \frac{\alpha}{\beta}$,
 - (1b) if $\beta = 0$ and α, γ are nonzero, then $\sqrt[3]{a} = \frac{1}{a} (\frac{\alpha}{\gamma})^2$,
 - (1c) if $\gamma = 0$ and α, β are nonzero, then $\sqrt[3]{a} = -\frac{\alpha}{\beta}$,
- (2) If $z^3 = \beta' X$ with $\beta' \in \mathbb{F}_q^{\times}$, then $\sqrt[3]{a} = \frac{N(z)}{\beta'}$
- (3) If $z^3 = \gamma' X^2$ with $\gamma' \in \mathbb{F}_q^{\times}$, then $\sqrt[3]{a} = \frac{N(z)^2}{\gamma'^2 a}$

3 New Refined Algorithm

As a result of the various mathematical softwares (such as MAPLE and SAGE) implementations, we found out that the cases (1b) and (1c) of Proposition 3.5 in [2] never appear in practice. We also found out that the cases (2) and (3) do happen only when $q \equiv 1 \pmod{9}$. These contradicting implementation results can be explained rigorously by the following mathematical analysis.

Lemma 2. Assuming the same conditions in Proposition 3.5 of [2],

- (1) The cases (1b) and (1c) cannot happen. In other words, the assumption of (1b) $[\beta = 0 \text{ and } \alpha, \gamma \text{ are nonzero}]$ or the assumption of (1c) $[\gamma = 0 \text{ and } \alpha, \beta \text{ are nonzero}]$ imply $z^3 \notin \mathbb{F}_q$.
- (2) The cases (2) and (3) do happen only when $q \equiv 1 \pmod{9}$.

Proof. (1) Our proof relies on the following identity in $\mathbb{F}_q[X]/\langle X^3 - a \rangle$,

$$z^{3} = (\alpha + \beta X + \gamma X^{2})^{3}$$

= $(\alpha^{3} + a\beta^{3} + a^{2}\gamma^{3} + 6a\alpha\beta\gamma) + 3(\alpha\gamma^{2}a + \beta^{2}\gamma a + \alpha^{2}\beta)X + 3(\alpha^{2}\gamma + \alpha\beta^{2} + \beta\gamma^{2}a)X^{2}.$ (6)

From the above identity, letting $\beta = 0$, one has

$$z^{3} = (\alpha + \gamma X^{2})^{3} = \alpha^{3} + \gamma^{3}a^{2} + 3\alpha\gamma^{2}aX + 3\alpha^{2}\gamma X^{2}.$$
 (7)

Therefore $\alpha \neq 0, \gamma \neq 0$ implies $z^3 \notin \mathbb{F}_q$, which contradicts the assumption of (1) of Proposition 3.5 saying $z^3 = \alpha' \in \mathbb{F}_q$. In the same way, letting $\gamma = 0$ in the equation (6), we have

$$z^{3} = (\alpha + \beta X)^{3} = \alpha^{3} + \beta^{3}a + 3\alpha^{2}\beta X + 3\alpha\beta^{2}X^{2}.$$
 (8)

Therefore $\alpha \neq 0, \beta \neq 0$ implies $z^3 \notin \mathbb{F}_q$, which also contradicts the assumption of (1) of Proposition 3.5 in [2].

(2) Now we will show that the cases (2) and (3) of Proposition 3.5 can happen only when $q \equiv 1 \pmod{9}$. Since $q \equiv 1 \pmod{3}$, we may write

$$q = 3(3k + m) + 1 = 9k + 3m + 1$$
, for some $k \in \mathbb{Z}$ and $m \in \{0, 1, 2\}$.

From the isomorphism in the equation (4), we have $z^{q-1} = 1$ for all $z \in (\mathbb{F}_q[X]/\langle X^3 - a \rangle)^{\times}$. Therefore the case (2) $z^3 = \beta' X$ implies that

$$1 = z^{q-1} = (z^3)^{\frac{q-1}{3}} = (\beta'X)^{3k+m} = (\beta')^{3k+m} a^k X^m \in \mathbb{F}_q.$$

Consequently we get m = 0 and q = 9k + 1. In the same way, the case (3) $z^3 = \gamma' X^2$ implies that

$$1 = z^{q-1} = (z^3)^{\frac{q-1}{3}} = (\gamma' X^2)^{3k+m} = (\gamma')^{3k+m} a^{2k} X^{2m} \in \mathbb{F}_q.$$

Since the possible values of X^{2m} are $1, X^2, X^4 = aX$, we also get m = 0 and q = 9k + 1. \Box

Because of this observation, Proposition 3.5 in [2] should be modified, and the corrected and extended version is given here.

Proposition 2 (Corrected and Extended Version of Proposition 3.5 in [2]). Let $a \neq 0 \in \mathbb{F}_q$ be a cubic residue and let $z = \alpha + \beta X + \gamma X^2$ be a nonzero element of $\mathbb{F}_q[X]/\langle X^3 - a \rangle$.

- (1) If $z^3 = \alpha'$ with $\alpha' \in \mathbb{F}_q^{\times}$ where at least two of α, β, γ are nonzero, then all three α, β, γ are nonzero and all three distinct cube roots of a are given as $\frac{\alpha}{\beta}, \frac{\beta}{\gamma}$ and $\frac{a\gamma}{\alpha}$.
- (2) If $z^3 = \beta' X$ or $z^3 = \gamma' X^2$ for some $\beta', \gamma' \in \mathbb{F}_q^{\times}$, then all three α, β, γ are nonzero and

(2a) if
$$z^3 = \beta' X$$
, then $\sqrt[3]{a} = -\frac{9a\alpha\beta\gamma}{\beta'}$.
(2b) if $z^3 = \gamma' X^2$, then $\sqrt[3]{a} = -\frac{\gamma'}{9\alpha\beta\gamma}$.

Proof. (1) From the equations (7) and (8), we already showed that two nonzero coefficients α, γ with $\beta = 0$ or α, β with $\gamma = 0$ produce $z^3 \notin \mathbb{F}_q$. The remaining case where β, γ are nonzero and $\alpha = 0$ can be understood from the following identity derived from the equation (6),

$$z^{3} = (\beta X + \gamma X^{2})^{3} = \gamma^{3}a^{2} + \beta^{3}a + 3a\beta^{2}\gamma X + 3a\beta\gamma^{2}X^{2},$$
(9)

which shows $z^3 \notin \mathbb{F}_q$. Therefore, if at least two of α, β and γ are nonzero and if $z^3 \in \mathbb{F}_q$, then one must have all nonzero α, β and γ . The fact that $a = \left(\frac{\alpha}{\beta}\right)^3$ is already shown both in [1] and [2]. Since $z^3 = \alpha' \in \mathbb{F}_q$, from the equation (6), we get

$$\alpha \gamma^2 a + \beta^2 \gamma a + \alpha^2 \beta = 0, \tag{10}$$

$$\alpha^2 \gamma + \alpha \beta^2 + \beta \gamma^2 a = 0. \tag{11}$$

 $\gamma(\beta^3 a - \alpha^3) = 0$, which says $a = \left(\frac{\alpha}{\beta}\right)^3$. All three cube roots $\frac{\alpha}{\beta}, \frac{\beta}{\gamma}, \frac{a\gamma}{\alpha}$ are different because $\frac{\alpha}{\beta} + \frac{\beta}{\gamma} + \frac{a\gamma}{\alpha} = \frac{1}{\alpha\beta\gamma}(\alpha^2\gamma + \alpha\beta^2 + \beta\gamma^2a) = 0$ from the equation (11).

(2) In view of Lemma 1, the constant term of the equation (6) is $N(z) + 9a\alpha\beta\gamma$. Therefore one has $N(z) = -9a\alpha\beta\gamma$ if $z^3 = \beta'X$ or $z^3 = \gamma'X^2$. For the case (2a), by taking norm to $\beta'X = z^3$, we get $\beta'^3 a = N(z)^3 = (-9a\alpha\beta\gamma)^3$ and thus $a = \left(-\frac{9a\alpha\beta\gamma}{\beta'}\right)^3$. For the case (2b), by taking norm to $z^3X = \gamma'a$, we get $N(z)^3 a = \gamma'^3 a^3$ and thus $a = \left(-\frac{\gamma'}{9\alpha\beta\gamma}\right)^3$. Note that $\alpha\beta\gamma \neq 0$, because one gets a = 0 if $\alpha\beta\gamma = 0$.

The fact $\frac{\beta}{\gamma}$ is a root of $X^3 - a = 0$ is also noticed in [1], but the fact that $\frac{a\gamma}{\alpha}$ is the other root of $X^3 - a = 0$ different from $\frac{\alpha}{\beta}$ and $\frac{\beta}{\gamma}$ are not mentioned in both [1] and [2]. Also note that computing $a\alpha\beta\gamma$ requires 3 multiplications while computing N(z) requires 11 multiplications.

Proposition 3. Let q be a prime power with $q-1 = 3^s t$ and gcd(3,t) = 1. Let $0 \le m \le s-1$. Then the probability that a randomly chosen invertible $z \in \mathbb{F}_q[X]/\langle X^3 - a \rangle$ satisfies $z^{3^m t} = \alpha' + \beta' X + \gamma' X^2$ with exactly 2 zero coefficients is $\frac{1}{3^{2s-2m-1}}$.

Proof. We have to find the probability that $z^{3^m t} = \alpha'$ or $z^{3^m t} = \beta' X$ or $= \gamma' X^2$. Note that these three cases are independent cases.

these three cases are independent cases. Case 1. $z^{3^m t} = \alpha'$: Due to the isomorphism in the equation (4), we may assume $\varphi(z) = (a, b, c) \in \mathbb{F}_q^{\times} \times \mathbb{F}_q^{\times} \times \mathbb{F}_q^{\times}$ and $(\alpha', \alpha', \alpha') = \varphi(z^{3^m t}) = \varphi(z)^{3^m t} = (a^{3^m t}, b^{3^m t}, c^{3^m t})$. Thus from $a^{3^m t} = b^{3^m t} = c^{3^m t} \in \mathbb{F}_q^{\times}$, we get $(\frac{b}{a})^{3^m t} = 1$ and $(\frac{c}{a})^{3^m t} = 1$. Therefore such (a, b, c) can be parameterized as $(a, b, c) = (a, a\zeta, a\zeta')$ with $a \in \mathbb{F}_q^{\times}$ and $\zeta, \zeta' \in C$, where C is a unique (cyclic) subgroup of order $3^m t$ in \mathbb{F}_q^{\times} . Consequently the number of such (a, b, c) is $(q-1)3^{2^m t^2}$.

Case 2. $z^{3^m t} = \beta' X$: In the same way, we may assume $\varphi(z) = (a, b, c) \in \mathbb{F}_q^{\times} \times \mathbb{F}_q^{\times} \times \mathbb{F}_q^{\times}$ and $(\beta' x, \beta' x \epsilon, \beta' x \epsilon^2) = \varphi(z^{3^m t}) = \varphi(z)^{3^m t} = (a^{3^m t}, b^{3^m t}, c^{3^m t})$. Thus we get $\left(\frac{b}{a}\right)^{3^m t} = \epsilon$ and $\left(\frac{c}{a}\right)^{3^m t} = \epsilon^2$. Since $m + 1 \leq s$ (i.e., $3^{m+1}t|q-1=3^s t$), there is a primitive $3^{m+1}t$ -th root of unity μ such that either $\mu^{3^m t} = \epsilon$ or ϵ^2 . Therefore letting $(\theta, \theta') = (\mu, \mu^2)$ or (μ^2, μ) , one has $(\theta^{3^m t}, \theta'^{3^m t}) = (\epsilon, \epsilon^2)$ which implies $\left(\frac{b}{a\theta}\right)^{3^m t} = 1$ and $\left(\frac{c}{a\theta'}\right)^{3^m t} = 1$. Similarly as in the Case 1, such a, b, c can be parimetrized as $(a, b, c) = (a, a\theta\zeta, a\theta'\zeta')$ where $a \in \mathbb{F}_q^{\times}$, $\zeta, \zeta' \in C$, and the number of such (a, b, c) is also $(q-1)3^{2^m}t^2$.

Case 3. $z^{3^m t} = \gamma' X^2$: This case can be dealt in the same manner with the Case 2 so that the number of possible cases of z is $(q-1)3^{2m}t^2$.

Therefore the desired probability is
$$\frac{3 \cdot 3^{2m} t^2 (q-1)}{(q-1)^3} = \frac{3 \cdot 3^{2m} t^2}{(q-1)^2} = \frac{3 \cdot 3^{2m} t^2}{3^{2s} t^2} = \frac{1}{3^{2s-2m-1}}$$
.

As a special case, when m = 0, we get the probability that $z^t = \alpha'$ or $\beta' X$ or $\gamma' X^2$ as $\frac{1}{3^{2s-1}}$, which is the result of Proposition 3.7 in [2]. Also note that this result does not contradict Lemma 2–(2), because $z^t = \beta' X$, $\gamma' X^2$ are possible since 3 $\not| t$.

Our observations on Proposition 2 and 3 lead to a cube root algorithm shown in Algorithm 1, whose complexity is $O(\log^3 q)$ since the cost of the algorithm is several exponentiations in \mathbb{F}_q . In the algorithm, we try random invertible $z \in \mathbb{F}_q[X]/\langle X^3 - a \rangle$ until we find z^t with at least two nonzero coefficients. Then, we apply repeated cubings to z^t until we have $z^{3^m t} \in \mathbb{F}_q$ or $\mathbb{F}_q \cdot X$ or $\mathbb{F}_q \cdot X^2$ for some $1 \leq m \leq s$. Note that, since $z^{3^s t} = z^{q-1} = 1$ when z is invertible, such m always exists once we have z^t with at least two nonzero coefficients. Because of Proposition 3, the probability of having only one nonzero coefficient in Step 6 is $\frac{1}{3^{2s-1}}$, and the probability of finding a cube root exactly after m-th iteration of the while-loop is $\frac{1}{3^{2s-(2m+1)}} - \frac{1}{3^{2s-(2m-1)}}$

for $1 \le m \le s - 1$. The probability of finding a cube root after full iterations (i.e., after s-th iteration) is $\frac{2}{3}$. Therefore the expected number of iterations of the while-loop is

$$\sum_{m=1}^{s-1} m\left(\frac{1}{3^{2s-(2m+1)}} - \frac{1}{3^{2s-(2m-1)}}\right) + s\left(1 - \frac{1}{3}\right) = s - \sum_{m=1}^{s} \frac{1}{3^{2m-1}} = s - \frac{3}{8}\left(1 - \frac{1}{9^s}\right)$$

Algorithm 1 Refined Pocklington and Padró-Sáez Cube Root Algorithm

Input : A cube a in \mathbb{F}_q with $q - 1 = 3^s t$, gcd(3, t) = 1

Output : x satisfying $x^3 = a$ in \mathbb{F}_q

1: if $q \equiv 4 \pmod{9}$ then $x \leftarrow a^{\frac{2q+1}{9}}$ 2: if $q \equiv 7 \pmod{9}$ then $x \leftarrow a^{\frac{q+2}{9}}$ 3: Choose random $\alpha, \beta, \gamma \in \mathbb{F}_q$ and let $z := \alpha + \beta X + \gamma X^2 \in \mathbb{F}_q[X]/\langle X^3 - a \rangle$ 4: if N(z) = 0 then go to STEP 3 5: $z \leftarrow z^t$ 6: if $\alpha = \beta = 0$ or $\beta = \gamma = 0$ or $\gamma = \alpha = 0$ then go to STEP 3 7: while $\alpha\beta \neq 0$ or $\beta\gamma \neq 0$ or $\gamma\alpha \neq 0$ do //while at least two of α, β, γ are nonzero// 8: $z_0 := \alpha_0 + \beta_0 X + \gamma_0 X^2 \leftarrow z$ (i.e., $\alpha_0 \leftarrow \alpha, \beta_0 \leftarrow \beta, \gamma_0 \leftarrow \gamma$) 9: $z \leftarrow z^3$ 10: if $\beta = \gamma = 0$ then $x \leftarrow \frac{\alpha_0}{\beta_0}$ 11: else if $\gamma = \alpha = 0$ then $x \leftarrow -\frac{9a\alpha_0\beta_0\gamma_0}{\beta_{\alpha_0\beta_0\gamma_0}}$ 12: else then $x \leftarrow -\frac{9a\alpha_0\beta_0\gamma_0}{\gamma_{\alpha_0\beta_0\gamma_0}}$

In the given algorithm, the probability that a randomly chosen $z \in \mathbb{F}_q[X]/\langle X^3 - a \rangle$ is invertible (i.e., $N(z) \neq 0$) is $\left(1 - \frac{1}{q}\right)^3$. Therefore when the finite field \mathbb{F}_q is very large, one may safely assume $N(z) \neq 0$, and thus the STEP 4 in the algorithm may be omitted with error probability $1 - \left(1 - \frac{1}{q}\right)^3 \approx \frac{3}{q}$. In the event of the extremely unlucky case N(z) = 0, omitting the STEP 4 gives endless while-loop because one has $z^{q-1} \neq 1$ if and only if N(z) = 0. Any way, the computational cost of the STEP 4 is just 11 multiplications in \mathbb{F}_q and is negligible compared with the total cost of the algorithm. Also, the probability that one may go back to the STEP 3 in the STEP 6 is $\frac{1}{3^{2s-1}} \leq \frac{1}{27}$, since one reaches the STEP 6 only if $s \geq 2$ (i.e., if $q \equiv 1 \pmod{9}$).

4 Comparison Results

We compared our proposed algorithm with two most well-known cube root algorithms in the finite field \mathbb{F}_q ; the AMM (Adleman-Manders-Miller) algorithm [4, 5, 6, 7] and the CM (Cipolla-Lehmer) algorithm [8, 9, 10, 11]. The complexity of the AMM cube root algorithm is $O(\log^3 q + s^2 \log^2 q)$ where $q - 1 = 3^s t$ with gcd(3, t) = 1, and the complexity of the CM cube root algorithm is $O(\log^3 q)$ which is same to the Pocklington and Padró-Sáez algorithm.

We used a standard version in [7] for the AMM implementation. For the Cipolla-Lehmer implementation, we used two algorithms; the algorithm of H. C. Williams [10] and the algorithm of K. S. Williams and K. Hardy [11]. The algorithm in [10] is a generalization to the *r*th root extraction (with the recurrence relation technique) of the original Cipolla-Lehmer

S	50	100	150	200	250	300
AMM [6, 7]	0.082	0.148	0.297	0.498	0.781	1.084
CM [10]	0.495	0.495	0.498	0.497	0.488	0.492
CM [11]	0.282	0.284	0.284	0.285	0.276	0.282
Proposed Alg.	0.236	0.235	0.235	0.236	0.234	0.233

Table 1: Running time (in seconds) for cube root computation with $p \approx 2^{2000}$

Table 2: Running time (in seconds) for cube root computation with $p \approx 2^{3000}$

S	50	100	150	200	250	300
AMM [6, 7]	0.150	0.292	0.519	0.842	1.294	1.746
CM [10]	1.363	1.350	1.395	1.382	1.352	1.465
CM [11]	0.756	0.744	0.790	0.778	0.750	0.796
Proposed Alg.	0.655	0.655	0.654	0.651	0.651	0.648

square root algorithm [8, 9], and the algorithm in [11], a refinement of the algorithm in [10], has a better complexity for small values of r. Tables 1 and 2 show the comparison of the implementation results with SAGE of the above mentioned 3 algorithms and our proposed one. The implementation was performed on Intel Core i7-4770 3.40GHz with 8GB memory.

For convenience, we used prime fields \mathbb{F}_p with two different size of primes p: 2000 and 3000 bits. Average timings of the cube root computations for 5 different inputs of cubic rsidue $a \in \mathbb{F}_p$ are computed for those cases $s = 50, 100, 150, \cdots$, etc. As one can see in the tables, the timings of the AMM increase drastically as s becomes larger, while the timings of the CM algorithms and our algorithm are independent of s. The tables also show that our proposed algorithm is consistently faster than the Cipolla-Lehmer. For example, when $p \approx 2^{3000}$, the average timing of the Cipolla-Lehmer in [11] is 0.769 (seconds) which are 20% slower than the average timing 0.652 (seconds) of the proposed algorithm.

5 Conclusion

We corrected some errors in the Pocklington and Padró-Sáez cube root algorithm in [2], and proposed a refined algorithm. The implementation result shows that the proposed algorithm is faster than the Adleman-Manders-Miller algorithm for large values of s, and is also consistintly faster than the Cipolla-Lehmer algorithm. The difference between the Pocklington and Padró-Sáez algorithm and the Cipolla-Lehmer algorithm is that, though they have the same complexity, the Pocklington and Padró-Sáez algorithm relies on the ring arithmetic in $\mathbb{F}_q[X]/\langle X^3 - a \rangle$ which is isomorphic to $\mathbb{F}_q \times \mathbb{F}_q \times \mathbb{F}_q$, while the Cipolla-Lehmer algorithm relies on the arithmetic in the extension filed \mathbb{F}_{q^3} . Therefore, to find a cube root, essentially one only needs to compute z^{q-1} in the Pocklington and Padró-Sáez while one has to compute $z^{\frac{q^3-1}{q-1}} = z^{q^2+q+1}$ in the Cipolla-Lehmer [10, 11]. This difference of the exponents (of z) explains the superior performance of the Pocklington and Padró-Sáez over the Cipolla-Lehmer. For the quadratic case, there is no such difference, i.e., z^{q-1} in the Pocklington and Padró-Sáez versus z^{q+1} in the Cipolla-Lehmer. We finally remark that, as far as we know, our implementation of the 3 major algorithms (the Adleman-Manders-Miller, the Cipolla-Lehmer and the Pocklington and Padró-Sáez) is the first one available in the literature.

References

- H. C. Pocklington, "The direct solution of the quadratic and cubic binomial congruences with prime moduli", *Proceedings of the Cambridge Philosophical Society*, vol. 19, pp. 57-59, 1917.
- [2] C. Padró and G. Sáez, "Taking cube roots in Z_m", Applied Mathematics Letters, vol. 15, pp. 703-708, 2002.
- [3] R. C. Peralta, "A simple and fast probabilistic algorithm for computing square roots modulo a prime number", *IEEE Transactions on Information Theory*, vol. 32, pp. 846-847, 1986.
- [4] D. Shanks "Five number-theoretic Algorithms," Proceeding of Second Manitoba Conference of Numerical Mathematics, pp.51-70, 1972.
- [5] A. Tonelli, "Bemerkung über die Auflösung Quadratischer Congruenzen", Göttinger Nachrichten, pp.344-346, 1891.
- [6] L. Adleman, K. Manders and G. Miller, "On taking roots in finite fields", Proc. 18th IEEE Symposium on Foundations on Computer Science (FOCS), pp. 175-177, 1977.
- [7] Z. Cao, Q. Sha, and X. Fan, "Adlemen-Manders-Miller root extraction method revisited", preprint, available at http://arxiv.org/abs/1111.4877, 2011.
- [8] M. Cipolla, "Un metodo per la risolutione della congruenza di secondo grado", *Rendiconto dell'Accademia Scienze Fisiche e Matematiche*, Napoli, Ser. 3, vol. IX, pp. 154-163, 1903.
- [9] D. H. Lehmer, "Computer technology applied to the theory of numbers", In Studies in Number Theory, Prentice-Hall Enblewood Cliffs, NJ, pp.117-151, 1969.
- [10] H. C. Williams, "Some algorithm for solving $x^q \equiv N \pmod{p}$ ", Proc. 3rd Southeastern Conf. on Combinatorics, Graph Theory, and Computing, Florida Atlantic University, pp. 451-462, 1972.
- [11] K. S. Williams and K. Hardy, "A refinement of H. C. Williams' qth root algorithm", Mathematics of Computation, Vol.61, pp. 475-483, 1993.
- [12] D. Bernstein, "Faster square roots in annoying finite fields", preprint, available at http://cr.yp.to/papers/sqroot.pdf.
- [13] American Mathematical Society, "MathSciNet Review", available at http://www.ams.org/mathscinet.