Remarks on the Pocklington and Padró-Sáez Cube Root Algorithm in \mathbb{F}_{q}

Geon Heo^{\dagger}, Seokhwan Choi ${ }^{\dagger}$, Kwang Ho Lee ${ }^{\dagger}$, Namhun Koo^{\ddagger} and Soonhak Kwon ${ }^{\ddagger}$
Gyeonggi Science High School for the Gifted, Suwon, S. Korea ${ }^{\dagger}$
Dept. of Mathematics, Sungkyunkwan University, Suwon, S. Korea ${ }^{\ddagger}$
shkwon@skku.edu

Abstract

We clarify and generalize a cube root algorithm in \mathbb{F}_{q} proposed by Pocklington [1], and later rediscovered by Padró and Sáez [2]. We correct some mistakes in [2] and give a full generalization of the result in [1, 2] for the cube root algorithm. We also give the comparison of the implementation of Pocklington and Padró-Sáez algorithm with two most popular cube root algorithms, namely the Adleman-Manders-Miller algorithm and the Cipolla-Lehmer algorithm. To the authors' knowledge, our comparison is the first one which compares three basic algorithms together.

Keywords : cube root algorithm, finite field, Pocklington algorithm, Adleman-MandersMiller algorithm, Cipolla-Lehmer algorithm

1 Introduction

Pocklington [1] proposed a new square and cube root algorithms in the finite field \mathbb{F}_{q} with q a prime, which are different from the two most well-known algorithms nowadays; the Adleman-Manders-Miller algorithm [4, 5, 6, 7] and the Cipolla-Lehmer [8, 9, 10, 11] algorithm. Later, the algorithm of Pocklington is rediscovered by Peralta [3] for the case of the square root and by Padró and Sáez [2] for the case of the cube root.

Both Peralta and Padró-Sáez were unaware of the work of Pocklington at the time of their results (See also [12]). Padró and Sáez, knowing the result of Peralta [3], gave a cubic version of the Peralta square root algorithm, and their algorithm has a more general form (with the estimation of the success probability) than the original version of Pocklington. However it contains some flaws (in Proposition 3.5 of [2]) where some cases which cannot happen are considered. Moreover, no available literature including the review of the paper [2] in MathSciNet [13] notices this error.

Our aim in this paper is to correct the errors in the result of Padró-Sáez [2] and to present a refinement of the cube root algorithm extending both the result of Pocklington and PadróSáez. We also give the result of the software implementations (using SAGE) of the Pocklington and Padró-Sáez algorithm and two other standard algorithms; the Adleman-Manders-Miller algorithm and the Cipolla-Lehmer algorithm. To the authors' knowledge, our comparison is the first one ever which compares all three algorithms together. Our result shows that the Pocklington and Padró-Sáez algorithm is consistently superior to the Cipolla-Lehmer algorithm, and is also superior to the Adleman-manders-Miller algorithm when s is large, where s is the largest integer satisfying $3^{s} \mid q-1$.

2 Pocklington and Padró-Sáez Cube Root Method

Both Pocklington [1] and Padró-Sáez [2] considered the finite field \mathbb{F}_{q} with prime q. However their approaches are also good for the general finite field. Therefore we assume that q is a power of a prime and let \mathbb{F}_{q} be a finite field with q elements. Let $a \neq 0 \in \mathbb{F}_{q}$ be a cubic residue in \mathbb{F}_{q}, i.e., there exists $x \in \mathbb{F}_{q}$ such that $x^{3}=a$.

Note that when $q \equiv 2(\bmod 3)$, a cube root of a is given as $a^{\frac{2 q-1}{3}}$, and when $q \equiv 0(\bmod 3)$ (i.e., when $q=3^{s}$), then a cube root of $a \in \mathbb{F}_{3^{s}}$ is given as $a^{3^{s-1}}$. Therefore a cube root of a can be found easily when $q \equiv 0,2(\bmod 3)$. When $q \equiv 1(\bmod 3)$, there exists a primitive cube root of unity $\epsilon \in \mathbb{F}_{q}$ satisfying $\epsilon^{3}=1$. From now on, we will only consider the finite field \mathbb{F}_{q} with $q \equiv 1(\bmod 3)$, and a primitive cube root of unity ϵ is fixed throughout this paper.

For a given cube root $x \in \mathbb{F}_{q}$ of a, the other two cube roots of a are given as ϵx and $\epsilon^{2} x$, and we have the polynomial identity

$$
X^{3}-a=(X-x)(X-\epsilon x)\left(X-\epsilon^{2} x\right) \in \mathbb{F}_{q}[X]
$$

We also have the following isomorphism of rings

$$
\begin{equation*}
\mathbb{F}_{q}[X] /\left\langle X^{3}-a\right\rangle \cong \mathbb{F}_{q} \times \mathbb{F}_{q} \times \mathbb{F}_{q} \tag{1}
\end{equation*}
$$

where the isomorphism is given as

$$
\begin{align*}
\varphi: \mathbb{F}_{q}[X] /\left\langle X^{3}-a\right\rangle & \longrightarrow \mathbb{F}_{q} \times \mathbb{F}_{q} \times \mathbb{F}_{q} \\
\alpha+\beta X+\gamma X^{2} & \mapsto\left(\alpha+\beta x+\gamma x^{2}, \alpha+\beta \epsilon x+\gamma \epsilon^{2} x^{2}, \alpha+\beta \epsilon^{2} x+\gamma \epsilon x^{2}\right) \tag{2}
\end{align*}
$$

For a detailed explanation, see [2]. We also need the norm of $z=\alpha+\beta X+\gamma X^{2} \in \mathbb{F}_{q}[X] /\left\langle X^{3}-\right.$ $a\rangle, N(z)$, defined as the product of all the conjugates of z,

$$
N(z)=z \bar{z} \overline{\bar{z}} \in \mathbb{F}_{q}
$$

where $\bar{z}=\alpha+\beta \epsilon X+\gamma \epsilon^{2} X^{2}$. Then the following is well-known;

$$
\begin{align*}
N(z) & =\left(\alpha+\beta X+\gamma X^{2}\right)\left(\alpha+\beta \epsilon X+\gamma \epsilon^{2} X^{2}\right)\left(\alpha+\beta \epsilon^{2} X+\gamma \epsilon X^{2}\right) \\
& =\left(\alpha+\beta x+\gamma x^{2}\right)\left(\alpha+\beta \epsilon x+\gamma \epsilon^{2} x^{2}\right)\left(\alpha+\beta \epsilon^{2} x+\gamma \epsilon x^{2}\right) \tag{3}
\end{align*}
$$

Define the set of invertible elements as \mathbb{F}_{q}^{\times}and $\left(\mathbb{F}_{q}[X] /\left\langle X^{3}-a\right\rangle\right)^{\times}$. Then from the equations (2) and (3), we have

$$
N(z) \neq 0 \Longleftrightarrow \varphi(z) \in \mathbb{F}_{q}^{\times} \times \mathbb{F}_{q}^{\times} \times \mathbb{F}_{q}^{\times}
$$

which implies that we also have the isomorphism between the sets of invertible elements;

$$
\begin{equation*}
\left(\mathbb{F}_{q}[X] /\left\langle X^{3}-a\right\rangle\right)^{\times} \cong \mathbb{F}_{q}^{\times} \times \mathbb{F}_{q}^{\times} \times \mathbb{F}_{q}^{\times} \tag{4}
\end{equation*}
$$

For a given $z=\alpha+\beta X+\gamma X^{2} \in \mathbb{F}_{q}[X] /\left\langle X^{3}-a\right\rangle$, the norm of z is the determinant of the linear transformation $\ell_{z}: \mathbb{F}_{q}[X] /\left\langle X^{3}-a\right\rangle \longrightarrow \mathbb{F}_{q}[X] /\left\langle X^{3}-a\right\rangle$ with $\ell_{z}(w)=w z$, and it can be computed as follows.

Lemma 1. One has

$$
N(z)=\left|\begin{array}{ccc}
\alpha & \beta & \gamma \tag{5}\\
a \gamma & \alpha & \beta \\
a \beta & a \gamma & \alpha
\end{array}\right|=\alpha^{3}+a \beta^{3}+a^{2} \gamma^{3}-3 a \alpha \beta \gamma
$$

Proof. By expanding the product in the equation (3), and using the properties $x^{3}=a$ and $1+\epsilon+\epsilon^{2}=0$, one gets the right side of the equation (5), which can also be written as a determinant form.

Note that the cost of computing $N(z)$ is 11 multiplications in \mathbb{F}_{q} and is negligible compared with the cost of the exponentiation z^{t} when t is large.

Now we are ready to present the original version of the Proposition given in [2].
Proposition 1 (Proposition 3.5 in [2]). Let $a \neq 0 \in \mathbb{F}_{q}$ be a cubic residue and $z=\alpha+\beta X+\gamma X^{2}$ be an element of $\mathbb{F}_{q}[X] /\left\langle X^{3}-a\right\rangle$ where at least two of the coefficients α, β and γ are nonzero. Then
(1) If $z^{3}=\alpha^{\prime}$ with $\alpha^{\prime} \in \mathbb{F}_{q}^{\times}$, then
(1a) if β and γ are nonzero, then $\sqrt[3]{a}=\frac{\alpha}{\beta}$,
(1b) if $\beta=0$ and α, γ are nonzero, then $\sqrt[3]{a}=\frac{1}{a}\left(\frac{\alpha}{\gamma}\right)^{2}$,
(1c) if $\gamma=0$ and α, β are nonzero, then $\sqrt[3]{a}=-\frac{\alpha}{\beta}$,
(2) If $z^{3}=\beta^{\prime} X$ with $\beta^{\prime} \in \mathbb{F}_{q}^{\times}$, then $\sqrt[3]{a}=\frac{N(z)}{\beta^{\prime}}$
(3) If $z^{3}=\gamma^{\prime} X^{2}$ with $\gamma^{\prime} \in \mathbb{F}_{q}^{\times}$, then $\sqrt[3]{a}=\frac{N(z)^{2}}{\gamma^{\prime 2} a}$

3 New Refined Algorithm

As a result of the various mathematical softwares (such as MAPLE and SAGE) implementations, we found out that the cases $(1 b)$ and $(1 c)$ of Proposition 3.5 in [2] never appear in practice. We also found out that the cases (2) and (3) do happen only when $q \equiv 1(\bmod 9)$. These contradicting implementation results can be explained rigorously by the following mathematical analysis.

Lemma 2. Assuming the same conditions in Proposition 3.5 of [2],
(1) The cases $(1 b)$ and (1c) cannot happen. In other words, the assumption of $(1 b)[\beta=0$ and α, γ are nonzero $]$ or the assumption of $(1 c)[\gamma=0$ and α, β are nonzero $]$ imply $z^{3} \notin \mathbb{F}_{q}$.
(2) The cases (2) and (3) do happen only when $q \equiv 1(\bmod 9)$.

Proof. (1) Our proof relies on the following identity in $\mathbb{F}_{q}[X] /\left\langle X^{3}-a\right\rangle$,

$$
\begin{align*}
z^{3} & =\left(\alpha+\beta X+\gamma X^{2}\right)^{3} \\
& =\left(\alpha^{3}+a \beta^{3}+a^{2} \gamma^{3}+6 a \alpha \beta \gamma\right)+3\left(\alpha \gamma^{2} a+\beta^{2} \gamma a+\alpha^{2} \beta\right) X+3\left(\alpha^{2} \gamma+\alpha \beta^{2}+\beta \gamma^{2} a\right) X^{2} \tag{6}
\end{align*}
$$

From the above identity, letting $\beta=0$, one has

$$
\begin{equation*}
z^{3}=\left(\alpha+\gamma X^{2}\right)^{3}=\alpha^{3}+\gamma^{3} a^{2}+3 \alpha \gamma^{2} a X+3 \alpha^{2} \gamma X^{2} \tag{7}
\end{equation*}
$$

Therefore $\alpha \neq 0, \gamma \neq 0$ implies $z^{3} \notin \mathbb{F}_{q}$, which contradicts the assumption of (1) of Proposition 3.5 saying $z^{3}=\alpha^{\prime} \in \mathbb{F}_{q}$. In the same way, letting $\gamma=0$ in the equation (6), we have

$$
\begin{equation*}
z^{3}=(\alpha+\beta X)^{3}=\alpha^{3}+\beta^{3} a+3 \alpha^{2} \beta X+3 \alpha \beta^{2} X^{2} \tag{8}
\end{equation*}
$$

Therefore $\alpha \neq 0, \beta \neq 0$ implies $z^{3} \notin \mathbb{F}_{q}$, which also contradicts the assumption of (1) of Proposition 3.5 in [2].
(2) Now we will show that the cases (2) and (3) of Proposition 3.5 can happen only when $q \equiv 1(\bmod 9)$. Since $q \equiv 1(\bmod 3)$, we may write

$$
q=3(3 k+m)+1=9 k+3 m+1, \quad \text { for some } k \in \mathbb{Z} \text { and } m \in\{0,1,2\}
$$

From the isomorphism in the equation (4), we have $z^{q-1}=1$ for all $z \in\left(\mathbb{F}_{q}[X] /\left\langle X^{3}-a\right\rangle\right)^{\times}$. Therefore the case (2) $z^{3}=\beta^{\prime} X$ implies that

$$
1=z^{q-1}=\left(z^{3}\right)^{\frac{q-1}{3}}=\left(\beta^{\prime} X\right)^{3 k+m}=\left(\beta^{\prime}\right)^{3 k+m} a^{k} X^{m} \in \mathbb{F}_{q}
$$

Consequently we get $m=0$ and $q=9 k+1$. In the same way, the case (3) $z^{3}=\gamma^{\prime} X^{2}$ implies that

$$
1=z^{q-1}=\left(z^{3}\right)^{\frac{q-1}{3}}=\left(\gamma^{\prime} X^{2}\right)^{3 k+m}=\left(\gamma^{\prime}\right)^{3 k+m} a^{2 k} X^{2 m} \in \mathbb{F}_{q}
$$

Since the possible values of $X^{2 m}$ are $1, X^{2}, X^{4}=a X$, we also get $m=0$ and $q=9 k+1$.
Because of this observation, Proposition 3.5 in [2] should be modified, and the corrected and extended version is given here.

Proposition 2 (Corrected and Extended Version of Proposition 3.5 in [2]). Let $a \neq 0 \in \mathbb{F}_{q}$ be a cubic residue and let $z=\alpha+\beta X+\gamma X^{2}$ be a nonzero element of $\mathbb{F}_{q}[X] /\left\langle X^{3}-a\right\rangle$.
(1) If $z^{3}=\alpha^{\prime}$ with $\alpha^{\prime} \in \mathbb{F}_{q}^{\times}$where at least two of α, β, γ are nonzero, then all three α, β, γ are nonzero and all three distinct cube roots of a are given as $\frac{\alpha}{\beta}, \frac{\beta}{\gamma}$ and $\frac{a \gamma}{\alpha}$.
(2) If $z^{3}=\beta^{\prime} X$ or $z^{3}=\gamma^{\prime} X^{2}$ for some $\beta^{\prime}, \gamma^{\prime} \in \mathbb{F}_{q}^{\times}$, then all three α, β, γ are nonzero and
(2a) if $z^{3}=\beta^{\prime} X$, then $\sqrt[3]{a}=-\frac{9 a \alpha \beta \gamma}{\beta^{\prime}}$.
(2b) if $z^{3}=\gamma^{\prime} X^{2}$, then $\sqrt[3]{a}=-\frac{\gamma^{\prime}}{9 \alpha \beta \gamma}$.
Proof. (1) From the equations (7) and (8), we already showed that two nonzero coefficients α, γ with $\beta=0$ or α, β with $\gamma=0$ produce $z^{3} \notin \mathbb{F}_{q}$. The remaining case where β, γ are nonzero and $\alpha=0$ can be understood from the following identity derived from the equation (6),

$$
\begin{equation*}
z^{3}=\left(\beta X+\gamma X^{2}\right)^{3}=\gamma^{3} a^{2}+\beta^{3} a+3 a \beta^{2} \gamma X+3 a \beta \gamma^{2} X^{2} \tag{9}
\end{equation*}
$$

which shows $z^{3} \notin \mathbb{F}_{q}$. Therefore, if at least two of α, β and γ are nonzero and if $z^{3} \in \mathbb{F}_{q}$, then one must have all nonzero α, β and γ. The fact that $a=\left(\frac{\alpha}{\beta}\right)^{3}$ is already shown both in [1] and [2]. Since $z^{3}=\alpha^{\prime} \in \mathbb{F}_{q}$, from the equation (6), we get

$$
\begin{align*}
\alpha \gamma^{2} a+\beta^{2} \gamma a+\alpha^{2} \beta & =0 \tag{10}\\
\alpha^{2} \gamma+\alpha \beta^{2}+\beta \gamma^{2} a & =0 \tag{11}
\end{align*}
$$

Then $\gamma \times(10)-\beta \times(11)=\alpha\left(\gamma^{3} a-\beta^{3}\right)=0$, from which we get $a=\left(\frac{\beta}{\gamma}\right)^{3}$. Also $\alpha \times(10)-\gamma a \times(11)=$ $\beta\left(\alpha^{3}-\gamma^{3} a^{2}\right)=0$, from which we have $a=\left(\frac{\gamma a}{\alpha}\right)^{3}$. Also notice that $\beta \times(10)-\alpha \times(11)=$
$\gamma\left(\beta^{3} a-\alpha^{3}\right)=0$, which says $a=\left(\frac{\alpha}{\beta}\right)^{3}$. All three cube roots $\frac{\alpha}{\beta}, \frac{\beta}{\gamma}, \frac{a \gamma}{\alpha}$ are different because $\frac{\alpha}{\beta}+\frac{\beta}{\gamma}+\frac{a \gamma}{\alpha}=\frac{1}{\alpha \beta \gamma}\left(\alpha^{2} \gamma+\alpha \beta^{2}+\beta \gamma^{2} a\right)=0$ from the equation (11).
(2) In view of Lemma 1, the constant term of the equation (6) is $N(z)+9 a \alpha \beta \gamma$. Therefore one has $N(z)=-9 a \alpha \beta \gamma$ if $z^{3}=\beta^{\prime} X$ or $z^{3}=\gamma^{\prime} X^{2}$. For the case $(2 a)$, by taking norm to $\beta^{\prime} X=z^{3}$, we get $\beta^{\prime 3} a=N(z)^{3}=(-9 a \alpha \beta \gamma)^{3}$ and thus $a=\left(-\frac{9 a \alpha \beta \gamma}{\beta^{\prime}}\right)^{3}$. For the case $(2 b)$, by taking norm to $z^{3} X=\gamma^{\prime} a$, we get $N(z)^{3} a=\gamma^{\prime 3} a^{3}$ and thus $a=\left(-\frac{\gamma^{\prime}}{9 \alpha \beta \gamma}\right)^{3}$. Note that $\alpha \beta \gamma \neq 0$, because one gets $a=0$ if $\alpha \beta \gamma=0$.

The fact $\frac{\beta}{\gamma}$ is a root of $X^{3}-a=0$ is also noticed in [1], but the fact that $\frac{a \gamma}{\alpha}$ is the other root of $X^{3}-a=0$ different from $\frac{\alpha}{\beta}$ and $\frac{\beta}{\gamma}$ are not mentioned in both [1] and [2]. Also note that computing $a \alpha \beta \gamma$ requires 3 multiplications while computing $N(z)$ requires 11 multiplications.

Proposition 3. Let q be a prime power with $q-1=3^{s} t$ and $\operatorname{gcd}(3, t)=1$. Let $0 \leq m \leq s-1$. Then the probability that a randomly chosen invertible $z \in \mathbb{F}_{q}[X] /\left\langle X^{3}-a\right\rangle$ satisfies $z^{3^{m} t}=$ $\alpha^{\prime}+\beta^{\prime} X+\gamma^{\prime} X^{2}$ with exactly 2 zero coefficients is $\frac{1}{3^{2 s-2 m-1}}$.

Proof. We have to find the probability that $z^{3^{m} t}=\alpha^{\prime}$ or $z^{3^{m} t}=\beta^{\prime} X$ or $=\gamma^{\prime} X^{2}$. Note that these three cases are independent cases.
Case 1. $z^{3^{m} t}=\alpha^{\prime}$: Due to the isomorphism in the equation (4), we may assume $\varphi(z)=$ $(a, b, c) \in \mathbb{F}_{q}^{\times} \times \mathbb{F}_{q}^{\times} \times \mathbb{F}_{q}^{\times}$and $\left(\alpha^{\prime}, \alpha^{\prime}, \alpha^{\prime}\right)=\varphi\left(z^{3^{m} t}\right)=\varphi(z)^{3^{m} t}=\left(a^{3^{m} t}, b^{3^{m} t}, c^{3^{m} t}\right)$. Thus from $a^{3^{m} t}=b^{3^{m} t}=c^{3^{m} t} \in \mathbb{F}_{q}^{\times}$, we get $\left(\frac{b}{a}\right)^{3^{m} t}=1$ and $\left(\frac{c}{a}\right)^{3^{m} t}=1$. Therefore such (a, b, c) can be parameterized as $(a, b, c)=\left(a, a \zeta, a \zeta^{\prime}\right)$ with $a \in \mathbb{F}_{q}^{\times}$and $\zeta, \zeta^{\prime} \in C$, where C is a unique (cyclic) subgroup of order $3^{m} t$ in \mathbb{F}_{q}^{\times}. Consequently the number of such (a, b, c) is $(q-1) 3^{2 m} t^{2}$.
Case 2. $z^{3^{m} t}=\beta^{\prime} X$: In the same way, we may assume $\varphi(z)=(a, b, c) \in \mathbb{F}_{q}^{\times} \times \mathbb{F}_{q}^{\times} \times \mathbb{F}_{q}^{\times}$ and $\left(\beta^{\prime} x, \beta^{\prime} x \epsilon, \beta^{\prime} x \epsilon^{2}\right)=\varphi\left(z^{3^{m} t}\right)=\varphi(z)^{3^{m} t}=\left(a^{3^{m} t}, b^{3^{m} t}, c^{3^{m} t}\right)$. Thus we get $\left(\frac{b}{a}\right)^{3^{m} t}=\epsilon$ and $\left(\frac{c}{a}\right)^{3^{m} t}=\epsilon^{2}$. Since $m+1 \leq s$ (i.e., $3^{m+1} t \mid q-1=3^{s} t$), there is a primitive $3^{m+1} t$-th root of unity μ such that either $\mu^{3^{m}} t=\epsilon$ or ϵ^{2}. Therefore letting $\left(\theta, \theta^{\prime}\right)=\left(\mu, \mu^{2}\right)$ or $\left(\mu^{2}, \mu\right)$, one has $\left(\theta^{3^{m} t}, \theta^{\prime 3^{m} t}\right)=\left(\epsilon, \epsilon^{2}\right)$ which implies $\left(\frac{b}{a \theta}\right)^{3^{m} t}=1$ and $\left(\frac{c}{a \theta^{\prime}}\right)^{3^{m} t}=1$. Similarly as in the Case 1 , such a, b, c can be parimetrized as $(a, b, c)=\left(a, a \theta \zeta, a \theta^{\prime} \zeta^{\prime}\right)$ where $a \in \mathbb{F}_{q}^{\times}, \zeta, \zeta^{\prime} \in C$, and the number of such (a, b, c) is also $(q-1) 3^{2 m} t^{2}$.
Case 3. $z^{3^{m} t}=\gamma^{\prime} X^{2}$: This case can be dealt in the same manner with the Case 2 so that the number of possible cases of z is $(q-1) 3^{2 m} t^{2}$.
Therefore the desired probability is $\frac{3 \cdot 3^{2 m} t^{2}(q-1)}{(q-1)^{3}}=\frac{3 \cdot 3^{2 m} t^{2}}{(q-1)^{2}}=\frac{3 \cdot 3^{2 m} t^{2}}{3^{2 s} t^{2}}=\frac{1}{3^{2 s-2 m-1}}$.
As a special case, when $m=0$, we get the probability that $z^{t}=\alpha^{\prime}$ or $\beta^{\prime} X$ or $\gamma^{\prime} X^{2}$ as $\frac{1}{3^{2 s-1}}$, which is the result of Proposition 3.7 in [2] . Also note that this result does not contradict Lemma $2-(2)$, because $z^{t}=\beta^{\prime} X, \gamma^{\prime} X^{2}$ are possible since $3 \chi t$.

Our observations on Proposition 2 and 3 lead to a cube root algorithm shown in Algorithm 1, whose complexity is $O\left(\log ^{3} q\right)$ since the cost of the algorithm is several exponentiations in \mathbb{F}_{q}. In the algorithm, we try random invertible $z \in \mathbb{F}_{q}[X] /\left\langle X^{3}-a\right\rangle$ until we find z^{t} with at least two nonzero coefficients. Then, we apply repeated cubings to z^{t} until we have $z^{3^{m} t} \in \mathbb{F}_{q}$ or $\mathbb{F}_{q} \cdot X$ or $\mathbb{F}_{q} \cdot X^{2}$ for some $1 \leq m \leq s$. Note that, since $z^{3^{s} t}=z^{q-1}=1$ when z is invertible, such m always exists once we have z^{t} with at least two nonzero coefficients. Because of Proposition 3 , the probability of having only one nonzero coefficient in Step 6 is $\frac{1}{3^{2 s-1}}$, and the probability of finding a cube root exactly after m-th iteration of the while-loop is $\frac{1}{3^{2 s-(2 m+1)}}-\frac{1}{3^{2 s-(2 m-1)}}$
for $1 \leq m \leq s-1$. The probability of finding a cube root after full iterations (i.e., after s-th iteration) is $\frac{2}{3}$. Therefore the expected number of iterations of the while-loop is

$$
\sum_{m=1}^{s-1} m\left(\frac{1}{3^{2 s-(2 m+1)}}-\frac{1}{3^{2 s-(2 m-1)}}\right)+s\left(1-\frac{1}{3}\right)=s-\sum_{m=1}^{s} \frac{1}{3^{2 m-1}}=s-\frac{3}{8}\left(1-\frac{1}{9^{s}}\right)
$$

```
Algorithm 1 Refined Pocklington and Padró-Sáez Cube Root Algorithm
Input : A cube \(a\) in \(\mathbb{F}_{q}\) with \(q-1=3^{s} t, \operatorname{gcd}(3, t)=1\)
Output : \(x\) satisfying \(x^{3}=a\) in \(\mathbb{F}_{q}\)
```

```
    if \(q \equiv 4(\bmod 9)\) then \(x \leftarrow a^{\frac{2 q+1}{9}}\)
```

 if \(q \equiv 4(\bmod 9)\) then \(x \leftarrow a^{\frac{2 q+1}{9}}\)
 if \(q \equiv 7(\bmod 9)\) then \(x \leftarrow a^{\frac{q+2}{9}}\)
 if \(q \equiv 7(\bmod 9)\) then \(x \leftarrow a^{\frac{q+2}{9}}\)
 Choose random \(\alpha, \beta, \gamma \in \mathbb{F}_{q}\) and let \(z:=\alpha+\beta X+\gamma X^{2} \in \mathbb{F}_{q}[X] /\left\langle X^{3}-a\right\rangle\)
 Choose random \(\alpha, \beta, \gamma \in \mathbb{F}_{q}\) and let \(z:=\alpha+\beta X+\gamma X^{2} \in \mathbb{F}_{q}[X] /\left\langle X^{3}-a\right\rangle\)
 if \(N(z)=0\) then go to STEP 3
 if \(N(z)=0\) then go to STEP 3
 \(z \leftarrow z^{t}\)
 \(z \leftarrow z^{t}\)
 if \(\alpha=\beta=0\) or \(\beta=\gamma=0\) or \(\gamma=\alpha=0\) then go to STEP 3
 if \(\alpha=\beta=0\) or \(\beta=\gamma=0\) or \(\gamma=\alpha=0\) then go to STEP 3
 while \(\alpha \beta \neq 0\) or \(\beta \gamma \neq 0\) or \(\gamma \alpha \neq 0\) do //while at least two of \(\alpha, \beta, \gamma\) are nonzero//
 while \(\alpha \beta \neq 0\) or \(\beta \gamma \neq 0\) or \(\gamma \alpha \neq 0\) do //while at least two of \(\alpha, \beta, \gamma\) are nonzero//
 \(z_{0}:=\alpha_{0}+\beta_{0} X+\gamma_{0} X^{2} \leftarrow z \quad\) (i.e., \(\left.\alpha_{0} \leftarrow \alpha, \beta_{0} \leftarrow \beta, \gamma_{0} \leftarrow \gamma\right)\)
 \(z_{0}:=\alpha_{0}+\beta_{0} X+\gamma_{0} X^{2} \leftarrow z \quad\) (i.e., \(\left.\alpha_{0} \leftarrow \alpha, \beta_{0} \leftarrow \beta, \gamma_{0} \leftarrow \gamma\right)\)
 \(z \leftarrow z^{3}\)
 \(z \leftarrow z^{3}\)
 if \(\beta=\gamma=0\) then \(x \leftarrow \frac{\alpha_{0}}{\beta_{0}}\)
 if \(\beta=\gamma=0\) then \(x \leftarrow \frac{\alpha_{0}}{\beta_{0}}\)
 else if \(\gamma=\alpha=0\) then \(x \leftarrow-\frac{9 a \alpha_{0} \beta_{0} \gamma_{0}}{\beta}\)
 else if \(\gamma=\alpha=0\) then \(x \leftarrow-\frac{9 a \alpha_{0} \beta_{0} \gamma_{0}}{\beta}\)
 else
 else
 return \(x\)
    ```
    return \(x\)
```

In the given algorithm, the probability that a randomly chosen $z \in \mathbb{F}_{q}[X] /\left\langle X^{3}-a\right\rangle$ is invertible (i.e., $N(z) \neq 0$) is $\left(1-\frac{1}{q}\right)^{3}$. Therefore when the finite field \mathbb{F}_{q} is very large, one may safely assume $N(z) \neq 0$, and thus the STEP 4 in the algorithm may be omitted with error probability $1-\left(1-\frac{1}{q}\right)^{3} \approx \frac{3}{q}$. In the event of the extremely unlucky case $N(z)=0$, omitting the STEP 4 gives endless while-loop because one has $z^{q-1} \neq 1$ if and only if $N(z)=0$. Any way, the computational cost of the STEP 4 is just 11 multiplications in \mathbb{F}_{q} and is negligible compared with the total cost of the algorithm. Also, the probability that one may go back to the STEP 3 in the STEP 6 is $\frac{1}{3^{2 s-1}} \leq \frac{1}{27}$, since one reaches the STEP 6 only if $s \geq 2$ (i.e., if $q \equiv 1(\bmod 9))$.

4 Comparison Results

We compared our proposed algorithm with two most well-known cube root algorithms in the finite field \mathbb{F}_{q}; the AMM (Adleman-Manders-Miller) algorithm $[4,5,6,7]$ and the CM (Cipolla-Lehmer) algorithm [8, 9, 10, 11]. The complexity of the AMM cube root algorithm is $O\left(\log ^{3} q+s^{2} \log ^{2} q\right)$ where $q-1=3^{s} t$ with $\operatorname{gcd}(3, t)=1$, and the complexity of the CM cube root algorithm is $O\left(\log ^{3} q\right)$ which is same to the Pocklington and Padró-Sáez algorithm.

We used a standard version in [7] for the AMM implementation. For the Cipolla-Lehmer implementation, we used two algorithms; the algorithm of H. C. Williams [10] and the algorithm of K. S. Williams and K. Hardy [11]. The algorithm in [10] is a generalization to the r th root extraction (with the recurrence relation technique) of the original Cipolla-Lehmer

Table 1: Running time (in seconds) for cube root computation with $p \approx 2^{2000}$

| s | 50 | 100 | 150 | 200 | 250 | 300 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AMM $[6,7]$ | 0.082 | 0.148 | 0.297 | 0.498 | 0.781 | 1.084 |
| CM [10] | 0.495 | 0.495 | 0.498 | 0.497 | 0.488 | 0.492 |
| CM [11] | 0.282 | 0.284 | 0.284 | 0.285 | 0.276 | 0.282 |
| Proposed Alg. | 0.236 | 0.235 | 0.235 | 0.236 | 0.234 | 0.233 |

Table 2: Running time (in seconds) for cube root computation with $p \approx 2^{3000}$

| s | 50 | 100 | 150 | 200 | 250 | 300 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AMM [6, 7] | 0.150 | 0.292 | 0.519 | 0.842 | 1.294 | 1.746 |
| CM [10] | 1.363 | 1.350 | 1.395 | 1.382 | 1.352 | 1.465 |
| CM [11] | 0.756 | 0.744 | 0.790 | 0.778 | 0.750 | 0.796 |
| Proposed Alg. | 0.655 | 0.655 | 0.654 | 0.651 | 0.651 | 0.648 |

square root algorithm [8, 9], and the algorithm in [11], a refinement of the algorithm in [10], has a better complexity for small values of r. Tables 1 and 2 show the comparison of the implementation results with SAGE of the above mentioned 3 algorithms and our proposed one. The implementation was performed on Intel Core i $7-47703.40 \mathrm{GHz}$ with 8 GB memory.

For convenience, we used prime fields \mathbb{F}_{p} with two different size of primes $p: 2000$ and 3000 bits. Average timings of the cube root computations for 5 different inputs of cubic rsidue $a \in \mathbb{F}_{p}$ are computed for those cases $s=50,100,150, \cdots$, etc. As one can see in the tables, the timings of the AMM increase drastically as s becomes larger, while the timings of the CM algorithms and our algorithm are independent of s. The tables also show that our proposed algorithm is consistently faster than the Cipolla-Lehmer. For example, when $p \approx 2^{3000}$, the average timing of the Cipolla-Lehmer in [11] is 0.769 (seconds) which are 20% slower than the average timing 0.652 (seconds) of the proposed algorithm.

5 Conclusion

We corrected some errors in the Pocklington and Padró-Sáez cube root algorithm in [2], and proposed a refined algorithm. The implementation result shows that the proposed algorithm is faster than the Adleman-Manders-Miller algorithm for large values of s, and is also consistintly faster than the Cipolla-Lehmer algorithm. The difference between the Pocklington and Padró-Sáez algorithm and the Cipolla-Lehmer algorithm is that, though they have the same complexity, the Pocklington and Padró-Sáez algorithm relies on the ring arithmetic in $\mathbb{F}_{q}[X] /\left\langle X^{3}-a\right\rangle$ which is isomorphic to $\mathbb{F}_{q} \times \mathbb{F}_{q} \times \mathbb{F}_{q}$, while the Cipolla-Lehmer algorithm relies on the arithmetic in the extension filed $\mathbb{F}_{q^{3}}$. Therefore, to find a cube root, essentially one only needs to compute z^{q-1} in the Pocklington and Padró-Sáez while one has to compute $z^{\frac{q^{3}-1}{q-1}}=z^{q^{2}+q+1}$ in the Cipolla-Lehmer [10, 11]. This difference of the exponents (of z) explains the superior performance of the Pocklington and Padró-Sáez over the Cipolla-Lehmer. For the quadratic case, there is no such difference, i.e., z^{q-1} in the Pocklington and Padró-Sáez versus
z^{q+1} in the Cipolla-Lehmer. We finally remark that, as far as we know, our implementation of the 3 major algorithms (the Adleman-Manders-Miller, the Cipolla-Lehmer and the Pocklington and Padró-Sáez) is the first one available in the literature.

References

[1] H. C. Pocklington, "The direct solution of the quadratic and cubic binomial congruences with prime moduli", Proceedings of the Cambridge Philosophical Society, vol. 19, pp. 5759, 1917.
[2] C. Padró and G. Sáez, "Taking cube roots in $\mathbb{Z}_{m} "$, Applied Mathematics Letters, vol. 15, pp. 703-708, 2002.
[3] R. C. Peralta, "A simple and fast probabilistic algorithm for computing square roots modulo a prime number", IEEE Transactions on Information Theory, vol. 32, pp. 846847, 1986.
[4] D. Shanks "Five number-theoretic Algorithms," Proceeding of Second Manitoba Conference of Numerical Mathematics, pp.51-70, 1972.
[5] A. Tonelli, "Bemerkung über die Auflösung Quadratischer Congruenzen", Göttinger Nachrichten, pp.344-346, 1891.
[6] L. Adleman, K. Manders and G. Miller, "On taking roots in finite fields", Proc. 18th IEEE Symposium on Foundations on Computer Science (FOCS), pp. 175-177, 1977.
[7] Z. Cao, Q. Sha, and X. Fan, "Adlemen-Manders-Miller root extraction method revisited", preprint, available at http://arxiv.org/abs/1111.4877, 2011.
[8] M. Cipolla, "Un metodo per la risolutione della congruenza di secondo grado", Rendiconto dell'Accademia Scienze Fisiche e Matematiche, Napoli, Ser. 3, vol. IX, pp. 154-163, 1903.
[9] D. H. Lehmer, "Computer technology applied to the theory of numbers", In Studies in Number Theory, Prentice-Hall Enblewood Cliffs, NJ, pp.117-151, 1969.
[10] H. C. Williams, "Some algorithm for solving $x^{q} \equiv N(\bmod p)$ ", Proc. 3rd Southeastern Conf. on Combinatorics, Graph Theory, and Computing, Florida Atlantic University, pp. 451-462, 1972.
[11] K. S. Williams and K. Hardy, "A refinement of H. C. Williams' qth root algorithm", Mathematics of Computation, Vol.61, pp. 475-483, 1993.
[12] D. Bernstein, "Faster square roots in annoying finite fields", preprint, available at http://cr.yp.to/papers/sqroot.pdf.
[13] American Mathematical Society, "MathSciNet Review", available at http://www.ams.org/mathscinet.

