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Abstract

We clarify and generalize a cube root algorithm in Fq proposed by Pocklington [1],
and later rediscovered by Padró and Sáez [2]. We correct some mistakes in [2] and give
a full generalization of the result in [1, 2] for the cube root algorithm. We also give
the comparison of the implementation of Pocklington and Padró-Sáez algorithm with two
most popular cube root algorithms, namely the Adleman-Manders-Miller algorithm and
the Cipolla-Lehmer algorithm. To the authors’ knowledge, our comparison is the first one
which compares three basic algorithms together.

Keywords : cube root algorithm, finite field, Pocklington algorithm, Adleman-Manders-
Miller algorithm, Cipolla-Lehmer algorithm

1 Introduction

Pocklington [1] proposed a new square and cube root algorithms in the finite field Fq with q a
prime, which are different from the two most well-known algorithms nowadays; the Adleman-
Manders-Miller algorithm [4, 5, 6, 7] and the Cipolla-Lehmer [8, 9, 10, 11] algorithm. Later,
the algorithm of Pocklington is rediscovered by Peralta [3] for the case of the square root and
by Padró and Sáez [2] for the case of the cube root.

Both Peralta and Padró-Sáez were unaware of the work of Pocklington at the time of
their results (See also [12]). Padró and Sáez, knowing the result of Peralta [3], gave a cubic
version of the Peralta square root algorithm, and their algorithm has a more general form (with
the estimation of the success probability) than the original version of Pocklington. However
it contains some flaws (in Proposition 3.5 of [2]) where some cases which cannot happen
are considered. Moreover, no available literature including the review of the paper [2] in
MathSciNet [13] notices this error.

Our aim in this paper is to correct the errors in the result of Padró-Sáez [2] and to present
a refinement of the cube root algorithm extending both the result of Pocklington and Padró-
Sáez. We also give the result of the software implementations (using SAGE) of the Pocklington
and Padró-Sáez algorithm and two other standard algorithms; the Adleman-Manders-Miller
algorithm and the Cipolla-Lehmer algorithm. To the authors’ knowledge, our comparison is
the first one ever which compares all three algorithms together. Our result shows that the
Pocklington and Padró-Sáez algorithm is consistently superior to the Cipolla-Lehmer algo-
rithm, and is also superior to the Adleman-manders-Miller algorithm when s is large, where s
is the largest integer satisfying 3s|q − 1.
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2 Pocklington and Padró-Sáez Cube Root Method

Both Pocklington [1] and Padró-Sáez [2] considered the finite field Fq with prime q. However
their approaches are also good for the general finite field. Therefore we assume that q is a
power of a prime and let Fq be a finite field with q elements. Let a ̸= 0 ∈ Fq be a cubic residue
in Fq, i.e., there exists x ∈ Fq such that x3 = a.

Note that when q ≡ 2 (mod 3), a cube root of a is given as a
2q−1

3 , and when q ≡ 0 (mod 3)
(i.e., when q = 3s), then a cube root of a ∈ F3s is given as a3

s−1
. Therefore a cube root of

a can be found easily when q ≡ 0, 2 (mod 3). When q ≡ 1 (mod 3), there exists a primitive
cube root of unity ϵ ∈ Fq satisfying ϵ3 = 1. From now on, we will only consider the finite field
Fq with q ≡ 1 (mod 3), and a primitive cube root of unity ϵ is fixed throughout this paper.

For a given cube root x ∈ Fq of a, the other two cube roots of a are given as ϵx and ϵ2x,
and we have the polynomial identity

X3 − a = (X − x)(X − ϵx)(X − ϵ2x) ∈ Fq[X].

We also have the following isomorphism of rings

Fq[X]/⟨X3 − a⟩ ∼= Fq × Fq × Fq, (1)

where the isomorphism is given as

φ : Fq[X]/⟨X3 − a⟩ −→ Fq × Fq × Fq

α+ βX + γX2 7→ (α+ βx+ γx2, α+ βϵx+ γϵ2x2, α+ βϵ2x+ γϵx2) (2)

For a detailed explanation, see [2]. We also need the norm of z = α+βX+γX2 ∈ Fq[X]/⟨X3−
a⟩, N(z), defined as the product of all the conjugates of z,

N(z) = zz̄ ¯̄z ∈ Fq,

where z̄ = α+ βϵX + γϵ2X2. Then the following is well-known;

N(z) = (α+ βX + γX2)(α+ βϵX + γϵ2X2)(α+ βϵ2X + γϵX2)

= (α+ βx+ γx2)(α+ βϵx+ γϵ2x2)(α+ βϵ2x+ γϵx2) (3)

Define the set of invertible elements as F×
q and (Fq[X]/⟨X3−a⟩)×. Then from the equations

(2) and (3), we have
N(z) ̸= 0⇐⇒ φ(z) ∈ F×

q × F×
q × F×

q ,

which implies that we also have the isomorphism between the sets of invertible elements;

(Fq[X]/⟨X3 − a⟩)× ∼= F×
q × F×

q × F×
q (4)

For a given z = α+ βX + γX2 ∈ Fq[X]/⟨X3 − a⟩, the norm of z is the determinant of the
linear transformation ℓz : Fq[X]/⟨X3 − a⟩ −→ Fq[X]/⟨X3 − a⟩ with ℓz(w) = wz, and it can be
computed as follows.

Lemma 1. One has

N(z) =

∣∣∣∣∣∣
α β γ
aγ α β
aβ aγ α

∣∣∣∣∣∣ = α3 + aβ3 + a2γ3 − 3aαβγ. (5)
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Proof. By expanding the product in the equation (3), and using the properties x3 = a and
1 + ϵ + ϵ2 = 0, one gets the right side of the equation (5), which can also be written as a
determinant form.

Note that the cost of computing N(z) is 11 multiplications in Fq and is negligible compared
with the cost of the exponentiation zt when t is large.

Now we are ready to present the original version of the Proposition given in [2].

Proposition 1 (Proposition 3.5 in [2]). Let a ̸= 0 ∈ Fq be a cubic residue and z = α+βX+γX2

be an element of Fq[X]/⟨X3 − a⟩ where at least two of the coefficients α, β and γ are nonzero.
Then

(1) If z3 = α′ with α′ ∈ F×
q , then

(1a) if β and γ are nonzero, then 3
√
a = α

β ,

(1b) if β = 0 and α, γ are nonzero, then 3
√
a = 1

a(
α
γ )

2,

(1c) if γ = 0 and α, β are nonzero, then 3
√
a = −α

β ,

(2) If z3 = β′X with β′ ∈ F×
q , then

3
√
a = N(z)

β′

(3) If z3 = γ′X2 with γ′ ∈ F×
q , then

3
√
a = N(z)2

γ′2a

3 New Refined Algorithm

As a result of the various mathematical softwares (such as MAPLE and SAGE) implemen-
tations, we found out that the cases (1b) and (1c) of Proposition 3.5 in [2] never appear in
practice. We also found out that the cases (2) and (3) do happen only when q ≡ 1 (mod 9).
These contradicting implementation results can be explained rigorously by the following math-
ematical analysis.

Lemma 2. Assuming the same conditions in Proposition 3.5 of [2],

(1) The cases (1b) and (1c) cannot happen. In other words, the assumption of (1b) [β = 0 and
α, γ are nonzero] or the assumption of (1c) [γ = 0 and α, β are nonzero] imply z3 ̸∈ Fq.

(2) The cases (2) and (3) do happen only when q ≡ 1 (mod 9).

Proof. (1) Our proof relies on the following identity in Fq[X]/⟨X3 − a⟩,

z3 = (α+ βX + γX2)3

= (α3 + aβ3 + a2γ3 + 6aαβγ) + 3(αγ2a+ β2γa+ α2β)X + 3(α2γ + αβ2 + βγ2a)X2. (6)

From the above identity, letting β = 0, one has

z3 = (α+ γX2)3 = α3 + γ3a2 + 3αγ2aX + 3α2γX2. (7)

Therefore α ̸= 0, γ ̸= 0 implies z3 /∈ Fq, which contradicts the assumption of (1) of Proposition
3.5 saying z3 = α′ ∈ Fq. In the same way, letting γ = 0 in the equation (6), we have

z3 = (α+ βX)3 = α3 + β3a+ 3α2βX + 3αβ2X2. (8)
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Therefore α ̸= 0, β ̸= 0 implies z3 /∈ Fq, which also contradicts the assumption of (1) of
Proposition 3.5 in [2].

(2) Now we will show that the cases (2) and (3) of Proposition 3.5 can happen only when
q ≡ 1 (mod 9). Since q ≡ 1 (mod 3), we may write

q = 3(3k +m) + 1 = 9k + 3m+ 1, for some k ∈ Z and m ∈ {0, 1, 2}.

From the isomorphism in the equation (4), we have zq−1 = 1 for all z ∈ (Fq[X]/⟨X3 − a⟩)×.
Therefore the case (2) z3 = β′X implies that

1 = zq−1 = (z3)
q−1
3 = (β′X)3k+m = (β′)3k+makXm ∈ Fq.

Consequently we get m = 0 and q = 9k + 1. In the same way, the case (3) z3 = γ′X2 implies
that

1 = zq−1 = (z3)
q−1
3 = (γ′X2)3k+m = (γ′)3k+ma2kX2m ∈ Fq.

Since the possible values of X2m are 1, X2, X4 = aX, we also get m = 0 and q = 9k + 1.

Because of this observation, Proposition 3.5 in [2] should be modified, and the corrected
and extended version is given here.

Proposition 2 (Corrected and Extended Version of Proposition 3.5 in [2]). Let a ̸= 0 ∈ Fq be
a cubic residue and let z = α+ βX + γX2 be a nonzero element of Fq[X]/⟨X3 − a⟩.

(1) If z3 = α′ with α′ ∈ F×
q where at least two of α, β, γ are nonzero, then all three α, β, γ

are nonzero and all three distinct cube roots of a are given as α
β ,

β
γ and aγ

α .

(2) If z3 = β′X or z3 = γ′X2 for some β′, γ′ ∈ F×
q , then all three α, β, γ are nonzero and

(2a) if z3 = β′X, then 3
√
a = −9aαβγ

β′ .

(2b) if z3 = γ′X2, then 3
√
a = − γ′

9αβγ .

Proof. (1) From the equations (7) and (8), we already showed that two nonzero coefficients
α, γ with β = 0 or α, β with γ = 0 produce z3 /∈ Fq. The remaining case where β, γ are nonzero
and α = 0 can be understood from the following identity derived from the equation (6),

z3 = (βX + γX2)3 = γ3a2 + β3a+ 3aβ2γX + 3aβγ2X2, (9)

which shows z3 /∈ Fq. Therefore, if at least two of α, β and γ are nonzero and if z3 ∈ Fq, then

one must have all nonzero α, β and γ. The fact that a =
(
α
β

)3
is already shown both in [1]

and [2]. Since z3 = α′ ∈ Fq, from the equation (6), we get

αγ2a+ β2γa+ α2β = 0, (10)

α2γ + αβ2 + βγ2a = 0. (11)

Then γ×(10)−β×(11)= α(γ3a−β3) = 0, from which we get a =
(
β
γ

)3
. Also α×(10)−γa×(11)=

β(α3 − γ3a2) = 0, from which we have a =
(γa

α

)3
. Also notice that β×(10)−α×(11)=
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γ(β3a − α3) = 0, which says a =
(
α
β

)3
. All three cube roots α

β ,
β
γ ,

aγ
α are different because

α
β + β

γ + aγ
α = 1

αβγ (α
2γ + αβ2 + βγ2a) = 0 from the equation (11).

(2) In view of Lemma 1, the constant term of the equation (6) is N(z)+ 9aαβγ. Therefore
one has N(z) = −9aαβγ if z3 = β′X or z3 = γ′X2. For the case (2a), by taking norm to

β′X = z3, we get β′3a = N(z)3 = (−9aαβγ)3 and thus a =
(
−9aαβγ

β′

)3
. For the case (2b),

by taking norm to z3X = γ′a, we get N(z)3a = γ′3a3 and thus a =
(
− γ′

9αβγ

)3
. Note that

αβγ ̸= 0, because one gets a = 0 if αβγ = 0.

The fact β
γ is a root of X3 − a = 0 is also noticed in [1], but the fact that aγ

α is the other

root of X3−a = 0 different from α
β and β

γ are not mentioned in both [1] and [2]. Also note that
computing aαβγ requires 3 multiplications while computing N(z) requires 11 multiplications.

Proposition 3. Let q be a prime power with q−1 = 3st and gcd(3, t) = 1. Let 0 ≤ m ≤ s−1.
Then the probability that a randomly chosen invertible z ∈ Fq[X]/⟨X3 − a⟩ satisfies z3

mt =
α′ + β′X + γ′X2 with exactly 2 zero coefficients is 1

32s−2m−1 .

Proof. We have to find the probability that z3
mt = α′ or z3

mt = β′X or = γ′X2. Note that
these three cases are independent cases.
Case 1. z3

mt = α′: Due to the isomorphism in the equation (4), we may assume φ(z) =
(a, b, c) ∈ F×

q × F×
q × F×

q and (α′, α′, α′) = φ(z3
mt) = φ(z)3

mt = (a3
mt, b3

mt, c3
mt). Thus from

a3
mt = b3

mt = c3
mt ∈ F×

q , we get
(
b
a

)3mt
= 1 and

(
c
a

)3mt
= 1. Therefore such (a, b, c) can be

parameterized as (a, b, c) = (a, aζ, aζ ′) with a ∈ F×
q and ζ, ζ ′ ∈ C, where C is a unique (cyclic)

subgroup of order 3mt in F×
q . Consequently the number of such (a, b, c) is (q − 1)32mt2.

Case 2. z3
mt = β′X: In the same way, we may assume φ(z) = (a, b, c) ∈ F×

q × F×
q × F×

q

and (β′x, β′xϵ, β′xϵ2) = φ(z3
mt) = φ(z)3

mt = (a3
mt, b3

mt, c3
mt). Thus we get

(
b
a

)3mt
= ϵ and(

c
a

)3mt
= ϵ2. Since m + 1 ≤ s (i.e., 3m+1t|q − 1 = 3st), there is a primitive 3m+1t-th root of

unity µ such that either µ3mt = ϵ or ϵ2. Therefore letting (θ, θ′) = (µ, µ2) or (µ2, µ), one has

(θ3
mt, θ′3

mt) = (ϵ, ϵ2) which implies
(

b
aθ

)3mt
= 1 and

(
c
aθ′

)3mt
= 1. Similarly as in the Case 1,

such a, b, c can be parimetrized as (a, b, c) = (a, aθζ, aθ′ζ ′) where a ∈ F×
q , ζ, ζ

′ ∈ C, and the
number of such (a, b, c) is also (q − 1)32mt2.

Case 3. z3
mt = γ′X2: This case can be dealt in the same manner with the Case 2 so that the

number of possible cases of z is (q − 1)32mt2.

Therefore the desired probability is 3·32mt2(q−1)
(q−1)3

= 3·32mt2

(q−1)2
= 3·32mt2

32st2
= 1

32s−2m−1 .

As a special case, when m = 0, we get the probability that zt = α′ or β′X or γ′X2 as 1
32s−1 ,

which is the result of Proposition 3.7 in [2] . Also note that this result does not contradict
Lemma 2–(2), because zt = β′X, γ′X2 are possible since 3 ̸ |t.

Our observations on Proposition 2 and 3 lead to a cube root algorithm shown in Algorithm
1, whose complexity is O(log3 q) since the cost of the algorithm is several exponentiations in
Fq. In the algorithm, we try random invertible z ∈ Fq[X]/⟨X3−a⟩ until we find zt with at least
two nonzero coefficients. Then, we apply repeated cubings to zt until we have z3

mt ∈ Fq or
Fq ·X or Fq ·X2 for some 1 ≤ m ≤ s. Note that, since z3

st = zq−1 = 1 when z is invertible, such
m always exists once we have zt with at least two nonzero coefficients. Because of Proposition
3, the probability of having only one nonzero coefficient in Step 6 is 1

32s−1 , and the probability
of finding a cube root exactly after m-th iteration of the while-loop is 1

32s−(2m+1) − 1
32s−(2m−1)

5



for 1 ≤ m ≤ s − 1. The probability of finding a cube root after full iterations (i.e., after s-th
iteration) is 2

3 . Therefore the expected number of iterations of the while-loop is

s−1∑
m=1

m

(
1

32s−(2m+1)
− 1

32s−(2m−1)

)
+ s

(
1− 1

3

)
= s−

s∑
m=1

1

32m−1
= s− 3

8

(
1− 1

9s

)
.

Algorithm 1 Refined Pocklington and Padró-Sáez Cube Root Algorithm

Input : A cube a in Fq with q − 1 = 3st, gcd(3, t) = 1

Output : x satisfying x3 = a in Fq

1: if q ≡ 4 (mod 9) then x← a
2q+1

9

2: if q ≡ 7 (mod 9) then x← a
q+2
9

3: Choose random α, β, γ ∈ Fq and let z := α+ βX + γX2 ∈ Fq[X]/⟨X3 − a⟩
4: if N(z) = 0 then go to STEP 3
5: z ← zt

6: if α = β = 0 or β = γ = 0 or γ = α = 0 then go to STEP 3
7: while αβ ̸= 0 or βγ ̸= 0 or γα ̸= 0 do //while at least two of α, β, γ are nonzero//
8: z0 := α0 + β0X + γ0X

2 ← z (i.e., α0 ← α, β0 ← β, γ0 ← γ)
9: z ← z3

10: if β = γ = 0 then x← α0
β0

11: else if γ = α = 0 then x← −9aα0β0γ0
β

12: else then x← − γ
9α0β0γ0

13: return x

In the given algorithm, the probability that a randomly chosen z ∈ Fq[X]/⟨X3 − a⟩ is

invertible (i.e., N(z) ̸= 0) is
(
1− 1

q

)3
. Therefore when the finite field Fq is very large, one may

safely assume N(z) ̸= 0, and thus the STEP 4 in the algorithm may be omitted with error

probability 1−
(
1− 1

q

)3
≈ 3

q . In the event of the extremely unlucky case N(z) = 0, omitting

the STEP 4 gives endless while-loop because one has zq−1 ̸= 1 if and only if N(z) = 0. Any
way, the computational cost of the STEP 4 is just 11 multiplications in Fq and is negligible
compared with the total cost of the algorithm. Also, the probability that one may go back to
the STEP 3 in the STEP 6 is 1

32s−1 ≤ 1
27 , since one reaches the STEP 6 only if s ≥ 2 (i.e., if

q ≡ 1 (mod 9)).

4 Comparison Results

We compared our proposed algorithm with two most well-known cube root algorithms in
the finite field Fq; the AMM (Adleman-Manders-Miller) algorithm [4, 5, 6, 7] and the CM
(Cipolla-Lehmer) algorithm [8, 9, 10, 11]. The complexity of the AMM cube root algorithm is
O(log3 q + s2 log2 q) where q − 1 = 3st with gcd(3, t) = 1, and the complexity of the CM cube
root algorithm is O(log3 q) which is same to the Pocklington and Padró-Sáez algorithm.

We used a standard version in [7] for the AMM implementation. For the Cipolla-Lehmer
implementation, we used two algorithms; the algorithm of H. C. Williams [10] and the algorithm
of K. S. Williams and K. Hardy [11]. The algorithm in [10] is a generalization to the r-
th root extraction (with the recurrence relation technique) of the original Cipolla-Lehmer
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Table 1: Running time (in seconds) for cube root computation with p ≈ 22000

s 50 100 150 200 250 300

AMM [6, 7] 0.082 0.148 0.297 0.498 0.781 1.084

CM [10] 0.495 0.495 0.498 0.497 0.488 0.492

CM [11] 0.282 0.284 0.284 0.285 0.276 0.282

Proposed Alg. 0.236 0.235 0.235 0.236 0.234 0.233

Table 2: Running time (in seconds) for cube root computation with p ≈ 23000

s 50 100 150 200 250 300

AMM [6, 7] 0.150 0.292 0.519 0.842 1.294 1.746

CM [10] 1.363 1.350 1.395 1.382 1.352 1.465

CM [11] 0.756 0.744 0.790 0.778 0.750 0.796

Proposed Alg. 0.655 0.655 0.654 0.651 0.651 0.648

square root algorithm [8, 9], and the algorithm in [11], a refinement of the algorithm in [10],
has a better complexity for small values of r. Tables 1 and 2 show the comparison of the
implementation results with SAGE of the above mentioned 3 algorithms and our proposed
one. The implementation was performed on Intel Core i7-4770 3.40GHz with 8GB memory.

For convenience, we used prime fields Fp with two different size of primes p: 2000 and
3000 bits. Average timings of the cube root computations for 5 different inputs of cubic rsidue
a ∈ Fp are computed for those cases s = 50, 100, 150, · · · , etc. As one can see in the tables,
the timings of the AMM increase drastically as s becomes larger, while the timings of the CM
algorithms and our algorithm are independent of s. The tables also show that our proposed
algorithm is consistently faster than the Cipolla-Lehmer. For example, when p ≈ 23000, the
average timing of the Cipolla-Lehmer in [11] is 0.769 (seconds) which are 20% slower than the
average timing 0.652 (seconds) of the proposed algorithm.

5 Conclusion

We corrected some errors in the Pocklington and Padró-Sáez cube root algorithm in [2], and
proposed a refined algorithm. The implementation result shows that the proposed algorithm
is faster than the Adleman-Manders-Miller algorithm for large values of s, and is also con-
sistintly faster than the Cipolla-Lehmer algorithm. The difference between the Pocklington
and Padró-Sáez algorithm and the Cipolla-Lehmer algorithm is that, though they have the
same complexity, the Pocklington and Padró-Sáez algorithm relies on the ring arithmetic in
Fq[X]/⟨X3 − a⟩ which is isomorphic to Fq × Fq × Fq, while the Cipolla-Lehmer algorithm re-
lies on the arithmetic in the extension filed Fq3 . Therefore, to find a cube root, essentially
one only needs to compute zq−1 in the Pocklington and Padró-Sáez while one has to compute

z
q3−1
q−1 = zq

2+q+1 in the Cipolla-Lehmer [10, 11]. This difference of the exponents (of z) explains
the superior performance of the Pocklington and Padró-Sáez over the Cipolla-Lehmer. For the
quadratic case, there is no such difference, i.e., zq−1 in the Pocklington and Padró-Sáez versus
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zq+1 in the Cipolla-Lehmer. We finally remark that, as far as we know, our implementation of
the 3 major algorithms (the Adleman-Manders-Miller, the Cipolla-Lehmer and the Pocklington
and Padró-Sáez) is the first one available in the literature.
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