
Secret-Sharing for NP from Indistinguishability Obfuscation∗

Ilan Komargodski
Weizmann Institute of Science

ilan.komargodski@weizmann.ac.il

Moni Naor†

Weizmann Institute of Science
moni.naor@weizmann.ac.il

Eylon Yogev
Weizmann Institute of Science
eylon.yogev@weizmann.ac.il

March 2, 2014

Abstract

A computational secret-sharing scheme is a method that enables a dealer, that has a secret,
to distribute this secret among a set of parties such that a “qualified” subset of parties can
reconstruct the secret while any “unqualified” subset of parties cannot efficiently learn anything
about the secret. The collection of “qualified” subsets is defined by a monotone Boolean function.

It has been a major open problem to understand which (monotone) functions can be realized
by a computational secret-sharing schemes. Yao suggested a method for secret-sharing for any
function that has a polynomial-size monotone circuit (a class which is strictly smaller than
the class of monotone functions in P). Around 1990 Rudich raised the possibility of obtaining
secret-sharing for all monotone functions in NP: In order to reconstruct the secret a set of
parties must be “qualified” and provide a witness attesting to this fact.

Recently, there has been much excitement regarding the possibility of obtaining program ob-
fuscation satisfying the “indistinguishability obfuscation” requirement: A transformation that
takes a program and outputs an obfuscated version of it so that for any two functionally equiv-
alent programs the output of the transformation is computationally indistinguishable.

Our main result is a construction of a computational secret-sharing scheme for any monotone
function in NP assuming the existence of an efficient indistinguishability obfuscator for P and
one-way functions. Furthermore, we show how to get the same result but relying on a weaker
obfuscator: an efficient indistinguishability obfuscator for 3CNF formulas.

∗Research supported in part by a grant from the I-CORE Program of the Planning and Budgeting Committee,
the Israel Science Foundation and the Citi Foundation.
†Incumbent of the Judith Kleeman Professorial Chair.

1

Contents

1 Introduction 3
1.1 Other Related Work . 6
1.2 Main Idea . 6

2 Preliminaries 8
2.1 Monotone NP . 8
2.2 Computational Indistinguishability . 8
2.3 Secret-Sharing . 8
2.4 Indistinguishability Obfuscation . 9
2.5 Commitment Schemes . 10

3 The Definition of Rudich Secret-Sharing 10
3.1 An Alternative Definition: Semantic Security . 11
3.2 Definition of Adaptive Security . 12

4 Rudich Secret-Sharing from iO 12
4.1 Main Proof of Security . 15
4.2 Rudich Secret-Sharing from iO for 3CNF Formulas 21

5 Conclusions and Open Problems 22

A Proof of Theorem 3.3 25

B Proof of Lemma 4.2 27

C On Completeness for Rudich Secret-Sharing 28

2

1 Introduction

A secret-sharing scheme is a method that enables a dealer, that has a secret piece of information,
to distribute this secret among n parties such that a “qualified” subset of parties has enough infor-
mation to reconstruct the secret while any “unqualified” subset of parties learns nothing about the
secret. A monotone collection of “qualified” subsets (i.e., subsets of parties that can reconstruct
the secret) is known as an access structure, and is usually identified with its characteristic monotone
function.1 Besides being interesting in their own right, secret-sharing schemes are an important
building block in many cryptographic protocols, especially those involving some notion of “quali-
fied” sets (e.g., multi-party computation, threshold cryptography and Byzantine agreement). For
more information we refer to the extensive survey of Beimel on secret-sharing schemes and their
applications [Bei11].

A significant goal in constructing secret-sharing schemes is to minimize the amount of infor-
mation distributed to the parties. We say that a secret-sharing scheme is efficient if the size of all
shares is polynomial in the number of parties and the size of the secret.

Secret-sharing schemes were introduced in the late 1970s by Blakley [Bla79] and Shamir [Sha79]
for the threshold access structure, i.e., where the subsets that can reconstruct the secret are all the
sets whose cardinality is at least a certain threshold. Their constructions were fairly efficient both
in the size of the shares and in the computation required for sharing and reconstruction. Ito, Saito
and Nishizeki [ISN93] considered general access structures and showed that every monotone access
structure has a (possibly inefficient) secret-sharing scheme that realizes it. In their scheme the size
of the shares is proportional to the size of the DNF for the corresponding function. Benaloh and
Leichter [BL88] proved that if an access structure can be described by a polynomial-size monotone
formula, then it has an efficient secret-sharing scheme. The most general class for which secret
sharing is known was suggested by Karchmer and Wigderson [KW93] who showed that if the access
structure can be described by a polynomial-size monotone span program (for instance, undirected
connectivity in a graph), then it has an efficient secret-sharing scheme. Beimel and Ishai [BI05]
proposed a secret-sharing scheme for an access structure which is conjectured to lie outside NC.
On the other hand, there are no known lower bounds that show that there exists an access structure
that requires only inefficient secret-sharing schemes.2

In the secret-sharing schemes considered above the security is guaranteed even if the parties
are computationally unbounded. These secret-sharing schemes are known as perfect secret-sharing
schemes. A natural variant, known as computational secret-sharing schemes, is to allow only compu-
tationally limited dealers and parties, i.e., they are probabilistic algorithms that run in polynomial-
time. More precisely, a computational secret-sharing scheme is a secret-sharing scheme in which
there exists an efficient dealer that generates the shares such that a “qualified” subset of parties
can efficiently reconstruct the secret, however, an “unqualified” subset that pulls its shares together
but has only limited (i.e., polynomial) computational power and attempts to reconstruct the secret
should fail (with high probability). Krawczyk [Kra93] presented a computational secret-sharing
scheme for threshold access structures that is more efficient (in terms of the size of the shares) than

1It is most sensible to consider only monotone sets of “qualified” subsets of parties. A set M of subsets is called
monotone if A ∈ M and A ⊆ A′, then A′ ∈ M . It is hard to imagine a meaningful method for sharing a secret to a
set of “qualified” subsets that does not satisfy this property.

2Moreover, there are not even non-constructive lower bounds for secret-sharing schemes. The usual counting
arguments (e.g., arguments that show that most functions require large circuits) do not work here since one needs to
enumerate over the sharing and reconstruction algorithms whose complexity may be larger than the share size.

3

the perfect secret-sharing schemes given by Blakley and Shamir [Bla79, Sha79]. In an unpublished
work (mentioned in [Bei11], see also Vinod et al. [VNS+03]), Yao showed an efficient computa-
tional secret-sharing scheme (assuming the existence of one-way functions) for access structures
whose characteristic function can be computed by a polynomial-size monotone circuit (as opposed
to the perfect secret-sharing of Benaloch and Leichter [BL88] for polynomial-size monotone formu-
las). There are access structures which are known to have an efficient computational secret-sharing
schemes but are not known to have efficient perfect secret-sharing schemes, e.g., directed connec-
tivity.3 Yao’s scheme does not include all monotone access structures with an efficient algorithm to
determine eligibility. One notable example where no efficient secret-sharing is known is matching
in a graph.4 Thus, a major open problem is to understand which access structures have efficient
computational secret-sharing schemes, and what cryptographic assumptions are required for that.

Around 1990 Steven Rudich raised the possibility of obtaining secret-sharing schemes for an even
more general class of access structures than P: monotone functions in NP, also known as mNP.5

An access structure that is defined by a function in mNP is called an mNP access structure.
Intuitively, a secret-sharing scheme for an mNP access structure is defined (in the natural way)
as following: for the “qualified” subsets there is a witness attesting to this fact and given the
witness it should be possible to reconstruct the secret. On the other hand, for the “unqualified”
subsets there is no witness, and so it should not be possible to reconstruct the secret. For example,
consider the Hamiltonian access structure. In this access structure the parties correspond to edges
of the complete undirected graph, and a set of parties X is said to be “qualified” if and only if
the corresponding set of edges contains a Hamiltonian cycle and the set of parties knows a witness
attesting to this fact.

Rudich observed that if NP 6= coNP, then there is no perfect secret-sharing scheme for the
Hamiltonian access structure in which the sharing of the secret can be done efficiently (i.e., in
polynomial-time).6 This (conditional) impossibility result motivates looking for computational
secret-sharing schemes for the Hamiltonian access structure and other mNP access structures.
Furthermore, Rudich showed that the construction of a computational secret-sharing schemes for
the Hamiltonian access structure gives rise to a protocol for oblivious transfer. More precisely,
Rudich showed that if one-way functions exist and there is a computational secret-sharing scheme
for the Hamiltonian access structure (i.e., with efficient sharing and reconstruction), then efficient
protocols for oblivious transfer exist.7 In particular, constructing a computational secret-sharing
scheme for the Hamiltonian access structure assuming one-way functions will resolve a major open
problem in cryptography and prove that Minicrypt=Cryptomania, to use Impagliazzo’s terminology
[Imp95].

In the decades since Rudich raised the possibility of access structures beyond P not much has
happened. This changed with the work on Witness Encryption by Garg et al. [GGSW13], where

3In the access structure for directed connectivity, the parties correspond to edge slots in the complete directed
graph and the “qualified” subsets are those edges that connect two distinguished nodes s and t.

4In the access structure for matching the parties correspond to edge slots in the complete graph and the “qualified”
subsets are those edges that contain a perfect matching. Even though matching is in P, it is known that there is no
monotone circuit that computes it [Raz85].

5Rudich raised it in private communication with the second author around 1990 and was not written to the best
of our knowledge; a description of some of Rudich’s results can be found in Beimel’s survey [Bei11] and in [Nao06].

6Moreover, it is possible to show that if NP 6⊆ coAM, then there is no statistical secret-sharing scheme for the
Hamiltonian access structure in which the sharing of the secret can be done efficiently [Nao06].

7The resulting reduction is non-black-box. Also, note that the results of Rudich apply for any other monotone
NP-complete problem as well.

4

the goal is to encrypt a message relative to a statement x ∈ L for a language L ∈ NP such that:
Anyone holding a witness to the statement can decrypt the message, however, if x /∈ L, then it
is computationally hard to decrypt. It is relatively simple to show that secret-sharing for an NP
language L implies witness encryption for the statement x ∈ L (see Garg et al.). A byproduct
of the proposed construction of Garg et al. was a construction of a computational secret-sharing
scheme for a specific monotone NP-complete language (3-EXACT COVER [Gol08, Proposition
2.25]) based on assumptions closely related to multilinear maps. However, it is unclear whether
one can use a secret-sharing scheme for a specific (monotone) NP-complete language in order to
achieve secret-sharing schemes for any language in mNP. We discuss this more in Appendix C.

Since the publication of Garg et al. [GGSW13] a proposed construction for another fascinating
primitive emerged: indistinguishability obfuscation. In this paper, we construct a secret-sharing
scheme for every mNP access structure assuming the existence of efficient indistinguishability
obfuscation for all of P and one-way functions. In particular, our result gives an alternative con-
struction of an efficient protocol for oblivious transfer assuming indistinguishability obfuscation
and one-way functions than the one by Sahai and Waters [SW13]. We discuss the notion of indis-
tinguishability obfuscation next and then state our main result.

Obfuscation. The study of methods to transform a program (say described as a Boolean circuit)
into a form that is executable but otherwise completely unintelligible is a central research direction
in cryptography. The latter task, known as obfuscation is an open problem in computer security
from both practical and theoretical point of view.

The theoretical study of obfuscation was initiated by Barak et al. [BGI+12]. They studied
several notions of obfuscation, primarily focusing on virtual black-box obfuscation. Virtual black-box
obfuscation requires that anything that can be efficiently computed from the obfuscated program,
can also be computed efficiently from black-box (i.e., input-output) access to the program. Their
main result was that this notion of obfuscation cannot always be achieved. Indeed, they presented
an explicit family of circuits that provably cannot be virtual black-box obfuscated (based on one-
way functions). Other variants of definitions for obfuscation were introduced and proven to be
impossible in some cases by Goldwasser and Kalai [GK05] and Goldwasser and Rothblum [GR07].

Barak et al. [BGI+12] considered also an alternative notion of obfuscation called indistinguisha-
bility obfuscation (henceforth iO). An indistinguishability obfuscator guarantees that if two circuits
compute the same function, then their obfuscated version (outputs of the obfuscator) are compu-
tationally indistinguishable. This definition is weaker than the virtual black-box one and hence
may bypass the impossibility results shown for the latter. Indeed, (as shown by Barak et al.) it is
easy to build inefficient indistinguishability obfuscators by outputting a “canonical” circuit which
is equivalent to the original circuit. Apparently, one disadvantage of indistinguishability obfusca-
tion is that it does not give an intuitive guarantee that the circuit hides information. For some
functionalities, this is a major drawback.

Recently, the work of Garg et al. [GGH+13] proposed the first candidate construction of obfus-
cators. They show that, under new computational assumptions closely related to multilinear maps,
their construction satisfies the notion of indistinguishability obfuscation. Different variants of this
construction that are secure in idealized algebraic models have been proposed in [BGK+13, BR14b].

Following the work of Garg et al. it has been shown by Sahai and Waters [SW13], Hohen-
berger et al. [HSW13] and Boneh and Zhandry [BZ13] that iO can be combined with one-way
functions to construct many powerful primitives such as public-key encryption, identity-based en-

5

cryption, attribute-based encryption (via witness encryption), NIZK arguments, CCA encryption,
deniable encryption with non-negligible advantage and traitor-tracing schemes with very short
messages (note that the latter two primitives did not have any known construction). We note
that without further assumptions, we cannot prove that iO implies one-way functions. Indeed, if
P = NP then one-way functions do not exists, but iO does exist since the canonizing iO from above
can be implemented efficiently. (Recently, Moran and Rosen [MR13] showed that if NP 6= coRP
and efficient indistinguishability obfuscators exist, then one-way functions exist.) Therefore, we do
not expect to build many “cryptographically interesting” tools just from iO, but usually need to
combine it with other assumptions.

Our Results. We formally definite secret-sharing for mNP access structures, give two variants
(indistinguishability and semantic security) and prove their equivalence. Our main result is a
computational secret-sharing scheme for all mNP access structures assuming the existence of an
efficient indistinguishability obfuscator for P and one-way functions.

Theorem 1.1 (Informal). If efficient iO exists for P and one-way functions exist, then for every
mNP access structure there is an efficient computational secret-sharing scheme.

Moreover, we show that the same result holds even when assuming the existence of an efficient
indistinguishability obfuscator for a smaller class of circuits: 3CNF formulas (for more information
we refer to Section 4.2). In particular, a simple candidate for an indistinguishability obfuscator for
3CNF formulas that is provably secure in an idealized algebraic model was recently suggested by
Brakerski and Rothblum [BR14a].

We remark that if we relax the requirement of computational secret-sharing such that a “quali-
fied” subset of parties can reconstruct the secret with very high probability (say, negligibly close to
1), then our scheme from Theorem 1.1 actually gives a secret-sharing scheme for every monotone
functions in MA.

1.1 Other Related Work

A different model of secret-sharing for mNP access structures was suggested by Vinod et al.
[VNS+03]. Specifically, they relaxed the requirements of secret-sharing by introducing a semi-
trusted third party T who is allowed to interact with the dealer and the parties. They require
that T does not learn anything about the secret and the participating parties. In this model, they
constructed an efficient secret-sharing scheme for any mNP access structures (that is also efficient
in terms of the round complexity of the parties with T) assuming the existence of efficient oblivious
transfer protocols.

1.2 Main Idea

Let M be an mNP access structure on n parties P = {p1, . . . , pn} with a verifier VM . We think of
VM as a polynomial-size circuit. Recall that indistinguishability obfuscation (iO) is a functionality
preserving (randomized) transformation on circuits that assures that if two circuits C1 and C2

agree on every input and have the same size, then iO(C1) is computationally indistinguishable
from iO(C2).

6

Let Com be a commitment scheme. A secret-sharing scheme consists of a setup phase in which
the dealer distributes secret shares to the parties. For i ∈ [n] the share of party pi is composed of
the following parts:

1. A secret opening ri for a commitment to the value i.

2. A circuit iO(C) where C = CS,c1,...,cn has the following hardwired:8

(a) For every i ∈ [n] the commitment ci = Com(i, ri) (of party pi) to the value i with the
opening ri.

(b) The secret S.

The circuit C gets as an input a subset of parties X = {pi1 , . . . , pik} and the corresponding
list of alleged openings r′i1 , . . . , r

′
ik

and an alleged witness w of X for VM . The circuit C
verifies that r′i1 , . . . , r

′
ik

are correct openings (i.e., it verifies that cij = Com(ij , r
′
ij

) for every

j ∈ [k]) and that VM (X,w) = 1. If all the tests pass, it outputs the secret S; otherwise, it
outputs NUL.

Clearly, if iO and Com are efficient, then the generation of the shares is efficient. Moreover, the
reconstruction procedure is the natural one: Given a subset of parties X ⊆ P such that M(X) = 1
and a valid witness w such that VM (X,w) = 1, evaluate iO(C) on X and w. The tests of C will
pass and iO(C) will output the secret S, by the definition of the circuit C.

As for the security of this scheme, we want to show that it is impossible to extract (or even learn
anything about) the secret having a subset of parties X for which M(X) = 0 (i.e., an “unqualified”
subset of parties). Let D be an algorithm that extracts the secret given X. Roughly speaking, we
will use the ability to extract the secret in order to solve the following task: we are given a list of
n unopened string commitments c1, . . . , cn and a promise that it either corresponds to the values
A0 = {1, . . . , n} or it corresponds to the values A1 = {n+ 1, . . . , 2n} and we need to decide which
is the case. Succeeding in this task would break the security guarantee of the commitment scheme.

We sample n openings r1, . . . , rn uniformly at random and create a new circuit C ′ such that
C ′ = CS,c

′
1,...,c

′
n as above, where we replace the commitments corresponding to parties not in X

with commitments from the input as follows:

∀i ∈ [n] : c′i =

{
Com(i, ri) if pi ∈ X
ci otherwise.

For i ∈ [n] we set the share of party pi to be 〈ri, iO(C ′)〉. We run D with this new set of shares. If
we are in the case where c1, . . . , cn corresponds to A0, then D is unable to distinguish between C
and C ′ and, hence, will be able to extract the secret. On the other hand, if c1, . . . , cn corresponds
to A1, then the circuit C ′ is equivalent to the NUL circuit. In this case, it is computationally hard
to extract the secret from iO(C ′) since it is computationally indistinguishable from iO(Z) where
Z is a canonical NUL circuit. Hence, if D is able to extract the secret S, then we deduce that
c1, . . . , cn correspond to A0 and, otherwise we conclude that c1, . . . , cn correspond to A1. We refer
to Section 4 for the complete description of the scheme and the proof of its security.

8Note that the circuit is the same circuit for all the parties. Hence, the circuit is not at all secret and can be
implemented only once and placed in a “shared storage” that all the parties have access to.

7

2 Preliminaries

We start with some general notation. We denote by [n] the set of numbers {1, 2, . . . , n}. Throughout
the paper we use n as our security parameter. We denote by Un the uniform distribution on n bits.
For a distribution or random variable R we write r ← R to denote the operation of sampling a

random element r according to R. For a set S, we write s
R←S to denote the operation of sampling

an s uniformly at random from the set S. We denote by neg : N→ R a function such that for every
positive integer c there exists an integer Nc such that for all n > Nc, neg(n) < 1/nc.

Throughout this paper we deal with Boolean circuits. We denote by |C| the size of a circuit C
and define it as the number of wires in C. Furthermore, we assume that the circuits have fan-in 2.

2.1 Monotone NP

A function f : 2[n] → {0, 1} is said to be monotone if for every X ⊆ [n] such that f(X) = 1 it also
holds that ∀Y ⊆ [n] such that X ⊆ Y it holds that f(Y) = 1.

A monotone Boolean circuits is a Boolean circuit with AND and OR gates (without negations).
A non-deterministic circuit is a Boolean circuit whose inputs are divided into two parts: standard
inputs and non-deterministic inputs. A non-deterministic circuit accepts a standard input if and
only if there is some setting of the non-deterministic input that causes the circuit to evaluate
to 1. A monotone non-deterministic circuit is a non-deterministic circuit where the monotonicity
requirement applies only to the standard inputs, that is, every path from a standard input wire to
the output wire does not have a negation gate.

Definition 2.1 ([GS92]). We say that a function L is in mNP if there exists a uniform family of
polynomial-size monotone non-deterministic circuit that computes L.

Lemma 2.2 ([GS92, Theorem 2.2]). mNP = NP ∩mono, where mono is the set of all monotone
functions.

2.2 Computational Indistinguishability

Definition 2.3. Two sequences of random variables X = {Xn}n∈N and Y = {Yn}n∈N are com-
putationally indistinguishable if for every probabilistic polynomial-time algorithm A there exists an
integer N such that for all n ≥ N ,

|Pr[A(Xn) = 1]− Pr[A(Yn) = 1]| ≤ neg(n).

where the probabilities are over Xn, Yn and the internal randomness of A.

2.3 Secret-Sharing

A perfect (resp., computational) secret-sharing scheme involves a dealer who has a secret, a set
of n parties, and a collection A of “qualified” subsets of parties called the access structure. A
secret-sharing scheme for A is a method by which the dealer (resp., efficiently) distributes shares
to the parties such that (1) any subset in A can (resp., efficiently) reconstruct the secret from its
shares, and (2) any subset not in A cannot (resp., efficiently) reveal any partial information on the
secret. For more information on secret-sharing schemes we refer to [Bei11] and references therein.

Throughout this paper we deal with secret-sharing schemes for access structures over n parties
P = Pn = {p1, . . . , pn}.

8

Definition 2.4 (Access structure). An access structure M on P is a monotone set of subset of P.
That is, for all X ∈ M it holds that X ⊆ P and for all X ∈ M and X ′ such that X ⊆ X ′ ⊆ P it
holds that X ′ ∈M .

We may think of M as a characteristic function M : 2P → {0, 1} that outputs 1 given as input
X ⊆ P if and only if X is in the access structure.

Many different definitions for secret-sharing schemes appeared in the literature. Some of the
definitions were not stated formally and in some cases rigorous security proofs were not given.
Bellare and Rogaway [BR07] survey many of these different definitions and recast them in the
tradition of provable-security cryptography. They also provide some proofs for well-known secret-
sharing schemes that were previously unanalyzed. We refer to [BR07] for more information.

2.4 Indistinguishability Obfuscation

We say that two circuits C and C ′ are equivalent and denote it by C ≡ C ′ if they compute the
same function (i.e., ∀x : C(x) = C ′(x)).

Definition 2.5 (Indistinguishability Obfuscator). Let C = {Cn}n∈N be a class of polynomial-size
circuits, where Cn is a set of circuits operating on inputs of length n. A uniform algorithm iO is
called an indistinguishability obfuscator for the class C if it takes as input a circuit in C and outputs
a new circuit so that following properties are satisfied:

1. Preserving Functionality:

For any input length n ∈ N and any C ∈ Cn we have that

Pr [C ≡ iO(C)] = 1, 9

where the probability is over the internal randomness of iO.

2. Polynomial Slowdown:

There is a polynomial p(·) such that for any input length n ∈ N and every circuit C ∈ Cn it
holds that |iO(C)| ≤ p(|C|).

3. Indistinguishable Obfuscation:

For any probabilistic polynomial-time algorithm D there exists an n0 such that for any n ≥ n0
and any two equivalent circuits C1, C2 ∈ Cn of size k, it holds that

|Pr [D (iO (C1)) = 1]− Pr [D (iO (C2)) = 1]| ≤ neg(k).

We say that iO is efficient if it runs in polynomial-time.

Remark. Our definition of Rudich secret-sharing (that is given in Section 3) is uniform. How-
ever, we note that we use a non-uniform definition of indistinguishability obfuscation (given in
Definition 2.5) since this is the most common definition in the literature.

9We could also define indistinguishability obfuscator iO with imperfect completeness, i.e., where
Pr [C ≡ iO(n,C)] ≥ 1 − neg(n). In this case, the same proof shows that our secret-sharing scheme is secure but
with imperfect completeness.

9

2.5 Commitment Schemes

A non-interactive statistically binding commitment scheme can be constructed based on any one-
way permutation [Blu82]. Naor [Nao91] showed a construction of an interactive (two-round)
statistically-binding commitment scheme based on any one-way function. For simplicity of pre-
sentation we will define commitment schemes in this paper to be non-interactive; however, all of
our results still hold if the non-interactive commitment is replaced by Naor’s construction.

Definition 2.6 (Commitment Scheme). A polynomial-time computable function Com : {0, 1} ×
{0, 1}n → {0, 1}p(n) (where p(·) is some polynomial) is a bit commitment scheme if it satisfies the
following properties:

1. Computational Hiding:

The random variables Com(0; Un) and Com(1; Un) are computationally indistinguishable.

2. Statistical Binding:

The supports of the above random variables are disjoint.

One can convert a bit commitment scheme into a string commitment scheme by concatenating
independent commitments for each of the input bits. Thus, for x = x1 · · ·x` ∈ {0, 1}` and r =
r(1) · · · r(`) ∈ {0, 1}n` we define Com(x; r) = Com(x1; r

(1)) · · ·Com(x`; r
(`)). We say that Com(x; r)

is the commitment of the value x with the opening r.

3 The Definition of Rudich Secret-Sharing

In this section we formally define computational secret-sharing for access structures realizing mono-
tone functions in NP, which we call Rudich secret-sharing. Even though secret-sharing for functions
in NP were considered in the past [VNS+03, Bei11, GGSW13], no formal definition was given. Our
definition consists of two requirements: completeness and security. The completeness requirement
assures that a “qualified” subset of parties that wishes to reconstruct the secret and knows the
witness will be successful. The security requirement guarantees that as long as the parties form an
“unqualified” subset, they are unable to learn the secret.

Note that the security requirement stated above is possibly hard to check efficiently: For some
access structures in mNP (e.g., monotone NP-complete problems) it might be computationally
hard to verify that the parties form an “unqualified” subset. Next, in Definition 3.1 we give a
uniform definition of secret-sharing for NP.

Definition 3.1 (Rudich secret-sharing). Let M : 2P → {0, 1} be an mNP access structure with
a verifier VM . A secret-sharing scheme S for M consists of a setup procedure SETUP and a
reconstruction procedure RECON that satisfy the following requirements:

1. SETUP(1n, S) gets as input a secret S and distributes a share for each party. For i ∈ [n]
denote by Π(S, i) the random variable that corresponds to the share of party pi. Furthermore,
for X ⊆ P we denote by Π(S,X) the random variable that corresponds to the set of shares of
parties in X.

2. Completeness:

10

If RECON(1n,Π(S,X), w) gets as input the shares of a “qualified” subset of parties and a
valid witness, and outputs the shared secret. Namely, for X ⊆ P if M(X) = 1, then for any
valid witness w such that VM (X,w) = 1, it holds that:

Pr [RECON(1n,Π(S,X), w) = S] = 1,

where the probability is over the internal randomness of the scheme and of RECON.

3. Indistinguishability of the Secret:

For every pair of probabilistic polynomial-time algorithms (Samp, D) where Samp(1n) defines
a distribution over pairs of secrets S0, S1, a subset of parties X and auxiliary information σ,
it holds that

|Pr [M(X) = 0 ∧ D(1n, S0, S1,Π(S0, X), σ) = 1]−
Pr [M(X) = 0 ∧ D(1n, S0, S1,Π(S1, X), σ) = 1] | ≤ neg(n),

where the probability is over the internal randomness of the scheme, the internal randomness
of D and the distribution (S0, S1, X, σ)← Samp(1n).

That is, for every pair of probabilistic polynomial-time algorithms (Samp, D) such that Samp
chooses two secrets S0, S1 and a subset of parties X ⊆ P, if M(X) = 0 then D is unable to
distinguish (with noticeable probability) between the shares of X generated by SETUP(S0) and
the shares of X generated by SETUP(S1).

Notation. For ease of notation, 1n and σ are omitted when they are clear from the context.

3.1 An Alternative Definition: Semantic Security

The security requirement (i.e., the third requirement) of a Rudich secret-sharing scheme that is
given in Definition 3.1 is phrased in the spirit of computational indistinguishability. A different
approach is to define the security of a Rudich secret-sharing in the spirit of semantic security. As
in many cases (e.g., encryption [GM84]), it turns out that the two definitions are equivalent.

Definition 3.2 (Rudich secret-sharing - semantic security version). Let M : 2P → {0, 1} be an
mNP access structure with verifier VM . A secret-sharing scheme S for M consists of a setup
procedure SETUP and a reconstruction procedure RECON as in Definition 3.1 and has the following
property instead of the indistinguishability of the secret property:

3 Unlearnability of the Secret:

For every pair of probabilistic polynomial-time algorithms (Samp, D) where Samp(1n) defines
a distribution over a secret S, a subset of parties X and auxiliary information σ, and for every
efficiently computable function f : {0, 1}∗ → {0, 1}∗ it holds that there exists a probabilistic
polynomial-time algorithm D′ (called a simulator) such that

|Pr [M(X) = 0 ∧ D(1n,Π(S,X), σ) = f(S)]−
Pr
[
M(X) = 0 ∧ D′(1n, X, σ) = f(S)

]
| ≤ neg(n),

where the probability is over the internal randomness of the scheme, the internal randomness
of D and D′, and the distribution (S,X, σ)← Samp(1n).

11

That is, for every pair of probabilistic polynomial-time algorithms (Samp, D) such that Samp
chooses a secret S and a subset of parties X ⊆ P, if M(X) = 0 then D is unable to learn
anything about S that it could not learn without access to the secret shares of X.

Theorem 3.3. Definition 3.2 and Definition 3.1 are equivalent.

We defer the proof of Theorem 3.3 to Appendix A.

3.2 Definition of Adaptive Security

Our definition of Rudich secret-sharing only guarantees security against static adversaries. That
is, the adversary chooses a subset of parties before it sees any of the shares. In other words, the
selection is done independently of the sharing process and hence, we may think of it as if the sharing
process is done after Samp chooses X.

A stronger security guarantee would be to require that even an adversary that chooses its set of
parties in an adaptive manner based on the shares it has seen so far is unable to learn the secret (or
any partial information about it). Namely, the adversary chooses the parties one by one depending
on the secret share of the previously chosen parties.

The security proof of our scheme (which is given in Section 4) does not hold under this stronger
requirement. It would be interesting to strengthen it to the adaptive case as well. One problem
that immediately arises in an analysis of our scheme against adaptive adversaries is that of selective
decommitment (cf. [DNRS03]), that is when an adversary sees a collection of commitments and can
select a subset of them and receive their openings. The usual proofs of security of commitment
schemes are not known to hold in this case.

4 Rudich Secret-Sharing from iO
In this section we prove the main theorem of this paper. We show how to construct a Rudich secret-
sharing scheme for any mNP access structure assuming the existence of efficient indistinguishability
obfuscation for P and one-way functions. In Section 4.2 we strengthen this result and show a related
construction that only uses an indistinguishability obfuscator for 3CNF formulas (as opposed to all
of P).

Theorem 1.1 (Restated). If an efficient indistinguishability obfuscator exists for all of P and one-
way functions exist, then there is an efficient Rudich secret-sharing scheme for any mNP access
structure.

Let P = {p1, . . . , pn} be a set of n parties and let M : 2P → {0, 1} be an mNP access structure
with a verifier VM (see Definition 2.1). We view VM as a polynomial-size circuit. Let iO be an
efficient indistinguishability obfuscator and let Com : [2n] × {0, 1}n → {0, 1} be a commitment
scheme.

The Scheme. For every i ∈ [n], the share of party pi is composed of 2 components: (1) ri ∈
{0, 1}n - an opening of a commitment to the value i, and (2) an obfuscated circuit O(C). The circuit
C to be obfuscated has the following hardwired: the secret S and the commitments of all parties
(i.e., ci = Com(i, ri) for i ∈ [n]). We stress that the openings r1, . . . , rn of the commitments are
not hardwired into the circuit. The input to the circuit C consists of alleged k openings r′i1 , . . . , r

′
ik

12

corresponding to parties pi1 , . . . , pik where k, i1, . . . , ik ∈ [n] and an alleged witness w. The circuit
C first checks that the openings are valid, i.e., verifies that for every j ∈ [k] : cij = Com(ij , r

′
ij

).

Then, it verifies that the given w is a valid witness, i.e., that VM (X,w) = 1. If all the tests pass,
C outputs the secret S; otherwise, if any of the tests fail, the circuit C outputs NUL. The secret-
sharing scheme is formally described in Figure 1 and the circuit C is formally described in Figure 2.

The Rudich Secret-Sharing Scheme S for M

The SETUP Procedure:

Input : A secret S.

Let iO be an efficient indistinguishability obfuscator (see Definition 2.5).
Let Com : [2n] × {0, 1}n → {0, 1}q(n) be a string commitment scheme where q(·) is a polynomial (see
Definition 2.6).

1. For i ∈ [n]:

(a) Sample uniformly at random an opening ri ∈ {0, 1}n.

(b) Compute the commitment ci = Com(i, ri).

2. Compute the circuit C from Figure 2 where C = CS,c1,...,cn consists of the following hardwired: the
secret S and the list of commitments c1, . . . , cn.

3. Set the share of party pi to be Π(S, i) = 〈ri, iO(C)〉.

The RECON Procedure:

Input : A non-empty subset of parties X ⊆ P together with their shares and a witness w of X for M .

1. Let iO(C) be the obfuscated circuit in the shares of X.

2. Evaluate the circuit iO(C) with the shares of X and w and return its output.

Figure 1: Rudich secret-sharing scheme for NP.

Observe that if iO and Com are both probabilistic polynomial-time algorithms, then the scheme
is efficient (i.e., SETUP and RECON are probabilistic polynomial-time algorithms). SETUP gen-
erates n commitments and an obfuscated circuit of polynomial size. RECON only evaluates this
polynomial-size obfuscated circuit once.

Completeness. In the next lemma we show that the scheme is complete. That is, whenever the
scheme is given a qualified X ⊆ P and a valid witness w of X for VM , it is possible to successfully
reconstruct the secret.

Lemma 4.1. Let M ∈ NP be an mNP access structure with a verifier VM . Let S = SM be the
scheme from Figure 1 instantiated with M . For every subset of parties X ⊆ P such that M(X) = 1

13

The Circuit CS,c1,...,cn

Hardwired into the circuit : The secret S and the commitments of all parties c1, . . . , cn.

Input to the circuit :

1. The secret shares corresponding to a subset of parties X. Namely, it receives a sequence of n values
r′1, . . . , r

′
n ∈ {0, 1}n ∪NUL such that for any i ∈ [n] if pi ∈ X, then r′i is the alleged opening of party

pi, and otherwise r′i = NUL.

2. An alleged witness w.

Algorithm:

1. Execute the following tests:

(a) For every i ∈ [n] such that ri 6= NUL, verify that the opening r′i is valid. That is, verify that
ci = Com(i, r′i).

(b) Verify that the given alleged witness w is a valid witness. That is, verify that VM (X,w) = 1.

2. If any of the above tests fails, output NUL; otherwise, output the secret S.

Figure 2: The circuit to be obfuscated from Figure 1.

and any witness w such that VM (X,w) = 1 it holds that

Pr [RECON(Π(S,X), w) = S] = 1.

Proof. Recall the definition of the (deterministic) algorithm RECON from Figure 1: RECON gets as
input the shares of a subset of parties X = {pi1 , . . . , pik} for k, i1, . . . , ik ∈ [n] and a valid witness w.
Recall that the shares of the parties in X consist of k openings for the corresponding commitments
and an obfuscated circuit iO(C). RECON evaluates the circuit iO(C) given the openings of parties
in X and the witness w.

Note that iO perfectly preserves functionality, that is the output of iO(C) is identical to the
output of C on every input. Hence, we analyze the output of C given X and w. The verifications
in Step 1a pass trivially (since the openings to the commitments are valid) and since w is a valid
witness VM (X,w) = 1, the verification in Step 1b passes (see Figure 2). We get that C (as well as
RECON) outputs the secret S.

Indistinguishability of the Secret. We show that our scheme is secure. More precisely, we
show that given an “unqualified” set of parties X ⊆ P as input (i.e., M(X) = 0), with overwhelming
probability, any probabilistic polynomial-time algorithm cannot distinguish the shared secret from
another. To this end, we assume towards a contradiction that such an algorithm exists and use it
to efficiently solve the following task: given two lists of n commitments and a promise that one of
them corresponds to the values {1, . . . , n} and the other corresponds to the values {n+ 1, . . . , 2n},
identify which one corresponds to the values {1, . . . , n}. The following lemma shows that solving
this task efficiently can be used to break the hiding property of the commitment scheme.

14

Lemma 4.2. Let Com : [2n] × {0, 1}n → {0, 1}q(n) be a commitment scheme where q(·) is a poly-
nomial. If there exist ε = ε(n) > 0 and a probabilistic polynomial-time algorithm D for which

|Pr[D(Com(1,Un), . . . ,Com(n,Un)) = 1]−
Pr[D(Com(n,Un), . . . ,Com(2n,Un)) = 1]| ≥ ε,

then there exist a probabilistic polynomial-time algorithm D′ and x, y ∈ [2n] such that∣∣Pr[D′(Com(x,Un)) = 1]− Pr[D′(Com(y,Un)) = 1]
∣∣ ≥ ε/n.

The proof of the lemma follows from a standard hybrid argument. See full details in Appendix B.
At this point we are ready to prove the security of our scheme. That is, we show that the ability

to break the security of our scheme translates to the ability to break the commitment scheme (using
Lemma 4.2).

Lemma 4.3. Let P = {p1, . . . , pn} be a set of n parties. Let M : 2P → {0, 1} be an mNP
access structure. If there exist a non-negligible ε = ε(n) and a pair of probabilistic polynomial-time
algorithms (Samp, D) such that for (S0, S1, X, σ)← Samp(1n) it holds that

Pr [M(X) = 0 ∧ D(S0, S1,Π(S0, X)) = 1]

− Pr [M(X) = 0 ∧ D(S0, S1,Π(S1, X)) = 1] ≥ ε,

then there exists a probabilistic algorithm D′ that runs in polynomial-time in n/ε such that for
sufficiently large n

|Pr[D′(Com(1,Un), . . . ,Com(n,Un)) = 1]−
Pr[D′(Com(n+ 1,Un), . . . ,Com(2n,Un)) = 1]| ≥ ε/10− neg(n).

The proof of Lemma 4.3 appears in Section 4.1.
Using Lemma 4.3 we can prove Theorem 1.1, the main theorem of this section. The completeness

requirement (Item 2 in Definition 3.1) follows directly from Lemma 4.1. The indistinguishability
of the secret requirement (Item 3 in Definition 3.1) follows by combining Lemmas 4.2 and 4.3
together with the hiding property of the commitment scheme. Section 4.1 is devoted to the proof
of Lemma 4.3.

4.1 Main Proof of Security

Let M be an mNP access structure, (Samp, D) be a pair of algorithms and ε > 0 be a function
of n, as in the Lemma 4.3. We are given a list of (unopened) string commitments c1, . . . , cn ∈
{Com(zi, r)}r∈{0,1}n , where for Z = {z1, . . . , zn} either Z = {1, . . . , n} , A0 or Z = {n +

1, . . . , 2n} , A1. Our goal is to construct an algorithm D′ that distinguishes between the two
cases (using Samp and D) with non-negligible probability (that is related to ε). Recall that Samp
chooses two secrets S0, S1 and X ⊆ P and then D gets as input the secret shares of parties in X
for one of the secrets. By assumption, for (S0, S1, X)← Samp(1n) we have that

|Pr [M(X) = 0 ∧ D(S0, S1,Π(S0, X)) = 1]−
Pr [M(X) = 0 ∧ D(S0, S1,Π(S1, X)) = 1] | ≥ ε. (1)

15

Roughly speaking, the algorithm D′ that we define creates a new set of shares using c1, . . . , cn
such that: If c1, . . . , cn are commitments to Z = A0 then D is able to recover the secret; otherwise,
(if Z = A1) it is computationally hard to recover the secret. Thus, D′ can distinguish between the
two cases by running D on the new set of shares and acting according to its output.

We begin by describing a useful subroutine we call Dver. The inputs to Dver are n string
commitments c1, . . . , cn, two secrets S0, S1 and a subset of k ∈ [n] parties X. Assume for ease of
notations that X = {p1, . . . , pk}. Dver first chooses b uniformly at random from the set {0, 1} and
samples uniformly at random n openings r1, . . . , rn from the distribution Un. Then, Dver computes
the circuit C ′b = CSb,Com(1,r1),...,Com(k,rk),ck+1,...,cn (see Figure 2) and sets for every i ∈ [n] the share of
party pi to be 〈ri, iO(C ′b)〉. Finally, Dver emulates the execution of D on the set of shares Π′(Sb, X).
If the output of D equals to b, then Dver outputs 1 (meaning the input commitments correspond
to Z = A0); otherwise, Dver outputs 0 (meaning the input commitments correspond to Z = A1).

The näıve implementation of D′ is to run Samp to generate S0, S1 and X, run Dver with the
given string commitments, S0, S1 and X, and output accordingly. This, however, does not work. To
see this, recall that the assumption (eq. (1)) only guarantees that D is able to distinguish between
the two secrets when M(X) = 0. However, it is possible that with high probability (yet smaller
than 1− 1/poly(n)) over Samp it holds that M(X) = 1, in which we do not have any guarantee on
D. Hence, simply running Samp and Dver might fool us in outputting the wrong answer.

The first step to solve this is to observe that, by the assumption in eq. (1), Samp generates an X
such that M(X) = 0 with (non-negligible) probability at least ε. By this observation, notice that
by running Samp for Θ(n/ε) iterations we are assured that with very high probability (specifically,
1 − neg(n)) there exists an iteration in which M(X) = 0. All we are left to do is to recognize in
which iteration M(X) = 0 and only in that iteration we run Dver and output accordingly.

However, in general it might be computationally difficult to test for a given X whether M(X) =
0 or not. To overcome this, we observe that we need something much simpler than testing if
M(X) = 0 or not. All we actually need is a procedure that we call B that checks if Dver is a good
distinguisher (between commitments to A0 and commitments to A1) for a given X. One the one
hand, by the assumption, we are assured that this is indeed the case if M(X) = 0. On the other
hand, if M(X) = 1 and Dver is biased, then simply running Dver and outputting accordingly is
enough. Thus, our goal is to estimate the bias of Dver. The latter is implemented efficiently by
running Dver independently Θ(n/ε) times on both inputs (i.e., with Z = A0 and with Z = A1) and
counting the number of “correct” answers.

Recapping, our construction of D′ is as follows: D′ runs for Θ(n/ε) iterations such that in each
iteration it runs Samp(1n) and gets two secrets S0, S1 and a subset of parties X. Then, it estimates
the bias of Dver for that specific X (independently of the input). If the bias is large enough, D′

evaluates Dver with the input of D′, the two secrets S0, S1 and the subset of parties X and outputs
its output. The formal description of D′ is given in Figure 3.

Analysis of D′. We prove the following lemma which is a restatement of Lemma 4.3.

Lemma 4.3 (Restated). Let c1, . . . , cn ∈ {Com(zi, r)}r∈{0,1}n be a list of string commitments,

where for Z = {z1, . . . , zn} either Z = {1, . . . , n} , A0 or Z = {n + 1, . . . , 2n} , A1. Assuming
eq. (1), it holds that

|Pr[D′(c1, . . . , cn) = 1 | Z = A0]− Pr[D′(c1, . . . , cn) = 1 | Z = A1]| ≥ ε/10− neg(n).

16

The algorithm D′

Input : A sequence of commitments c1, . . . , cn where ∀i ∈ [n] : ci ∈ {Com(zi, r)}r∈{0,1}n and for Z =

{z1, . . . , zn} either Z = {1, . . . , n} , A0 or Z = {n+ 1, . . . , 2n} , A1.

1. Do the following for T = n/ε times:

(a) S0, S1, X ← Samp(1n).

(b) Run bias← B(S0, S1, X).

(c) If bias = 1:

i. Run resD← Dver(c1, . . . , cn, S0, S1, X).

ii. Output resD (and HALT).

2. Output 0.

The sub-procedure B

Input : Two secrets S0, S1 and a subset of parties X ⊆ P.

1. Set q0, q1 ← 0. Run TB = 4n/ε times:

(a) q0 ← q0 + Dver(Com(1,Un), . . . ,Com(n,Un), S0, S1, X).

(b) q1 ← q1 + Dver(Com(n+ 1,Un), . . . ,Com(2n,Un), S0, S1, X).

2. If |q0 − q1| > n, output 1.

3. Output 0.

The sub-procedure Dver

Input : A sequence of commitments c1, . . . , cn, two secrets S0, S1 and a subset of parties X ⊆ P.

1. Choose b ∈ {0, 1} uniformly at random.

2. For i ∈ [n]: Sample ri
R←Un and let c′i =

{
Com(i, ri) if pi ∈ X
ci otherwise.

3. Compute C ′b = CSb,c
′
1,...,c

′
n as in Figure 2.

4. For i ∈ [n] let the new share of party pi be Π′(Sb, i) = 〈ri, iO(C ′b)〉.

5. Return 1 if D(S0, S1,Π
′(Sb, X)) = b and 0 otherwise.

Figure 3: The description of the algorithm D′.

We begin with the analysis of the procedure Dver. In the next two claims we show that assuming
that M(X) = 0, then Dver is a good distinguisher between the case Z = A0 and the case Z = A1.
Specifically, the first claim states that Dver answers correctly given input Z = A0 with probability
at least 1/2 + ε/2 while in the second claim we show that Dver is unable to do much better than
merely guessing given input Z = A1 (assuming M(X) = 0).

17

Claim 4.4. For (S0, S1, X)← Samp(1n) it holds that

|Pr [Dver(c1, . . . , cn, S0, S1, X) = 1 |M(X) = 0 ∧ Z = A0]− 1/2| ≥ ε/2.

Proof. By the definition of Dver (see Figure 3) we have that Dver(c1, . . . , ck, S0, S1, X) = 1 if and

only if D(S0, S1,Π
′(Sb, X)) = b for b

R←{0, 1}. Since b is chosen uniformly at random from {0, 1}, it
is enough to show that

ε ≤|Pr
[
D(S0, S1,Π

′(S1, X)) = 1 |M(X) = 0
]

− Pr
[
D(S0, S1,Π

′(S0, X), σ) = 1 |M(X) = 0
]
|.

Using the assumption (see eq. (1)), for (S0, S1, X)← Samp(1n) it holds that

ε ≤|Pr [M(X) = 0 ∧ D(S0, S1,Π(S1, X)) = 1]

− Pr [M(X) = 0 ∧ D(S0, S1,Π(S0, X)) = 1] |
≤|Pr [D(S0, S1,Π(S1, X), σ) = 1 |M(X) = 0]

− Pr [D(S0, S1,Π(S0, X)) = 1 |M(X) = 0] |.

Notice that since Z = A0 we have that the sequence (Com(1,Un), . . . ,Com(n,Un)) is identically
distributed as the sequence (c′1, . . . , c

′
n). Hence, for any b ∈ {0, 1} it holds that Π′(Sb, X) is identi-

cally distributed as Π(Sb, X). Hence,

ε ≤|Pr
[
D(S0, S1,Π

′(S1, X)) = 1 |M(X) = 0
]

− Pr
[
D(S0, S1,Π

′(S0, X), σ) = 1 |M(X) = 0
]
|,

as required.

Claim 4.5. For (S0, S1, X)← Samp(1n) it holds that

|Pr [Dver(c1, . . . , cn, S0, S1, X) = 1 |M(X) = 0 ∧ Z = A1]− 1/2| ≤ neg(n).

Proof. Recall that Dver(c1, . . . , cn, S0, S1, X) = 1 if and only if for b chosen uniformly at random
from {0, 1} it holds that D(S0, S1,Π

′(Sb, X)) = b.
Recall that for b ∈ {0, 1} and i ∈ [n] the new share of party pi denoted by Π′(Sb, i) consists of

the pair 〈rbi , iO(C ′b)〉 where rbi is chosen uniformly at random from Un. To prove the claim we show
that iO(C ′0) and iO(C ′1) are computationally indistinguishable.

To this end, we show that if Z = A1, then it holds that C ′0 is equivalent to the NUL circuit.
The same proof shows that C ′1 is equivalent to the NUL circuit, as well. Fix an input to C ′0 and
let X ′ ⊆ P be the corresponding set of parties. Recall that C ′0 verifies that the given openings are
valid, runs the verifier on the input and if any test fails, it outputs NUL.

If X ′ 6⊆ X, then there exists an i ∈ [n] such that pi ∈ X ′ and pi /∈ X. In this case, the opening
verification test of C ′0 will fail: Since Z = A1, for every i such that pi /∈ X the commitment ci
(that is hardwired in the circuit C ′0) is a commitment to the value n + i (and not i). Recall that
the distributions Com(i,Un) and Com(j,Un) are disjoint for every i 6= j. Hence, any opening for

the commitment ci and the value i is invalid, i.e., any opening r′i will fail the test ci
?
= Com(i, r′i)

(see Step 1a in Figure 2).

18

Otherwise, if X ′ ⊆ X, then since M is monotone and M(X) = 0 it holds that M(X ′) = 0.
Therefore, there is no witness for X ′, hence, the verifier VM will reject causing C ′0 to output NUL
(see Step 1b in Figure 2).

In conclusion, for any input, C ′0 (resp., C ′1) outputs NUL. Since both C ′0 and C ′1 are equiv-
alent to the NUL circuit and they are of the same size, their obfuscations are computationally
indistinguishable from one another (see Definition 2.5) and the claim follows.

Next, we continue with two claims connecting Dver and B. Before we state these claims, we
introduce a useful notation regarding the bias of the procedure Dver. We denote by bias(S0, S1, X)
the advantage of Dver in recognizing the case Z = A0 over the case Z = A1 given two secrets S0
and S1 and a subset of parties X. Namely, for any S0, S1 and X denote

bias(S0, S1, X) = |Pr [Dver(Com(1,Un), . . . ,Com(n,Un), S0, S1, X) = 1]

− Pr [Dver(Com(n+ 1,Un), . . . ,Com(2n,Un), S0, S1, X) = 1] |.

The first claim states that if Dver is biased (in the sense that bias(S0, S1, X) is large enough),
then B almost surely notices that and outputs 1, and vice-versa, i.e., if Dver is unbiased (in the
sense that bias(S0, S1, X) is small enough), then B almost surely notices that and outputs 0.

Claim 4.6. For (S0, S1, X)← Samp(1n),

1. Pr[B(S0, S1, X) = 1 | bias(S0, S1, X) ≥ ε/3] ≥ 1− neg(n)

2. Pr[B(S0, S1, X) = 1 | bias(S0, S1, X) ≤ ε/10] ≤ neg(n)

Proof. Recall that B runs for TB independent iterations such that in each iteration it executes Dver

twice: Once with Com(1,Un), . . . ,Com(n,Un) and once with Com(n + 1,Un), . . . ,Com(2n,Un).
For i ∈ [TB], let Ii0 be an indicator random variable that takes the value 1 if and only if in
the i-th iteration Dver(Com(1,Un), . . . ,Com(n,Un), S0, S1, X) = 1. Similarly, denote by Ii1 an
indicator random variable that takes the value 1 if and only if in the i-th iteration Dver(Com(n +
1,Un), . . . ,Com(2n,Un), S0, S1, X) = 1. When B finishes, it holds that q0 =

∑T
i=1 I

i
0 and q1 =∑T

i=1 I
i
1. Furthermore, if bias(S0, S1, X) ≥ ε/3 we get that E[|q0 − q1|] ≥ (ε/3) · TB. By Chernoff’s

bound (see [AS08, §A.1]) we get that

Pr[|q0 − q1| > 3/4 · ((ε/3) · TB)] ≥ 1− exp (O(ε · TB)) .

Similarly, if bias(S0, S1, X) ≤ ε/10 we get that E[|q0 − q1|] ≤ (ε/10) · TB. By Chernoff’s bound we
get that

Pr[|q0 − q1| > 2 · ((ε/10) · TB)] ≤ exp (O(ε · TB)) .

Recall that B outputs 1 if and only if |q0 − q1| > n. Plugging in TB = 4n/ε both parts of the
claim follow.

In Claim 4.6 we proved that B is a good estimator for the bias of Dver. That is, we showed
that if Dver is very biased, then B is 1 (with high probability) and vice-versa (i.e., that if Dver is
unbiased, then B is most likely to be 0). Denote by BAD the event in which B(S0, S1, X) = 1 and
bias(S0, S1, X) ≤ ε/10. In the next claim we show that the probability that BAD happens in any
iteration of D′ is negligible.

19

Claim 4.7. Denote by BADi the event that BAD happens in iteration i ∈ [T].

Pr
[
∀i : ¬BADi

]
≥ 1− neg(n).

Proof. Since the T iteration are independent and implemented identically it holds that

Pr
[
∃i : BADi

]
=

T∑
i=1

Pr
[
BADi

]
= T · Pr [BAD] .

Observe that

Pr [BAD] = Pr [B(S0, S1, X) = 1 ∧ bias(S0, S1, X) ≤ ε/10]

≤ Pr [B(S0, S1, X) = 1 | bias(S0, S1, X) ≤ ε/10] ≤ neg(n).

Hence, we get that Pr
[
∃i : BADi

]
≤ (n/ε) · neg(n) ≤ neg(n).

The next claim states that if X is such that M(X) = 0, then B outputs 1 with very high
probability. The idea is to combine Claims 4.4 and 4.5 that assure that if M(X) = 0, then Dver is
biased (i.e., bias is large), with Claim 4.6 that assures that if the bias is large, then B almost surely
outputs 1.

Claim 4.8. For (S0, S1, X)← Samp(1n),

Pr [B(S0, S1, X) = 1 |M(X) = 0] ≥ 1− neg(n).

Proof. Let (S0, S1, X) ← Samp(1n). By the definition of B it holds that B(S0, S1, X) = 1 if and
only if q0 − q1 > n. Thus, it is enough to show that

Pr[q0 − q1 > n |M(X) = 0] ≥ 1− neg(n).

Using Claims 4.4 and 4.5 we get that

Pr[bias(S0, S1, X) ≥ ε/2− neg(n) |M(X) = 0] ≥ 1− neg(n).

Plugging this into Claim 4.6 the claim follows.

At this point we are finally ready to prove Lemma 4.3.

Proof of Lemma 4.3. Recall that our goal is to lower bound the following expression:

|Pr[D′(c1, . . . , cn) = 1 | Z = A0]− Pr[D′(c1, . . . , cn) = 1 | Z = A1]|.

Notice that one property of M that follows from the assumption in eq. (1) is that Pr[M(X) =
0] ≥ ε (where the probability if over Samp). Combining this fact with the fact that D′ makes
T = n/ε iterations of B and Pr [B(S0, S1, X) = 1 |M(X) = 0] ≥ 1− neg(n) (by Claim 4.8), we get
that D′ reaches Step 2 with negligible probability. In other words, with probability 1−neg(n) there
is an iteration in which X is chosen such that M(X) = 0 and B outputs 1. For the rest of the proof
we assume that this is indeed the case (and lose a negligible additive term).

Furthermore, using Claim 4.7 we may also assume that in every iteration BAD does not happen.
That is, in every iteration either B outputs 0 or bias is larger than ε/10. Recall that D′ ignores
all the iteration in which B outputs 0. Moreover, we assumed that there is an iteration in which B
outputs 1. In that iteration, it must be the case that the bias is larger than ε/10 which completes
the proof.

20

4.2 Rudich Secret-Sharing from iO for 3CNF Formulas

In this section we show how to strengthen Theorem 1.1 and give a related construction of Rudich
secret-sharing scheme for every mNP access structure that requires only an indistinguishability
obfuscator for 3CNF formulas. The main result of this section is stated next.

Theorem 4.9. If an efficient indistinguishability obfuscator exists for the family of 3CNF formulas
and one-way functions exist, then there is an efficient Rudich secret-sharing scheme for any mNP
access structure.

The proof of Theorem 4.9 relies on the fact that it is possible to (efficiently and uniformly)
transform every Boolean circuit C that computes a function in P into a 3CNF formula F̂ such that
F̂ (g(x)) = C(x), where g is some efficiently computable function that translates an input of C into
an input of F̂ (see Lemma 4.10). Roughly speaking, we use this translation to transform the circuit
in the secret-sharing scheme (see Figures 1 and 2) into a 3CNF formula and let the reconstruction
procedure compute the transformation g.

For completeness, in the next lemma we show how to translate a general circuit into a 3CNF
formula with the desired properties described above.

Lemma 4.10. There exists a uniform polynomial-time algorithm ToCNF such that for any n,
ToCNF takes as input a polynomial-size circuit C : {0, 1}n → {0, 1} and outputs a 3CNF formula
F̂ such that:

1. F̂ is of size O(|C|) and has |C| variables.

2. There exists an efficiently computable function g , gC : {0, 1}n → {0, 1}|C| such that ∀x ∈
{0, 1}n : F̂ (g(x)) = C(x).

Proof. Let t = |C|. The algorithm ToCNF define t variables w1, . . . , wt that correspond to the
wires of C. Then, for every gate in C, it computes the corresponding 3CNF formula that verifies
consistency between the value of the two input variables and the output variable depending on the
gate. Finally, ToCNF outputs the AND of these 3CNF formulas (which is a 3CNF formula).

The function g on input x evaluates C(x) and outputs the value of the computation on each
wire. Since C is of polynomial-size, g is efficiently computable. Moreover, by the definition of g,
∀x ∈ {0, 1}n : F̂ (g(x)) = C(x).

Next, we prove the main theorem of this section: Theorem 4.9.

Proof Sketch of Theorem 4.9. The construction of the Rudich secret-sharing scheme is very
similar to the construction given in Figure 1. Assume for simplicity that the secret is a single bit
(to deal with arbitrary long secret we deal with each bit separately). We describe the differences
of the new scheme.

Let C be the circuit from the setup procedure (see Figure 1) and Ĉ be the circuit C without the

secret and the commitments hardwired. Let F̂ , ToCNF(Ĉ) and ĝ , gĈ be as in Lemma 4.10, such
that ∀x : F̂ (ĝ(x)) = Ĉ(x). Set F to be the 3CNF formula F̂ with the secret and the commitments
hardwired: That is, fix the variables in F̂ that correspond to the wires of the secret and the
commitments in Ĉ. It is easy to see that by fixing the corresponding coordinates in ĝ we get a
function g such that ∀x : F (g(x)) = C(x) . In the SETUP procedure, instead of obfuscating C,

21

we obfuscate the 3CNF formula F . We modify the RECON procedure accordingly: first compute
g(X), evaluate the obfuscation of F on g(X) and output that value.

The completeness of the new scheme follows immediately from Lemma 4.10 since the circuit
F (g(·)) is equivalent to the circuit C(·). The proof that the new scheme is secure follows similar
lines to the proof that the original scheme is secure. Specifically, the main difference is that the
reconstruction algorithm also evaluates g which only depends on the circuit Ĉ and not the hardwired
values. In particular, g holds no information about the secret.

5 Conclusions and Open Problems

We have shown a construction of a secret-sharing scheme for any mNP access structure. In fact,
our construction yields the first computational secret-sharing scheme for all monotone functions in
P (recall that not every monotone function in P can be computed by a polynomial-size monotone
circuit, see e.g., Razborov’s lower bound for matching [Raz85]). Our result seems to strengthen the
view of indistinguishability obfuscation as a “central hub” for cryptography [SW13].

Our construction only requires indistinguishability obfuscation for 3CNF formulas. As we have
mentioned, a simple candidate for such an obfuscator for 3CNF formulas that is provably secure
in an idealized algebraic model was recently suggested by Brakerski and Rothblum [BR14a]. It
may be easier to achieve a construction of a 3CNF obfuscator in the standard model based on
standard hardness assumptions than an obfuscator for P (see [BR14a, BR14b]). In fact, there is
no impossibility result for virtual black-box obfuscation for 3CNFs. We conclude with several open
problems:

• Is there a secret-sharing scheme for mNP (even for specific monotone NP-complete problems)
that relies only on standard hardness assumptions or at least falsifiable ones?

• Is there a way to use secret-sharing for monotone P to achieve secret-sharing for monotone
NP (in a black-box manner)?

• Construct a Rudich secret-sharing scheme for every access structure in mNP that is secure
against adaptive adversaries (see Section 3.2 for a discussion).

Under a stronger obfuscation assumption, i.e., virtual black-box obfuscation or even ex-
tractability obfuscation (cf. [BGI+12, BCP14]), Zvika Brakerski observed that our construc-
tion is secure against adaptive adversaries as well.

• Is there a general way to transform any protocol that uses a trusted (third) party T into one
that does not use T but uses an indistinguishability obfuscator instead?

Acknowledgements

We thank Zvika Brakerski for many helpful discussions and insightful ideas. The second author
thanks Steven Rudich for sharing with him his ideas on secret sharing beyond P.

22

References

[AS08] Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley, third edition,
2008.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In TCC,
volume 8349 of Lecture Notes in Computer Science, pages 52–73. Springer, 2014.

[Bei11] Amos Beimel. Secret-sharing schemes: A survey. In IWCC, volume 6639 of Lecture
Notes in Computer Science, pages 11–46. Springer, 2011.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. Journal of the
ACM, 59(2):6, 2012. Preliminary version appeared in CRYPTO 2001.

[BGK+13] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protect-
ing obfuscation against algebraic attacks. IACR Cryptology ePrint Archive, 2013:631,
2013.

[BI05] Amos Beimel and Yuval Ishai. On the power of nonlinear secrect-sharing. SIAM Journal
on Discrete Mathematics, 19(1):258–280, 2005.

[BL88] Josh Cohen Benaloh and Jerry Leichter. Generalized secret sharing and monotone
functions. In CRYPTO, volume 403 of Lecture Notes in Computer Science, pages 27–
35. Springer, 1988.

[Bla79] George R. Blakley. Safeguarding cryptographic keys. Proceedings of the AFIPS National
Computer Conference, 22:313–317, 1979.

[Blu82] Manuel Blum. Coin flipping by telephone - a protocol for solving impossible problems.
In COMPCON, pages 133–137. IEEE Computer Society, 1982.

[BR07] Mihir Bellare and Phillip Rogaway. Robust computational secret sharing and a uni-
fied account of classical secret-sharing goals. In ACM Conference on Computer and
Communications Security, pages 172–184. ACM, 2007.

[BR14a] Zvika Brakerski and Guy N. Rothblum. Black-box obfuscation for d-cnfs. In ITCS,
pages 235–250. ACM, 2014.

[BR14b] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In TCC, pages 1–25, 2014.

[BZ13] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. IACR Cryptology ePrint Archive, 2013:642,
2013.

[DNRS03] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. Magic functions.
Journal of the ACM, 50(6):852–921, 2003.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, pages 40–49, 2013.

23

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In STOC, pages 467–476. ACM, 2013.

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with
auxiliary input. In FOCS, pages 553–562. IEEE Computer Society, 2005.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2):270–299, 1984.

[Gol08] Oded Goldreich. Computational complexity - a conceptual perspective. Cambridge
University Press, 2008.

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In TCC, volume
4392 of Lecture Notes in Computer Science, pages 194–213. Springer, 2007.

[GS92] Michelangelo Grigni and Michael Sipser. Monotone complexity. In Proceedings of
LMS workshop on Boolean function complexity, volume 169, pages 57–75. Cambridge
University Press, 1992.

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full
domain hash from indistinguishability obfuscation. IACR Cryptology ePrint Archive,
2013:509, 2013.

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Structure in
Complexity Theory Conference, pages 134–147. IEEE Computer Society, 1995.

[ISN93] Mitsuru Ito, Akira Saito, and Takao Nishizeki. Multiple assignment scheme for sharing
secret. Journal of Cryptology, 6(1):15–20, 1993.

[Kra93] Hugo Krawczyk. Secret sharing made short. In CRYPTO, volume 773 of Lecture Notes
in Computer Science, pages 136–146. Springer, 1993.

[KW93] Mauricio Karchmer and Avi Wigderson. On span programs. In Structure in Complexity
Theory Conference, pages 102–111. IEEE Computer Society, 1993.

[LL78] Nancy A. Lynch and Richard J. Lipton. On structure preserving reductions. SIAM
Journal on Computing, 7(2):119–126, 1978.

[MR13] Tal Moran and Alon Rosen. There is no indistinguishability obfuscation in pessiland.
IACR Cryptology ePrint Archive, 2013:643, 2013.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151–
158, 1991.

[Nao06] Moni Naor. Secret sharing for access structures beyond P, 2006. Slides: http://www.

wisdom.weizmann.ac.il/~naor/PAPERS/minicrypt.html.

[Raz85] Alexander A. Razborov. Lower bounds for the monotone complexity of some Boolean
functions. Dokl. Ak. Nauk. SSSR, 281:798–801, 1985. English translation in: Soviet
Math. Dokl. Vol 31, pp. 354-357, 1985.

24

http://www.wisdom.weizmann.ac.il/~naor/PAPERS/minicrypt.html
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/minicrypt.html

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[Ste95] Iain A. Stewart. Complete problems for monotone NP. Theoretical Computer Science,
145(1&2):147–157, 1995.

[SV85] Sven Skyum and Leslie G. Valiant. A complexity theory based on boolean algebra.
Journal of the ACM, 32(2):484–502, 1985.

[SW13] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. IACR Cryptology ePrint Archive, 2013:454, 2013.

[VNS+03] V. Vinod, Arvind Narayanan, K. Srinathan, C. Pandu Rangan, and Kwangjo Kim. On
the power of computational secret sharing. In INDOCRYPT, volume 2904 of Lecture
Notes in Computer Science, pages 162–176. Springer, 2003.

A Proof of Theorem 3.3

In this section we prove that Definition 3.1 is equivalent to Definition 3.2.

Proof that Definition 3.2 implies Definition 3.1. Let S be a Rudich secret-sharing scheme
satisfying Definition 3.2 and assume towards contradiction that it does not satisfy Definition 3.1.
That is, there is a pair of probabilistic polynomial-time algorithms (Samp, D) and a non-negligible
ε such that for (S0, S1, X, σ)← Samp(1n) it holds that

|Pr [M(X) = 0 ∧ D(1n, S0, S1,Π(S0, X), σ) = 1]− (2)

Pr [M(X) = 0 ∧ D(1n, S0, S1,Π(S1, X), σ) = 1] | ≥ ε.

For a bit b chosen uniformly at random from {0, 1}, we have that

Pr [M(X) = 0 ∧ D(1n, S0, S1,Π(Sb, X), σ) = b] =

1

2
(Pr [D(1n, S0, S1,Π(S0, X), σ) = 0 |M(X) = 0] · Pr[M(X) = 0]

+ Pr [M(X) = 0 ∧ D(1n, S0, S1,Π(S1, X), σ) = 1]) =

1

2
(Pr[M(X) = 0]− Pr [M(X) = 0 ∧ D(1n, S0, S1,Π(S0, X), σ) = 1]

+ Pr [M(X) = 0 ∧ D(1n, S0, S1,Π(S1, X), σ) = 1]).

Plugging in eq. (2) we get that

|Pr [M(X) = 0 ∧ D(1n, S0, S1,Π(Sb, X), σ) = b]− 1/2 · (Pr[M(X) = 0])| ≥ ε/2.

Assume that Samp generates secrets in [2t] for some t > 0. Let F = {fi : [2t] → {0, 1} | i ∈
[t] ∧ ∀x ∈ [2t] : fi(x) = bin(x)i} be the set of all dictator functions, where bin(x) denotes the binary
representation of x of length t (with leading zeroes if needed). We define a sampling algorithm
Samp′ as follows: Samp′(1n) first runs Samp(1n) and gets two secrets S0, S1, a subset of parties
X and auxiliary information σ. Then, Samp′ chooses a bit b ∈ {0, 1} uniformly at random and
outputs (Sb, X, σ

′), where σ′ = 〈S0, S1, σ〉. The algorithm D′ emulates the execution of D with

25

inputs S0, S1, Π(Sb, X) and σ′. Note that D′ does not know the bit b. Denote by F ′ ⊆ F the set
of function f ∈ F for which f(S0) 6= f(S1). Observe that with probability strictly larger than 0
over a random choice of f from F it holds that f ∈ F ′ (i.e., F ′ is not empty). Then, over the
randomness of Samp′ we have that for any f ∈ F ′

|Pr
[
M(X) = 0 ∧ D′(1n,Π(Sb, X), σ′) = f(Sb)

]
− 1/2 · Pr[M(X) = 0]| ≥ ε/2. (3)

On the other hand, since X does not have any information about S0, S1 and b is chosen uniformly
at random from {0, 1}, for any algorithm D′′ and every f ∈ F ′ it holds that

Pr
[
D′′(1n, X, σ′) = f(Sb)

]
= 1/2.

Thus,

Pr
[
M(X) = 0 ∧ D′′(1n, X, σ′) = f(Sb)

]
= 1/2 · Pr[M(X) = 0]. (4)

Combining eqs. (3) and (4) we get that for any f ∈ F ′:

|Pr
[
M(X) = 0 ∧ D′(1n,Π(Sb, X), σ′) = f(Sb)

]
−

Pr
[
M(X) = 0 ∧ D′′(1n, X, σ′) = f(Sb)

]
| ≥ ε/2

which contradicts the unlearnability requirement of Definition 3.2.

Proof that Definition 3.1 implies Definition 3.2. Let S be a Rudich secret-sharing scheme
satisfying Definition 3.1. Fix a pair of algorithms (Samp, D) and a function f as in Definition 3.2.
We define a simulator D′ as follows:

D′(1n, X, σ) = D(1n,Π(0, X), σ).

We prove that this simulator satisfies the unlearnability of the secret requirement in Definition 3.2.
Namely, we show that

|Pr[M(X) = 0 ∧ D(1n,Π(S,X), σ) = f(S)]−
Pr[M(X) = 0 ∧ D′(1n, X, σ) = f(S)]| ≤ neg(n).

Towards this end, assume towards contradiction that there exists a non-negligible ε = ε(n) such
that

|Pr[M(X) = 0 ∧ D(1n,Π(S,X), σ) = f(S)]−
Pr[M(X) = 0 ∧ D′(1n, X, σ) = f(S)]| ≥ ε.

Plugging in the definition of D′ we have that

|Pr[M(X) = 0 ∧ D(1n,Π(S,X), σ) = f(S)]−
Pr[M(X) = 0 ∧ D(1n,Π(0, X), σ) = f(S)]| ≥ ε.

Next, we define a pair of algorithms (Samp′′, D′′) that are good distinguishers between two secrets
which, in turn, contradicts the indistinguishability of the secret requirement from Definition 3.1 that
S satisfies. The sampling algorithm Samp′′ simply runs Samp to get (S,X, σ) and output (0, S,X, σ).
The distinguisher D′′ is defined as follows: For every b ∈ {0, 1} : D′′(1n, S0, S1,Π(Sb, X), σ) = 1 if
and only if D(1n,Π(Sb, X), σ) = f(S1). Using this D′′ we get that

|Pr[M(X) = 0 ∧ D′′(1n, S0, S1,Π(S1, X), σ) = 1]−
Pr[M(X) = 0 ∧ D′′(1n, S0, S1,Π(S0, X), σ) = 1]| ≥ ε,

which contradicts the indistinguishability assumption.

26

B Proof of Lemma 4.2

In this section we prove the following lemma.

Lemma 4.2 (Restated). Let Com : [2n]× {0, 1}n → {0, 1}q(n) be a commitment scheme where q(·)
is a polynomial. If there exist ε = ε(n) > 0 and a probabilistic polynomial-time algorithm D for
which

|Pr[D(Com(1,Un), . . . ,Com(n,Un)) = 1]−
Pr[D(Com(n,Un), . . . ,Com(2n,Un)) = 1]| ≥ ε,

then there exist a probabilistic polynomial-time algorithm D′ and x, y ∈ [2n] such that∣∣Pr[D′(Com(x,Un)) = 1]− Pr[D′(Com(y,Un)) = 1]
∣∣ ≥ ε/n.

Proof. Assume that there exists a polynomial-time algorithm D and some ε = ε(n) such that

|Pr[D(Com(1,Un), . . . ,Com(n,Un)) = 1]− (5)

Pr[D(Com(n+ 1,Un), . . . ,Com(2n,Un)) = 1]| ≥ ε.

For σ ∈ [2n] let cσ be a random variable sampled according to the distribution Com(σ,Un). With
this notation, eq. (5) can be rewritten as∣∣∣Pr[D(c1, . . . , cn) = 1]− Pr[D(cn+1, . . . , c2n) = 1]

∣∣∣ ≥ ε. (6)

For 1 ≤ i ≤ n−1 let C(i) be the distribution induced by the sequence c1, . . . , cn−i, c2n−i+1, . . . , c2n.
Moreover, let C(0) be the distribution c1, . . . , cn and let C(n) be the distribution cn+1, . . . , c2n. Using
this notation, eq. (6) can be rewritten as∣∣∣Pr[D(C(0)) = 1]− Pr[D(C(k)) = 1]

∣∣∣ ≥ ε.
By a hybrid argument, there exists an index i ∈ [n] for which∣∣∣Pr[D(C(i−1)) = 1]− Pr[D(C(i)) = 1]

∣∣∣ ≥ ε/n.
Expanding the definition of C(i),

|Pr[D (c1, . . . , cn−i, cn−i+1, c2n−i+2, . . . , c2n) = 1]−
Pr[D(c1, . . . , cn−i, c2n−i+1, c2n−i+2, . . . , c2n) = 1]| ≥ ε/n.

At this point, it follows that there exists D′ that distinguishes between cn−i+1 and c2n−i+1.
Namely, for x = n− i+ 1 and y = 2n− i+ 1, it holds that∣∣Pr[D′(Com(x,Un)) = 1]− Pr[D′(Com(y,Un)) = 1]

∣∣ ≥ ε/n,
as required.

27

C On Completeness for Rudich Secret-Sharing

In this section we characterize which languages in mNP are the “hardest” for Rudich secret-sharing:
languages for which the existence of a Rudich secret-sharing scheme implies a scheme for all mNP.

We observe that if one has a secret-sharing scheme for a language in mNP that is also complete
for mNP under monotone-circuit witness-preserving reductions (to be defined next), then we could
get a secret-sharing scheme for all mNP.

Definition C.1 (Monotone-Circuit Witness-Preserving (MCWP) Reduction). Let L : 2[n] →
{0, 1} ∈ mNP and L′ : 2[m] → {0, 1} ∈ mNP be functions (or equivalently, sets of subsets of
[n] and [m], respectively). L′ is said to be MCWP-reducible to L if the following requirements hold:

1. There exists a uniform polynomial-time algorithm that generates a sequence of n monotone
circuits σ1, . . . , σn : 2[m] → {0, 1} such that for x′ ⊆ [m] and x = (σ1(x

′), . . . , σn(x′)) ⊆ [n] it
holds that x′ ∈ L′ if and only if x ∈ L.

2. There exists an efficiently computable function g : 2[m] × {0, 1}∗ → {0, 1}∗ such that if w′ is
a witness for x′ ∈ L′, then w = g(x′, w′) is a witness for x = (σ1(x

′), . . . , σn(x′)).

We emphasis that Definition C.1 is a strengthening of the usual definition of a reduction be-
tween NP problems in two ways. First, we require the reduction to be efficiently computable
by a polynomial-size monotone circuit. Second, we require the reduction to provide an efficiently
computable correspondence between witnesses.

In the next lemma, we show that having a secret-sharing scheme for a problem that is complete
for mNP under MCWP-reductions, implies a secret-sharing scheme for all mNP.

Lemma C.2. Let L : 2[n] → {0, 1} ∈mNP be a function that defines an access structure. If there
is a Rudich secret-sharing scheme for L and a MCWP-reduction from L′ : 2[m] → {0, 1} ∈ mNP
to L, then there is a Rudich secret-sharing scheme for L′.

Proof Sketch. Let L and L′ be as in the lemma. Assume that L is defined over parties P =
{p1, . . . , pn} and L′ is defined over parties P ′ = {p′1, . . . , p′m}. Our goal is to construct a secret-
sharing scheme for L′ given a secret S. Since L has a Rudich secret-sharing scheme SL (see
Definition 3.1), there exists a procedure SETUPL that get as input the secret S and generates secret
shares for p1, . . . , pn. Denote these secret-shares by s1 , Π(S, 1), . . . , sn , Π(S, n). Moreover, there
is a procedure RECONL that given the shares of a subset of parties and a (valid) witness for them,
reconstructs the secret.

Since there is a MCWP-reduction from L′ to L, then an instance of L′ can be transformed
to an instance of L using a sequence of n polynomial-size monotone Boolean circuits σ1, . . . , σn,
one for each party of L. In other words, each of these n functions defines, using a polynomial-
size monotone circuit, an access structure. Hence, we can use Yao’s scheme (see also [VNS+03])
and get a secret-sharing scheme Sσi for each i ∈ [n]. That is, there is a sequence of n setup and
reconstruction procedures: SETUPσ1 , . . . ,SETUPσn and RECONσ1 , . . . ,RECONσn , respectively.

The idea is as following. First, we run the SETUPL(S) procedure with the secret S as input
and get secret shares for p1, . . . , pn. Denote these shares by Πp1 , . . . ,Πpn . By the definition of the
reductions, the existence of each pi after the reduction depends on σi. Thus, we use the secret
shares of p1, . . . , pn as secrets for the setup procedures of the σis. That is, for each i ∈ [n] we run
SETUP(Πpi) and get Πi

p′1
, . . . ,Πi

p′m
. Finally, for each i ∈ [n] we define the secret share of party p′i

to be 〈Π1
p′i
, . . . ,Πn

p′i
〉. The precise description of the scheme is given in Figure 4.

28

The Rudich Secret-Sharing Scheme for L′

- Let SETUPL and RECONL be the setup and reconstruction procedures in the Rudich secret-sharing
scheme for L (on n parties {p1, . . . , pn}), respectively.

- For i ∈ [n] let SETUPσi
and RECONσi

be the setup and reconstruction procedures in the secret-
sharing scheme for σi (on m parties {p′1, . . . , p′m}), respectively.

- Let g : {0, 1}∗ → {0, 1}∗ be the function that gets a subset of parties in P ′ and an alleged witness
for L′ and outputs a corresponding witness for L.

The SETUP Procedure:

Input : A secret S.

1. Run SETUPL(S) and get Πp1 , . . . ,Πpn .

2. For i ∈ [n] run SETUPσi
(Πpi) and get Πi

p′1
, . . . ,Πi

p′m
.

3. For i ∈ [m] set the share of party p′i to be 〈Π1
p′i
, . . . ,Πn

p′i
〉

The RECON Procedure:

Input : A non-empty subset of parties X ′ ⊆ P ′ together with their shares and a witness w′ of X ′.

1. Let X ⊆ P be a set of parties such that pi ∈ P if and only if σi(X
′) = 1.

2. For i ∈ [n] such that pi ∈ X execute RECONσi
(X ′) and get Π′pi .

3. Compute w ← R(X ′, w′).

4. Execute RECONL with the shares {Π′pi}pi∈X and the witness w.

Figure 4: Rudich secret-sharing scheme for NP

Completeness (Sketch). Assume that we are given a “qualified” subset of parties X together
with their shares and a corresponding valid witness w′. Let X ⊆ P be a subset of parties such that
pi ∈ X if Π′pi = Πpi . By the correctness of the reduction it must be the case that X ∈ L and w is
a witness for X. Hence, by the correctness of the secret-sharing scheme for L, it must be the case
that the scheme outputs the secret S.

Security. (Sketch) Assume that we are given an “unqualified” subset of parties X together
with their shares and an alleged witness. Let X ⊆ P be a subset of parties such that pi ∈ X if
Π′pi = Πpi . By the correctness of the reduction it must be the case that X /∈ L. Hence, by the
security of the secret-sharing scheme for L, it must be the case that the scheme does not outputs
the secret S.

Completeness under MCWP-reductions. As we have seen, having a Rudich secret-sharing
scheme for a language in mNP that is complete under MCWP-reduction gives rise to schemes for

29

all mNP. MCWP-reduction require two properties. The second property (i.e., that it is witness
preserving) usually follows immediately from the correctness of the reduction (a thorough discussion
is given by Lynch and Lipton [LL78]). However, the first property (of circuit monotonicity) is more
subtle and harder to achieve.

A specific type of reductions that satisfies the first property of Definition C.1, called monotone
projection translations, was introduced by Skyum and Valiant [SV85] and further studied by Stewart
[Ste95]. A monotone projection of a Boolean function is a function obtained by substituting for each
of its variables a variable or a constant.10

Stewart [Ste95] proved that the problem DHams,t of deciding whether a digraph has a Hamil-
tonian path between two specified vertices s, t and the problem CUB of deciding whether a given
graph has a cubic subgraph (i.e., a subgraph where each vertex has degree 3) are complete for
mNP via monotone projection translations.

10More precisely, a function f(x1, . . . , xn) is said to be a monotone projection of a function g(y1, . . . , ym) if and only
if there is a mapping σ : {y1, . . . , yn} → {0, 1, x1, . . . , xn} such that f(x1, . . . , xn) = g(σ(y1), . . . , σ(ym)).

30

	Introduction
	Other Related Work
	Main Idea

	Preliminaries
	Monotone NP
	Computational Indistinguishability
	Secret-Sharing
	Indistinguishability Obfuscation
	Commitment Schemes

	The Definition of Rudich Secret-Sharing
	An Alternative Definition: Semantic Security
	Definition of Adaptive Security

	Rudich Secret-Sharing from iO
	Main Proof of Security
	Rudich Secret-Sharing from iO for 3CNF Formulas

	Conclusions and Open Problems
	Proof of thm:defequiv
	Proof of lemma:listofhardness
	On Completeness for Rudich Secret-Sharing

