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Abstract

A computational secret-sharing scheme is a method that enables a dealer, that has a secret,
to distribute this secret among a set of parties such that a “qualified” subset of parties can
efficiently reconstruct the secret while any “unqualified” subset of parties cannot efficiently
learn anything about the secret. The collection of “qualified” subsets is defined by a Boolean
function.

It has been a major open problem to understand which (monotone) functions can be realized
by a computational secret-sharing schemes. Yao suggested a method for secret-sharing for any
function that has a polynomial-size monotone circuit (a class which is strictly smaller than the
class of monotone functions in P). Around 1990 Rudich raised the possibility of obtaining secret-
sharing for all monotone functions in NP: In order to reconstruct the secret a set of parties must
be “qualified” and provide a witness attesting to this fact.

Recently, Garg et al. [GGSW13] put forward the concept of witness encryption, where the
goal is to encrypt a message relative to a statement x € L for a language L € NP such that
anyone holding a witness to the statement can decrypt the message, however, if x ¢ L, then it
is computationally hard to decrypt. Garg et al. showed how to construct several cryptographic
primitives from witness encryption and gave a candidate construction.

One can show that computational secret-sharing implies witness encryption for the same
language. Our main result is the converse: we give a construction of a computational secret-
sharing scheme for any monotone function in NP assuming witness encryption and one-way
functions. As a consequence we get a completeness theorem for secret-sharing: computational
secret-sharing scheme for any single monotone NP-complete function implies a computational
secret-sharing scheme for every monotone function in NP.
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1 Introduction

A secret-sharing-scheme is a method that enables a dealer, that has a secret piece of information,
to distribute this secret among n parties such that a “qualified” subset of parties has enough infor-
mation to reconstruct the secret while any “unqualified” subset of parties learns nothing about the
secret. A monotone collection of “qualified” subsets (i.e., subsets of parties that can reconstruct
the secret) is known as an access structure, and is usually identified with its characteristic monotone
function.! Besides being interesting in their own right, secret-sharing schemes are an important
building block in many cryptographic protocols, especially those involving some notion of “quali-
fied” sets (e.g., multi-party computation, threshold cryptography and Byzantine agreement). For
more information we refer to the extensive survey of Beimel on secret-sharing schemes and their
applications [Beil1].

A significant goal in constructing secret-sharing schemes is to minimize the amount of infor-
mation distributed to the parties. We say that a secret-sharing scheme is efficient if the size of all
shares is polynomial in the number of parties and the size of the secret.

Secret-sharing schemes were introduced in the late 1970s by Blakley [Bla79] and Shamir [Sha79]
for the threshold access structure, i.e., where the subsets that can reconstruct the secret are all the
sets whose cardinality is at least a certain threshold. Their constructions were fairly efficient both
in the size of the shares and in the computation required for sharing and reconstruction. Ito, Saito
and Nishizeki [[SN93] considered general access structures and showed that every monotone access
structure has a (possibly inefficient) secret-sharing scheme that realizes it. In their scheme the size
of the shares is proportional to the DNF (resp. CNF) formula size of the corresponding function.
Benaloh and Leichter [BL88] proved that if an access structure can be described by a polynomial-
size monotone formula, then it has an efficient secret-sharing scheme. The most general class for
which secret sharing is known was suggested by Karchmer and Wigderson [KW93] who showed that
if the access structure can be described by a polynomial-size monotone span program (for instance,
undirected connectivity in a graph), then it has an efficient secret-sharing scheme. Beimel and
Ishai [BIO5] proposed a secret-sharing scheme for an access structure which is conjectured to lie
outside NC. On the other hand, there are no known lower bounds that show that there exists an
access structure that requires only inefficient secret-sharing schemes.?

Computational Secret-Sharing. In the secret-sharing schemes considered above the security
is guaranteed information theoretically, that is, even if the parties are computationally unbounded.
These secret-sharing schemes are known as perfect secret-sharing schemes. A natural variant, known
as computational secret-sharing schemes, is to allow only computationally limited dealers and parties,
i.e., they are probabilistic algorithms that run in polynomial-time. More precisely, a computational
secret-sharing scheme is a secret-sharing scheme in which there exists an efficient dealer that gener-
ates the shares such that a “qualified” subset of parties can efficiently reconstruct the secret, how-
ever, an “unqualified” subset that pulls its shares together but has only limited (i.e., polynomial)
computational power and attempts to reconstruct the secret should fail (with high probability).

Tt is most sensible to consider only monotone sets of “qualified” subsets of parties. A set M of subsets is called
monotone if A € M and A C A’, then A’ € M. It is hard to imagine a meaningful method for sharing a secret to a
set of “qualified” subsets that does not satisfy this property.

2Moreover, there are not even non-constructive lower bounds for secret-sharing schemes. The usual counting
arguments (e.g., arguments that show that most functions require large circuits) do not work here since one needs to
enumerate over the sharing and reconstruction algorithms whose complexity may be larger than the share size.



Krawczyk [Kra93] presented a computational secret-sharing scheme for threshold access structures
that is more efficient (in terms of the size of the shares) than the perfect secret-sharing schemes
given by Blakley and Shamir [Bla79, Sha79]. In an unpublished work (mentioned in [Beill], see
also Vinod et al. [VNS'03]), Yao showed an efficient computational secret-sharing scheme (as-
suming the existence of one-way functions) for access structures whose characteristic function can
be computed by a polynomial-size monotone circuit (as opposed to the perfect secret-sharing of
Benaloch and Leichter [BL88] for polynomial-size monotone formulas). There are access structures
which are known to have an efficient computational secret-sharing schemes but are not known to
have efficient perfect secret-sharing schemes, e.g., directed connectivity.® Yao’s scheme does not
include all monotone access structures with an efficient algorithm to determine eligibility. One
notable example where no efficient secret-sharing is known is matching in a graph.* Thus, a major
open problem is to answer the following question:

Which access structures have efficient computational secret-sharing schemes, and what
cryptographic assumptions are required for that?

Secret-Sharing for NP. Around 1990 Steven Rudich raised the possibility of obtaining secret-
sharing schemes for an even more general class of access structures than P: monotone functions in
NP, also known as mNP.> An access structure that is defined by a function in mNP is called an
mNP access structure. Intuitively, a secret-sharing scheme for an mNP access structure is defined
(in the natural way) as following: for the “qualified” subsets there is a witness attesting to this
fact and given the witness it should be possible to reconstruct the secret. On the other hand,
for the “unqualified” subsets there is no witness, and so it should not be possible to reconstruct
the secret. For example, consider the Hamiltonian access structure. In this access structure the
parties correspond to edges of the complete undirected graph, and a set of parties X is said to be
“qualified” if and only if the corresponding set of edges contains a Hamiltonian cycle and the set
of parties knows a witness attesting to this fact.

Rudich observed that if NP # coNP, then there is no perfect secret-sharing scheme for the
Hamiltonian access structure in which the sharing of the secret can be done efficiently (i.e., in
polynomial-time).% This (conditional) impossibility result motivates looking for computational
secret-sharing schemes for the Hamiltonian access structure and other mNP access structures. Fur-
thermore, Rudich showed that the construction of a computational secret-sharing schemes for the
Hamiltonian access structure gives rise to a protocol for oblivious transfer. More precisely, Rudich
showed that if one-way functions exist and there is a computational secret-sharing scheme for the
Hamiltonian access structure (i.e., with efficient sharing and reconstruction), then efficient protocols
for oblivious transfer exist.” In particular, constructing a computational secret-sharing scheme for

3In the access structure for directed connectivity, the parties correspond to edge slots in the complete directed
graph and the “qualified” subsets are those edges that connect two distinguished nodes s and ¢.

“4In the access structure for matching the parties correspond to edge slots in the complete graph and the “qualified”
subsets are those edges that contain a perfect matching. Even though matching is in P, it is known that there is no
monotone circuit that computes it [Raz85].

®Rudich raised it in private communication with the second author around 1990 and was not written to the best of
our knowledge; some of Rudich’s results can be found in Beimel’s survey [Beill] and in Naor’s presentation [Nao06].

SMoreover, it is possible to show that if NP ¢ coAM, then there is no statistical secret-sharing scheme for the
Hamiltonian access structure in which the sharing of the secret can be done efficiently [Nao06].

"The resulting reduction is non-black-box. Also, note that the results of Rudich apply for any other monotone
NP-complete problem as well.



the Hamiltonian access structure assuming one-way functions will resolve a major open problem in
cryptography and prove that Minicrypt=Cryptomania, to use Impagliazzo’s terminology [[mp95].

In the decades since Rudich raised the possibility of access structures beyond P not much has
happened. This changed with the work on witness encryption by Garg et al. [GGSW13], where
the goal is to encrypt a message relative to a statement x € L for a language L € NP such that:
Anyone holding a witness to the statement can decrypt the message, however, if x ¢ L, then it
is computationally hard to decrypt. Garg et al. showed how to construct several cryptographic
primitives from witness encryption and gave a candidate construction.

A by-product of the proposed construction of Garg et al. was a construction of a computational
secret-sharing scheme for a specific monotone NP-complete language. However, understanding
whether one can use a secret-sharing scheme for any single (monotone) NP-complete language in
order to achieve secret-sharing schemes for any language in mNP was an open problem. One of our
main results is a positive answer to this question. Details follow.

Our Results. In this paper, we construct a secret-sharing scheme for every mNP access structure
assuming witness encryption for NP and one-way functions. In addition, we give two variants of
a formal definition for secret-sharing for mNP access structures (indistinguishability and semantic
security) and prove their equivalence.

Theorem 1.1. Assuming witness encryption for NP and one-way functions, there is an efficient
computational secret-sharing scheme for every mNP access structure.

We remark that if we relax the requirement of computational secret-sharing such that a “quali-
fied” subset of parties can reconstruct the secret with very high probability (say, negligibly close to
1), then our scheme from Theorem 1.1 actually gives a secret-sharing scheme for every monotone
functions in MA.

As a corollary, using the fact that a secret-sharing scheme for a language implies witness encryp-
tion for that language and using the completeness of witness encryption,® we obtain a completeness
theorem for secret-sharing.

Corollary 1.2 (Completeness of Secret-Sharing). Let L be a monotone language that is NP-
complete (under Karp/Levin reductions) and assume that one-way functions exist. If there ex-
ists a computational secret-sharing scheme for the access structure defined by L, then there are
computational secret-sharing schemes for every mNP access structure.

1.1 On Witness Encryption and Its Relation to Obfuscation

Witness encryption was introduced by Garg et al. [GGSW13]. They gave a formal definition and
showed how witness encryption can be combined with other cryptographic primitives to construct
public-key encryption (with efficient key generation), identity-based encryption and attribute-based
encryption. Lastly, Garg et al. presented a candidate construction of a witness encryption scheme
whose security was based on an instance dependent assumption.

In a more recent work, a new construction of a witness encryption scheme was proposed by
Gentry, Lewko and Waters [GLW14]. The security of their scheme was based on an instance
independent assumption.

8Using standard Karp/Levin reductions between NP-complete languages, one can transform a witness encryption
scheme for a single NP-complete language to a witness encryption scheme for any other language in NP.



Shortly after the paper of Garg et al. [GGSW13] a candidate construction of indistinguishability
obfuscation was proposed by Garg et al. [GGH"13]. An indistinguishability obfuscator is an
algorithm that guarantees that if two circuits compute the same function, then their obfuscations
are computationally indistinguishable. The notion of indistinguishability obfuscation was originally
proposed in the seminal work of Barak et al. [BGIT01, BGIT12].

Recently, there have been two significant developments regarding indistinguishability obfusca-
tion: first, candidate constructions for obfuscators for all polynomial-time programs were proposed
[GGHT13, BR14b, BGK ™14, PST13, GLSW14] and second, intriguing applications of indistin-
guishability obfuscation when combined with other cryptographic primitives’ have been demon-
strated (see, e.g., [GGHT 13, SW13, BZ13]).

As shown by Garg et al. [GGH'13], indistinguishability obfuscation implies witness encryption
for all NP, which, as we show in Theorem 1.1, implies secret-sharing for all mNP. In fact, using
the completeness of witness encryption (see 7?7 8), even an indistinguishability obfuscator for 3CNF
formulas [BR14a] implies witness encryption for all NP. Understanding whether witness encryption
is strictly weaker than indistinguishability obfuscation is an important open problem.

1.2 Other Related Work

A different model of secret-sharing for mNP access structures was suggested by Vinod et al.
[VNST03]. Specifically, they relaxed the requirements of secret-sharing by introducing a semi-
trusted third party 7" who is allowed to interact with the dealer and the parties. They require
that T does not learn anything about the secret and the participating parties. In this model, they
constructed an efficient secret-sharing scheme for any mNP access structures (that is also efficient
in terms of the round complexity of the parties with 7") assuming the existence of efficient oblivious
transfer protocols.

1.3 Main Idea

Let Com : {0,1}" x {0,1}* — {0,1}?™ be a commitment scheme, where A > 0 is the security
parameter and p(-) is a polynomial. For a language L' € NP we denote by (Encrypt;,, Decrypt;,)
the witness encryption scheme. Let M be an access structure on n parties P = {p1,...,pn}
corresponding to a language L C {0,1}" in mNP and to a relation R : {0,1}" x {0,1}* — {0,1}.
Let L' C {0,1}?(™™ be the language corresponding to the NP relation R : {0, 1}P(")" x ({0, 1} x
{0,1}*) — {0,1} such that R’ acts as follows: on instance {c;};cjn) and witness ({r;}icp, w)
compute R(z,w), where z = z; ... x, such that x; = 1 if Com(i,7;) = ¢; and z; = 0 otherwise.

A secret-sharing scheme for the language L consists of a setup phase in which the dealer
distributes secret shares to the parties. First, the dealer samples uniformly at random n open-
ings 1,...,7, € {0,1}*. Then, the dealer computes a witness encryption ct of the message S
with respect to the instance (c; = Com(1,71),...,¢c, = Com(n,r,)) of the language R/, namely
ct = Encrypt;,((c1,...,¢n),S). Finally, the share of party p; is set to be (ry,ct).

Clearly, if Encrypt;, and Com are efficient, then the generation of the shares is efficient. More-
over, the reconstruction procedure is the natural one: Given a subset of parties X C P such that
M(X) =1 and a valid witness w, decrypt ct using the shares of the parties X and w. By the com-
pleteness of the witness encryption scheme, given a valid subset of parties X and a valid witness w
the decryption will output the secret S.

9See [KMNT14] for a thorough discussion of the need in additional hardness assumption on top of iO.



As for the security of this scheme, we want to show that it is impossible to extract (or even learn
anything about) the secret having a subset of parties X for which M (X) =0 (i.e., an “unqualified”
subset of parties). Let D be an algorithm that extracts the secret given X. Roughly speaking, we
will use the ability to extract the secret in order to solve the following task: we are given a list of
n unopened string commitments ci,...,c, and a promise that it either corresponds to the values
Ap ={1,...,n} or it corresponds to the values A} = {n+1,...,2n} and we need to decide which
is the case. Succeeding in this task would break the security guarantee of the commitment scheme.

We sample n openings 71, ..., 7, uniformly at random and create a new witness encryption ct’

/

such that ct’ = Encrypt;, ((c},...,c},),S) as above, where we replace the commitments correspond-

ing to parties not in X with commitments from the input as follows:

Vie]: ¢ = {Com(i,n) if p; € X
C; otherwise.

For i € [n] we set the share of party p; to be (r;,ct’). We run D with this new set of shares. If we
are in the case where cy, ..., c, corresponds to Ag, then D is unable to distinguish between ct and
ct’ and, hence, will be able to extract the secret. On the other hand, if cq,...,c, corresponds to Ay,
then there is no valid witness to decrypt ct’. Therefore, by the security of the witness encryption
scheme, it is computationally hard to learn anything about the secret S from ct’. Hence, if D is
able to extract the secret S, then we deduce that cq,...,c, correspond to Ay and, otherwise we
conclude that cq,...,c, correspond to Aj.

2 Preliminaries

We start with some general notation. We denote by [n] the set of numbers {1,2,...,n}. Throughout
the paper we use n as our security parameter. We denote by U,, the uniform distribution on n bits.
For a distribution or random variable R we write r < R to denote the operation of sampling a

random element r according to R. For a set S, we write s&.8 to denote the operation of sampling
an s uniformly at random from the set S. We denote by neg : N — R a function such that for every
positive integer ¢ there exists an integer N, such that for all n > N, neg(n) < 1/n°.

2.1 Monotone NP

A function f : 2" — {0,1} is said to be monotone if for every X C [n] such that f(X) =1 it also
holds that VY C [n] such that X C Y it holds that f(Y) = 1.

A monotone Boolean circuits is a Boolean circuit with AND and OR gates (without negations).
A non-deterministic circuit is a Boolean circuit whose inputs are divided into two parts: standard
inputs and non-deterministic inputs. A non-deterministic circuit accepts a standard input if and
only if there is some setting of the non-deterministic input that causes the circuit to evaluate
to 1. A monotone non-deterministic circuit is a non-deterministic circuit where the monotonicity
requirement applies only to the standard inputs, that is, every path from a standard input wire to
the output wire does not have a negation gate.

Definition 2.1 ([GS92]). We say that a function L is in mNP if there ezists a uniform family of
polynomial-size monotone non-deterministic circuit that computes L.



Lemma 2.2 ([GS92, Theorem 2.2]). mNP = NP N mono, where mono is the set of all monotone
functions.

2.2 Computational Indistinguishability

Definition 2.3. Two sequences of random variables X = {X,}nen and Y = {Y,}nen are com-
putationally indistinguishable if for every probabilistic polynomial-time algorithm A there exists an
integer N such that for allm > N,

[Pr{A(X,) = 1] - Pr[A(Y;) = 1]| < neg(n).

where the probabilities are over X, Y, and the internal randomness of A.

2.3 Secret-Sharing

A perfect (resp., computational) secret-sharing scheme involves a dealer who has a secret, a set
of n parties, and a collection A of “qualified” subsets of parties called the access structure. A
secret-sharing scheme for A is a method by which the dealer (resp., efficiently) distributes shares
to the parties such that (1) any subset in A can (resp., efficiently) reconstruct the secret from its
shares, and (2) any subset not in A cannot (resp., efficiently) reveal any partial information on the
secret. For more information on secret-sharing schemes we refer to [Beill] and references therein.

Throughout this paper we deal with secret-sharing schemes for access structures over n parties

P="P Z{p1,...,pn}.

Definition 2.4 (Access structure). An access structure M on P is a monotone set of subset of P.
That is, for all X € M it holds that X C P and for all X € M and X' such that X C X' C P it
holds that X" € M.

We may think of M as a characteristic function M : 27 — {0,1} that outputs 1 given as input
X C P if and only if X is in the access structure.

Many different definitions for secret-sharing schemes appeared in the literature. Some of the
definitions were not stated formally and in some cases rigorous security proofs were not given.
Bellare and Rogaway [BRO7]| survey many of these different definitions and recast them in the
tradition of provable-security cryptography. They also provide some proofs for well-known secret-
sharing schemes that were previously unanalyzed. We refer to [BRO7] for more information.

2.4 Witness Encryption
The following definition is inspired by [GGSW13]:

Definition 2.5. A witness encryption scheme for an NP language L (with a corresponding relation
R) consists of the following two polynomial-time algorithms:

Encrypt— The algorithm Encrypt(l/\7 x, M) takes as input a security parameter 1%, an unbounded-
length string x and an message M of polynomial length in A, and outputs a ciphertext ct.

Decrypt— The algorithm Decrypt(ct, w) takes as input a ciphertext ct and an unbounded-length
string w, and outputs a message M or the symbol L.



These algorithms satisfy the following two conditions:

1. Completeness (Correctness): For any security parameter \, any M € {0,1}PYN) gnd
any x € L such that R(x,w) holds, we have that

Pr[Decrypt(Encrypt(1}, z, M), w) = M] = 1.

2. Soundness (Security): For any security parameter \, any two messages My, Mo € {0, 1}POY(Y)
any probabilistic polynomial-time adversary A and any x & L it holds that

Pr[A(Encrypt(1*, z, My) = 1] — Pr[A(Encrypt(1}, 2, My) = 1]| < neg(n).

Our definition of witness encryption differs from the one given in [GGSW13] in that we assume
the message is of polynomial length (and not just one bit). A multi-bit witness encryption can be
constructed from a witness encryption as in [GGSW13] by encrypting each bit of M separately.
The security is proved via a hybrid argument.

Remark. Our definition of Rudich secret-sharing (that is given in Section 3) is uniform. However,
we note that we use a non-uniform definition of witness encryption (given above) since this is the
most common definition in the literature.

2.5 Commitment Schemes

A non-interactive statistically binding commitment scheme can be constructed based on any one-
way permutation [Blu82]. Naor [Nao91] showed a construction of an interactive (two-round)
statistically-binding commitment scheme based on any one-way function. For simplicity of pre-
sentation we will define commitment schemes in this paper to be non-interactive; however, all of
our results still hold if the non-interactive commitment is replaced by Naor’s construction.

Definition 2.6 (Commitment Scheme). A polynomial-time computable function Com: {0,1} x
{0,1}" — {0,1}P") (where p(-) is some polynomial) is a bit commitment scheme if it satisfies the
following properties:

1. Computational Hiding:

The random variables Com(0; Uy,) and Com(1;U,,) are computationally indistinguishable.

2. Statistical Binding:

The supports of the above random variables are disjoint.

One can convert a bit commitment scheme into a string commitment scheme by concatenating
independent commitments for each of the input bits. Thus, for z = z1---x, € {0,1}¢ and r =
rM .0 € 40,1} we define Com(z;7) = Com(zy;7(M) - Com(xy;r®)). We say that Com(z;7)
is the commitment of the value x with the opening .



3 The Definition of Rudich Secret-Sharing

In this section we formally define computational secret-sharing for access structures realizing mono-
tone functions in NP, which we call Rudich secret-sharing. Even though secret-sharing for functions
in NP were considered in the past [VNS'03, Beill, GGSW13], no formal definition was given. Our
definition consists of two requirements: completeness and security. The completeness requirement
assures that a “qualified” subset of parties that wishes to reconstruct the secret and knows the
witness will be successful. The security requirement guarantees that as long as the parties form an
“unqualified” subset, they are unable to learn the secret.

Note that the security requirement stated above is possibly hard to check efficiently: For some
access structures in mNP (e.g., monotone NP-complete problems) it might be computationally hard
to verify that the parties form an “unqualified” subset. Next, in Definition 3.1 we give a uniform
definition of secret-sharing for NP. In Section 3.1 we give an alternative definition and show their
equivalence.

Definition 3.1 (Rudich secret-sharing). Let M : 2P — {0,1} be an access structure corresponding
to a language L € mNP and let Vas be a verifier for L. A secret-sharing scheme S for M con-
sists of a setup procedure SETUP and a reconstruction procedure RECON that satisfy the following
requirements:

1. SETUP(1™,S) gets as input a secret S and distributes a share for each party. For i € [n]
denote by I1(S, i) the random variable that corresponds to the share of party p;. Furthermore,
for X C P we denote by I1(S, X) the random variable that corresponds to the set of shares of
parties in X.

2. Completeness:

If RECON(1™,TI(S, X ), w) gets as input the shares of a “qualified” subset of parties and a
valid witness, and outputs the shared secret. Namely, for X C P if M(X) =1, then for any
valid witness w such that Vs (X, w) =1, it holds that:

Pr[RECON(1",II(S, X),w) = S] =1,
where the probability is over the internal randomness of the scheme and of RECON.

3. Indistinguishability of the Secret:

For every pair of probabilistic polynomial-time algorithms (Samp, D) where Samp(1™) defines
a distribution over pairs of secrets Sy, S1, a subset of parties X and auziliary information o,
it holds that

‘PI‘ [M(X) =0A D(1", Sy, S1,11(Sy, X),0) = 1] —
Pr[M(X)=0A D", Sy, S1,1(S1,X),0) =1]| < neg(n),
where the probability is over the internal randomness of the scheme, the internal randommness
of D and the distribution (Sp, S1,X,0) < Samp(1"™).

That is, for every pair of probabilistic polynomial-time algorithms (Samp, D) such that Samp
chooses two secrets Sp, S1 and a subset of parties X C P, if M(X) = 0 then D is unable to
distinguish (with noticeable probability) between the shares of X generated by SETUP(Sy) and
the shares of X generated by SETUP(S).

10



Notation. For ease of notation, 1" and ¢ are omitted when they are clear from the context.

3.1 An Alternative Definition: Semantic Security

The security requirement (i.e., the third requirement) of a Rudich secret-sharing scheme that is
given in Definition 3.1 is phrased in the spirit of computational indistinguishability. A different
approach is to define the security of a Rudich secret-sharing in the spirit of semantic security. As
in many cases (e.g., encryption [GM8&4]), it turns out that the two definitions are equivalent.

Definition 3.2 (Rudich secret-sharing - semantic security version). Let M : 2P — {0,1} be an mNP
access structure with verifier V. A secret-sharing scheme S for M consists of a setup procedure
SETUP and a reconstruction procedure RECON as in Definition 3.1 and has the following property
instead of the indistinguishability of the secret property:

3 Unlearnability of the Secret:

For every pair of probabilistic polynomial-time algorithms (Samp, D) where Samp(1™) defines
a distribution over a secret S, a subset of parties X and auxiliary information o, and for every
efficiently computable function f : {0,1}* — {0,1}* it holds that there exists a probabilistic
polynomial-time algorithm D’ (called a simulator) such that

|Pr[M(X)=0AD(1"1(S,X),0) = f(9)] —
Pr[M(X)=0AD'(1",X,0) = f(9)] | < neg(n),

where the probability is over the internal randomness of the scheme, the internal randomness
of D and D', and the distribution (S, X, o) + Samp(1™).

That is, for every pair of probabilistic polynomial-time algorithms (Samp, D) such that Samp
chooses a secret S and a subset of parties X C P, if M(X) = 0 then D is unable to learn
anything about S that it could not learn without access to the secret shares of X.

Theorem 3.3. Definition 3.2 and Definition 3.1 are equivalent.
We defer the proof of Theorem 3.3 to Appendix A.

3.2 Definition of Adaptive Security

Our definition of Rudich secret-sharing only guarantees security against static adversaries. That
is, the adversary chooses a subset of parties before it sees any of the shares. In other words, the
selection is done independently of the sharing process and hence, we may think of it as if the sharing
process is done after Samp chooses X.

A stronger security guarantee would be to require that even an adversary that chooses its set of
parties in an adaptive manner based on the shares it has seen so far is unable to learn the secret (or
any partial information about it). Namely, the adversary chooses the parties one by one depending
on the secret shares of the previously chosen parties.

The security proof of our scheme (which is given in Section 4) does not hold under this stronger
requirement. It would be interesting to strengthen it to the adaptive case as well. One problem
that immediately arises in an analysis of our scheme against adaptive adversaries is that of selective
decommitment (cf. [DNRS03]), that is when an adversary sees a collection of commitments and can
select a subset of them and receive their openings. The usual proofs of security of commitment
schemes are not known to hold in this case.

11



4 Rudich Secret-Sharing from Witness Encryption

In this section we prove the main theorem of this paper. We show how to construct a Rudich
secret-sharing scheme for any mNP access structure assuming witness encryption for NP and one-
way functions.

Theorem 1.1 (Restated). Assuming witness encryption for NP and one-way functions, there is
an efficient computational secret-sharing scheme for every mNP access structure.

Let P = {p1,...,pn} be a set of n parties and let M : 2¥ — {0,1} be an mNP access structure.
We view M either as a function or as a language. For a language L in NP let (Encrypt;, Decrypt;)
be a witness encryption scheme and let Com : [2n] x {0,1}"™ — {0,1}4") be a commitment scheme,
where ¢(-) is a polynomial.

The Scheme. We define a language M’ that is related to M as follows. The language M’ consists
of all sets of n strings {c; }ic|n) € {0, 1} u{L}. M ({ci}ien) = 1if, and only if, there exist {r;};c[n)
such that M (z) = 1, where x = x; ...z, such that z; =1 if ; # L and Com(i,r;) = ¢;.

For every i € [n], the share of party p; is composed of 2 components: (1) r; € {0,1}" - an
opening of a commitment to the value 7, and (2) a witness encryption ct. The witness encryption
encrypts the secret S with respect to the commitments of all parties {c; = Com(i,7;)}icjn). To
reconstruct the secret given a subset of parties X, we simply decrypt ct given the corresponding
openings of X and the witness w that indeed M(X) = 1. The secret-sharing scheme is formally
described in Figure 1.

Observe that if the witness encryption scheme and Com are both efficient, then the scheme is
efficient (i.e., SETUP and RECON are probabilistic polynomial-time algorithms). SETUP generates
n commitments and a witness encryption of polynomial size. RECON only decrypts this witness
encryption.

Completeness. The next lemma states that the scheme is complete. That is, whenever the
scheme is given a qualified X C P and a valid witness w of X, it is possible to successfully
reconstruct the secret.

Lemma 4.1. Let M € NP be an mNP access structure. Let S = Sy be the scheme from Figure 1
instantiated with M. For every subset of parties X C P such that M(X) = 1 and any valid witness
w it holds that

Pr [RECON(II(S, X ), w) = §] = 1.

Proof. Recall the definition of the algorithm RECON from Figure 1: RECON gets as input the
shares of a subset of parties X = {p;,,...,p;,} for k,i1,...,ix € [n] and a valid witness w. Recall
that the shares of the parties in X consist of k£ openings for the corresponding commitments and a
witness encryption ct. RECON decrypts ct given the openings of parties in X and the witness w.
By the completeness of the witness encryption scheme, the output of the decryption procedure
on ct, given a valid X and a valid witness, is S (with probability 1). O
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The Rudich Secret-Sharing Scheme S for M

The SETUP Procedure:
Input: A secret S.

For a language L in NP let (Encrypt;, Decrypt;) be a witness encryption for L (see Definition 2.5).

Let Com: [2n] x {0,1}" — {0,1}9(™) be a string commitment scheme where ¢(-) is a polynomial (see
Definition 2.6).

Let M’ : {0,1}9)™ be a language that consists of all sets of n strings {c;}icn) € {0,139 U {L}.
M({ci}iem)) = 1 if, and only if, there exist {r;};c[n such that M(x) = 1, where x = x; ..., such that
z; =1if r; # L and Com(i,7;) = ¢;.

1. For i € [n]:

(a) Sample uniformly at random an opening r; € {0,1}".

(b) Compute the commitment ¢; = Com(i,r;).

2. Compute the witness encryption of the secret S with respect to the instance {c;};c[n) of the language
M’. Namely, compute ct = Encrypty ({¢i}ic[n]; S)-

3. Set the share of party p; to be II(S,i) = (r;, ct).

The RECON Procedure:
Input: A non-empty subset of parties X C P together with their shares and a witness w of X for M.

1. Let ct be the witness encryption in the shares of X.

2. Decrypt ct with the openings in the shares of X and w and return its output. Namely, for i € [n] if p; is
in X, let r; be the opening in its share, otherwise set 7; = 1, and return Decrypt ./ (ct, ({7i}ic[n), w))-

Figure 1: Rudich secret-sharing scheme for NP.

Indistinguishability of the Secret. We show that our scheme is secure. More precisely, we
show that given an “unqualified” set of parties X C P as input (i.e., M (X) = 0), with overwhelming
probability, any probabilistic polynomial-time algorithm cannot distinguish the shared secret from
another. To this end, we assume towards a contradiction that such an algorithm exists and use it
to efficiently solve the following task: given two lists of n commitments and a promise that one of
them corresponds to the values {1,...,n} and the other corresponds to the values {n+1,...,2n},
identify which one corresponds to the values {1,...,n}. The following lemma shows that solving
this task efficiently can be used to break the hiding property of the commitment scheme.

Lemma 4.2. Let Com: [2n] x {0,1}" — {0,1}9() be a commitment scheme where q(-) is a poly-
nomial. If there exist € = e(n) > 0 and a probabilistic polynomial-time algorithm D for which

| Pr[D(Com(1,U,),...,Com(n,Uy,)) = 1]—
Pr[D(Com(n,U,),...,Com(2n,U,)) = 1]| > ¢,
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then there exist a probabilistic polynomial-time algorithm D' and z,y € [2n] such that
|Pr[D'(Com(x,Uy)) = 1] — Pr[D’(Com(y, Uy)) = 1]| > ¢/n.

The proof of the lemma follows from a standard hybrid argument. See full details in Appendix B.

At this point we are ready to prove the security of our scheme. That is, we show that the ability
to break the security of our scheme translates to the ability to break the commitment scheme (using
Lemma 4.2).

Lemma 4.3. Let P = {p1,...,pn} be a set of n parties. Let M : 2P — {0,1} be an mNP
access structure. If there exist a non-negligible € = £(n) and a pair of probabilistic polynomial-time
algorithms (Samp, D) such that for (Sg, S1,X) <= Samp(1™) it holds that

Pr [M(X) =0A D(So,Sl,H(S(),X>) = 1]
—Pr [M(X) =0A D(S(],Sl,H(Sl,X)) = 1} > €,

then there exists a probabilistic algorithm D' that runs in polynomial-time in n/e such that for
sufficiently large n

| Pr[D’(Com(1,U,),...,Com(n,U,)) = 1]—
Pr[D'(Com(n + 1,U,,),...,Com(2n,U,)) = 1]| > /10 — neg(n).

The proof of Lemma 4.3 appears in Section 4.1.

Using Lemma 4.3 we can prove Theorem 1.1, the main theorem of this section. The completeness
requirement (Item 2 in Definition 3.1) follows directly from Lemma 4.1. The indistinguishability
of the secret requirement (Item 3 in Definition 3.1) follows by combining Lemmas 4.2 and 4.3
together with the hiding property of the commitment scheme. Section 4.1 is devoted to the proof
of Lemma 4.3.

4.1 Main Proof of Security

Let M be an mNP access structure, (Samp, D) be a pair of algorithms and € > 0 be a function

of n, as in the Lemma 4.3. We are given a list of (unopened) string commitments ci,...,¢, €
{Com(zi,m)}reqo,1yn, where for Z = {z1,...,2,} either Z = {1,...,n} £ Ag or Z = {n +
1,...,2n} = A;. Our goal is to construct an algorithm D’ that distinguishes between the two

cases (using Samp and D) with non-negligible probability (that is related to ). Recall that Samp
chooses two secrets Sp, 51 and X C P and then D gets as input the secret shares of parties in X
for one of the secrets. By assumption, for (Sp, S1, X) < Samp(1"™) we have that

|Pr[M(X) =0 A D(So, S1,II(So, X)) = 1] -

Pr[M(X) =0 A D(Sp, S1,T1(S1, X)) = 1]| > <. (1)
Roughly speaking, the algorithm D’ that we define creates a new set of shares using cy,...,c,
such that: If c1,...,c, are commitments to Z = Ag then D is able to recover the secret; otherwise,

(if Z = Aj) it is computationally hard to recover the secret. Thus, D’ can distinguish between the
two cases by running D on the new set of shares and acting according to its output.

We begin by describing a useful subroutine we call Dye,. The inputs to Dyer are n string commit-
ments cy, ..., Cy, two secrets Sy, S1 and a subset of k € [n] parties X. Assume for ease of notations
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that X = {p1,...,pk}. Dver first chooses b uniformly at random from the set {0, 1} and samples uni-
formly at random n openings r1, ..., 7, from the distribution U,. Then, Dy, computes the witness
encryption ct; of the message S, with respect to the instance Com(1,71),...,Com(k, %), Cht1,--.,Cn
of M’ (see Figure 1) and sets for every i € [n] the share of party p; to be II'(.Sp, i) = (r;, ct;). Finally,
Dyer emulates the execution of D on the set of shares of X (II'(Sy, X)). If the output of D equals
to b, then Dyer outputs 1 (meaning the input commitments correspond to Z = Ag); otherwise, Dy,
outputs 0 (meaning the input commitments correspond to Z = Ay).

The naive implementation of D’ is to run Samp to generate Sy, S; and X, run Dye, with the
given string commitments, Sy, S1 and X, and output accordingly. This, however, does not work. To
see this, recall that the assumption (eq. (1)) only guarantees that D is able to distinguish between
the two secrets when M (X) = 0. However, it is possible that with high probability (yet smaller
than 1 —1/poly(n)) over Samp it holds that M(X) = 1, in which we do not have any guarantee on
D. Hence, simply running Samp and Dy, might fool us in outputting the wrong answer.

The first step to solve this is to observe that, by the assumption in eq. (1), Samp generates an X
such that M(X) = 0 with (non-negligible) probability at least . By this observation, notice that
by running Samp for ©(n/c) iterations we are assured that with very high probability (specifically,
1 — neg(n)) there exists an iteration in which M (X) = 0. All we are left to do is to recognize in
which iteration M (X) = 0 and only in that iteration we run Dy and output accordingly.

However, in general it might be computationally difficult to test for a given X whether M (X) =
0 or not. To overcome this, we observe that we need something much simpler than testing if
M(X) =0 or not. All we actually need is a procedure that we call B that checks if Dy, is a good
distinguisher (between commitments to Ag and commitments to Ap) for a given X. One the one
hand, by the assumption, we are assured that this is indeed the case if M (X) = 0. On the other
hand, if M(X) = 1 and Dy is biased, then simply running Dy, and outputting accordingly is
enough. Thus, our goal is to estimate the bias of Dye,. The latter is implemented efficiently by
running Dye, independently ©(n/e) times on both inputs (i.e., with Z = Ay and with Z = A;) and
counting the number of “correct” answers.

Recapping, our construction of D’ is as follows: D’ runs for ©(n/e) iterations such that in each
iteration it runs Samp(1™) and gets two secrets Sy, S1 and a subset of parties X. Then, it estimates
the bias of Dy for that specific X (independently of the input). If the bias is large enough, D’
evaluates Dyer with the input of D', the two secrets Sy, S1 and the subset of parties X and outputs
its output. The formal description of D’ is given in Figure 2.

Analysis of D’.  We prove the following lemma which is a restatement of Lemma 4.3.

Lemma 4.3 (Restated). Let c1,...,c, € {Com(z;,7)}rcqo,1yn be a list of string commitments,
where for Z = {z1,...,2,} either Z = {1,...,n} 2 Ag or Z = {n+1,...,2n} & Ay. Assuming
eq. (1), it holds that

|Pr[D'(c1,...,cn) =1| Z = Ag] = Pr[D(c1,...,cn) = 1| Z = Ay]| > /10 — neg(n).

We begin with the analysis of the procedure Dye,. In the next two claims we show that assuming
that M (X) = 0, then Dy is a good distinguisher between the case Z = A and the case Z = A;.
Specifically, the first claim states that Dye, answers correctly given input Z = Ag with probability
at least 1/2 4+ £/2 while in the second claim we show that Dye, is unable to do much better than
merely guessing given input Z = A; (assuming M (X) = 0).
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The algorithm D’

Input: A sequence of commitments cy,...,c, where Vi € [n]: ¢; € {Com(2;,7)},eq0,13» and for Z =
{2’1, ..

1. Do the following for T' = n/e times:

2.

The sub-procedure B
Input: Two secrets Sy, S1 and a subset of parties X C P.

1.

2.
3.

The sub-procedure D,.,
Input: A sequence of commitments cq,...,c,, two secrets Sp, S and a subset of parties X C P.

1.

Syzp)either Z={1,... n} 2 Agor Z={n+1,...,2n} = A;.

(a) So,S1,X <+ Samp(1™).

(b) Run bias + B(S, S1, X).

(c) If bias = 1:
i. Run resD < Dye(cy, ..., Cn, So, S1, X).
ii. Output resD (and HALT).

Output 0.

Set qo,q1 < 0. Run T = 4n/e times:

(a) go < qo + Dyer(Com(1,U,,),...,Com(n,U,), Sy, S1, X).
(b) ¢1 < ¢1 + Dyer(Com(n+1,U,,),...,Com(2n,U,), Sy, S1, X).

If |go — ¢1] > n, output 1.
Output 0.

Choose b € {0,1} uniformly at random.

C .7 i if i € X
For i € [n]: Sample ri&U, and let = om(i, r;) if p :
Ci otherwise.

Compute the witness encryption of the message S, with respect to the instance (cj,...,cl) of

the language M’. (See Figure 1 for the definition of the language M’). Namely, compute
cty, = Encrypty, ((c), ..., c,), Sp).

For i € [n] let the new share of party p; be IT'(Sy, 1) = (r;, ct}).
Return 1 if D(Sy, S1,II'(Sp, X)) = b and 0 otherwise.

Figure 2: The description of the algorithm D’.

Claim 4.4. For (Sy, S1,X) < Samp(1™) it holds that

| Pr [Dyer(Ct, - ., Cny S0, S1, X) =1 | M(X) =0 A Z = Ag] — 1/2| > £/2.

Proof. By the definition of Dy (see Figure 2) we have that Dyer(cy, ..., ck, So, 51, X) = 1 if and
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only if D(Sp, S1,II'(Sp, X)) = b for bﬁ{O, 1}. Since b is chosen uniformly at random from {0, 1}, it
is enough to show that

e <|Pr [D(So, S1,11'(S1,X)) =1 | M(X) = 0]
— Pr [D(So, S1,1T'(S0, X)) =1 | M(X) =0] |.

Using the assumption (see eq. (1)), for (Sp, S1,X) < Samp(1™) it holds that

e <|Pr[M(X) =0 A D(Sp, S1,11(S1, X)) = 1]
—Pr[M(X) =0 A D(So, S1,11(So, X)) = 1] |

<|Pr[D(So, $1,11(S1, X)) = 1| M(X) = 0]
— Pr[D(So, 51,11(S0, X)) = 1| M(X) = 0] |

Notice that since Z = Ay we have that the sequence (Com(1,U,),...,Com(n,U,)) is identically
distributed as the sequence (c},...,c},). Hence, for any b € {0,1} it holds that II'(Sp, X) is identi-

T n

cally distributed as II(Sy, X'). Hence,

e <|Pr [D(So, S1,11'(S1,X)) =1 | M(X) = 0]
— Pr [D(So, S1,1T'(S0, X)) = 1| M(X) =0] |,

as required. 0

Claim 4.5. For (Sp, S1,X) <= Samp(1™) it holds that
‘Pr[Dver(cla" .,Cn,SO,Sl,X) =1 | M(X) =0NZ = Al] - 1/2| < neg(n)‘

Proof. Recall that Dye(cy, ..., cpn, S0, 51, X) = 1 if and only if for b chosen uniformly at random
from {0, 1} it holds that D(Sp, S1,1I'(S, X)) = b.

Recall that for b € {0,1} and i € [n] the new share of party p; denoted by II'(S,, ) consists of
the pair (r’, ct})) where r?
that ct{ and ct] are computationally indistinguishable.

To this end, we show that if Z = A; and M (X) = 0, then there is no witness attesting to the fact
that c},...,c, isin M'. Fix X C P such that M (X) = 0 and let ({r};cn), w) € ({0, 1}™")" x {0, 1}*
be a possible witness. Let X’ be the set of parties that correspond to the r.’s for which r; # L.

If X! Z X, then there exists an ¢ € [n] such that p; € X" and p; ¢ X. In this case, the witness
is invalid since for every i such that p; ¢ X the commitment ¢; is a commitment to the value n + i
(and not ¢). Recall that the distributions Com(i, U,,) and Com(j, U,,) are disjoint for every i # j.
Hence, any opening for the commitment ¢; and the value i is invalid, i.e., any opening 7} will fail
the test ¢; — Com(i,}).

Otherwise, if X’ C X, then since M is monotone and M (X) = 0 it holds that M(X’) = 0.
Therefore, the witness is invalid for X'.

In conclusion, since M'(cy, ..., c,) = 0, the witness encryptions of Sy and S; are computationally
indistinguishable from one another (see Definition 2.5) and the claim follows. O

is chosen uniformly at random from U,,. To prove the claim we show

Next, we continue with two claims connecting D,e, and B. Before we state these claims, we
introduce a useful notation regarding the bias of the procedure De,. We denote by bias(Sp, S1, X)
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the advantage of Dye, in recognizing the case Z = Ay over the case Z = Ay given two secrets Sy
and S7 and a subset of parties X. Namely, for any Sy, S1 and X denote
bias(Sp, S1, X) = | Pr [Dyer(Com(1,U,), ..., Com(n,Uy,), Sy, S1, X) = 1]
— Pr[Dyer(Com(n + 1,Uy,),...,Com(2n,U,), So, S1, X) = 1] |.
The first claim states that if Dye, is biased (in the sense that bias(Sp, S1, X) is large enough),

then B almost surely notices that and outputs 1, and vice-versa, i.e., if Dy is unbiased (in the
sense that bias(Sp, 51, X) is small enough), then B almost surely notices that and outputs 0.

Claim 4.6. For (Sp, S1,X) < Samp(1"),
1. Pr[B(So,S1,X) =1 bias(So, S1,X) >¢/3] > 1 — neg(n)
2. Pr[B(Sp, S1,X) = 1| bias(Sp, S1,X) < £/10] < neg(n)

Proof. Recall that B runs for Tg independent iterations such that in each iteration it executes Dyer
twice: Once with Com(1,U,),...,Com(n,U,) and once with Com(n + 1,U,,),...,Com(2n,U,).
For i € [Tg], let I be an indicator random variable that takes the value 1 if and only if in
the i-th iteration Dye(Com(1,U,),...,Com(n,U,), So,S1,X) = 1. Similarly, denote by I? an
indicator random variable that takes the value 1 if and only if in the i-th iteration Dye(Com(n +
1,U,),...,Com(2n,U,), Sy, S1, X) = 1. When B finishes, it holds that ¢y = >\~ I} and ¢ =
S°7 | Ii. Furthermore, if bias(Sp, S1, X) > £/3 we get that E[|qo — q1]] > (¢/3) - Tg. By Chernoff’s
bound (see [AS08, §A.1]) we get that

Prllgo — 1] > 3/4-((e/3) - Tg)] = 1 — exp (O(e - Tk)) -

Similarly, if bias(Sp, S1, X) < &/10 we get that E[|go — ¢1]] < (¢/10) - Tg. By Chernoff’s bound we
get that

Prflgo — ¢1| > 2- ((¢/10) - Tg)] < exp (O(e - Tk)) -

Recall that B outputs 1 if and only if |g9 — ¢1] > n. Plugging in Tg = 4n/e both parts of the
claim follow. ]

In Claim 4.6 we proved that B is a good estimator for the bias of Dy,. That is, we showed
that if Dy, is very biased, then B is 1 (with high probability) and vice-versa (i.e., that if Dye, is
unbiased, then B is most likely to be 0). Denote by BAD the event in which B(Sp, S, X) = 1 and
bias(Sp, S1, X) < £/10. In the next claim we show that the probability that BAD happens in any
iteration of D’ is negligible.

Claim 4.7. Denote by BAD' the event that BAD happens in iteration i € [T).
Pr [Vi : —|BADi] > 1 — neg(n).

Proof. Since the T iteration are independent and implemented identically it holds that

T
Pr[Ji: BAD'] =) Pr[BAD] =T -Pr[BAD].
i=1
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Observe that

Pr [BAD] = Pr [B(Sp, S1, X) = 1 A bias(Sp, S1,X) < ¢/10]
< Pr[B(So, S1,X) = 1| bias(Sp, S1, X) < /10] < neg(n).

Hence, we get that Pr [Ji : BADi] < (n/e) - neg(n) < neg(n). O

The next claim states that if X is such that M (X) = 0, then B outputs 1 with very high
probability. The idea is to combine Claims 4.4 and 4.5 that assure that if M (X) = 0, then Dy is
biased (i.e., bias is large), with Claim 4.6 that assures that if the bias is large, then B almost surely
outputs 1.

Claim 4.8. For (Sp, S1,X) < Samp(1"),
Pr[B(Sp, 1, X) = 1| M(X) = 0] > 1 — neg(n).

Proof. Let (So,S1,X) < Samp(1™). By the definition of B it holds that B(Sp, S1, X) = 1 if and
only if go — q1 > n. Thus, it is enough to show that

Prllgo — @[ > n | M(X) = 0] > 1 — neg(n).
Using Claims 4.4 and 4.5 we get that
Pr[bias(Sp, S1,X) > ¢/2 —neg(n) | M(X) = 0] > 1 — neg(n).
Plugging this into Claim 4.6 the claim follows. O

At this point we are finally ready to prove Lemma 4.3.

Proof of Lemma 4.3. Recall that our goal is to lower bound the following expression:
|Pr[D(c1,...,cn) =1]Z = Ag] — Pr[D'(c1,...,cn) = 1| Z = Ai]|.

Notice that one property of M that follows from the assumption in eq. (1) is that Pr[M(X) =
0] > & (where the probability if over Samp). Combining this fact with the fact that D’ makes
T = n/e iterations of B and Pr[B(Sp, 51,X) =1| M(X) =0] > 1 — neg(n) (by Claim 4.8), we get
that D’ reaches Step 2 with negligible probability. In other words, with probability 1 —neg(n) there
is an iteration in which X is chosen such that M (X) = 0 and B outputs 1. For the rest of the proof
we assume that this is indeed the case (and lose a negligible additive term).

Furthermore, using Claim 4.7 we may also assume that in every iteration BAD does not happen.
That is, in every iteration either B outputs 0 or bias is larger than £/10. Recall that D’ ignores
all the iteration in which B outputs 0. Moreover, we assumed that there is an iteration in which B
outputs 1. In that iteration, it must be the case that the bias is larger than /10 which completes
the proof.

O
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5 Conclusions and Open Problems

We have shown a construction of a secret-sharing scheme for any mNP access structure. In fact,
our construction yields the first candidate computational secret-sharing scheme for al/l monotone
functions in P (recall that not every monotone function in P can be computed by a polynomial-size
monotone circuit, see e.g., Razborov’s lower bound for matching [Raz85]). Our construction only
requires witness encryption scheme for NP.

We conclude with several open problems:

e Is there a secret-sharing scheme for mNP that relies only on standard hardness assumptions,
or at least falsifiable ones [Nao03]?

e [s there a way to use secret-sharing for monotone P to achieve secret-sharing for monotone
NP (in a black-box manner)?

e Construct a Rudich secret-sharing scheme for every access structure in mNP that is secure
against adaptive adversaries (see Section 3.2 for a discussion).

Under a stronger assumption, i.e., extractable witness encryption (in which if an algorithm is
able to decrypt a ciphertext, then it is possible to extract a witness), Zvika Brakerski observed
that our construction is secure against adaptive adversaries as well.
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A  Proof of Theorem 3.3

In this section we prove that Definition 3.1 is equivalent to Definition 3.2.

Proof that Definition 3.2 implies Definition 3.1. Let S be a Rudich secret-sharing scheme
satisfying Definition 3.2 and assume towards contradiction that it does not satisfy Definition 3.1.
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That is, there is a pair of probabilistic polynomial-time algorithms (Samp, D) and a non-negligible
e such that for (Sp, S1, X, 0) < Samp(1™) it holds that

Pr[M(X) = 0 A D(1™, So, S1,TI(Sp, X),0) = 1] @)
Pr[M(X) =0 A D(1", So, S, TI(S1, X),0) = 1]| > &.
For a bit b chosen uniformly at random from {0,1}, we have that
Pr[M(X) = 0 A D(1™, So, S1,TI(Sy, X), 0) = b] —

S (PrID(", S0, 51, T1(So, X),7) = 0| M(X) = 0] - Pr{M(X) = 0]

4 Pr[M(X) = 0 A D™, So, Sy, TI(S1, X), o) = 1]) =

%(Pr[M(X) — 0] — Pr[M(X) = 0 A D(1", So, 51, TI(So, X), o) = 1]

+ Pr[M(X) = 0 A D(1", So, S, TI(S1, X), o) = 1]).
Plugging in eq. (2) we get that

[Pr[M(X) = 0 A D™, S, Sy, TI(Sy, X),0) = b] — 1/2 - (Pr[M(X) = 0])] > £/2.

Assume that Samp generates secrets in [2!] for some ¢t > 0. Let F = {fi: [2] — {0,1} | i €
[t] AVx € [21] : fi(z) = bin(x);} be the set of all dictator functions, where bin(z) denotes the binary
representation of x of length ¢ (with leading zeroes if needed). We define a sampling algorithm
Samp’ as follows: Samp/(1") first runs Samp(1™) and gets two secrets Sp, S, a subset of parties
X and auxiliary information o. Then, Samp’ chooses a bit b € {0,1} uniformly at random and
outputs (S, X,0’), where o’ = (Sp, S1,0). The algorithm D’ emulates the execution of D with
inputs Sp, S1, II(Sp, X) and o’. Note that D’ does not know the bit b. Denote by F' C F the set
of function f € F for which f(Sy) # f(S1). Observe that with probability strictly larger than 0
over a random choice of f from F it holds that f € F' (i.e., 7' is not empty). Then, over the
randomness of Samp’ we have that for any f € F’

|Pr [M(X)=0AD'(1",1I(S, X),0") = f(Sy)] —1/2-Pr[M(X) =0]| > e/2. (3)

On the other hand, since X does not have any information about Sy, S1 and b is chosen uniformly
at random from {0, 1}, for any algorithm D" and every f € F’ it holds that

Pr [D"(1",X,0") = f(Sy)] = 1/2.
Thus,
Pr[M(X)=0AD"(1",X,0') = f(Sy)] =1/2-Pr[M(X) =0]. (4)
Combining eqs. (3) and (4) we get that for any f € F:

|Pr [M(X)=0AD'(1",11(Sy, X),0") = f(S)] —
Pr[M(X)=0AD"(1",X,0") = f(S)] | > ¢/2

which contradicts the unlearnability requirement of Definition 3.2. O
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Proof that Definition 3.1 implies Definition 3.2. Let S be a Rudich secret-sharing scheme
satisfying Definition 3.1. Fix a pair of algorithms (Samp, D) and a function f as in Definition 3.2.
We define a simulator D’ as follows:

D'(1", X, o) = D(1", I1(0, X), o).

We prove that this simulator satisfies the unlearnability of the secret requirement in Definition 3.2.
Namely, we show that

|Pr[M(X) = 0 A D(1",II(S, X), ) = £(S)]—
Pr[M(X) =0 A D'(1", X,0) = £(S)]| < neg(n).

Towards this end, assume towards contradiction that there exists a non-negligible € = £(n) such
that

| Pr[M(X) =0 A D™, T(S, X),0) = £(S)]—
Pr[M(X) =0 A D'(1",X,0) = f(S)]| > e.

/

Plugging in the definition of D’ we have that

| Pr[M(X) = 0 A D(1™,II(S, X), o) = £(S)]—
Pr[M(X) = 0 A D(1",T1(0, X ), o) = f(S)]| > «.

Next, we define a pair of algorithms (Samp”, D”) that are good distinguishers between two secrets
which, in turn, contradicts the indistinguishability of the secret requirement from Definition 3.1 that
S satisfies. The sampling algorithm Samp” simply runs Samp to get (S, X, o) and output (0,5, X, o).
The distinguisher D" is defined as follows: For every b € {0,1} : D" (1", Sy, S1,11(Sp, X),0) = 1 if
and only if D(1™,11(Sp, X),0) = f(S1). Using this D” we get that

| Pr[M(X)=0A D"(1", Sy, S1,11(S1,X),0) = 1]—
PI“[M(X) =0A D,/(ln,SO,Sl,H(So,X),O') = 1” > e,

which contradicts the indistinguishability assumption. O

B Proof of Lemma 4.2

In this section we prove the following lemma.

Lemma 4.2 (Restated). Let Com: [2n] x {0,1}"™ — {0,1}9(") be a commitment scheme where q(-)

is a polynomial. If there exist € = £(n) > 0 and a probabilistic polynomial-time algorithm D for
which

| Pr[D(Com(1,U,),...,Com(n,U,)) = 1]—
Pr[D(Com(n,U,),...,Com(2n,U,)) = 1]| > ¢,

then there exist a probabilistic polynomial-time algorithm D' and z,y € [2n] such that

|Pr[D’(Com(z, Uy)) = 1] — Pr[D'(Com(y, Uy)) = 1]| > ¢/n.
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Proof. Assume that there exists a polynomial-time algorithm D and some € = £(n) such that

| Pr[D(Com(1,U,),...,Com(n,U,)) = 1]— (5)
Pr[D(Com(n +1,U,),...,Com(2n,U,)) = 1]| > ¢.

For o € [2n] let ¢, be a random variable sampled according to the distribution Com(o, U,,). With
this notation, eq. (5) can be rewritten as

Pr[D(cy,...,cn) = 1] = Pr[D(cpt1,...,Con) = 1| > €. (6)
For 1 < i < n—1let C be the distribution induced by the sequence cy,...,Cp—, Con—it1y---,Con-
Moreover, let C(9) be the distribution ¢y, .. ., ¢, and let C(™ be the distribution Cntls---,Con. Using

this notation, eq. (6) can be rewritten as

Pr[D(C©) = 1] — Pr[DC®) = 1]‘ > e

By a hybrid argument, there exists an index i € [n] for which

Pr[D(CUV) = 1] — Pr[D(C®) = 1}) > ¢/n.
Expanding the definition of C(?),

| Pr[D (ci,. .., Cneir Cn—it1, C2n—it2, - - -, Con) = 1]—

Pr[D(c1,...,Cni;Con—it1,C2n—it+2,---,Con) = 1]| > €/n.

At this point, it follows that there exists D’ that distinguishes between ¢, ;11 and co,—ji1-
Namely, forx =n —47+ 1 and y = 2n — 7 + 1, it holds that

|Pr[D'(Com(xz,Uy)) = 1] — Pr[D’(Com(y, Uy)) = 1]| > ¢/n,

as required. O
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