
Implementation and Improvement of the Partial
Sum Attack on 6-round AES

Francesco Aldà1, Riccardo Aragona2, Lorenzo Nicolodi, and Massimiliano Sala2

1 Horst Görtz Institute for IT Security and Faculty of Mathematics,
Ruhr-Universität Bochum, Germany

2 Department of Mathematics, University of Trento, Italy

Abstract. The Partial Sum Attack is one of the most powerful at-
tacks, independent of the key schedule, developed in the last 15 years
against reduced-round versions of AES. In this paper, we introduce a
slight improvement to the basic attack which lowers the number of cho-
sen plaintexts needed to successfully mount it. Our version of the attack
on 6-round AES can be carried out completely in practice, as we demon-
strate providing a full implementation. We also detail the structure of
our implementation, showing the performances we achieve.

1 Introduction

The research on the cryptanalysis of block ciphers partly deals with studying and
proposing attacks on their reduced-round versions. Results on reduced versions
are very interesting, since they help to better understand the behavior of a cipher,
pointing out weaknesses in its structure which can eventually lead to attacks on
the full version or characterize the security margin of the cipher.

In 2000, Ferguson et al. [4] introduced one of the most effective attacks,
independent of the key schedule, developed in the last 15 years against reduced-
round versions of the Advanced Encryption Standard [2, 3], the Partial Sum
Attack. Specifically, they developed attacks against AES reduced to 6, 7 and
8 rounds. The attack on 6-round is particularly powerful and its complexity is
virtually practicable. It improves a previous attack which was first described in
[2]. The latter is based on integral cryptanalysis, a general technique which is
applicable to a large class of SPN block ciphers. This technique was originally
designed by Lars Knudsen in the paper presenting the block cipher Square [1], as
a specific attack against its byte-oriented structure. This is the reason why this
class of attacks is commonly known as Square Attack. Since AES inherits many
properties from Square, this attack can be easily extended to reduced-round
versions of the Advanced Encryption Standard.

In this paper, we introduce a slight theoretical improvement to the Par-
tial Sum Attack on 6-round AES which lowers the number of chosen plaintexts
needed to successfully mount it, and we describe the structure of our full imple-
mentation. After examining the literature which was developed after the pub-
lication of [4], we are not aware of any effective implementation of this attack.



Therefore, we strongly believe that our implementation is the very first and,
mostly, we show that it is completely practicable. Moreover, we believe that our
effort allows a deeper understanding of the attack workflow and can point out
some other weaknesses neither discovered nor exploited so far.

We would like to underline that a remark similar to the observation which
bares our improvement can be found in [11], although we achieved this result
independently. Nevertheless, we believe that our analysis is more careful and de-
tailed. In fact, the hypotheses which lead to this theoretical result are inherently
strong, since they require the reduced-round cipher to “behave” like a random
permutation. However, the attack we are dealing with strongly exploits the fact
that AES can be easily distinguished from a random permutation. Therefore,
it was not clear a priori whether these properties (or a good approximation of
them) were actually satisfied in a real scenario. Thanks to our implementation
which exploits the aforementioned improvement, we investigated these assump-
tions and explored how well the theoretical model describes an actual execution
of the attack (for a detailed explanation we refer to Section 3.2). In particular,
the experimental results show that the number of false positives obtained closely
matches that which was expected from the theoretical analysis.

The rest of the paper is organized as follows: in Section 2, we briefly introduce
the Square Attack and its extensions and we subsequently describe the Partial
Sum Attack in detail. In Section 3, we present our main results. First, we explain
our (slight) theoretical improvement, pointing out the issues that its implemen-
tation involves. We then detail our implementation and provide the results of
our computations. In particular, we achieved to recover a (full) 6-round key in
less than 12 days with 25 cores.

2 Preliminaries

We recall that the encryption process of AES-128, -192 and -256 consists of an
initial key addition followed by the application of 10, 12 and 14 round transfor-
mations, respectively. The initial key addition and every round transformation
take as input an intermediate result, called the state, and a round key which is
derived from the cipher key through the key schedule. The output of any round is
another state. The round transformation is a sequence of four processing steps:
SubBytes, ShiftRows, MixColumns and AddRoundKey. The final round differs
from the others since the MixColumns step is removed. For further details on
the structure of AES, we refer to [2, 3].
In the following sections, we first give an overview on the Square Attack on 4-
round AES and we briefly introduce its extensions. We then describe the Partial
Sum Attack in detail.

2.1 Square Attack

The Square Attack is a chosen plaintext attack, which is independent of the spe-
cific choices of the S-box of the SubBytes function, the multiplication polynomial



of the MixColumns transformation and the key schedule.
In order to explain how this attack can be performed, we first introduce the
following definition.

Definition 1. A ∆-set is a set of 256 AES states that differ in one of the state
bytes (called active byte) and are equal in the other state bytes (called passive
bytes). In other words, if U is a ∆-set, for every x, y ∈ U we have{

xi,j 6= yi,j if (i, j) is active

xi,j = yi,j if (i, j) is passive

where i, j ∈ {0, 1, 2, 3}.
As it is explained in [3], the Square Attack on 4-round AES is heavily based on
the following property.

Proposition 1. Let b
(l)
i,j be the byte in position (i, j), i, j ∈ {0, 1, 2, 3}, of the lth

state of a ∆-set after three rounds. Then

256∑
l=1

b
(l)
i,j = 0. (1)

In other words, the states at the end of the third round are balanced, i.e. all bytes
at the input of the fourth round sum to zero. Note that the initial key addition
is implicitly assumed and not counted in the number of rounds.

Let us consider a 4-round reduced AES, in which the fourth round is a final
round, i.e. it does not include MixColumns. This implies that every byte of the
ciphertext only depends on one byte of the input of the fourth round. The Square
Attack on 4-round AES can then be mounted as follows. For any lth state of a

∆-set, 1 ≤ l ≤ 256, let c
(l)
i,j , where 0 ≤ i, j ≤ 3, be the ciphertext byte in position

(i, j). Let k
(4)
i,j be a guess for the byte in position (i, j) of the 4th round key

(which is the last key used). For any (i, j), if the value of k
(4)
i,j is correct, the

following equation holds:

256∑
l=1

γ−1
(
c
(l)
i,j + k

(4)
i,j

)
=

256∑
l=1

b
(l)
i,(j+i) mod 4 = 0, (2)

where b
(l)
i,j is the byte in position (i, j) of the lth state of a ∆-set after the

application of three rounds, and γ−1 is the S-box of SubBytes−1.
If Equation (2) does not hold, the assumed value for the key byte must be

wrong. This check is expected to eliminate all wrong key bytes, except for one
value that could satisfy (2) by chance. To be more precise, the following result
holds.

Proposition 2. If
(
X(l)

)
1≤l≤256 is a sequence of independent uniformly dis-

tributed random variables with values in F28 , then the probability

P

[
256∑
l=1

X(l) = 0

]
= 2−8.



Proof. Let X and Y be two discrete independent random variables, with density
functions f1(x) and f2(x) respectively. The convolution f3(x) = [f1 ∗ f2](x) =∑

y f1(y)f2(x − y) is the density function of the random variable Z = X + Y .
Since X and Y take values in F28 , their sum Z takes values in F28 too. Therefore,
the density function of Z is an uniformly distributed random variable, since it
is the circular convolution of two independent uniformly distributed random
variables. This result can be easily extended to the sum of an arbitrary number
of random variables.

Before proceeding with the analysis of the attack, we would like to stress
that the hypotheses of Proposition 2 are inherently strong. In particular, the
bytes of the state at the end of the 3rd round are assumed to be independent
and uniformly distributed. Although these are natural assumptions for modeling
the attack, it is not clear a priori whether they hold even in practice. We thus
performed some tests which aimed to estimate the probability to obtain a zero
sum for a random set of 256 plaintexts and for a ∆-set at the end of the 3rd

round. The values reported in Table 1 were obtained by averaging the estimates
we collected using 2 · 104 random sets and 2 · 104 different ∆-sets, encrypted
through an equal number of random keys, respectively.

Random set ∆-set

0.003904 0.007794
Table 1. Estimated probability to obtain a zero sum for a random set of plaintexts
and for a ∆-set at the end of the 3rd round. Number of trials: 2 · 104

As Table 1 shows, the test we performed give evidence that Proposition 2 well
describes the behavior of the cipher even at the end of the 3rd round. As expected,
for a random set of 256 plaintexts there exists (on average) only one value which
satisfies Equation (2) by chance. In the case of a ∆-set, the estimate is roughly
1/128, since both the correct key byte and another random value satisfy (2).

Since checking Equation (2) for a single ∆-set is expected to leave only 1
over 256 of the wrong key assumptions as a possible candidate, the 4th round
key can be found with a sufficiently large confidence using two different ∆-sets.
Henceforth, this crosscheck will be referred to as verification step.
All in all, two ∆-set has to be used, and all 16 bytes of the 4th round key need
to be recovered. Therefore, the working factor consists of 29 encryptions and
29 · 24 = 213 evaluations of Equation (2).

In [3], Daemen et al. describe how this attack can be extended adding one
round at the end or one round at the beginning. Combining the basic attack on
4 rounds with both extensions yields to the Square Attack on 6-round AES. We
can sketch this attack as follows. For the extension by one round at the end, the
attacker has to perform a partial decryption of two rounds instead of only one,
implying that four more bytes of the final round key need to be guessed. The
idea for the extension by one round at the beginning consists of choosing a set



of 256 plaintexts which, at the end of the first round, results in a ∆-set with
a single active byte. This requires to guess four bytes of the initial round key
k(0). We refer to [3] for further details on these two extensions. In both cases,
we need to guess five key bytes instead of one. By combining these two methods,
we would need to guess nine bytes.

2.2 Partial Sum Attack

Without considering the verification steps, the Square Attack on 6-round AES
requires 232 chosen plaintexts, 232 memory for storing the corresponding cipher-
texts and (28)9 = 272 steps for guessing nine key bytes, when it is applied to
recover 4 bytes of the 6th round key. Therefore, it is completely out of reach for
current computing resources.

The Partial Sum Attack [4] significantly improves the Square Attack on 6-
round AES. Ferguson et al. introduced two main ideas. First, instead of guessing
four bytes of the initial round key k(0), one can use 232 plaintexts such that one
column of the states at the input of MixColumns of the first round ranges over
all possible values of (F28)4 and all other bytes are constant. Throughout the
rest of the paper, we denote by ∆̄-set such a group of 232 plaintexts. For any
value of the initial round key, the corresponding ciphertexts consist of 224 groups
of 28 encryptions that vary in a single active byte at the end of the first round.
In fact, imposing a particular linear combination which ranges over all possible
values of F28 and three other linear combinations which are constant for all 256
states, we can uniquely determine a set of plaintexts which results in a ∆-set
with a single active byte at the end of the first round. In particular, one has 224

ways to choose the values for these three linear combinations.
Therefore, all an attacker has to do is guess four bytes of the 6th round key and
one byte of the 5th round key, perform a partial decryption to a single state
byte at the end of the 4th round, sum this value over all 232 encryptions, and
check whether the result is zero. Compared to the Square Attack on 6 rounds,
the attacker needs to guess 40 bits instead of 72.
The further idea behind the improvement introduced by Ferguson et al. consists
in organizing the partial decryption on partial sums. In order to properly un-
derstand what partial sums are and how one can use them, we introduce the
following notation, where the pair (i, j) is used to denote the state entry (with
0 ≤ i, j ≤ 3), and the index l (with 1 ≤ l ≤ 232) denotes the lth element of a
∆̄-set:

b
(l)
i,j is a byte at the end of the 4th round;

a
(l)
i,j is a byte of the state before the application of MixColumns at the 5th round;

c
(l)
i,j is a byte at the end of the 6th round, which we refer to as the ciphertext

byte;

a
(l)
s is the sth column of the lth state before the application of MixColumns at

the 5th round. Thus a
(l)
j =

(
a
(l)
0,j , a

(l)
1,j , a

(l)
2,j , a

(l)
3,j

)>
;

k(h) is the hth round key and k̄(h) = MixColumns−1(k(h));



k̄
(h)
i,j is a byte of k̄(h).

It is easy to show that, in order to compute the partial decryption to a state
byte at the end of the 4th round, we need to consider four bytes in each ciphertext
and guess the corresponding bytes of the 6th round key, according to one of the
configurations shown in Figure 1. Observe that each configuration has exactly
one byte per state row and one byte per state column.

1st set config. 2nd set config. 3rd set config. 4th set config.

Fig. 1. The set of 4 bytes of the 6th round key (resp. ciphertexts) for the Partial Sum
Attack on 6-round AES

In the following computations, with abuse of notation, we denote by Mix-
Columns−1 and SubBytes−1 the inverse of MixColumns and SubBytes applied
to a single column of the state. The relations between the a(l)’s, the c(l)’s and
the k(h)’s are easily established:

a
(l)
j =


a
(l)
0,j

a
(l)
1,j

a
(l)
2,j

a
(l)
3,j

 = MixColumns−1

SubBytes−1


c
(l)
0,j + k

(6)
0,j

c
(l)
1,(j−1) mod 4 + k

(6)
1,(j−1) mod 4

c
(l)
2,(j−2) mod 4 + k

(6)
2,(j−2) mod 4

c
(l)
3,(j−3) mod 4 + k

(6)
3,(j−3) mod 4


 ,

where j ∈ {0, 1, 2, 3}. When j is understood, we will remove it; for example we
denote

ξ(l) =


ξ
(l)
0

ξ
(l)
1

ξ
(l)
2

ξ
(l)
3

 := SubBytes−1


c
(l)
0,j + k

(6)
0,j

c
(l)
1,(j−1) mod 4 + k

(6)
1,(j−1) mod 4

c
(l)
2,(j−2) mod 4 + k

(6)
2,(j−2) mod 4

c
(l)
3,(j−3) mod 4 + k

(6)
3,(j−3) mod 4

 ,

for 1 ≤ l ≤ 232. Let N be the byte matrix of MixColumns−1. Working out the
product, we have

a
(l)
j =


N0 · ξ(l)0 +N1 · ξ(l)1 +N2 · ξ(l)2 +N3 · ξ(l)3

N3 · ξ(l)0 +N0 · ξ(l)1 +N1 · ξ(l)2 +N2 · ξ(l)3

N2 · ξ(l)0 +N3 · ξ(l)1 +N0 · ξ(l)2 +N1 · ξ(l)3

N1 · ξ(l)0 +N2 · ξ(l)1 +N3 · ξ(l)2 +N0 · ξ(l)3

 ,



where
N0 = α3 + α2 + α

N1 = α3 + α+ 1

N2 = α3 + α2 + 1

N3 = α3 + 1

and α is a defining element of F28 = F2[x] /< x8 + x4 + x3 + x+ 1 > , i.e. α is
such that α8 = α4 + α3 + α+ 1.
Thus we can compute a state byte at the end of the 4th round as follows:

b
(l)
i,(j+i) mod 4 = γ−1

(
a
(l)
i,j + k̄

(5)
i,j

)
, (3)

where i ∈ {0, 1, 2, 3} and γ−1 is the S-box of SubBytes−1, as usual. Observe that

in (3) γ−1 is applied to a
(l)
i,j + k̄

(5)
i,j rather than to a

(l)
i,j + k

(5)
i,j . The latter would be

wrong, since k
(5)
i,j is added after the application of MixColumns.

In order to identify a possible right guess, we have to check if
232∑
l=1

b
(l)
i,(j+i) mod 4 = 0.

This sum can be expressed as

232∑
l=1

γ−1
(
N−i · ξ(l)0 +N1−i · ξ(l)1 +N2−i · ξ(l)2 +N3−i · ξ(l)3 + k̄

(5)
i,j

)
(4)

where the indices −i, 1 − i, 2 − i, 3 − i are all meant to be reduced modulo 4,
giving a remainder in {0, 1, 2, 3}.
If we trivially execute this summation, given 232 ciphertexts and 240 possible
key guesses, we have to sum 272 different values, which does not significantly
improve the basic Square Attack. As it is pointed out in [4], Expression (4) can
be organized in a more efficient manner. Once the row i is fixed, for each t ∈
{0, 1, 2, 3}, it is possible to associate a partial sum x

(l)
t to each set {ξ(l)0 , . . . , ξ

(l)
t },

defined as follows:

x
(l)
t :=

t∑
z=0

Nz−i · ξ(l)z .

In particular,

x
(l)
2 = x

(l)
1 +N2−iξ

(l)
2 and x

(l)
3 = x

(l)
2 +N3−iξ

(l)
3 .

In order to simplify the notation, let (c
(l)
0 , c

(l)
1 , c

(l)
2 , c

(l)
3 ) be the 4-tuple formed

by the lth ciphertext’s bytes, extracted according to one of the configurations
described above. Guessing the key values and using the partial sums, we can
define the following maps

(c
(l)
0 , c

(l)
1 , c

(l)
2 , c

(l)
3 ) 7−→ (x

(l)
1 , c

(l)
2 , c

(l)
3 ) 7−→ (x

(l)
2 , c

(l)
3 ) 7−→ x

(l)
3 .

Using a similar notation, let (k0, k1, k2, k3) be four values for the 6th round
key, which we want to guess, arranged in the same configuration chosen for the



ciphertexts, and let k4 be a guess for the 5th round key byte k̄
(5)
i,j . The Partial

Sum Attack is organized as follows.

– We start with the list of 232 4-tuples (c
(l)
0 , c

(l)
1 , c

(l)
2 , c

(l)
3 ). Guessing k0 and k1,

we can compute each triple (x
(l)
1 , c

(l)
2 , c

(l)
3 ).

– We then guess k2, and compute each pair (x
(l)
2 , c

(l)
3 ).

– Similarly, we guess k3, and compute each value of x
(l)
3 .

– Finally, guessing the value of k4, we can compute Expression (4) and check
whether the result is zero.

Complexity

In the first phase one guesses 2 bytes and processes 232 ciphertexts bytes. For
each choice of k0 and k1, one more byte has to be guessed, but only 224 triples
have to be processed. In the third phase k3 has to be guessed, but one has only
to process 216 pairs. This holds similarly for the other two phases. Summing
up all the contributions, we obtain that 250 operations are required for a single
∆̄-set of 232 elements.

3 Implementation and improvement

The results described in this work started from Aldà’s Master’s thesis, where he
developed a C++ code of the Partial Sum Attack and introduced (independently
of [11]) the improvement specified in Section 3.2.

3.1 High-level scheme of the implementation

To the best of our knowledge, this is the very first implementation of the Partial
Sum Attack on 6-round AES. In this section, we explain the main ideas and
principles we used in our implementation. We refer to Section 3.3 for further
technical details on our implementation.

As it is displayed in Figure 2, the attack’s steps are very simple. At the
beginning of the attack, a ∆̄-set with 232 elements has to be encrypted. In this

way, we can obtain and store the 4-tuples (c
(l)
0 , c

(l)
1 , c

(l)
2 , c

(l)
3 ), formed by the lth

ciphertext’s bytes, extracted according to one of the configurations described in
Section 2.2. Extending the idea introduced in [4], it is sufficient to count how
often each 4-tuple appears during the computation. As there are only 232 possible

4-tuples, we do not have to store all (c
(l)
0 , c

(l)
1 , c

(l)
2 , c

(l)
3 ) values. Since Expression

(4) has to be computed in a field of characteristic 2, it suffices to count modulo
2. In fact, only the summands which appear an odd number of times give a non-
zero contribution. Hence, a single bit suffices for each count and it is possible to
store our list of 4-tuples in a 232-bit vector. Therefore, the space requirement for
232 counters is just 232 bits, which correspond to 0.5 GigaBytes.
We then start a loop over 216 possible values of k0, k1. For each pair (k0, k1),



b

b

b

b

b

b

b

b

b

b

b

b

k0, k1 k2 k3 k4

232

224

216

28

Final sum

Fig. 2. Partial Sum Attack workflow

we compute the partial sums x
(l)
1 and store the triples (x

(l)
1 , c

(l)
2 , c

(l)
3 ). Using the

same rationale, it suffices to count the parity of times each triple occurs. Again,
we store all parities in a 224-bit vector. Moreover, we observed that, using an

appropriate sorting, it suffices to compute the value x
(l)
1 every 216 elements: in

fact, this value only depends on c
(l)
0 , c

(l)
1 , k0 and k1. Thus, if 1 ≤ l, h ≤ 232, we

have {
c
(l)
0 = c

(h)
0

c
(l)
1 = c

(h)
1

=⇒ x
(l)
1 = x

(h)
1 .

This observation significantly reduces the number of computations involved in
this step, allowing entire blocks of bits of the 224-bit vector to be updated at the
price of very few calculations (see Section 3.3 for further details).
The same ideas can be similarly applied to the second step. For each value k2,

one computes the partial sums x
(l)
2 , counts the parity of times each pair (x

(l)
2 , c

(l)
3 )

occurs and stores it in a 216-bit vector. As before, it suffices to compute the value

x
(l)
2 every 28 elements: in fact, this value only depends on x

(l)
1 , c

(l)
2 and k2.

In the third step, for each value k3, we compute the partial sums x
(l)
3 , count

how many times each x
(l)
3 occurs and store its parity in a 28-bit vector. Unlike

the previous steps, this must be done scanning every entry of the 216-bit vector,

since both x
(l)
2 and c

(l)
3 must be used in the computation of x

(l)
3 . Finally, looping



over the value k4, it is possible to compute the final sum and check whether the
result is zero.
As it was explained for the Square Attack, checking this sum for a single ∆̄-set is
expected to eliminate 255 of the wrong key assumptions (k0, k1, k2, k3, k4). It is
therefore necessary to verify their correctness using different ∆̄-sets (verification
steps). At each positive verification, the key space is reduced by a factor 2−8.
Apparently, this implies that 6 different ∆̄-sets (or more) are need to find the
correct 5-tuple (k0, k1, k2, k3, k4) with overwhelming probability. This result can
be improved, as it is explained in the following section.

3.2 Improvement

As it was already underlined, when it was published, the Partial Sum Attack
represented one of the best cryptanalytic results on reduced-round versions of the
Advanced Encryption Standard. After its publication, many other researchers
worked on the integral cryptanalysis of Rijndael (and its specification AES),
finding new extensions or improvements for this class of attacks (see for example
[6, 8, 11]). Our approach started from performing a full implementation of the
attack as it is described in Section 3.1, trying to understand where some other
potentialities could be exploited.

In the original paper [4], it is claimed that at least 6 sets of 232 plain-
texts, which form a ∆̄-set, are necessary in order to find the correct 5-tuple
(k0, k1, k2, k3, k4). However, we observed that only two ∆̄-sets suffices to deter-
mine the correct 4-tuple (k0, k1, k2, k3) with high probability. In fact, fixing one

configuration according to which the ciphertexts bytes (c
(l)
0 , c

(l)
1 , c

(l)
2 , c

(l)
3 ) are ex-

tracted, one can compute the sum in four different state bytes at the end of the
4th round (we can choose i ∈ {0, 1, 2, 3} in Equation 3). We provide a visual
example in Figure 3.

If we consider each sum as independent and make use of Proposition 2, using
only two ∆̄-sets, the probability that for a 4-tuple (k0, k1, k2, k3) there exists

for each row a value k4 which gives a zero sum for both ∆̄-sets is (1/256)
8
.

Note that the bytes of the 5th round key, which produce zero sums, may be
different for each row, but, as for (k0, k1, k2, k3), their correctness should follow
by the crosschecking between the two ∆̄-sets. Therefore, checking the value of
the sum on four rows at the end of the 4th round is expected to determine, with
sufficiently high confidence, the correct 4-tuple (k0, k1, k2, k3). More specifically,
only one false positive (k0, k1, k2, k3) is expected to survive to all verification
steps.

The hypothesis which mainly bears this result consists of considering the
sums on four rows as independent. As pointed out in Section 2.1, there is no cer-
tainty that this assumption holds perfectly in practice. Intuitively, even though
the bytes involved in the sums belong to the same state and their correlation
is hence nonzero, the diffusion and confusion introduced by the round transfor-
mations should make it negligible after few rounds. The experimental results
we performed using our implementation (which exploits the aforementioned im-
provement) show that using only two ∆̄-sets and computing the sum on four



5th round

SB SR ARK MC

6th round

SB SR ARK

Swap

Fig. 3. The state bytes at the end of the 4th round (in red) which can be computed

for a configuration according to which the ciphertexts bytes (c
(l)
0 , c

(l)
1 , c

(l)
2 , c

(l)
3 ), for

1 ≤ l ≤ 232, are extracted

rows do not eliminate all wrong guesses, as we expected. In particular, besides
the correct 4-tuple, we obtained (on average) one false positive, independently of
the configuration chosen. Although more tests are needed in order to provide a
better estimate, our results already indicate that the probability of false positive
closely matches the expected one. Moreover, we believe that future analysis in
this direction could point out some interesting properties of the cipher, which
may lead to other improvements of the attack.

All in all, we observed that the number of chosen plaintexts which are neces-
sary in order to mount the attack (with high confidence) can be reduced from 6
∆̄-sets of 232 elements to only 2. In order to lower the probability of false positive
(but still enhancing the basic attack described in [4]), we also performed some
attacks using 3 ∆̄-sets and checking the sum on four rows at the end of the 4th

round. As expected, in this setting we did not observe any false positive.

Although we reached this conclusion independently, we would like to point
out that a remark similar to our observation can be found in [11]. As already
observed, we believe that our analysis is more careful and detailed, since we
supported the applicability of the hypotheses which bare this result by means of
experimental analysis on AES. Specifically, we provided a full implementation
which strongly exploits the aforementioned improvement, and the results we
obtained running the attack showed that the number of false positives closely
matches the one which was expected from the theoretical analysis.
Among other speed-ups we introduced, this improvement allowed us to achieve



optimal performances, showing the complete practicability of the attack, as it
will be presented in the following section.

3.3 Implementation’s details

First of all, we ported Aldà’s code to C, to reduce the overhead of C++ ab-
stractions, which are useful but not essential for this kind of application. During
this phase, we decided to map every Boolean vector’s element to a bit inside
an unsigned char’s array. On one hand, this process forced us to create some
ancillary functions to toggle and mask bits as necessary but, on the other hand,
it had the side effect of accelerating some functions where shifting and masking
were required, because we did it byte by byte, instead of bit by bit. Moreover,
it allowed us to save space and time while writing and reading the encrypted
arrays to and from the disk, storing every 232 array in a 512MB file and saving
time while testing the attack. After completing the porting and introducing the
new memory management concepts, we started focusing on how the memory
management operations could be accelerated and we ended up managing every
group of 8 unsigned char array elements as an unsigned long long int ar-
ray, where possible. This allowed us to deal with the allocated memory as a set
of 64 bit blocks, reducing the time needed to complete, for example, some XOR

operation between these arrays. The resulting implementation was satisfactory.
We also decided to allow the parallelization of the attack on multiple core

systems and, for this purpose, we needed to exchange information between each
process. We chose OpenMPI [5, 7] because we appreciated its documentation
and the maturity of the open source project supporting it. Porting the code
from a linear to a parallel paradigm presented no real difficulties because the
attack is mainly composed by loops, repeated for values from 0 to 255, so we
decided to execute the 5 most inner loops on each worker (a worker is a parallel
process running the attack), assigning to each of them a range of values of k1
to go through in the outer of these 5 loops. Moreover, we shared the encrypted
vectors, using NFSv4, on every system running the attack, and using the same
share storage to save the guessed partial keys and to check the status of the
attack from each worker.

Our code works as follows. The master process coordinating the attack dis-
tributes the values to each worker using the Round-Robin algorithm [10] and
then waits for replies from each of them. After finishing the attack with one of
the assigned values, every worker reports the result to the master, if successful.
If the attack with that value was not successful, the worker checks the shared
storage looking if the current partial key has been guessed and, if so, it stops
the attack, otherwise it starts the attack with the next assigned value.

To retrieve the whole 16-byte key, the attack has to be run 4 times, according
to the four configurations shown in Figure 1. The master writes 4 files that
contain the partial keys guessed and it also writes the whole key in another file,
when the attack is completed for every configuration.

The final outcome of this effort was interesting in terms of memory and time
used. The attacks have been launched on 6 desktop PC, with 4 cores (Intel



Pentium CPU G640 @2.80GHz) and 8GB of RAM each, using 25 processes. The
first process coordinated the attacks, while the remaining 24 workers actually
performed the attacks. The results we obtained are summarized in Table 2.

Number of ∆̄-sets Average time (days) Memory (GB)

2 12.1 1.028

3 11.5 1.542
Table 2. Experimental results obtained running our implementation of the Partial
Sum Attack on 6-round AES. The keys were chosen according to the example vectors
provided in [9]

From these experimental results, we can note that the attacks which use 3
∆̄-sets are generally slightly faster, though they obviously require more memory
to be performed. This is not too surprising, since using only 2 ∆̄-sets triggers
more verification steps on different rows (as observed in Section 3.2, there are
more wrong key candidates which give a zero sum on a fixed row), which are
time consuming operations in our current implementation.

Based on the results of Table 2, we estimate that, on average, the 128-bit 6th

round key can be retrieved in 25.8 hours using 256 workers.
The source code of our implementation of the Partial Sum Attack is available

on http://tdsoc.org.

Acknowledgments

Most of the results shown in this work were developed in the first author’s
Master’s thesis and he would like to thank the other authors, especially his
supervisor (the last author). For interesting discussions, the authors would like
to thank Anna Rimoldi.

References

1. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Fast Software
Encryption. pp. 149–165. Springer (1997)

2. Daemen, J., Rijmen, V.: AES proposal: Rijndael. In: First Advanced Encryption
Standard (AES) Conference (1998)

3. Daemen, J., Rijmen, V.: The design of Rijndael. Information Security and Cryptog-
raphy, Springer-Verlag, Berlin (2002), AES - the Advanced Encryption Standard

4. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.: Improved cryptanalysis of Rijndael. In: Fast software encryption. pp. 213–230.
Springer (2001)

5. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a next
generation MPI implementation. LNCS, vol. 3241, pp. 97–104. Springer (2004)



6. Galice, S., Minier, M.: Improving integral attacks against Rijndael-256 up to 9
rounds. In: Progress in Cryptology–AFRICACRYPT 2008, pp. 1–15. Springer
(2008)

7. Graham, R.L., Woodall, T.S., Squyres, J.M.: Open MPI: A flexible high perfor-
mance MPI. LNCS, vol. 3911, pp. 228–239. Springer (2006)

8. Li, Y.J., Wu, W.L.: Improved integral attacks on Rijndael. Journal of Information
Science and Engineering 27(6), 2031–2045 (2011)

9. Pub, N.F.: 197: Advanced encryption standard (AES). vol. 197, pp. 441–0311
(2001)

10. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts. John Wiley
& Sons (2008)

11. Tunstall, M.: Improved “partial sums”-based square attack on AES. In: Interna-
tional Conference on Security and Cryptography - SECRYPT 2012. pp. 25–34.
INSTICC Press (2012)


