
Hybrid Model of Fixed and Floating Point Numbers in Secure

Multiparty Computations

Toomas Krips∗†

toomaskrips@gmail.com

Jan Willemson‡

janwil@cyber.ee

March 26, 2014

Abstract

This paper develops a new hybrid model of floating point numbers suitable for operations
in secure multi-party computations. The basic idea is to consider the significand of the floating
point number as a fixed point number and implement elementary function applications sep-
arately of the significand. This gives the greatest performance gain for the power functions
(e.g. inverse and square root), with computation speeds improving up to 18 times in certain
configurations. Also other functions (like exponent and Gaussian error function) allow for the
corresponding optimisation.

We have proposed new polynomials for approximation, and implemented and benchmarked
all our algorithms on the Sharemind secure multi-party computation framework.

1 Introduction

Our contemporary society is growing more and more dependent on high-speed, high-volume data
access. On one hand, such an access allows for developing novel applications providing services that
were unimaginable just a decade ago. On the other hand, constant data flow and its automatic
processing mechanisms are rising new security concerns every day.

In order to profit from the available data, but at the same time provide privacy protection for
citizens, privacy-preserving data analysis (PPDA) mechanisms need to be applied. There exist
numerous well-established statistical and data mining methods for data analysis. However, adding
privacy-preservation features to them is far from being trivial. Many data processing primitives
assume access to micro-data records, e.g. for joining different tables or even something as simple
as sorting. There exist different methods for partial pre-aggregation and perturbation like k-
anonymity [18,20] and ℓ-diversity [15], but they reduce the precision of the dataset, and consequently
decrease data utility.

Another approach is to tackle the PPDA problem from the privacy and cryptography point of
view. Unfortunately, classical encryption methods (like block and stream ciphers) are meant only
to scramble data and do not support meaningful computations on the plaintexts. More advanced
methods like homomorphic encryption and searchable encryption [4] support some limited set of

∗Software Technology and Applications Competence Center, Estonia
†Institute of Computer Science, Tartu University, Estonia
‡Cybernetica AS, Estonia

1

operations insufficient for the fully-featured statistical data analysis. There also exist methods
for fully homomorphic encryption, but they are currently too inefficient to allow for analysis of a
dataset of even a remotely useful size [8, 9].

Currently, one of the most promising techniques for cryptography-based PPDA is based on secret
sharing and multi-party computations (SMC). There exist several frameworks allowing to work on
relatively large amounts of secret-shared micro-data [2, 21]. In order to obtain the homomorphic
behavior needed for Turing-completeness, they work over some algebraic structure (typically, a
finite ring or field). However, to use the full variety of existing statistical tools, computations
over real numbers are needed. Recently, several implementations of real-number arithmetic (both
fixed and floating point) have emerged on top of SMC frameworks. While fixed point arithmetic
is faster, floating point operations provide greater precision and flexibility. The focus of this paper
is to explore the possibility of getting the best of both of the approaches and develop a hybrid
fixed-floating point real numbers to be used with SMC applications.

2 Previous work

Catrina and Saxena developed secure multiparty arithmetic on fixed-point numbers in [5, 7], and
their framework was extended with various computational primitives (like inversion and square root)
in [7] and [13]. This fixed-point approach has been used to solve linear programming problems with
applications in secure supply chain management [6,11]. However, fixed point numbers provide only
a limited amount of flexibility in computations, since they can represent values only in a small
interval with a predetermined precision.

In order to access the full power of numerical methods, one needs an implementation of floating
point arithmetic. This has been done by three groups of authors, Aliasgari et al. [1], Liu et al. [14],
and Kamm and Willemson [10]. All these approaches follow the same basic pattern – the floating
point number x is represented as

x = s · f · 2e ,

where s is the sign, f is the significand, and e is the exponent (possibly adjusted by a bias to
keep the exponent positive). Additionally, Aliasgari et al. add a term to mark that the value of
the floating point number is zero. Then all the authors proceed to build elementary operations of
addition and multiplication, followed by some selection of more complicated functions.

Liu et al. [14] consider two-party additive secret sharing over a ring ZN and only develop
addition, subtraction, multiplication and division.

Aliasgari et al. [1], use a threshold (t, n)-secret-sharing over a finite field and also develop several
elementary functions such as logarithm, square root and exponentiation of floating-point numbers.
All their elementary function implementations use different methods – square root is computed
iteratively, logarithm is computed using a Taylor series and in order to compute the exponent,
several ad hoc techniques are applied.

The research of Kamm and Willemson is motivated by a specific application scenario – satel-
lite collision analysis [10]. In order to implement it, they need several elementary functions like
inversion, square root, exponent and Gaussian error function. The authors develop a generic poly-
nomial evaluation framework and use both Taylor and Chebyshev polynomials to get the respective
numerical approximations.

2

2.1 Our contribution

When evaluating elementary functions, both [1] and [10] use basic floating point operations as
monolithic. However, this is not necessarily optimal, since oblivious floating point addition is a
very expensive operation due to the need to align the points of the addends in an oblivious fashion.
Fixed-point addition at the same time is a local (i.e. essentially free) operation, if an additively
homomorphic secret sharing scheme is used. Hence, we may gain speedup in computation times if
we are able to perform parts of the computations in the fixed-point representation. For example,
in order to compute power functions (like inversion or square root), we can run the computations
separately on the significand and exponent parts, but the significand is essentially a fixed-point
number. Proposing, implementing and benchmarking this optimisation is the main contribution of
this paper. We also propose new polynomials for various elementary functions to provide better
precision-speed trade-offs.

3 Preliminaries

In the rest of the paper, we will assume a secret sharing scheme involving M parties P1, . . . , PM .
To share a value x belonging to ring (or field) Zr, it is split into n values x1, . . . , xM ∈ Zr, and
the share xi is given to the party Pi (i = 1, . . . ,M). The secret shared vector (x1, . . . , xM) will be
denoted as JxK.

We will also assume that the secret sharing scheme is linear, implying that adding two shared
values and multiplying a shared value by a scalar may be implemented component-wise, and hence
require no communication between the computing parties. This is essential, since the running times
of majority of SMC applications are dominated by the network communication. Note that many
of the classical secret sharing schemes (like Shamir or additive scheme) are linear.

We will assume availability of the following elementary operations.

• Addition of two secret-shared values JxK and JyK denoted as JxK + JyK. Due to linearity, this
evaluates to Jx + yK.

• Multiplication of a secret shared value JxK by a scalar c ∈ Zr denoted as c · JxK. Due to
linearity, this evaluates to Jc · xK.

• Multiplication of two secret-shared values JxK and JyK denoted as JxK · JyK. Unlike the two
previous protocols, this one requires network communication to evaluate Jx · yK.

• PublicBitShiftRightProtocol(JxK, n). Takes a secret shared value JxK and a public integer n

and outputs Jx≫ nK where x≫ n is equal to x shifted right by n bits.

• LTEProtocol(JxK, JyK). Gets two secret-shared values JxK and JyK as inputs and outputs a
secret-shared bit JbK. The bit b is set to 1 if x ≤ y (interpreted as integers); otherwise, b is
set to 0.

• ObliviousChoiceProtocol(JbK, JxK, JyK). Gets a secret-shared bit b and two values JxK and JyK
as inputs. If b = 1, the output will be set to JxK, and if b = 0, it will be set to JyK.

• ConvertToBoolean(JxK).Takes in a secret-shared value JxK where x is equal to either 0 or 1,
and converts it to the corresponding boolean value shared over Z2.

3

• ConvertBoolToInt(JbK). Takes in a bit JbK secret-shared over Z2 and outputs a value JxK
secret-shared over Zr, where x is equal to b as an integer.

• GeneralizedObliviousChoice(Jx1K, . . . , JxkK, JℓK). Takes an array of secret integers Jx1K, . . . , JxkK
and a secret index JℓK where ℓ ∈ [1, k], and outputs the shared integer JxℓK.

• BitExtraction(JxK). Takes in a secret integer JxK and outputs the vector of n secret values
{JuiK}n−1

i=0 where each ui ∈ {0, 1} and un−1un−2 . . . u0 is the bitwise representation of JxK.

• PrivateBitShiftRightProtocol(JxK, JnK) Takes a secret value JxK and a secret integer JnK and
outputs Jx≫ nK where x≫ n is equal to x shifted right by n bits.

Implementation details of these elementary operations depend on the underlying SMC platform.
The respective specifications for Sharemind SMC engine can be found in [2, 3, 12].

4 Fixed-point numbers

Our fixed-point arithmetic follows the framework of Catrina and Saxena [7], but with several
simplifications allowing for a more efficient software implementation.

First, instead of a finite field, we will be using a ring Z2n for embedding the fixed-point represen-
tations. Typically this ring will be Z232 or Z264 , since arithmetic in these rings is readily available
in modern computer architectures. What we will lose is the possibility of using secret sharing over
fields (including the popular Shamir’s scheme [19]). Since our implementation will be based on
Sharemind SMC engine [2], this is fine and we can use additive secret sharing instead.

The second simplification is made possible by our specific application of fixed-point numbers.
The essential block we will need to build is polynomial evaluation on non-negative fixed point
numbers (e.g. significands of floats). Even though we will occasionally need to cope with negative
values, we will only represent non-negative fixed-point numbers.

Besides the ring Z2n of n-bit integers, we will also fix the number m of bits we will interpret as
the fractional part. We will consider the ring elements as unsigned, hence they run over the range
[0, 2n − 1]. We let the element x ∈ Z2n represent the fixed point number x · 2−m. Hence, the range
of fixed point numbers we will be able to represent is [0, 2n−m − 2−m], with granularity 2−m. We
will assume that all the fixed-point numbers we work on will be among these numbers. If we have
to use some fractional number that cannot be represented in this way, we will automatically use the
smallest representable fixed-point number that is greater than the number instead of this number.

We will use the following notation for fixed-point numbers. x̃ denotes a fixed-point number,
while x denotes the integer value we use to store x̃ — namely, x̃·2m. Thus, when we have introduced
some integer x, we have also defined the fixed-point number x̃ = x · 2−m that it represents and vice
versa. Likewise, when we want to denote a secret fixed-point number, we will write Jx̃K — this will
be stored as a secret integer JxK where x = x̃ · 2m.

We will also need to denote numbers that are, in essence, public signed real numbers. For that,
we will use the notation sc̃ where c̃ is the fixed-point number that denotes the absolute value of
the real number and s ∈ {−1, 1} is the sign of the real number.

4

4.1 Basic operations on fixed-point numbers

We will now introduce the operations of addition and subtraction of two secret fixed-point numbers,
multiplication of a secret fixed-point number and a public integer, multiplication of a secret fixed-
point number and a public fixed point number and multiplication of two secret fixed-point numbers.

• Addition of two secret fixed-point numbers Jx̃K and JỹK is free in terms of network communi-
cation, since this addition can be implemented by adding the representing values shared as
the ring elements. Indeed, the sum of x̃ = x · 2−m and ỹ = y · 2−m is (x + y) · 2−m = x̃ + y.
Hence we can compute Jx̃K + JỹK = Jx̃ + yK just by adding the shares locally. The addition
of the representatives takes place modulo 2n and is unprotected against the overflow since
checking whether the sum is too big would either leak information or would be expensive.

• Likewise, subtraction of two secret fixed-point numbers Jx̃K and JỹK is free in terms of network
communication and can be implemented by subtracting the representing values shared as the
ring elements. Jx̃− yK can be computed as Jx̃K − JỹK. The subtraction operation is also
unprotected against going out of the range of the fixed-point numbers that we can represent
and thus must be used only when it is known that x ≥ y.

• Likewise, multiplication of a secret fixed point number Jx̃K and a public integer a is free,
since multiplication with an integer is isomorphic to multiplication with an integer in Z2n —
a · Jx̃K = a · JxK · 2−m = JaxK · 2−m = JãxK, and multiplication by a public integer is free in
Z2n .

However, multiplication of a secret fixed-point number by other fixed point numbers, whether
public or secret, is not free.

Consider first multiplication of a public fixed-point number ã = a · 2−m by a secret fixed-point
number Jx̃K = JxK · 2−m.

We need to calculate JỹK as the product of ã = a · 2−m and Jx̃K = JxK · 2−m where x is secret.
Since we keep data as a and JxK, we shall perform this computation as a · JxK = ã2m · Jx̃K2m.
However, if we do this multiplication in Z2n , then we risk losing the most significant bits, since the
product ã2mx̃2m might be greater than 2n.

In order to solve this problem, we convert a and JxK to Z22n and compute the product in Z22n .
Then we shift the product to the right by m bits and convert the number back to Z2n , since the
secret result y should be ãJx̃K · 2m, not ãJx̃K · 22m.

We assume that the product is in the range of the fixed-point numbers we can represent. We
do not perform any checks to see that the multiplicands or the product are in the correct range, as
this could leak information about the secret data, but instead assume that the user will adequately
choose the input.

After computing a · JxK = ã2m · Jx̃K2m in Z22n , we note that the result should be a · Jx̃K2m and
thus we need to divide the result by 2m. The cheapest way to do this is shifting the numbers to
the right by m bits. There are two ways for doing that.

The first one is using the existing protocol PublicBitShiftRightProtocol(JyK,m) for shifting bits
to the right. This protocol is not free, but gives the best possible result that can be represented
with a given granularity and is guaranteed to give the correct result.

The second one is to shift yi to the right by m bits for every party Pi. This is free, but
it is not guaranteed to give the correct result. Due to loss of the carry in the lowest bits we

5

risk that the result might be smaller than the real product would be by at most M · 2−m. In
most cases, this is an acceptable error. The only case where this error is significant is when

our result should be among J0̃K, J2̃−mK, . . . , (M − 1)J2̃−mK which could then be changed into ei-

ther J ˜2n−m − (M − 1)2mK, . . . , J ˜2n−m − 2 · 2mK or J ˜2n−m − 2mK. To avoid this underflow, we add

J ˜(M − 1)2mK to the product after shifting.
Note that now a symmetric problem where the shifted result should be among the numbers

J ˜2n−m − (M − 1)2mK, . . . , J ˜2n−m − 2 · 2mK or J ˜2n−m − 2mK but would now be changed to one of

J0̃K, J2̃−mK, . . . , (M − 1)J2̃−mK could happen. However, we assume that the user would choose such
inputs that these numbers would not arise as the products of any two multiplicands. Note that
we already require that the user would not multiply any two fixed-point numbers so that the

product would be greater than ˜2n−m − 2m. Here we extend this requirement to requiring that the
user would not multiply any two fixed-point numbers so that the product would be greater than

˜2n−m −M2m. Since M is usually a small number, this additional constraint does not practically
affect computation.

The multiplication of two secret fixed-point numbers is similar. More specifically, to multiply
two secret fixed-point numbers Jx̃K and JỹK, we first convert JxK and JyK to Z22n and then compute
the product JxK · JyK = Jx̃K · JỹK22m = Jx̃yK · 22m = JxyK · 2m there. Then we shift JxyK · 2m to the

right by m bits and add J ˜(M − 1)2mK so that the result would be correct. After that we convert
the result back to Z2n so that the product would be in the same ring as the multiplicands. We
denote this operation by Jx̃K · JỹK.

4.2 Polynomial evaluation

We will now present Algorithm 1 for evaluating polynomials with given coefficients. It is based on
an algorithm described in [10]. It takes in public signed coefficients {sic̃i}ki=0 and a secret fixed-

point number Jx̃K, and outputs JỹK =
∑k

i=0 sic̃i · Jx̃kK. Here si ∈ {−1, 1}. We will now describe the
general strategy for that.

First we need to evaluate Jx̃2K, Jx̃3K, . . . , Jx̃kK. It is trivial to do this with k − 1 rounds of
multiplications, however, it is also possible to do this in ⌈log k⌉ rounds. Every round we compute

the values Jx̃2i+1K, Jx̃2i+2K, . . . , Jx̃2i+1
K by multiplying Jx̃2i

K with Jx̃1K, Jx̃2K, . . . , Jx̃2i
K, respectively.

Following that, we can multiply the powers of x with the respective coefficients c̃i with one round

of multiplication, obtaining the values Jc̃1xK, Jc̃2x2K, . . . , Jc̃kxkK. We also set Jc̃0x0K to (c0, 0, . . . , 0).

After that we can compute the sums J ˜∑
si=1 cixiK =

∑
si=1Jc̃ixiKand J ˜∑

si=−1 cixiK =
∑

si=−1Jc̃ixiK

locally and find the final result JỹK = J ˜∑
si=1 cixiK− J ˜∑

si=−1 cixiK, which is also a local operation.
For every function, we face the question of which polynomial to use. Generally we have preferred

using Chebyshev polynomials, to avoid the Runge phenomenon. For error function, we used Taylor
series. However, sometimes large coefficients of Chebyshev polynomials can cause problems, such
as making the result less accurate when the coefficients are very big.

It might seem surprising that using Chebyshev polynomials with more terms might make the
result less accurate. The reason for this is the following—the Chebyshev coefficients {c̃i}ki=0 tend
to be rather large and they grow with k. We make small rounding errors when computing the
powers of x that represent errors the size of which is approximately 2−m. When, for example, we
take n = 64 and m = 35, and k = 16 and want the Chebyshev polynomial to be the one that is

6

Data: Jx̃K,m, n, si{c̃i}ki=0

Result: Takes in a a secret fixed point number Jx̃K, the radix-point m, the number of bits of
the fixed-point number n and the coefficients si{c̃i}ki=0 for the approximation
polynomial. Outputs a secret fixed-point number JỹK that is the value of the
approximation polynomial at point x.

Jx̃1K← Jx̃K
for j ← 0 to ⌈log2(k)⌉ do

for i← 1 to 2j do in parallel

Jx̃i+2jK← Jx̃2j K · Jx̃iK
end

end

Jỹ0K← Share(c̃0)
for i← 1 to k do in parallel

JỹiK← c̃i · Jx̃iK
end

Jỹ′K, Jỹ′′K← J0̃K
for i← 0 to k do in parallel

if si == 1 then

Jỹ′K+ = JỹiK
end

if si == −1 then

Jỹ′′K+ = JỹiK
end

end

JỹK← Jỹ′K− Jỹ′′K
return JỹK

Algorithm 1: Computation of a polynomial on fixed-point numbers.

used for computing inverse, then some of the ci are in the order of magnitude of 219, which means
that the errors will be amplified to about 2−16 ≈ 10−5. On the other hand, if we take k = 8, the
largest coefficients are in the order of 29, meaning that the errors coming from rounding will be in
the order of about 2−26 ≈ 10−8. The accuracy of the polynomial with 8 members is in the order of
10−7.

5 Hybrid Versions of Selected Functions

We have used the hybrid techniques to efficiently evaluate the square root, inverse, exponential and
the Gaussian error function.

Our floating-point number representation is similar to the one from [10]. A floating-point
number N consists of sign s, exponent E and significand f where N = (−1)1−s · f · 2E−q. Here q

is a fixed number called the bias that is used for making the representation of the exponent non-
negative. We require that if N 6= 0, the significand f would be normalised — i.e. f ∈ [2n−1, 2n−1].
If N = 0, then f = 0 and E = 0. If N is secret, then it means that the sign, significand and

7

exponent are all independently secret-shared. We denote it with JNK = (JsK, JEK, JfK).
Kamm and Willemson [10] present algorithms for computing the sum and product of two se-

cret floating point numbers, and use these operations to implement polynomial approximations.
However, the resulting routines are rather slow. Notably, computing the sum of two floating-pint
numbers is slower than computing the product. The basic structure of our function implementations
is still inspired by [10].

The main improvement of the current paper is converting the significand of the floating-point
number to a fixed-point number and then performing polynomial approximation in fixed-point
format. The basic algorithm for polynomial evaluation was described in Algorithm 1. However,
some extra corrections are needed after converting the result back into floating-point form.

5.1 Conversion from fixed-point number to floating-point number and correc-

tion of fixed-point numbers

In three out of our four functions, when we evaluate the polynomial on some fixed-point number
Jx̃K where x̃ ∈ [2v, 2v+1), and we get JỹK as the output, where ỹ should be in [2t, 2t+1) for some
t that depends on the function. For example, for inverse, if the input Jx̃K is in [0.5, 1), then the
output should be approximately in [1, 2).

However, due to inaccuracies coming from roundings and the error of the polynomial, the result
might be out of that range— it might also be in [2t−1, 2t) or [2t+1, 2t+2). In that case we, using
oblivious choice, shall replace the value with a value that is inside the range and closest to the
result — when ỹ < 2t, then we replace JỹK with J2̃tK and when ỹ ≥ 2t+1, then we replace ỹ with
2t+1 − 2−m. The result will usually become more accurate by this correction. For example, when

x̃ ∈ [0.5, 1), then
√̃

x
2 should be in [0.5,

√
0.5). If our result should be a number ỹ that is smaller

than 0.5, then we know that ỹ < 0.5 ≤ 1
ex

and thus replacing ỹ with 0.5 will give us a more accurate
result.

Now we describe the algorithm for correcting the fixed-point number so that it would be in the
correct range. Note that if we know that ỹ ∈ [0, 2t+2), then the (t + m)th and (t + m + 1)th bits
provide sufficient information about whether ỹ is in [0, 2t), [2t, 2t+1) or [2t+1, 2t+2). When we know
that ỹ ∈ [0, 2t+1), then the (t+m)th bit provides sufficient information about whether ỹ is in [0, 2t)
or in [2t, 2t+1). When we know that ỹ ∈ [2t, 2t+2), then the (t + m + 1)th bits provides sufficient
information about whether ỹ is in [2t, 2t+1) or [2t+1, 2t+2). It might not always be necessary to
perform both checks.

Note that we can use the BitExtraction protocol to learn the (t + m)th or (t + m + 1)th bits,
which is faster than performing comparisons.

The resulting routine is denoted as Correction(JỹK, t,m, n, b0, b1) and is presented as Algorithm 2.
This algorithm is necessary in several cases for converting a fixed-point number back to the

significand of a floating-point number. If this sort of protocol is not performed and we mistakenly
assume that the fixed-point number x̃ that we got as a result is in some [2t, 2t+1), and thus we
set the result to JNK = (JsK, 2n−m−t−1 · JxK, Jt + qK), then it might happen that the floating-point
number N is not normalised — the first bit of the significand we obtain as a result might be zero.

We also give a short algorithm for converting a positive fixed-point number Jx̃K to a floating-
point number, if we know that x̃ ∈ [2t−1, 2t+1). If x̃ ∈ [2t−1, 2t), then our result should be JN1K =
(JsK, JEK, JfK) = (J1K, Jt + qK, JỹK · 2n−t). If x̃ ∈ [2t, 2t+1), then our result should be JN2K =
(JsK, JEK, JfK) = (J1K, Jt + q + 1K, JỹK · 2n−t−1). We need to use the BitExtraction protocol to learn

8

Data: JỹK, t,m, n, b0, b1

Result: Takes in a secret fixed-point number JỹK, the number of bits n, the position of the
radix point m, and integer t and two bits b0 and b1 such that we know from prior
data that ỹ ∈ [(1− b0)2

t, 2t+1+b1). Outputs a fixed-point number Jx̃K so that x̃ is

equal to ỹ, if ỹ ∈ [2t, 2t+1), equal to 2̃t if ỹ ∈ [2t−1, 2t) and equal to ˜2t+1 − 2−m if
JỹK ∈ [2t, 2t+1).

JzK← JyK
{JuiK}ni=0 ← BitExtraction(JzK)
if b0 == 1 then

JzK← ObliviousChoiceProtocol(Jut+mK, JzK, J2tK)
end

if b1 == 1 then

JzK← ObliviousChoiceProtocol(Jut+m+1K, J2
t+1 − 2−mK, Jz′K)

end

return JzK

Algorithm 2: Correcting the range of a fixed-point number.

Data: JỹK, t,m, n

Result: Takes in a secret positive fixed-point number JỹK, the number of bits n, the position
of the radix point m, and integer t such that we know from prior data that
ỹ ∈ [2t−1, 2t+1). Outputs a floating-point number JNK = (JsK, JEK, JfK) that
represents approximately the same number as ỹ.

JzK← JyK
{JuiK}ni=0 ← BitExtraction(JzK)
JNK1 = (Js1K, JE1K, Jf1K)← (J1K, Jt + q + 1K, JyK · 2n−t−1)
JNK2 = (Js2K, JE2K, Jf2K)← (J1K, Jt + qK, JyK · 2n−t)
JEK← ObliviousChoiceProtocol(JutK, JE1K, JE2K)
JfK← ObliviousChoiceProtocol(JutK, Jf1K, Jf2K)
return JNK = (JsK, JEK, JfK)

Algorithm 3: Converting fixed-point number to floating-point number.

the (t + m)th bit which we can then use to perform oblivious choice between the two answers.
The resulting algorithm is denoted as FixToFloatConversion(Jx̃K, t,m, n) and is presented as

Algotithm 3.

5.2 Inverse

We will describe how to compute the inverse of a floating-point number JNK = (JsK, JEK, JfK) in
our setting.

First note that since inverse of zero is not defined, we can assume that the input is not zero
and that thus the signicand is always normalised. Second, note that the significand JfK can now be
considered a fixed-point number where m = n as it represents a number in [0.5, 1) but is stored as
a shared value in [2n−1, 2n − 1]. However, if the radix-point is so high, we can not perform most of
the operations we need to, so we need to shift the significand to the standard fixed-point format.

9

Data: JNK = (JsK, JEK, JfK), q,m, {sic̃i}ki=0, n

Result: Takes in a a secret floating point number JNK = (JsK, JEK, JfK), the bias of the
exponent q and the radix-point of the corresponding fixed-point number m,
Chebyshev coefficients {c̃i}ki=0 for computing the fixed-point polynomial and the
number of bits of the fixed-point number n. Outputs a secret floating-point number
that is approximately equal to the inverse of N .

Jf ′K← PublicBitShiftRightProtocol(JfK, n−m)
JtK← FixInverseProtocol(Jf̃ ′K, {sic̃i}ki=0,m, n)
Jt′K← Correction(Jt̃K, 0,m, n, 0, 1)
Jt′′K← Jt′K · 2n−m−1

return JN ′K = (JsK, J2q − E + 1K, Jt′′K)
Algorithm 4: Inverse of a floating point number.

Let us denote the shifted significand with Jf̃ ′K. Then we securely compute the number JtK so that
t̃ is the inverse of f̃ ′ by using polynomial evaluation, as described in Algorithm 1.

For 32-bit fixed-point numbers we used the polynomial

(1)11.3566 − 55.93750 · x + 156.0836 · x2 − 269.8706 · x3

+ 296.1006 · x4 − 201.3559 · x5 + 77.6035 · x6 − 12.9803 · x7.

For 64-bit fixed-point numbers we used the polynomial

(2)
15.62867966 − 109.9375 · x + 462.0659715 · x2 − 1286.897136 · x3

+ 2493.83927 · x4 − 3431.394459 · x5 + 3352.540822 · x6 − 2279.465318 · x7

+ 1027.283608 · x8 − 276.2006221 · x9 + 33.5661214 · x10.

These coefficients are based on the table on page 175 in [17]. We will denote calling the Algorithm 1
on value Jx̃K with the coefficients of (1) and (2) with FixInverseProtocol(Jx̃K, {sic̃i}ki=0,m, 32), and
FixInverseProtocol(Jx̃K, {sic̃i}ki=0,m, 64), respectively, where m is the position of the radix point and

where {sic̃i}ki=0 refers to the signed coefficients of of (1) or (2). Since f̃ ′ ∈ [0.5, 1), we expect the

result t̃′ to be approximately in (1, 2]. However, since the polynomial has a small error, then the
result might sometimes be slightly bigger than 2 and thus we need to correct the result using the
Correction algorithm.

Next we want to divide the result by two and then convert the fixed-point number back into
the significand format. We can combine these two operations. The first one would require shifting
to the right by one bit and the second one would require shifting to the left by n − m bits. By
combining, we just have to shift the result to the left by n −m− 1 bits, which is a free operation
since it is equivalent with multiplying by 2n−m−1. The sign of the inverse is the same as the sign of
N and the exponent should be the additive inverse of the original exponent, minus one to take into
account the division by two that we did in the significand. However, we need to take into account
that the bias is added to the exponent and thus the exponent of the result shall be J−E + q + 1K.

Thus we obtain Algorithm 4 for computing the inverse of a floating-point number.

10

5.3 Square root

We will describe how to compute the square root of a floating-point number in our setting.
First we shall describe the case where the input is not zero. We note that the significand JfK

can be considered a fixed-point number where m = n as it represents a number in [0.5, 1) but is
stored as a shared value in [2n−1, 2n− 1]. However, if the radix-point is so big, we can not perform
most of the operations we need to, so we need to shift the significand to the standard fixed-point
format. Let us denote the shifted significand with Jf̃ ′K. While computing the square root, it is
natural to halve the exponent by shifting it to the right by one bit. However, the parity of that

last bit may change the result
√

2
2 times and thus we have to remember the last bit and later use it

to perform an oblivious choice. Like in the case of the inverse, we use a Chebyshev polynomial to
find such Jt̃1K that t̃1 is approximately equal to the square root of f̃ ′. Then we compute the square
root of Jf̃ ′K by using polynomial evaluation, as described in Algorithm 1.

We used the polynomial

(3)

0.11762379327093657 + 2.6615226192244417 · x− 9.371849704313805 · x2

+ 36.81121979293309 · x3 − 119.39255388354168 · x4 + 310.12390025990817 · x5

− 644.7233686085026 · x6 + 1075.8084777766278 · x7 − 1442.1892383934844 · x8

+ 1549.0933690616039 · x9 − 1323.521774124341 · x10 + 887.547679235167 · x11

− 457.04755897707525 · x12 + 174.4585858163298 · x13 − 46.49878087370222 · x14

+ 7.724960904027444 · x15 − 0.6022146941311717 · x16

for both 32-bit and 64-bit numbers. The coefficients of (3) were obtained by the Lanczos tau
method described in [16].

We will denote with FixSquareRootProtocol(Jx̃′K, {sic̃i}ki=0,m, n) calling the function 1 on value
Jx̃K with the coefficients of (3), where m is the position of the radix point and n is the number of
bits and where {sic̃i}ki=0 refers to the signed coefficients of (3).

Following that, we multiply Jt̃1K by
√̃

2
2 —we then have the risk of J

˜
t1 ·

√
2

2 K being slightly less

than 0̃.5, thus we need to use the Correction to correct J
˜
t1 ·

√
2

2 K into the range [0.5, 1). Then we

use the saved last bit of the exponent to perform an oblivious choice between Jt̃1K and J
˜
t1 ·

√
2

2 K and
convert the result back into the significand format by shifting the result left by n −m bits. The
latter operation may be implemented by multiplying the result by 2n−m which is a local operation.
The sign of a square root is always plus. We correct for the bias and rounding errors by adding
1 + q

2 to JE′K.
Thus we obtain Algorithm 5 for computing the square root of a floating-point number.
Now consider the case when the input is zero. We show that the result will be also very close

to zero following Algorithm 5. The exponent E and the significand f are both zeroes and thus
the last bit b of the exponent is also zero and E shifted to the right by one bit is also zero. Thus
the exponent of the result is 1 + q

2 . This is bigger than zero, but is used for numbers in the range

[2−
q

2 , 2−
q

2
+1) and since we have set q to be 214 − 1, then 2−

q

2 ≈ 10−2500, which is negligible. Now
we only must be sure that the significand of the result would be normalised. If we compute the
polynomial 3 with input 0, then the result would be approximately 0.11762379327093657. When
we apply Correction to the result, then, since the result is smaller than 0.5, it will be changed to 0.5
which, in turn, will be converted into a normalized significand. Thus the result will be negligibly
close to 0.

11

Data: JNK = (JsK, JEK, JfK), q,m, {sic̃i}ki=0, n

Result: Takes in a a secret floating point number JNK = (JsK, JEK, JfK), the bias of the
exponent q and the radix-point of the corresponding fixed-point number m,
Chebyshev coefficients {c̃i}ki=0 for computing the fix-point polynomial and the
number of bits of the fixed-point number n. Outputs a secret floating-point number
that is approximately equal to

√
N .

Js̃′K← PublicBitShiftRightProtocol(JsK, n−m)
JbK← JEK (mod 2)
JE′K← PublicBitShiftRightProtocol(JEK, 1)
Jt̃1K← FixSquareRootProtocol(Js̃′K, {sic̃i}ki=0,m, n)

Jt̃2K← Jt̃1K ·
√̃

2

Jt̃′2K← Correction(Jt̃2K,−1,m, n, 1, 0)

Jt′K← ObliviousChoiceProtocol(JbK, Jt̃1K, Jt̃
′
2K)

Jt′′K← Jt′K≪ (n−m)
return JN ′K = (J1K, JE′ + 1 + q

2K, Jt′′K)

Algorithm 5: Square root of a floating point number.

5.4 Exponent

We will describe how to compute the exponent of a floating-point number in our setting.
Given a secret floating-point number JNK = (JsK, JEK, JfK) we wish to compute JeN K = J2log2 e·N K =

J2yK where y := log2 e ·N .
It is easier to compute a power of 2 in our setting than a power of e so thus we first compute

JyK = Jlog2 eK · JNK. To compute J2yK, we split JyK into two parts— the integer part J[y]K and the
fractional part J{y}K. We find J[y]K by shifting the significand by the number of bits specified by
the exponent and find the fractional part by J{y}K = JyK− J[y]K. Note that if [y] is negative, then
the fractional part will be in [−1, 0], so we have to subtract 1 from J[y]K and add it to J{y}K in
order for {y} to be in [0, 1]. We have to do an oblivious choice using the sign bit to find out the
values of J[y]K and J{y}K.

We then convert J{y}K into a fix-point number, use a polynomial to compute J2̃{y}K, convert it
back to a floating-point number and then multiply it with J2[y]K to get the results. The polynomial
we use on both 32-bit and 64-bit fixed point numbers is

(4)

1 + 0.6931471806 · x + 0.240226507 · x2 + 0.05550410866 · x3 + 0.009618129108 · x4

+ 0.001333355815 · x5 + 0.0001540353033 · x6 + 0.00001525273561 · x7

+ 0.000001321544 · x8 + 0.0000001017869 · x9 + 0.000000007048 · x10

+ 0.00000000044946 · x11 + 0.00000000002332 · x12 + 0.000000000002013 · x13.

These coefficients are based on the table on page 201 in [17].
We will denote calling the Algorithm 1 on value Jx̃K with the coefficients listed in (4) by

FixPowerOfTwoProtocol(Jx̃K, {sic̃i}ki=0,m, n), where m is the position of the radix point and n is the
number of bits and where {sic̃i}ki=0 refers to the signed coefficients of the polynomial (4).

Thus we obtain the Algorithm 6 for computing the exponential function of a floating-point
number. These three algorithms are very similar in nature to the algorithms used in [10].

12

KwDataN = (JsK, JEK, JfK), q,m, {sic̃i}ki=0, n

Result: Takes in a a secret floating point number N = (JsK, JEK, JfK), the bias of the
exponent q and the radix-point of the corresponding fixed-point number m,
coefficients {sic̃i}ki=0 for computing the fix-point polynomial and the number of bits
of the fixed-point number n. Outputs a secret floating-point number that is
approximately equal to eN .

JyK← log2 e · JNK
JzK← PrivateBitShiftRightProtocol(JfK, Jn− (E − q)K)
J[y]K← J(−1)1−s · JzK + (1− s)K
(J{s}K, J{E}K, J{f}K) = J{y}K← JyK− J[y]K
JzK← PublicBitShiftRightProtocol(J{s}K, n−m)
2J{y}K ← FixPowerOfTwoProtocol(Jz̃K, {sic̃i}ki=0,m, n)
JbK← ConvertToBoolean(JsK)
JgK← ObliviousChoiceProtocol(JbK, Jq + 1 + J[y]KK, Jq − J[y]KK)
2J[y]K ← (J1K, J100 . . . 0K, JgK)
2JyK ← 2J{y}K · 2J[y]K

return JN ′K = 2JyK

Algorithm 6: Power of e of a floating point number.

5.5 Error function

Gaussian error function is defined by erf x = 2√
π

∫ x

0 e−t2dt. It is a antisymmetric function — i.e.

erf(−x) = − erf(x). Thus we can evaluate the function only depending on the exponent and the
significand, and in the end, set the sign of the output to be the sign of the input. Thus, for the
sake of simplicity, we will assume that our input is non-negative.

However, we can not use the approach that we have used for the previous functions. This is
due to the fact that erf(a · b) can not be easily computed from erf a and erf b. The value of the
error function on the significand does not give us useful information.

Thus, to compute the polynomial approximation, we have to convert not the significand but
the whole floating point number to a fixed-point number.

If the range of the floating-point number is not bounded, this creates two problems. First,
converting the floating-point number to a fixed-point number is expensive as we have to do shift
the significand to the left by 0 bits, by 1 bit, by 2 bits and so on, and after that, obliviously choose
between them based on the exponent. Second, approximation polynomials tend to work only in
small intervals. Thus we would first have to partition the domain of the function into small intervals
and find an approximation polynomial for all of them. Later, we would have to compute the value
of the function with all these polynomials and obliviously choose the right answer based on the size
of the fixed-point number.

However, it turns out that we can bound the range of inputs in which case we have to compute
the error function with a fixed-point polynomial.

Namely, if x is close to 0 then erf x can be well approximated with 2√
π
x. This can be explained

by observing the McLaurin series of the error function which is erf x = 2√
π

∑∞
i=0

(−1)n

n!(2n+1)x
2n+1.

13

Note that

erf x− 2√
π

x| = | 2√
π

∞∑

i=1

(−1)n

n! (2n + 1)
x2n+1| < 2√

π

∞∑

i=1

1

n! (2n + 1)
x2n+1 <

<
2√
π

x
1

1! (2 · 1 + 1)

∞∑

i=1

x2n =
2

3 · √π

x3

1− x2
.

If x is small enough, then 2
3·√π

x3

1−x2 is negligible.

On the other hand, erf x is a monotonously growing function that approaches 1. Thus, when
x is large enough, we can approximate erf x with 1. In our approach, if x ≥ 4, we set erf x = 1.
The error we make by this approximation is at most 1 − erf 4 ≈ 2 · 10−8. Thus, we need to
convert the floating point number to a fixed-point number only for a certain range of exponents.
We will compute polynomial approximations for x ∈ [2−w, 22) where w is a previously fixed public
parameter that depends on how precise we would like the algorithm to be.

Thus we need approximation polynomials for the range [0, 4) only. We will use four approxi-
mation polynomials, p0, p1, p2 and p3 where pi(ỹ) ≈ erf y if ỹ ∈ [i, i + 1), where i ∈ {0, 1, 2, 3}.

p0(x) = 1.1283793940340756 · x− 0.0000026713076584281906 · x2 − 0.3761072585979022 · x3

− 0.00009283890849651041 · x4 + 0.1131594785717268 · x5 − 0.000814296779279163 · x6

− 0.025351408042362075 · x7 − 0.0020389298750037445 · x8

+ 0.007118807679212721 · x9 − 0.0010650286415166768 · x10

− 0.0006807918740908649 · x11 + 0.00019635679847600037 · x12

p1(x) = 0.006765005 + 1.068755853503136 · x + 0.2421008129968042 · x2 − 0.9749339270141031 · x3

+ 1.0041963324534586 · x4 − 1.088243712366528 · x5 + 1.0471332876840715 · x6

− 0.6926003063553184 · x7 + 0.30152947241780975 · x8 − 0.08606929528345982 · x9

+0.01564245229830543 ·x10 −0.0016528687686237157 ·x11 +0.00007769002084531931 ·x12

p2(x) = 3.457096038 − 12.5182619 · x + 24.28685236 · x2 − 25.94071269 · x3

+ 17.49637535 · x4 − 7.918632525 · x5 + 2.457939225 · x6−0.5194884684 · x7

+ 0.07178942559 · x8 − 0.005870291922 · x9 + 0.0002160012609 · x10

p3(x) = −0.7639003533423249 + 8.010029520994069 · x−16.2574882597075 · x2

+ 19.354954901112134 · x3 − 14.893638858296091 · x4+7.680985904576809 · x5

− 2.6544432135286944 · x6 + 0.5926501668119099 · x7

− 0.07755457435456298 · x8 + 0.0045311393046185465 · x9

First, we shall find the possible corresponding fixed-point numbers on which we compute our
polynomial. We will, in parallel, compute

Jf̃iK = PublicBitShiftRightProtocol(JfK, n−m + i− 2) for i ∈ [0, w].

If JfK is the significand of JxK then Jf̃iK ∈ [2−i, 2−i+1) if x ∈ [2−i, 2−i+1).

14

Note that we did not compute any such fixed-point number f̃−1 that is equal to x if x ∈ [2, 4),
although we need polynomial approximation for values that are in [2, 4).

This is due to the fact that for a secret fixed-point number Jf̃−1K where f̃−1 ∈ [2, 4) one can
not compute polynomials on it that simultaneously have a large degree and fine granularity. The
reason for this is the following. As described in Algorithm 1, to compute a polynomial, we first
compute all the powers of Jf̃−1K and then, in parallel, multiply all the powers with the corresponding

coefficients. However, if we compute a polynomial with degree l, then f̃−1
l ∈ [2l, 22l) and thus we

have to be able to represent numbers as big as 22l. Since for a given data type the number of bits is
bounded, this means that the granularity of our fixed-point numbers is more coarse. This, in turn,
means that if f̃−1 ∈ [2, 4), then using the method described in the previous paragraph to compute
an approximation polynomial will be rather inexact since for accuracy we need both fine granularity
and to be able to compute polynomials with relatively high degree. To solve this problem, when we

want to compute the polynomial
∑l

i=0 siai·f̃−1
i
we instead compute the polynomial

∑l
i=0 siai2

i·f̃0
i
.

If x ∈ [2, 4), the numbers f̃0
i

are in the range [1, 2i) and these can be represented well enough.
Since the coefficients for polynomials p2 and p3 are small, then the elements ai2

i will also be small
enough.

We now wish to compute values Jg̃iK where g̃i ≈ erf f̃i if x ∈ [2−i, 2−i+1) for i ∈ [−1, w]. For
i ∈ [1, w] we compute g̃i = p0(f̃i). For i = 0, we compute g̃0 = p1(f̃0). For i = −1, we compute
g̃−1,0 and g̃−1,1 by applying the modified versions of the polynomials p2 and p3 to f̃0, as described
before. Note that these values can be computed in parallel.

Now we need to evaluate g̃−1 using oblivious choice so that if the result is in [2, 4), g̃−1 = g̃−1,0

if f ≤ 2n−1 and g̃−1 = g̃−1,1 if f > 2n−1. We note that whether f ≤ 2n−1 or not depends only on
the last bit of f , thus we use the BitExtract protocol on JfK to find that bit and use that to perform
oblivious choice between g̃−1,0 and g̃−1,1.

Note that for i < −1, if x ∈ [2i, 2i+1) then erf x ∈ [2i, 2i+2). If x ≥ 0.5, then erf x ∈ [0.5, 1).
Thus we can apply the FixToFloat protocol to the numbers Jg̃iK to obtain floating point numbers
JN−1K, . . . , JNwK We additionally compute N−2 = 2√

π
JNK and set Nw+1 to J1K. Then we use the

generalised oblivious choice protocol to choose the final result between JN−2K, . . . , JNw+1K based on
the exponent JEK. Note that if x = 0, then the oblivious choice will choose JN−2K = 2√

π
J0K = J0K

and thus the protocol is correct also when the input is zero.
Thus we have obtained Algorithm 7 for computing the error function of a floating-point number.

6 Results and comparison

We have implemented four selected functions on the Sharemind 3 computing platform and bench-
marked the implementations. To measure the performance of the floating point operations we
deployed the developed software on three servers connected with fast network connections. More
specifically, each of the servers used contains two Intel X5670 2.93 GHz CPUs with 6 cores and 48
GB of memory. Since on Sharemind parallel composition of operations is more efficient than se-
quential composition, all the operations were implemented as vector operations. To see how much
the vector size affects the average performance, we ran tests for different input sizes for all our
inputs. We did 5 tests for each operation and input size and computed the average. We compare
here our results with previously existing protocols for computing the functions on either fixed-point
values or floating-point values.

15

Data: N = (JsK, JEK, JfK), q,m, {si,0c̃i,0}li=0, {si,1c̃i,1}li=0, {si,2c̃i,2}li=0, {si,3c̃i,3}li=0, n, w

Result: Takes in a a secret floating point number N = (JsK, JEK, JfK), the bias of the
exponent q and the radix-point of the corresponding fixed-point number m,
coefficients {si,j c̃i,j}li=0 for computing the fixed-point values that are accurate in
[j, j + 1) and an integer w so that we evaluate the function with a polynomial, if
2w ≤ N < 4. Outputs a secret floating-point number that is approximately equal to
the error function of N .

for k ← 0 to w do
shiftsk ← n−m + i− 2

end

{JfkK}wk=0 ← PublicBitShiftRightProtocol(JfK, {shifts}wk=0))
for k ← 1 to w do in parallel

Jg̃kK← FixGaussianErrorFunction(Jf̃kK,m, n, {si,0c̃i,0}li=0)

Jg̃0K← FixGaussianErrorFunction(Jf̃0K,m, n, {si,1c̃i,1}li=0)

Jg̃−1,0K← FixGaussianErrorFunction(Jf̃0K,m, n, {si,2c̃i,2}li=0)

Jg̃−1,1K← FixGaussianErrorFunction(Jf̃0K,m, n, {si,3c̃i,3}li=0)

end

{JuiK}ni=0 ← BitExtraction(JfK)
Jg−1K← ObliviousChoiceProtocol(JumK, Jg−1,1K, Jg−1,0K)
t−1 ← 0
t0 ← 0
for k ← 1 to w do

tk ← 2− k

end

for k ← −1 to w do in parallel
Nk = (JskK, JEkK, JfkK)← FixToFloatConversion(Jg̃kK, tk,m, n)

end

N−2 = (Js−2K, JE−2K, Jf−2K)← 2√
π
·N

Nw+1 = (Jsw+1K, JEw+1K, Jfw+1K)← 1
begin in parallel

b0 ← LTEProtocol(JEK, Jq − wK)
b1 ← LTEProtocol(Jq + 3K, JEK)

end

JEK← ObliviousChoiceProtocol(Jb0K, Jq − wK, JEK)
JEK← ObliviousChoiceProtocol(Jb1K, Jq + 3K, JEK)
JE′K← GeneralizedObliviousChoice(JE−2K, . . . , JEw+1K, JE − qK)
Jf ′K← GeneralizedObliviousChoice(Jf−2K, . . . , Jfw+1K, JE − qK)
return N ′ = (JsK, JE′K, Jf ′K)

Algorithm 7: Gaussian error function of a floating point number.

16

Table 1 compares previous results for computing the inverse with our results. Our results are
up to 6 times faster than the previously existing implementations.

Table 2 compares previous results for computing the square root with our results. Our results
are up to 18 times faster than the best previously existing implementations.

Table 3 compares previous results for computing the exponent with our results. Our results are
up to 2 times faster than the best previously existing implementations.

Table 4 compares previous results for computing the Gaussian error function with our results.
Our results are up to 4 times faster than the previously existing implementations.

7 Conclusion

We developed fixed-point numbers for the Sharemind secure multiparty computation platform. We
improved on existing algorithms by [10] for floating-point numbers for the inverse, square-root,
exponential and error functions by constructing a hybrid model of fixed-point and floating-point
numbers. These new algorithms allow for considerably faster implementations than the previous
ones.

8 Acknowledgments

This research has also been supported by the European Regional Development Fund through the
Estonian Center of Excellence in Computer Science, EXCS, and Estonian Research Council through
grant IUT27-1.

References

[1] Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. Secure computation on
floating point numbers. Cryptology ePrint Archive, Report 2012/405, 2012. http://eprint.
iacr.org/.

[2] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A Framework for Fast Privacy-
Preserving Computations. In ESORICS ’08, volume 5283 of LNCS, pages 192–206. Springer,
2008.

[3] Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-performance secure
multi-party computation for data mining applications. International Journal of Information
Security, 11(6):403–418, 2012.

[4] Dan Boneh, Giovanni Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key en-
cryption with keyword search. In Christian Cachin and JanL. Camenisch, editors, Advances in
Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages
506–522. Springer Berlin Heidelberg, 2004.

[5] Octavian Catrina and Claudiu Dragulin. Multiparty computation of fixed-point multiplication
and reciprocal. In Database and Expert Systems Application, 2009. DEXA ’09. 20th Interna-
tional Workshop on, pages 107–111, 2009.

17

1 10 100 1000 10000

Catrina, Dragulin,
128 bits, AppDiv2m,
LAN(ms) [5]

3.39

Catrina, Dragulin,
128 bits, Div2m,
LAN(ms) [5]

1.26

Kamm and Willemson,
Chebyshev, 32 bits [10]

0.17 1.7 15.3 55.2 66.4

Kamm and Willemson,
Chebyshev, 64 bits [10]

0.16 1.5 11.1 29.5 47.2

Current paper, 32 bits 0.99 8.22 89.73 400.51 400.51

Current paper, 64 bits 0.82 8.08 62.17 130.35 130.35

Table 1: Operations per second for different implementation of the inverse function for different
batch sizes.

1 10 100 1000 10000

Liedel [13] 0.204

Kamm and Willemson
32 bits [10]

0.09 0.85 7 24 32

Kamm and Willemson
64 bits [10]

0.08 0.76 4.6 9.7 10.4

Current paper, 32 bits 0.77 7.55 70.7 439.17 580.81

Current paper, 64 bits 0.65 6.32 41.75 78.25 119.99

Table 2: Operations per second for different implementation of the square root function for different
input sizes.

1 10 100 1000 10000

Aliasgari et al. [1] 6.3 9.7 10.3 10.3

Kamm and Willemson,
(Chebyshev) 32 bits [10]

0.11 1.2 11 71 114

Kamm and Willemson,
(Chebyshev) 64 bits [10]

0.11 1.1 9.7 42 50

Current paper, 32 bits 0.24 2.41 24.03 104.55 126.42

Current paper, 64 bits 0.23 2.27 16.66 47.56 44.84

Table 3: Operations per second for different implementation of the exponential function for different
input sizes.

18

[6] Octavian Catrina and Sebastiaan Hoogh. Secure multiparty linear programming using fixed-
point arithmetic. In Dimitris Gritzalis, Bart Preneel, and Marianthi Theoharidou, editors,
Computer Security – ESORICS 2010, volume 6345 of Lecture Notes in Computer Science,
pages 134–150. Springer Berlin Heidelberg, 2010.

[7] Octavian Catrina and Amitabh Saxena. Secure computation with fixed-point numbers. In
Radu Sion, editor, Financial Cryptography and Data Security, volume 6052 of Lecture Notes
in Computer Science, pages 35–50. Springer Berlin Heidelberg, 2010.

[8] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC ’09, pages 169–178,
2009.

[9] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption scheme.
In Kenneth G. Paterson, editor, Advances in Cryptology – EUROCRYPT 2011, volume 6632
of Lecture Notes in Computer Science, pages 129–148. Springer Berlin Heidelberg, 2011.

[10] Liina Kamm and Jan Willemson. Secure floating-point arithmetic and private satellite collision
analysis. Cryptology ePrint Archive, Report 2013/850, 2013. http://eprint.iacr.org/.

[11] F. Kerschbaum, A. Schroepfer, A. Zilli, R. Pibernik, O. Catrina, S. de Hoogh, B. Schoenmak-
ers, S. Cimato, and E. Damiani. Secure collaborative supply-chain management. Computer,
44(9):38–43, 2011.

[12] Sven Laur, Jan Willemson, and Bingsheng Zhang. Round-Efficient Oblivious Database Ma-
nipulation. In ISC ’11, volume 7001 of LNCS, pages 262–277, 2011.

[13] Manuel Liedel. Secure distributed computation of the square root and applications. In MarkD.
Ryan, Ben Smyth, and Guilin Wang, editors, Information Security Practice and Experience,
volume 7232 of Lecture Notes in Computer Science, pages 277–288. Springer Berlin Heidelberg,
2012.

[14] Y.-C. Liu, Y.-T. Chiang, T. s. Hsu, C.-J. Liau, and D.-W. Wang. Floating point arithmetic
protocols for constructing secure data analysis application.

[15] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan Venkita-
subramaniam. L-diversity: Privacy Beyond K-anonymity. ACM Transactions on Knowledge
Discovery from Data (TKDD), 1(1), March 2007.

[16] Eduardo L. Ortiz (originator). Tau method. http://www.encyclopediaofmath.org/index.
php?title=Tau_method&oldid=18668.

[17] Boris A. Popov and Genadiy S. Tesler. Vyc̆islenie funkcij na ÈVM - spravoc̆nik (in Russian).
Naukova dumka, 1984.

[18] Pierangela Samarati. Protecting Respondents’ Identities in Microdata Release. IEEE Trans-
actions on Knowledge and Data Engineering, 13:1010–1027, 2001.

[19] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[20] Latanya Sweeney. K-anonymity: A Model for Protecting Privacy. Int. J. Uncertain. Fuzziness
Knowl.-Based Syst., 10(5):557–570, October 2002.

19

[21] Yihua Zhang, Aaron Steele, and Marina Blanton. Picco: A general-purpose compiler for
private distributed computation. In Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, CCS ’13, pages 813–826, New York, NY, USA, 2013.
ACM.

20

1 10 100 1000 10000

Kamm and Willemson,
32 bits [10]

0.1 0.97 8.4 30 39

Kamm and Willemson,
64 bits [10]

0.09 0.89 5.8 16 21

Current paper, 32-bit 0.49 4.67 33.9 57.02 62.74

Current paper, 64-bit 0.46 4.18 19.63 21.48 30.31

Table 4: Operations per second for different implementation of the Gaussian error function for
different input sizes.

21

