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Abstract

In this work, we seek to optimize the efficiency of secure general-purpose obfuscation schemes.
We focus on the problem of optimizing the obfuscation of general Boolean formulas – this cor-
responds to optimizing the “core obfuscator” from the work of Garg, Gentry, Halevi, Raykova,
Sahai, and Waters (FOCS 2013), and all subsequent works constructing general-purpose ob-
fuscators. This core obfuscator builds upon approximate multilinear maps, where efficiency
in proposed instantiations is closely tied to the maximum number of “levels” of multilinearity
required.

The most efficient previous construction of a core obfuscator, due to Barak, Garg, Kalai,
Paneth, and Sahai (Eurocrypt 2014), required the maximum number of levels of multilinearity
to be Θ(`s3.64), where s is the size of the Boolean formula to be obfuscated, and ` is the number
of input bits to the formula. In contrast, our construction only requires the maximum number
of levels of multilinearity to be Θ(`s). This results in significant improvements in both the total
size of the obfuscation, as well as the running time of evaluating an obfuscated formula.

Our efficiency improvement is obtained by generalizing the class of branching programs that
can be directly obfuscated. This generalization allows us to achieve a simple simulation of
formulas by branching programs while avoiding the use of Barrington’s theorem, on which all
previous constructions relied.
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1 Introduction

The goal of general-purpose program obfuscation is to make an arbitrary computer program
“unintelligible” while preserving its functionality. At least as far back as the work of Diffie
and Hellman in 1976 [DH76]1, researchers have contemplated applications of general-purpose
obfuscation. As part of their systematic study of obfuscation, Barak, Goldreich, Impagliazzo,
Rudich, Sahai, Vadhan, and Yang in 2001 [BGI+01]2 also enumerated several additional appli-
cations of general-purpose obfuscation, ranging from software intellectual property protection
and removing random oracles, to eliminating software watermarks. However, until 2013, even
heuristic constructions for general-purpose obfuscation were not known.

This changed with the recent work of Garg, Gentry, Halevi, Raykova, Sahai, and Wa-
ters [GGH+13b], which gave the first candidate construction for a general-purpose obfuscator.
This work also showed how to use general-purpose obfuscation to obtain the first general-purpose
functional encryption scheme. Soon thereafter, Sahai and Waters [SW14] showed how to use
general-purpose obfuscation to build many interesting cryptographic primitives, including the
first fully deniable encryption scheme. Since then, the floodgates have opened, and many new
applications of general-purpose obfuscation have been explored [BCPR13, BP13, MR13, BCP13,
ABG+13, MO13, GJKS13, PPS13, GGHW13, GGJ+14, BBC+14, BFM14, KNY14, GHRW14,
HSW14, BR14a, BR14b, GGHR14, CGK14].

Efficiency of General-Purpose Obfuscation. This great interest in the utility of ob-
fuscation leads to a natural and pressing goal: to improve the efficiency of general-purpose
obfuscation. Up to this point, the simplest and most efficient proposed general-purpose obfus-
cator was given by [BGK+14], building upon [GGH+13b, BR14b]. However, the general-purpose
obfuscator presented in [BGK+14] (see below for more details) remains extremely inefficient.

Our work aims to initiate a systematic research program into improving the efficiency of
general-purpose obfuscation. Tackling this important problem will no doubt be the subject
of many research papers to come. We begin by recalling the two-stage approach to general-
purpose obfuscation outlined in [GGH+13b] and present in all subsequent work on constructing
general-purpose obfuscators:

1. At the heart of their construction is the “core obfuscator” for Boolean formulas (equiv-
alently, NC1 circuits), building upon a simplified subset of the Approximate Multilinear
Maps framework of Garg, Gentry, and Halevi [GGH13a] that they call Multilinear Jigsaw
Puzzles. (We will defer discussion of security to later.)

2. Next, a way to bootstrap from the core obfuscator for Boolean formulas to general circuits
is used. The works of [GGH+13b, BR14b, BGK+14] all adopt a method for bootstrap-
ping using Fully Homomorphic Encryption. This bootstrapping method works provably
with the security definition of indistinguishability obfuscation, and can rely on well-studied
cryptographic assumptions such as the LWE assumption. Alternatively, the earlier work
of Goyal et al. [GIS+10] constructed a universal stateless hardware token for obfuscation
that can be implemented by polynomial-size boolean formulas using a pseudorandom func-
tion in NC1. Applebaum [App13] gives a simpler alternative construction that has the
disadvantage of requiring the size of the Boolean formulas to be polynomial in the input
size and the security parameter (rather than only in the security parameter in [GIS+10]).
Using either of these alternative approaches [GIS+10, App13], however, requires an ad-hoc

1Diffie and Hellman suggested the use of general-purpose obfuscation to convert private-key cryptosystems to
public-key cryptosystems.

2The work of [BGI+01] is best known for their constructions of “unobfuscatable” classes of functions {fs} that
roughly have the property that given any circuit evaluating fs, one can extract the secret s, yet given only black-box
access to fs, the secret s is hidden.
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(but arguably plausible) assumption to bootstrap from obfuscation for Boolean formulas
to obfuscation for general circuits.

Our work focuses on improving the efficiency of the first of these steps: namely, the core
obfuscator for Boolean formulas. We give one set of results for the setting of boolean formulas
over the {and, not, or}-basis, and another set of results for general bases.

All previous constructions of a core obfuscator [GGH+13b, BR14b, BGK+14] first apply Bar-
rington’s theorem [Bar86] to convert the Boolean formula into an equivalent “matrix branching
program,” which is then obfuscated. Roughly speaking, a matrix branching program computes
an iterated product of n permutation matrices, where each matrix in the product is determined
by one of the input bits, and the result of the product should be either the identity matrix
(corresponding to an output of 1) or some other fixed permutation matrix (corresponding to an
output of 0). The length of the program is n and its width is the matrix dimension.

For any formula of depth d, Barrington’s theorem gives a constant width matrix branching
program of length 4d. Since Barrington’s theorem outputs a branching program whose length
is exponential in the depth of the formula, it is crucial to balance the depth of the formula
in order to avoid blow up in size. Hence, the first step would be to balance the formula to
get a depth which is logarithmic in the size and then apply Barrington’s theorem. For general
formulas of size s, the best known depth obtained by balancing them is 1.73 log s + d0 by
Khrapchenko [Khr78, Juk12] where d0 is a constant. However, the constant d0 is quite large,
which can have an adverse effect on concrete efficiency. 3. Instead, one can balance the formula
using a method by Preparata and Muller [PM76]. The depth of the balanced formula obtained
by this method is 1.82 log s. There have been other works which try to optimize the size of
balanced formulas [BB94], but the depth of the formula obtained by these works is worse.

The matrix branching program obtained by applying Barrington’s theorem to a formula of
depth 1.82 log s has length s3.64. This is a major source of inefficiency. In particular, the bound
of s3.64 on the length of the branching program not only affects the number of elements given
out as the final obfuscation, but also number of levels of multi-linearity required by the scheme.
Since the size of the each multilinear encoding grows with the number of levels of multilinearity
required in known realizations of approximate multilinear maps [GGH13a, CLT13], this greatly
affects the size of the final obfuscated program and also the evaluation time. Hence, in order to
optimize the size of obfuscation it is critical to find an alternative approach.

Our Contributions. In our work, we posit an alternative strategy for obfuscation that
avoids Barrington’s theorem, and the need to balance Boolean formulas at all. A crucial first
step is to formulate a notion of a “relaxed matrix branching program” which relaxes some of the
requirements of matrix branching programs needed in [GGH+13b, BR14b, BGK+14]. The re-
laxation replaces permutation matrices by general full-rank matrices over a finite field and, more
importantly, determine the output by testing whether some fixed entry in the matrix product
is nonzero. (See Section 2.3 for a formal definition.) We show how to adapt the construction
and security proofs of [BGK+14] to work with our relaxed matrix branching programs.

Armed with this relaxed notion of matrix branching programs, we then seek to find ways
to convert Boolean formulas into such relaxed matrix branching programs without needing to
invoke Barrington’s theorem. We do so in a modular way. We first provide a general and efficient
transformation that converts any ordinary graph-based layered branching program, satisfying
certain technical conditions, into a relaxed branching program. We then turn to the (abundant)
literature on ordinary branching programs to find efficient ways to represent Boolean formulas
as graph-based layered branching programs, and verify that these representations satisfy our
technical conditions.

3Note that once we apply Barrington’s theorem, d0 goes into the exponent and hence the size of the resulting
obfuscation scheme will incur a factor of 2d0 .
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We begin by considering formulas consisting of only and, or, and not gates. We give a
simple construction for the folklore theorem that converts any such formula of size s into a layered
graph-based branching program. This yields a relaxed matrix branching program consisting of
O(s) square matrices of dimension O(s), resulting in relaxed matrix branching program of size
O(s3), in contrast to O(s3.64) obtained using balancing and Barrington’s theorem. Note that one
more step is needed by us, as well as previous work [GGH+13b, BR14b, BGK+14], to make the
matrix branching programs input-oblivious. This incurs an additional multiplicative overhead of
`. However, this step and the resulting overhead can be avoided in the useful case of obfuscating
a class of keyed functions, namely a class of functions of the form fz(x) = φ(z, x) where φ is a
formula of size s. In other words, the goal is to obfuscate the class φ(z, ·) to hide the key z. In
this case, we do not require input-obliviousness of the matrix branching program.

Another important dimension of comparison, as mentioned before, is the levels of multi-
linearity required, which in turn equals the length of the matrix branching program. In our
construction, because the length of our relaxed matrix branching program is only O(`s), we re-
quire the multi-linearity to be only O(`s) in contrast with O(`s3.64) in previous work [GGH+13b,
BR14b, BGK+14].

The recommended parameter settings in previous works on multilinear encodings [GGH13a,
CLT13] show that for κ-level multilinear encodings, the size of each encoding is O(κ2 · λc)
for some constant c. Thus, we get the size of each encoding to be O(`2s2λc) compared to
O(`2s7.28λc) in previous work [GGH+13b, BR14b, BGK+14]. Using this we get the size of the
obfuscated formula to be O(`3s5λc) in contrast with O(`3s10.92λc) using existing techniques.
Next, we consider Boolean formulas over any complete basis. For this setting, we re-examine
the work of [Gie01], which uses the results of [BB94, Cle90] to transform formulas over any
complete basis to a layered branching program. The graph-based branching program described
in [Gie01] satisfies our conditions and can be used to obfuscate formulas over and, xor, and
not gates. For a formula of size s, [Gie01] gives a layered branching program of size O(s1+ε)
such that the number of layers is O(s), where ε > 0 is a constant. In fact, we can represent
this graph branching program as a relaxed matrix branching program with the size of each
matrix in this representation is a constant (depending on ε). The time of evaluation of the
obfuscated program is crucially related to the size of the multilinear encodings. A summary
of the comparison is provided in Table 1. We note that constructions based on Barrington’s
theorem also work for formulas having and, not, and xor gates (cf. [Bon]). The improvements
obtained for the special class of keyed functions is summarized in Table 2.

We note that even if a future implementation of multilinear maps achieves an encoding size
that only grows linearly with κ, our results would yield significant improvements. (Note that
achieving multilinear maps where the encoding size grows sub linearly with κ seems out of reach
with current lattice-based methods, due to error growth.)

Security. While improving security of obfuscation is not the focus of this work, our work
on improving efficiency of obfuscation would be meaningless if it sacrificed security. We give
evidence for the security of our constructions in the same way that the work of [BGK+14] does:
by showing that our constructions achieve a strong virtual black-box notion of security, against
adversaries that are limited to algebraic attacks allowed in a generic multilinear model. (Note
that this argument also shows that the obfuscator achieves the indistinguishability obfuscation
security definition in a generic multilinear model, as a special case.) This is essentially the
strongest evidence of security for any general-purpose obfuscation scheme that we have to date.

2 Preliminaries

We denote the security parameter by λ. We denote by [a, b] the intervals, defined only for b > a,
to consist of all integers from a to b. More formally, [a, b] = {a, a+ 1, . . . , b}. The interval [1, a]
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Table 1 Comparing the Efficiency of Obfuscation Schemes for formulas over different bases. λ is the security
parameter of the scheme, s is the formula size, and ` is the size of the input. ε > 0 is any constant.

Work Levels of Size of Evaluation time
Multi-linearity Obfuscation

[BGK+14] + [PM76] O(`s3.64) O(`3s10.92λc) O(`3s10.92λc)
(previous work)

{and,or,not}-basis

This work (direct) ` · ((`− 2) + (s+ 2)) O(`3s5λc) O(`3s5.37λc)
{and,or,not}-basis

This work + [Gie01] O(`s1+ε) O(`3s3(1+ε)4(2/ε)λc) O(`3s3(1+ε)4(2.37/ε)λc)
any complete basis

Table 2 Comparing the Efficiency of Obfuscation Schemes for keyed formulas over different bases. λ is the security
parameter of the scheme, and s is the formula size. ε > 0 is any constant.

Work Levels of Size of Evaluation time
Multi-linearity Obfuscation

[BGK+14] + [PM76] O(s3.64) O(s10.92λc) O(s10.92λc)
(previous work)

{and,or,not}-basis

This work (direct) (s+ 2) O(s5λc) O(s5.37λc)
{and,or,not}-basis

This work + [Gie01] O(s(1+ε)) O(s3(1+ε)4(2/ε)λc) O(s3(1+ε)4(2.37/ε)λc)
any complete basis

is denoted by [a].

Let e
(n)
i denote a 1×n matrix with the ith entry being 1 and the rest of the entries being 0.

When the size of the matrix is clear we will denote e
(n)
i by ei.

We now give some background for formulae and branching programs.

2.1 Boolean formulae

We first recall the notion of boolean circuits and then we will define boolean formulae. A boolean
circuit corresponding to a function f : {0, 1}l → {0, 1} is a directed acyclic graph (DAG). The
vertices in this graph are of two types – input nodes and gates. The gates are of three types -
AND, XOR and NOT. The indegree of a vertex is 0 for input nodes, 1 for the NOT gate and 2
for the AND and the XOR gate. The outdegree of an output gate is 0 and it is at least 1 for all
other vertices. The fan-out of a gate is defined to be the number of output wires corresponding
to that gate and fan-in of a gate is defined to be the number of input wires to that gate. In
this work, we consider a special type of circuits called formulae. A boolean formula is a boolean
circuit where the fan-out of each gate is 1. In graph theoretic terms, a formula is a tree. We
define the size of a formula to be the number of gates in the formula. Further, we define a
subtree in a formula to be the subgraph in a formula consisting of all paths from the input wires
to that gate.

Throughout this paper, unless mentioned, the input length of a formula is `. We define index
of an input wire w, denoted by index(w), in the formula to be j if the jth bit of the formula is
fed into the wire w.

4



2.2 Layered branching programs

A layered branching program is a weighted directed acyclic graph with three designated vertices,
namely, a source vertex, an accept vertex and a reject vertex. A source vertex has no incoming
edges while the accept and the reject vertices have no outgoing edges. Each edge in the graph
is labeled either xi = 0 or xi = 1 for some i ∈ [`]. Further, the set of vertices is partitioned into
a sequence of layers such that the first layer in the sequence consists of just the source vertex
while the last layer in the sequence consists of the accept and the reject vertices.

Associated to a branching program is an evaluation function, denoted by inp, that is used
to evaluate the program on an input. The evaluation function maps each layer of vertices to
an input bit. The evaluation of a branching program on an input, say x, proceeds as follows.
Suppose the evaluation function maps a layer Li to xj , where xj is the jth input bit of x. If
xj = 0, we remove the outgoing edges of Li which are labeled 1 and similarly if xj = 1 then we
remove the outgoing edges which are labeled 0. We perform this for every layer in the branching
program. The resulting graph is denoted by BP|x. If there is a path from the source vertex
to the accept vertex in BP|x and no path exists from the source vertex to the reject vertex in
the resulting graph then the output of the branching program on x, denoted by BP(x), is 1.
Symmetrically, if there is a path from the source to the reject vertex in BP|x and no path exists
from the source to the accept vertex in BP|x then BP(x) = 0.

Now that we have defined branching programs, we establish some notation.

• We denote the source vertex in a branching program BP to be BP[source]. The accept and
the reject vertices are denoted by BP[acc] and BP[rej] respectively.

• Layers(BP) denotes the sequence of layers in the branching program BP.

• The length of a branching program is the number of layers in it. That is, length of BP is
|Layers(BP)|.

• We assume that all the layers in a branching program have the same number of vertices 4.
The width of a branching program is then defined to be the number of vertices in a single
layer.

• The size of a branching program is the number of vertices in the branching program. It is
essentially the product of the width and the number of layers in the branching program.

It is known that every NC1 circuit can be represented by a polynomial sized formula. Al-
ternately, every NC1 circuit can also be represented by a layered branching program of size 4d,
where d is the depth of the circuit[Bar86].

In this work, we try to explore other transformations of formulas to layered branching pro-
grams such that the size does not grow exponentially in the depth. For completion of exposi-
tion, we describe how we can efficiently transform formulas over AND and NOT gates to layered
branching programs satisfying certain conditions. These would then be used in obfuscation later.
For a similar transformation for formulas over AND, XOR and NOT gates, refer to [SWW99].

In this work, as in Barak et al. [BGK+14], we would be converting our branching programs
to a kind of matrix branching programs that are both oblivious and dual-input. A branching
program BP is said to be input oblivious if its evaluation function depends only on the input
length of the function. As a consequence, all the oblivious branching programs corresponding to
functions of the same input length have the same evaluation function. In this work, we would
be obfuscating “relaxed” matrix branching programs which are dual input and oblivious. We
define these in the next section.

4This can be ensured by adding dummy vertices in each layer.
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2.3 Relaxed Matrix Branching Programs

In the previous subsection, we defined layered branching programs using graph theoretic termi-
nology. An alternate way of describing layered branching programs is through matrices. This
particular representation of branching programs using matrices is termed as matrix branch-
ing programs which was first formally defined by [GGH+13b]. We define below the notion of
oblivious matrix branching programs.

Definition 1 (Oblivious Matrix Branching Programs). [GGH+13b] A branching program of
width w and length n for `-bit inputs is given by a w × w permutation matrix Preject such that
Preject 6= Iw×w and by a sequence:

BP = (inp, Bi,0, Bi,1)i∈[n],

where Bi,b, for i ∈ [n], b ∈ {0, 1}, are w × w permutation matrices and inp : [n] → [`] is
the evaluation function of BP. The output of BP on input x ∈ {0, 1}`, denoted by BP(x), is
determined as follows:

BP(x) =


1 if

n∏
i=1

Bi,xinp(i)
= Iw×w

0 if
n∏
i=1

Bi,xinp(i)
= Preject

⊥ otherwise

Further inp : [n] → [`] is a fixed function independent of the function (with n-bit inputs) being
evaluated.

Barrington [Bar86] showed that every circuit with depth d and fan-in 2 can be represented
by a matrix branching program of length at most 4d and width 5. Note that the size of the
matrix branching program representation is exponential in the depth and this turns out to
be the bottleneck in efficiency when we use the obfuscation scheme [BGK+14] incorporating
this representation. In this work, we represent formulae using a variant of matrix branching
programs that we term relaxed matrix branching programs (RMBPs). Our notion of relaxed
matrix branching programs relaxes the requirement imposed on matrix branching programs
imposed in [GGH+13b, BR14b, BGK+14]. This is also a further relaxation of the version of
matrix branching programs recently considered in [PST13]: In [PST13], the product of matrices
must form one of two columns in the resulting matrix. In our notion, we only require that a
single designated entry of the product is 0 if the output of the program is 0, and is non-zero
if the output of the program is 1. This deviates from previous work not only in that it only
considers a single entry in the product, but also in that the entry is not directly required to
encode the program output, but rather encodes the output only by taking the zero value, or an
arbitrary non-zero value. We formally define the notion of oblivious relaxed matrix branching
programs below.

Definition 2 (Oblivious Relaxed Matrix Branching Programs). A relaxed matrix branching
program (over a ring R) of size w and length n for `-bit inputs is given by a sequence:

BP = (inp, Bi,0, Bi,1)i∈[n],

where Bi,b, for i ∈ [n], b ∈ {0, 1} ∈ Rw×w, are w × w full-rank matrices and inp : [n] → [`] is
the evaluation function of BP. The output of BP on input x ∈ {0, 1}`, denoted by BP(x), is
determined as follows:

BP(x) = 1 if and only if
( n∏
i=1

Bi,xinp(i)

)
[1, w] 6= 0

Further inp : [n] → [`] is a fixed function independent of function (with n-bit inputs) being
evaluated.
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Dual-input Relaxed Matrix Branching Programs. We now define the notion of
dual-input relaxed matrix branching programs. A dual-input relaxed matrix branching program
has two evaluation functions inp1 and inp2 which are functions from [n]→ [`]. Consider a layered
branching program BP. We associate to layer i matrices Bi,b1,b2 for i ∈ [n], b1, b2 ∈ {0, 1} such
that,

BP(x) = 1 if and only if
( n∏
i=1

Bi,xinp1(i),xinp2(i)

)
[1, w] 6= 0

In this work, we are interested in dual-input relaxed matrix branching programs that are also
oblivious.

2.4 “Virtual Black-Box” Obfuscation in an Idealized Model

We now give the definition of virtual black-box obfuscation in the idealized model. Since the
model we are working is exactly the same as studied by Barak et al. [BGK+14], we state the
definition verbatim from their paper.

Definition 3 (“Virtual Black-Box” Obfuscation in an M-idealized model). For a (possibly
randomized) oracle M, and a circuit class

{
C`
}
`∈N, we say that a uniform PPT oracle machine

O is a “Virtual Black-Box” Obfuscator for
{
C`
}
`∈N in the M-idealized model, if the following

conditions are satisfied:

• Functionality: For every ` ∈ N, every C ∈ C`, every input x to C, and for every possible
coins for M:

Pr[(OM(C))(x) 6= C(x)] ≤ negl(|C|) ,

where the probability is over the coins of C.

• Polynomial Slowdown: there exist a polynomial p such that for every ` ∈ N and every

C ∈ C`, we have that |OM(C)| ≤ p(|C|).
• Virtual Black-Box: for every PPT adversary A there exist a PPT simulator Sim, and a

negligible function µ such that for all PPT distinguishers D, for every ` ∈ N and every
C ∈ C`: ∣∣Pr[D(AM(OM(C))) = 1]− Pr[D(SimC(1|C|)) = 1]

∣∣ ≤ µ(|C|) ,

where the probabilities are over the coins of D,A,Sim,O and M

Note that in this model, both the obfuscator and the evaluator have access to the oracleM but
the function family that is being obfuscated does not have access to M.

3 Formulae to Relaxed Matrix BPs

The transformation from polynomial sized formulae to branching programs is a well studied
problem [Bar86, Cle90, SWW99]. Even though several of the previous works [Cle90, SWW99]
deal with obtaining an efficient transformation from formula to branching programs it is not
clear whether the resulting branching programs can then be efficiently represented by relaxed
matrix branching programs. Indeed this is the reason why we can not use the transformations
in the previous works in a black box manner. Yet another way to obtain efficient relaxed matrix
branching programs would be to balance the formula first using efficient techniques [Spi71, Bre74,
PM76, Juk12, BCE91, BB94] and then apply Barrington’s theorem to the balanced formula.
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As mentioned in the Introduction (see Table 1), our transformation still beats this approach in
efficiency if you start with unbalanced formulae.

We note that there is an asymptotically more efficient transformation to obtain relaxed
matrix branching program using the work of Giel [Gie01], that we consider elsewhere in this
work. However, the direct transformation we describe here has very manageable constants, and
may prove useful for certain applications.

Our transformation from a formula to a relaxed matrix branching program can be broken
into two steps. In the first step, we transform a formula into layered branching programs. In
the second step, we represent these layered branching programs as dual-input oblivious relaxed
matrix branching programs.

To make these transformations modular, below we describe two conditions, which if satisfied
by the layered branching program, can be used to do obfuscation using our techniques. The
conditions (also stated in the introduction) are the following.

• (Layered) The branching program is layered, i.e. the vertices can be partitioned into
different layers such that each layer is labeled with a input bit xi. In other words, all the
outgoing edges from vertices of this layer are labeled with xi.

• (No back edges) If there is an edge from jth layer to kth layer, then j < k.

We call such a branching program a layered branching program with no back edges.
In the next we give this transformation for boolean formulas over and and not gates for

completion of exposition. A more general transformation was also provided by [SWW99] which
works for formulas and, xor, and not gates.

3.1 Formulas to Layered BPs

In this section, we give a transformation of boolean formulas over and and not gates to a
layered branching program with no back edges as described above.
Consider a formula, denoted by F. We inductively transform F to a layered branching program.
The base case corresponds to the input wires. Consider an input wire w. Let index(w) be i.
We construct a branching program for w as follows. The branching program, denoted by BPw
consists of three vertices denoted by source, acc and rej. There is an edge labeled 0 from source
to the rej vertex and an edge labeled 1 from source to acc (see Figure 1). The evaluation function
associated to this wire, denoted by inpw, is inpw : [1]→ {i}.

source

acc

rej

1

0

Figure 1 This denotes the branching program for an input wire.

We proceed to the induction hypothesis. Consider a gate G. We have two cases depending on
whether it is an and gate or a not gate.

Case (1) and gate:- Let G1 and G2 be two gates (or input wires) such that the output wires
of G1 and G2 are fed to G. Let BPG1

and BPG2
be the branching programs associated to gates
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G1 and G2 respectively. We construct a branching program for G, denoted by BPG, using BPG1

and BPG2
in the following steps (see Figure 2) such that the following holds.

- BPG1
and BPG2

are subgraphs in BPG.

- Merge the accept node of BPG1
, which is denoted by BPG1

[acc], with the source node of
BPG2 , which is BPG2 [source]. Similarly, merge the reject node of BPG1 , namely BPG1 [rej],
with the reject node of BPG2 , namely BPG2 [rej].

- We have Layers(BPG) =
(
Layers(BPG1

) ∪ Layers(BPG2
)
)
\L, where L is a layer consisting

of vertices {BPG1
[acc],BPG1

[rej]}.
- Let inpG1

: [t1]→ [`] and inpG2
: [t2]→ [`] be the evaluation functions of BPG1

and BPG2

respectively, where t1 and t2 are the number of layers in BPG1 and BPG2 respectively. We
construct an evaluation function inpG : [t1 + t2 − 1] → [`] for BPG as follows. Set inpG(i)
to be inpG1

(i) for all i ∈ [t1 − 1] and inpG(t1 + j − 1) = inpG2
(j) for all j ∈ [t2].

source
sourceacc

rej

acc

rej
BPG1 BPG2

BPG

Figure 2 This denotes the branching program for an AND gate. The accept vertex in BPG1 is merged with the
source vertex in BPG2 . The reject vertex in BPG1 is merged with the reject vertex in BPG2 .

Observe that BPG is a layered branching program.

Case (2) not gate:- Let G′ be a gate such that the output wire of G′ is fed into the gate G. Let
BPG′ be a branching program associated to the gate G′. We construct a branching program for
G, denoted by BPG, using BPG′ in the following steps (see Figure 3).

- The vertex set of BPG is the vertex set of BPG′ .

- BPG is same as the graph BPG′ upto relabeling of the vertices. The accept vertex in BPG
is the same as BPG′ [rej] and the reject vertex in BPG is the same as BPG′ [acc].

- We have Layers(BPG) = LayersBPG′
.

- Let inpG′ : [t′]→ [`] be the evaluation function for BPG′ , where t′ is the number of layers
in BPG′ . We construct an evaluation function inpG : [t′] → [`] for BPG as follows. First
set inpG(i) to be inpG′(i) for all i ∈ [t′].

Let the resulting branching program be BPF. Denote the layers of BPF to be Layers(BP) =
{L1, . . . ,Ln}. Let the size of BPF be w. Further, number the vertices in BPF to be {1, . . . , w}
such that there does not exist an edge from i to j where i > j. This can be achieved using
topological sorting (since the branching program is a dag). Further we will achieve this in such
a way that the source vertex is numbered 1 and the accept vertex is numbered w. Also denote
the evaluation function for BPF by inp.

9



source
acc

rej

a

rBPG’

BPG

Figure 3 This denotes the branching program for a NOT gate. Vertices a and r denote the accept and reject vertices
of the BPG respectively and they are merged with the reject and the accept vertices of BPG′ . This effectively amounts
to switching of accept and reject vertices in BPG′ .

Note that the above construction satisfies the properties of a layered branching program with
no back edges. Next, we prove that the above described layered branching program correctly
evaluates the formula F.

Lemma 1. For every input x ∈ {0, 1}l, we have F(x) = 1 if and only if BPF(x) = 1.

Proof. We prove this by induction on the number of gates in the formula. The base case consists
of just one input wire. In this case, the lemma follows from the base case in our construction.
We will now proceed to the induction hypothesis. We will assume that the lemma is true for
formulas with t − 1 gates. We now show that the lemma is true for formulas with t gates.
Consider a formula FG having t gates with the output gate of this formula being G. We now
argue that the lemma is true for BPG|x, which is the branching program associated to the gate
G. We consider two cases depending on the type of the gate G.

Case (i) AND gate:- Let G1 and G2 be two gates such that the output of these gates are input to
G. We denote the formula associated to G1 (resp., G2) to be FG1 (resp., FG2). Since FG1 (resp.,
FG2) has at most t − 1 gates, we can apply the induction hypothesis. That is, the branching
program BPG1

(resp., BPG2
) constructed from FG1

(resp., FG2
) is such that there exists a path

from the source to the accept vertex and no path exists from the source to the reject vertex in
BPG1

|x (resp., BPG2
|x) iff FG1

(x) = 1 (resp., FG2
(x) = 1).

Consider the case when FG(x) = 1. In this case, both FG1(x) = 1 and FG2(x) = 1. We claim
that there exists a path from the source vertex of BPG|x to its accept vertex. This is because,
there exists a path from the source vertex of BPG1

|x (which is also the source vertex in BPG|x)
to its accept vertex, which is merged with the source vertex of BPG2

|x. Further, there is a path
from the source vertex of BPG2

|x to the accept vertex of BPG2
|x (which is also an accept vertex

in BPG|x). We now argue that there does not exist any path from the source to the reject vertex
in BPG|x. Any path from the source vertex in BPG|x to its reject vertex should either contain
a path from the source vertex in BPG1

|x to its reject vertex or a path from the source vertex
in BPG2

|x to its reject vertex. By induction hypothesis, the paths in both BPG1
|x and BPG2

|x
cannot exist and hence there is no path from the source vertex in BPG|x to its reject vertex.

We now consider the case when FG(x) = 0. This means that either FG1
(x) = 0 or FG2

(x) = 0.
We now claim that there does not exist a path from the source vertex in BPG(x)|x to its ac-
cept vertex. Crucial to proving this is the observation that every path from the source vertex of
BPG|x to its accept vertex needs to pass through the accept vertex of BPG1

|x (which is the source
vertex of BPG2

|x). Without loss of generality let FG1
(x) be 0. Then there is no path from the

source vertex of BPG1
|x to its accept vertex and from the previous observation, there cannot be

any path from the source vertex of BPG|x to its accept vertex. Similarly when FG2(x) = 0 then

10



there cannot be any path from the source vertex of BPG2
|x to its accept vertex. We now show

that there exists a path from the source vertex in BPG|x to its reject vertex. Let FG1
(x) = 0

then there is a path from the source vertex of BPG1
|x to its reject vertex, which is the same as

the reject vertex of BPG|x. When FG2
(x) = 0 and FG1

(x) = 1 then there is a path from the
source vertex in BPG1 |x to its accept vertex which is merged with the source vertex of BPG2 |x.
Further there is a path from the source vertex in BPG2 |x to its reject vertex which is nothing
but the reject vertex in BPG|x. This completes this case.

Case (ii) NOT gate:- Let G1 be a gate such that the output of the gate is input to G. We
denote the formula associated to G1 to be FG1

. Since FG1
has at most t− 1 gates, we can apply

the induction hypothesis. That is, the branching program BPG1 constructed from FG1 is such
that there exists a path from the source to the accept vertex in BPG1 |x iff FG1x = 1.

Consider the case when FG(x) = 1. In this case, FG1
(x) = 0. We claim that there exists

a path from the source vertex of BPG|x to its accept vertex. From the induction hypothesis,
there is a path from the source vertex to the reject vertex in BPG1

|x. Since the source vertex of
BPG1 |x is the same as the source vertex of BPG|x and the reject vertex of BPG1 |x is the same
as the accept vertex of BPG|x, our claim follows. We now argue that there is no path from the
source vertex in BPG|x to its reject vertex. This follows from the fact that no path exists from
the source vertex in BPG1

|x to its accept vertex and also the accept vertex in BPG1
|x is same

as the reject vertex in BPG|x.
The case when FG(x) = 0 symmetrically follows from the case when FG(x) = 1. This

completes the proof of this case as well as the lemma.

Analysis of the size of BPF. Now we will prove a bound on the size of the branching
program obtained by the above described procedure in terms of the size of the formula.

Theorem 1. Let s be the size of the formula. Then the size of the branching program BPF

(obtained using the transformation in Section 3.1) is at most 2s+ 4.

Proof. We prove this by induction on the size of the formula. Base case is s = 1, i.e. the formula
just consists of an input wire. In this case, the size of the branching program is 3 and this is
clearly less than 2s+ 4. Now we argue about the size of the branching program for a formula of
size s assuming that the theorem holds for all formulas of size at most (s− 1). Let the output
gate in the formula be gate G. We do a case analysis on G.

- G is an AND gate. Let F1 and F2 be two formulas such that the output wires of both
of these are fed into G. Let the size of the formula F1 (resp., F2) be s1 (resp., s2). By
induction hypothesis, we have the size of the branching program associated to F1 (resp.,
F2) is at most 2s1 + 4 (resp., 2s2 + 4). The size of the branching program BPF is given as
follows.

|BPF| = |BPF1
|+ |BPF2

| − 2

≤ 2s1 + 4 + 2s2 + 4− 2

≤ 2(s1 + s2 + 1) + 4

= 2s+ 4,

where the last equality holds by the fact that s = s1 + s2 + 1.

- G is a NOT gate. Let F ′ be the formula such that output wire of F ′ is fed into G. Let
the size of F ′ be s′. By induction hypothesis, we have the size of the branching program
associated to F ′ be at most 2s′ + 4. The size of the branching program BPF is given as
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follows.

|BPF| = |BPF ′ |
≤ 2s′ + 4

≤ 2(s′ + 1) + 4

= 2s+ 4,

where the last equality holds by the fact that s = s′ + 1.

Corollary 1. The number of layers in the branching program BPF is at most s+ 2.

Proof Sketch. This follows by observing that each layer in the branching program has two
vertices.

3.2 Representing Layered BPs as Relaxed Matrix BPs

Recall that as mentioned before, in order to adapt the techniques of obfuscation from [BGK+14],
we need to convert our formula into a relaxed matrix branching program. In the previous sec-
tion we described how to convert a formula into a graph branching program. In this section,
we describe how to take the graph branching program BPF obtained above and convert it to
a set of matrices. Let w denote the size of the graph branching program, i.e. there are w
vertices in the graph representation of F . Let n be the number of layers in BPF. Denote the
layers in BPF by L1, . . . ,Ln excluding the last layer which does not have any outgoing edges.
Now we will construct a length n relaxed matrix branching program such that all the matrices
will have full rank. The evaluation function for the relaxed matrix branching program is the
same as the graph branching program. Then we will prove some properties about these matrices.

Consider a large enough prime p. Corresponding to each layer in the branching program, we
will have two (w × w) matrices Bi,0 and Bi,1 over Zp as follows:

Bi,0 : For every edge e = (u, v) in BPF, where u ∈ Li and e is labeled to be 0, set the entry
Bi,0[u, v] to be 1. For each u ∈ [w], set Bi,0[u, u] = 1. Set the rest of the entries in Bi,0 to
be 0.

Bi,1 : For every edge e = (u, v) in BPF, with u ∈ Li and e is labeled 1, set the entry Bi,1[u, v]
to be 1. For each u ∈ [w], set Bi,1[u, u] = 1. Rest of the entries in Bi,1 are set to be 0.

Claim 1. Matrices Bi,b are full rank for all i ∈ n, b ∈ {0, 1}.

Proof Sketch. Each Bi,b is upper triangular because there does not exist any edge from i to j
for i > j and also all diagonal entries set to 1.

Looking ahead, we will use this claim to randomize the relaxed matrix branching program. In
our proof of security we will need show that these randomized matrices can be simulated. Here,
we will crucially rely on the fact that the matrices are full rank.

In the following lemmas, we use the fact that the prime p is large enough so that there are
no wrap-arounds while multiplying the matrices. In particular assume that p ≈ 2n(1+ε) for some
ε > 0.

Lemma 2. Consider an input x ∈ {0, 1}l. Denote the product
∏n
i=1Bi,xinp(i)

by P . Then,
P [1, w] ≥ 1 if and only if BPF(x) = 1.
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Proof. We argue this by induction. We define graph Gj , for j ∈ [n], to be a subgraph of BP
as follows. It consists of all the vertices in the layers L1, . . . ,Lj+1 and any two vertices in
Gj have an edge if and only if the correpsonding two vertices in BP|x have an edge. We will
denote the vertex set associated to Gj as Vj . Without loss of generality we will assume that
Vj = {1, . . . , 2(j + 1)}, since each layer has two vertices.

At each point in the induction we maintain the invariant that Pj [u, v] = cu,v, where Pj =∏j
i=1Bi,xinp(i)

and u, v ∈ Vj and cu,v is the number of possible paths from u to v in Gj .
The base case in the induction step is for the case of G1 and the invariant follows from

the definition of G1. We now proceed to the induction hypothesis. Assume that the ma-
trices (Bi,xinp(i)

)i∈[j], for j < n is such that their product, which is Pj , satisfies the con-
dition that Pj [u, v] is the number of paths from u to v in graph Gj . Consider the prod-

uct Pj+1 =
∏j+1
i=1 (Bi,xinp(i)

) which is essentially the product Pj · Bj+1,xinp(j+1)
. Now, consider

Pj+1[u, v] =
∑w
i=1 Pj [u, i]Bj+1,xinp(j+1)

[i, v] for u, v ∈ Vj+1. Each term indicates the total num-
ber of paths from u to v with i as an intermediate vertex in the graph Gj+1. Note that an
intermediate vertex of any path of length at least 2 in Gj+1 should be in Vj . And the summa-
tion of all these terms indicates the total number of paths from u to v in Gj+1.

We have established that Pn[u, v] represents the number of paths from the u to v in graph
Gn. But Gn is nothing but the graph BP|x and Pn is nothing but the matrix P . This shows that
P [u, v] denotes the number of paths from u to v in graph BP|x and more specifically, P [1, w] is
non-zero iff BPF(x) = 1. This proves the lemma.

The proof of the following corollary follows directly from Lemma 1 and Lemma 2.

Corollary 2. Consider an input x ∈ {0, 1}`. Denote the product
∏n
i=1Bi,xinp(i)

by P . Then,
P [1, w] ≥ 1 if and only if F(x) = 1.

There is an alternate approach to obtain a relaxed matrix branching program from a formula of
any complete basis as given in Giel [Gie01]. The transformation consists of the following steps
– first the formula is balanced and then the resulting balanced formula is converted to a linear
bijection straightline-program (LBSP) which is then converted to an RMBP. Note that the size
of the resulting relaxed matrix branching program is better than the one presented above. For
completeness sake, we present the definition of LBSP as given in [Cle90].

Definition 4. [Cle90] A linear bijection straightline-program (LBSP) over Z2 is a sequence of
assignments of the form:

Rj ← Rj + c ·Ri
Rj ← Rj − c ·Ri
Rj ← Rj + xu ·Ri
Rj ← Rj − xu ·Ri

where R1, . . . , Rw are registers, x1, . . . , xl are inputs, c ∈ Z2 and u ∈ {1, . . . , l}. The width
of LBSP, denoted by w, is the number of the registers in LBSP. The length of a LBSP is the
number of statements it contains. An LBSP computes a function f(x1, . . . , xl) if there exists
a, b ∈ {1, . . . , w} such that the register Ra, after the evaluation, contains R∗a+R∗b ·f(x1, . . . , xl),
where R∗a denotes the initial value of the register Ra and R∗b contains the initial value of the
register Rb.

In the LBSP we are going to consider, we will assume that the initial value in the register
Rb is 1 and the initial value in the register Ra is 0.

We now state the theorem that was given in [Gie01]. We give a sketch of the proof and
a more detailed proof can be found in [Gie01]. There is a slight deviation of our proof from
the proof by [Gie01] in the last step – instead of transforming a LBSP to a graph branching
program, we directly transform LBSP to a relaxed matrix branching program.
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Theorem 2 ([Gie01, Kom14]). Given a boolean formula of size s over any complete basis, there
exists a relaxed matrix branching program of size O(s1+ε) with the width of each matrix is a
constant depending only on ε,where ε > 0 is any constant.

Proof sketch. Consider a formula of size s over any complete basis. First, the formula is balanced
using [BB94] to obtain a formula of depth at most 3c ln(2) log s and the size of the formula is at
most sα, where c ≥ 2 is a constant and α = 1+

(
1/(1+log(c−1))

)
. Then the balanced formula is

converted to a linear bijection straight-line program (LBSP) using [Cle90]. The resulting LBSP
has width at most 2k + 2 and the number of variable references (which is essentially the number

of instructions in LBSP, each variable appears in) is at most 8sα+
6c ln2

k , where k is a constant to
be determined later. Finally, we transform this as a relaxed matrix branching program, denoted
by BP = {Bi,b}i∈[n+1],b∈{0,1}, each matrix of width w × w, as follows. Note that matrices Bi,b
represent the (i− 1)th instruction in LBSP.

• k = 1: In this case, both B1,0 and B1,1 represent the same matrix. The first row of the
matrix B1,0 represents the initial values in the registers in LBSP. The rest of the rows are
picked such that B1,0 is a full rank matrix.

• k > 1 and the (k − 1)th instruction is of the form Rj ← Rj + c · Ri OR Rj ← Rj − c · Ri
for c ∈ Z2: Even in this case both Bi,0 and Bi,1 represent the same matrix. Bi,0 contains
1’s on the diagonal. It also contains 1 in the (i, j)th entry. The rest of the entries are 0.

• k > 1 and the (k− 1)th instruction is of the form Rj ← Rj +xu ·Ri OR Rj ← Rj −xu ·Ri
for u ∈ {1, . . . , n}: In this case, B1,0 is an identity matrix of width w. The matrix Bi,1
contains 1’s on the diagonal and it contains 1 in the (i, j)th entry. The rest of the entries
in the matrix are 0.

This completes the description of the branching program. Note that the product
∏j+1
i=1 Mi

denotes the evaluation of the first i instructions in LBSP. Finally, the (1, a)th entry in the final

product
∏n+1
i=1 Mi denotes the output of the LBSP on input x1, . . . , xl. Further, observe that

the width of the relaxed matrix branching program is exactly the width of the LBSP which is
at most 2k + 2 and the length of the LBSP is at most 8sα+

6c ln2
k . By suitably substituting for

k, we can get the size of the RMBP to be s1+ε, for any ε > 0 and the width of the matrices in
this RMBP is a constant (depending on ε).

Dual-Input Oblivious RMBPs. We further make our relaxed matrix branching program
oblivious and dual-input. As a first step, we will make our relaxed matrix branching program
oblivious, i.e. make the evaluation function inp independent of the formula F . Wlog, assume that
the length of the relaxed matrix branching program, n, is a multiple of (`−1), i.e. n = k · (`−1)
for some k ∈ N. If this not the case, add at most (`− 2) pairs of identity matrices of dimension
w×w to the relaxed matrix branching program. We will use this assumption while making the
branching program dual input. Now we will describe a new (relaxed) matrix branching program
of length n′ = n · ` and width w and evaluation function inp1 as follows:

- Define inp1(i) = i mod ` for all i ∈ [n].

- For each j ∈ [n], M(j−1)·`+inp(j),b = Bj,b for b ∈ {0, 1}. Rest all matrices are set to Iw×w.

Informally the above transformation can be described as follows: In jth block of ` matrices,
all the matrices are identity matrices apart from the matrices at index inp(j). At this index, we
place the two non-trivial matrices Bj,0 and Bj,1 which help in actual computation.

Claim 2. For any input x ∈ {0, 1}`,
∏n
i=1Bi,xinp(i)

=
∏n′

i=1Mi,xinp1(i)
.

Now we make the above relaxed matrix branching program dual-input, by pairing the input
position used at each index with a dummy input position in an oblivious manner which is
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independent of the formula. For convenience of notation, we will also ensure that each pair of
input bits is used as the selector same number of times. We will ensure that at any index of the
RMBP, the two input positions used are distinct, i.e. inp1(i) 6= inp(i) for any i ∈ [`]. We define
the evaluation function inp2 as follows: Consider i of the form k1`(`− 1) + k2`+ k3 then

inp2(i) = ((k2 + k3) mod `) + 1

Theorem 3. For any formula F of size s taking inputs of length `, there exists an oblivious
dual input relaxed matrix branching program BP = (inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1}) with
length n ≤ ((s+ 2) + (`− 2)) · ` and width w ≤ 2s+ 4.

Remark 1. Note that for obfuscation we require that the length and the width of the relaxed
matrix branching program to be determined by the size of the formula itself. Hence, we will use
n = ((s+ 2) + k) · ` such that k ≤ ` − 2 and (s + 2 + k) is a multiple of ` − 1 for the analysis
above to go through, and w = 2s + 4. We will obtain this by padding the RMBP obtained with
identity matrices.

Also, consider the class of keyed formulas, namely a class of formulas of the form fz(x) =
φ(z, x) such that φ is a formula of size s. Note that while obfuscating this class of formulas, we
only need to hide only the key z. The formula description φ is public. Hence, in this case, we
do not require the matrix branching program to be input oblivious. Thus, we do not incur the
additional factor of ` in the length of the matrix branching program and get the following.

Theorem 4. For any keyed formula fz = φ(z, ·) of size s taking inputs of length `, there exists
an dual input relaxed matrix branching program BP = (inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1}) with
length n ≤ (s+ 2) and width w ≤ 2s+ 4.

Looking ahead, to obfuscate fz, we will obfuscate φ(·, ·), and for indices in the matrix
branching program which are indexed by key z, we will give out only the matrices which are
consistent with z.

4 Randomization of Relaxed Matrix BPs

In this section, we describe how to randomize the matrices in the relaxed matrix branching
program described in Section 3.1. We will do this in two steps via procedures randBP and
randBP′.

Though the procedure randBP to randomize our matrices is very similar to the Kilian’s ran-
domization (also used in [GGH+13b, BGK+14]), the way we will simulate these matrices will
deviate from that of Kilian. This is because in standard matrix branching programs, depending
on the output of the function on x, branching program evaluates to one of the two fixed matri-
ces: Paccept or Preject. In our case, we have a relaxed notion of the matrix branching programs,
in which we can only fix of entry of the final matrix (see Lemma 2).

Notation. We will denote the relaxed matrix branching program as BP = (inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1})

with length n, width w and input of ` bits. For any x ∈ {0, 1}`, define Px :=
n∏
i=1

Bi,xinp1(i),xinp2(i)

and BP
∣∣∣
x

:= ({Bi,xinp1(i),xinp2(i)
}i∈[n]). Let e1, ew ∈ {0, 1}w be such that e1 = (1, 0, 0, . . . , 0) and

ew = (0, 0, . . . , 0, 1). For notational convience, let e1 be a row vector and ew we a column vector.

Procedure randBP. The input to the randomization procedure is an oblivious dual-input
RMBP BP = (inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1}) of length n, width w and input of ` bits.

randBP(BP):
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- Pick n+ 1 random full-rank matrices R0, . . . , Rn ∈ Zw×wp .

- Compute the matrices B̃i,b1,b2 = Ri−1 ·Bi,b1,b2 ·R−1i for all i ∈ [n] and b1, b2 ∈ {0, 1}.
- Finally, compute s̃ = e1 ·R−10 and t̃ = Rn · ew.

- Output B̃P =
(
s̃,
{
B̃i,b1,b2

}
i∈[n],b1,b2∈{0,1}

, t̃
)

.

Claim 3. For inputs x ∈ {0, 1}`, following holds

s̃ ·
n∏
i=1

B̃i,xinp1(i),xinp2(i)
· t̃ =

(
n∏
i=1

Bi,xinp1(i),xinp2(i)

)
[1, w].

Proof. Claim holds as follows:

s̃ ·
n∏
i=1

B̃i,xinp1(i),xinp2(i)
· t̃ = s̃ ·R0 ·

n∏
i=1

Bi,xinp1(i),xinp2(i)
·R−1n · t̃ =

(
n∏
i=1

Bi,xinp1(i),xinp2(i)

)
[1, w],

where the last equality holds by using s̃ = e1 ·R−10 and t̃ = Rn · ew.

Simulator SimBP for randBP. Next, we describe the simulator SimBP which simulates

the output of randBP for any input x. More formally, let randBP(BP)
∣∣∣
x

be defined as (s̃,

{B̃i,xinp1(i),xinp2(i)
}i∈[n], t̃). We describe a simulator SimBP which takes as input (1s, Px[1, w]) and

outputs a tuple which is identically distributed to randBP(BP)
∣∣∣
x
. Recall that s is the size of the

formula.
Before we describe SimBP we will first recall the following theorem. We use the simulator

used in the following theorem in our construction of SimBP. Like Barak et al. [BGK+14], we
adapt the theorem for dual-input RMBPs.

Theorem 5. ([Kil88]) Consider a dual-input branching program BP =
{
inp1, inp2, {Bi,xinp1(i),xinp2(i)

}i∈[n]
}

.

There exists a PPT simulator SimK such that for every x ∈ {0, 1}l,

{R0, {Ri−1Bi,xinp1(i),xinp2(i)
R−1i }i∈[n], Rn} ≡ SimK(1s,BP(x))

We are now ready to describe SimBP.

SimBP(1s, Px[1, w]):

- Compute the length n and width w of the oblivious dual input RMBP for any formula of
size s using Theorem 3 (see Remark 1).

- If Px[1, w] 6= 0, define the matrix A as A := Px[1, n] · Iw×w. Else, A := “mirror-image” of
Iw×w

5.

- Run SimK(1n, A) to obtain full-rank matrices R0, R1, . . . , Rn+1 ∈ Zw×wp such that∏
i≥0Ri = A. Note that SimK is the simulator for Kilian’s randomization as defined in

Theorem 5.

- Let R̂0 = e1 ·R−10 and R̂n+1 = Rn+1 · ew.

- Output (R̂0, R1, . . . , Rn, R̂n+1).

We will prove the following theorem.

5The “mirror-image” of Iw×w is a w × w matrix with 1’s only in entries of the form [i, w − i+ 1] for i ∈ [w].
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Theorem 6. Consider an oblivious dual-input RMBP BP = (inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1})
of length n, width w and input of ` bits. Then for every x ∈ {0, 1}`,{

randBP(BP)
∣∣∣
x

}
≡
{

SimBP(1s, Px[1, w])
}
.

Before we prove the theorem, we first state the following lemma from Cramer et al. [CFIK03]
that will be useful to prove the theorem. We describe the proof for completeness sake.

Lemma 3. For any x, y ∈ Zwp \{0} and a full rank matrix M ∈ Zw×wp there exist full rank

matrices X,Y ∈ (Zp)n×n such that the first row of X is xT , the first column of Y is y, and
XMY depends only on xTMy.

Proof. We will consider two cases depending on whether xTMy is either zero or non-zero. When
xTMy 6= 0, we will find X and Y such that XMY = (xTMy) · Iw×w, else we will find X and Y
such that XMY = “mirror-image” of Iw×w.

Case (i). xTMy 6= 0: Let xTMy be denoted by c. We will now construct a matrix X such that
the first row of X is xT . Further, X needs to satisfy the condition that XMy is cej . To achieve
this, we will fix the first row of X to be xT and then we will pick the remaining rows such that
it forms a basis for the space which is orthogonal to My. Since, xT y 6= 0, we have the fact that
xT is not in this space and hence X is a full rank matrix. We will construct Y as follows. We
will fix the first column of Y to be y and then we will generate the rest of the columns of Y
so that Y = M−1X−1(c · I). Since X and M are full-rank matrices, inverses are well-defined.
From this, it follows that XMY = c · I.

Case (ii). xTMy = 0: Unlike the previous case, here xT is in the space orthogonal to My. We
construct X as follows. We fix the first row of X to be xT . The remaining w − 2 rows of X
are picked so that with x they form a basis of the space orthogonal to My. We now pick the
last row of X to be such that XMy = 1. Observe that X is a full rank matrix. We will now
construct Y as follows. The first column of Y is fixed to be y and then we pick the rest of the
columns of Y such that Y = M−1X−1J , where J is the “mirror-image” of I.

We will denote the procedure described above by Extend. In more detail, Extend takes as input
(xTMy, x, y,M), where x, y and M are as defined in the above lemma and outputs X and Y
such that XMY is (xTMy) · Iw×w if xTMy 6= 0 else it is “mirror-image” of I.

We will now prove Theorem 6.

Proof of Theorem 6. In order to prove the theorem, we will define a sequence of hybrids such
that the first hybrid is the real experiment (which is randBP) while the last hybrid is the sim-
ulated experiment (which is SimBP). We will then show that the output distribution of each
hybrid is identical to the output distribution of the previous hybrid which will prove the theorem.

Hybrid0: This is the same as the real experiment. That is, on input BP and x it first executes

randBP(BP) to obtain B̃P. It then outputs B̃P
∣∣∣
x

= (s̃, {B̃i,xinp1(i),xinp2(i)
}i∈[n], t̃)

Hybrid1: We will describe Hybrid1 as follows. The input to Hybrid1 is B̂P = BP
∣∣
x

= ({Bi,xinp1(i),xinp2(i)
}).

Let Mi = Bi,xinp1(i),xinp2(i)
.

Hybrid1

(
B̂P = (M1, . . . ,Mn)

)
:

- Pick n+ 1 random full-rank matrices R0, . . . , Rn ∈ Zw×wp .
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- Compute the matrices M̃i = Ri−1 ·Mi ·R−1i for i ∈ [n].

- Finally, compute s̃ = e1 ·R−10 and t̃ = Rn · ew.

- Output
(
s̃, {M̃i}i∈[n], t̃

)
.

It can be seen that the output distribution of this hybrid is identical to the output distribution
of the previous hybrid Hybrid0. This is because, picking the matrices corresponding to the input
x and then randomizing it (as in Hybrid1) yields the same distribution as first randomizing the
RMBP and later picking the matrices corresponding to the input x. Note that for any i ∈ [n]
all Bi,b1,b2 , where b1, b2 ∈ {0, 1} are randomized in the same way using Ri−1 and Ri.

Hybrid2: Hybrid2 is same as Hybrid1 except the way we compute s̃ and t̃. The input to Hybrid2,

like the previous hybrid, is B̂P = BP
∣∣
x
.

Hybrid2

(
B̂P = (M1, . . . ,Mn)

)
:

- Pick n+ 1 random full-rank matrices R0, . . . , Rn ∈ Zw×wp .

- Compute the matrices M̃i = Ri−1 ·Mi ·R−1i for i ∈ [n].

- Define P :=
n∏
i=1

Mi and c := e1 · P · ew.

- Execute Extend on input (c, e1, ew, P ) to obtain w × w matrices S and T as described in
Lemma 3. Compute Ŝ = SR−10 and T̂ = RnT . Finally, compute s̃ = e1Ŝ and t̃ = T̂ ew.

- Output (s̃, {M̃i}i∈[n], t̃).
We claim that this is identical to the previous hybrid. Hybrid1 and Hybrid2 differ only in the

way s̃ and t̃ are computed. Hence, all we need to show is that the value of s̃ and t̃ is identical
in both the hybrids.

In Hybrid2, s̃ = e1Ŝ = e1 · (SR−10 ) = (e1 · S) ·R−10 = xT ·R−10 , where x is the first row of S.
But the first row of S is eone and hence, s̃ = e1 · R−10 , which is same as the value in Hybrid1.
Similarly, we can show this for t̃.

Observation: Before we describe Hybrid3, note that in Hybrid2, c = P [1, w]. Then it follows from
Lemma 3 that if c 6= 0, S · P · T = c · I, else S · P · T = J , where J is the “mirror-image” of I.

Hybrid3: This is same as the simulated experiment. That is, it takes as input 1s and Px[1, w]
and then executes SimBP(1s, Px[1, w]). The output of Hybrid3 is the output of SimBP.

Lemma 4. The output distribution of Hybrid2 is identical to the output distribution of Hybrid3.

Proof. In order to prove the claim, we use the Kilian’s theorem for simulating randomized
RMBPs (see Theorem 5). We first observe that both Hybrid2 and SimBP execute the following two
steps. They compute n+2 matrices and then have a common step where both of them truncate
the first and the last matrix. In Hybrid2 this sequence of matrices is (SR−10 , {Ri−1MiR

−1
i }, RnT ).

In Hybrid3, this sequence of matrices is SimK(1n, A) with A = c · Iw×w if Px[1, w] = c 6= 0 else A
is a “mirror-image” of Iw×w. So it suffices to show that these distributions are identical. That
is,

(SR−10 , {Ri−1MiR
−1
i }, RnT ) ≡ SimK(1n, A)

This in turn follows directly from Theorem 5.

This shows that the output distribution of Hybrid0 is identically distributed to Hybrid3. This
completes the proof of Theorem 6.
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Proceduce randBP′. We now describe how to further randomize the output of randBP and
then show to simulate this having just the output of BP. The input to randBP′ is randomized

relaxed matrix branching program B̃P = (s̃, {B̃i,b1,b2}i∈[n],b1,b2∈{0,1}, t̃).

Procedure randBP′(B̃P):

- It picks random and independent non-zero scalars {αi,b1,b2 ∈ Zp}i∈[n],b1,b2∈{0,1} and com-

putes Ci,b1,b2 = αi,b1,b2 · B̃i,b1,b2 . It outputs (s̃, {Ci,b1,b2}i∈[n],b1,b2∈{0,1}, t̃).

Before we describe how to simulate the output of randBP′, we will prove a claim about
this procedure. Let M1,M2, . . . ,Mn be a given set of matrices. Let (N1, . . . , Nn) be the out-
put of randBP′(M1,M2, . . . ,Mn). We have that N1 = α1M1, N2 = α2M2, . . . , Nn = αnMn,
where α1, α2, . . . , αn are non-zero scalars chosen uniformly at random from Zp. Define c =
(
∏
iNi)[1, w].

Claim 4. If (
∏
iMi) [1, w] 6= 0, then c is distributed uniformly in Z∗p.

Proof. Since c = (
∏
iNi)[1, w] = (

∏
i αiMi)[1, w] = (

∏
i αi) (

∏
iMi) [1, w]. Since each αi is

chosen uniformly at random from Z∗p,
∏
i αi is distributed uniformly in Z∗p. Hence, when

(
∏
iMi) [1, w] 6= 0, c is distributed uniformly in Z∗p.

Simulator Sim′BP. Next, we describe the simulator Sim′BP which takes as input (1s,BP(x)),
where s is the size of the formula and x ∈ {0, 1}`.

Sim′BP(1s,BP(x)):

- If BP(x) = 0, output whatever SimBP(1s, 0) outputs. Else, pick a α uniformly at random
from Z∗p and output whatever SimBP(1s, α) outputs.

Now, we prove the following.

Theorem 7. Consider an oblivious dual-input RMBP BP = (inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1})
of length n, width w and input of ` bits. Then there exists a PPT simulator Sim′BP such that for
every x ∈ {0, 1}`, {

randBP′(randBP(BP))
∣∣∣
x

}
≡
{

Sim′BP(1s,BP(x))
}
.

Proof. Let us denote BP
∣∣∣
x

by (M1,M2, . . . ,Mn). Observe that{
randBP′(randBP(BP))

∣∣∣
x

}
≡
{
randBP(randBP′(M1,M2, . . . ,Mn))

}
.

This holds by just observing that applying randBP′(randBP(·)) operation on the relaxed matrix
branching program and then evaluating the result on an input x is equivalent to first evaluating
the relaxed matrix branching program on an input x and then applying the randBP′(randBP(·))
operation. Now, we need to show that{

randBP(randBP′(M1,M2, . . . ,Mn))
}
≡
{
Sim′BP(1s,BP(x))

}
.

We will show that for any tuple V , the probability of output being V is identical in the real
and simulated experiments above. We begin by calculating the probability of V in the real
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experiment, where probability is taken over the random coins of both randBP and randBP′. Let
V2 = M1,M2, . . . ,Mn.

Pr[randBP(randBP′(V2)) = V ] =
∑
V1

Pr[randBP(V1) = V ∧ randBP′(V2) = V1]

=
∑
V1

Pr[randBP(V1) = V ] · Pr[randBP′(V2) = V1]

Now let V1 = (N1, N2, . . . , Nn) and βV1
denote (

∏
i

Ni)[1, w]. Then by Theorem 6, Pr[randBP(V1) =

V ] = Pr[SimBP(1s, βV1
) = V ]. Substituting in above, we get

Pr[randBP(randBP′(V2)) = V ] =
∑
V1

Pr[SimBP(1s, βV1
) = V ] · Pr[randBP′(V2) = V1]

=
∑
α

∑
V1s.t.βV1

=α

Pr[SimBP(1s, α) = V ] · Pr[randBP′(V2) = V1]

=
∑
α

Pr[SimBP(1s, α) = V ] ·
∑

V1s.t.βV1
=α

Pr[randBP′(V2) = V1]

We have two cases based on whether BP(x) = 1 or BP(x) = 0.

- BP(x) = 0: This case is easy to handle. Note that in this case,
∏
iMi[1, w] = 0 = βV1

.
Hence, in the above expression,

∑
V1s.t.βV1

=α Pr[randBP′(V2) = V1] = 1 for βV1 = 0 and 0

otherwise. Substituting in the above expression we get,

Pr[randBP(randBP′(V2)) = V ] = Pr[SimBP(1s, 0) = V ]

= Pr[Sim′BP(1s,BP(x)) = V ]

- BP(x) = 1: In this case,
∏
iMi[1, w] 6= 0. By Claim 4,

∑
V1s.t.βV1

=α Pr[randBP′(V2) = V1] =
1
p−1 . Substituting in above equation we get,

Pr[randBP(randBP′(V2)) = V ] =
1

p− 1
·
∑
α

Pr[SimBP(1s, α) = V ]

= Pr[Sim′BP(1s,BP(x)) = V ]

5 The Ideal Graded Encoding Model

In this section, we describe the ideal graded encoding model. This section has been taken almost
verbatim from [BGK+14]. All parties have access to an oracleM, implementing an ideal graded
encoding. The oracleM implements an idealized and simplified version of the graded encoding
schemes from [GGH13a]. The parties are provided with encodings of various elements at different
levels. They are allowed to perform arithmetic operations of addition/multiplication and testing
equality to zero as long as they respect the constraints of the multilinear setting. We start by
defining an algebra over the elements.
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Definition 5. Given a ring R and a universe set U, an element is a pair (α, S) where α ∈ R is
the value of the element and S ⊆ U is the index of the element. Given an element e we denote
by α(e) the value of the element, and we denote by S(e) the index of the element. We also define
the following binary operations over elements:

• For two elements e1, e2 such that S(e1) = S(e2), we define e1 + e2 to be the element
(α(e1) + α(e2), S(e1)), and e1 − e2 to be the element (α(e1)− α(e2), S(e1)).

• For two elements e1, e2 such that S(e1) ∩ S(e2) = ∅, we define e1 · e2 to be the element
(α(e1) · α(e2), S(e1) ∪ S(e2)).

Next, we describe the oracleM. M is a stateful oracle mapping elements to “generic” repre-
sentations called handles. Given handles to elements, M allows the user to perform operations
on the elements. M will implement the following interfaces:

Initialization. M will be initialized with a ring R, a universe set U, and a list L of initial
elements. For every element e ∈ L, M generates a handle. We do not specify how the handles
are generated, but only require that the value of the handles are independent of the elements
being encoded, and that the handles are distinct (even if L contains the same element twice).
M maintains a handle table where it saves the mapping from elements to handles. M outputs
the handles generated for all the elements in L. After M has been initialized, all subsequent
calls to the initialization interface fail.

Algebraic operations. Given two input handles h1, h2 and an operation ◦ ∈ {+,−, ·},M
first locates the relevant elements e1, e2 in the handle table. If any of the input handles does
not appear in the handle table (that is, if the handle was not previously generated by M) the
call to M fails. If the expression e1 ◦ e2 is undefined (i.e., S(e1) 6= S(e2) for ◦ ∈ {+,−}, or
S(e1) ∩ S(e2) 6= ∅ for ◦ ∈ {·}) the call fails. Otherwise, M generates a new handle for e1 ◦ e2,
saves this element and the new handle in the handle table, and returns the new handle.

Zero testing. Given an input handle h,M first locates the relevant element e in the handle
table. If h does not appear in the handle table (that is, if h was not previously generated by
M) the call to M fails. If S(e) 6= U, the call fails. Otherwise, M returns 1 if α(e) = 0, and
returns 0 if α(e) 6= 0.

6 Straddling Set System

In this section, we describe a straddling set system which is same as the one considered in
[BGK+14]. Then we will prove two combinatorial properties of this set system, which will be
very useful in proving the VBB security of our scheme.

Definition 6. A straddling set system Sn = {Si,b : i ∈ [n], b ∈ {0, 1}} with n entries over the
universe U = {1, 2, . . . , 2n− 1} is as follows:

S1,0 = {1}, S2,0 = {2, 3}, . . . , Si,0 = {2i−2, 2i−1}, . . . , Sn−1,0 = {2n−4, 2n−3}, Sn,0 = {2n−2, 2n−1}

S1,1 = {1, 2}, S2,1 = {3, 4}, . . . , Si,1 = {2i−1, 2i}, . . . , Sn−1,1 = {2n−3, 2n−2}, Sn,1 = {2n−1}

Claim 5 (Two unique covers of universe). The only exact covers of U are {Si,0}i∈[n] and
{Si,1}i∈[n].

Proof. Since any exact cover of U needs to pick a set with element 1, it either contains the set
S1,0 or S1,1. Let C be a cover of U containing S1,0. Then, we prove that Si,0 ∈ C,∀i ∈ [n]. We
will prove this via induction on i. It is trivially true for i = 1. Let us assume that the statement
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is true for i, and prove the statement for i+ 1. There are only two sets, namely Si+1,0 and Si,1
which contain the element 2i ∈ U. Since, by induction hypothesis, Si,0 ∈ C and Si,0 ∩ Si,1 6= ∅,
Si+1,0 ∈ C in order to cover all the elements in U. This shows that there is a unique cover of U
containing S1,0.

Similarly, we can show that there is a unique cover of U containing the set S1,1 which is
{Si,1}i∈[n]. As mentioned before, any exact cover of U contains either S1,0 or S1,1 in order to
cover the element 1 ∈ U. This proves the claim.

Claim 6 (Collision at universe). Let C and D be non-empty collections of sets such that C ⊆
{Si,0}i∈[n], D ⊆ {Si,1}i∈[n], and

⋃
S∈C S =

⋃
S∈D S, then following must hold:

C = {Si,0}i∈[n] , D = {Si,1}i∈[n].

Proof. We will prove this claim by contradiction. Let us assume that C ⊂ {Si,0}i∈[n]. Then
there exists a maximal sub-interval [i, j] ⊂ [n] such that Sk,0 ∈ C for all i ≤ k ≤ j but either (1)
i > 1 and Si−1,0 /∈ C or (2) j < n and Sj+1,0 /∈ C.

(1) Since (2i − 2) ∈ Si,0 ∈ C and
⋃
S∈C S =

⋃
S∈D S, it should be the case that Si−1,1 ∈ D.

Now by a similar argument, since (2i− 3) ∈ Si−1,1 ∈ D and
⋃
S∈C S =

⋃
S∈D S, it should

be the case that Si−1,0 ∈ C. This contradicts the assumption that i > 1 and Si−1,0 /∈ C.
(2) Since (2j− 1) ∈ Sj,0 ∈ C and

⋃
S∈C S =

⋃
S∈D S, it should be the case that Sj,1 ∈ D. Now

by a similar argument, since (2j) ∈ Sj,1 ∈ D and
⋃
S∈C S =

⋃
S∈D S, it should be the case

that Sj+1,0 ∈ C. This contradicts the assumption that j < n and Sj+1,0 /∈ C.
Since C = {Si,0}[n], it has to be the case that D = {Si,1}[n].

7 Obfuscation in the Ideal Graded Encoding Model

In this section, we describe our VBB obfuscator O for polynomial sized formulae in the ideal
graded encoding model.

Input. The input to our obfuscator O is a polynomial size formula F which takes ` bit inputs.
O first converts it to a layered branching program as described in Section 3.1. Next, it converts
this to a relaxed matrix branching program as described in Section 3.2. Finally, it converts it
to a dual-input oblivious relaxed matrix branching program BP of length n and width w, i.e.

BP = (inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1})

such that inp1 and inp2 are evaluation functions mapping [n]→ [`], each Bi,b1,b2 ∈ {0, 1}w×w is
a full rank matrix and the following conditions are satisfied

1. For each i ∈ [n], inp1(i) 6= inp2(i).

2. Each pair of input bits is paired at some index of BP. That is, for each (j, k) ∈ [`] × [`]
there exists an index i such that either inp1(i) = j and inp2(i) = k or inp1(i) = k and
inp2(i) = j.

3. Each input bit is used for exactly `′ indices of BP. More precisely, for each j ∈ [`], define
ind(j) = {i ∈ [n] : inp1(i) = j} ∪ {i ∈ [n] : inp2(i) = j}. Then this condition implies
that for all j ∈ [`], |ind(j)| = `′.

Note that the last condition is not necessary for our proof to go through. Yet we assume it
for the ease of notation in our proof.

Also observe from Section 3 that evaluation functions inp1, inp2, length n and width w of the
RMBP depend only on the size s of the formula F .
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Randomizing the relaxed matrix branching program BP. The obfuscator O ran-
domizes the branching program in two steps using procedures randBP and randBP′ described in
Section 4. It begins by sampling a large enough prime p of Ω(n) bits.

1. It invokes the procedure randBP on the relaxed matrix branching program BP obtained

above to get
(
s̃,
{
B̃i,b1,b2

}
i∈[n],b1,b2∈{0,1}

, t̃
)

. Recall that s̃, t̃ ∈ Zwp and B̃i,b1,b2 ∈ Zw×wp for

all i ∈ [n], b1, b2 ∈ {0, 1}.
2. It picks random and independent non-zero scalars {αi,b1,b2 ∈ Zp}i∈[n],b1,b2∈{0,1}. Define

Ci,b1,b2 = αi,b1,b2 · B̃i,b1,b2 .

The output of the randomization phase is (s̃, {Ci,b1,b2}i∈[n],b1,b2∈{0,1}, t̃).6

The final obfuscation of the formula F will consists of ideal encodings of these elements with
respect to a carefully chosen set system. Next, we describe how these sets are chosen.

Initialization. Consider a universe set U. Let Us,Ut,U1,U2, . . . ,U` be partitions of U such
that for all j ∈ [`], |Uj | = (2`′ − 1). That is, Us,Ut,U1,U2, . . . ,U` are disjoint sets and

U = Us ∪ Ut ∪
⋃̀
j=1

Uj .

Now let Sj be the straddling set system (defined in Section 6) over the elements in Uj . Note
that Sj will have `′ entries which is same as |indj| for each j ∈ [`]. We now associate the entries
in the straddling set system Sj with the indices of BP which depend on xj , i.e. the set ind(j).
More precisely, let

Sj = {Sjk,b : k ∈ ind(j), b ∈ {0, 1}}.

Next, we associate a set to each element output by the randomization step. Recall that in a
dual-input relaxed matrix branching program, each step depends on two fixed bits in the input
defined by the evaluation functions inp1 and inp2. For each step i ∈ [n], b1, b2 ∈ {0, 1}, we define
the set S(i, b1, b2) using the straddling sets for input bits inp1(i) and inp2(i) as follows:

S(i, b1, b2) := S
inp1(i)
i,b1

∪ S inp2(i)
i,b2

.

We will use the set S(i, b1, b2) to encode the elements of Ci,b1,b2 . We will use the sets Us and
Ut to encode the elements in s̃ and t̃ respectively. More formally, O does the following:
O initializes the oracleM with the ring Zp and universe set U. Then asks for the encodings

of the following elements: {
(s̃[k],Us), (t̃[k],Ut)

}
k∈[w]

{(Ci,b1,b2 [j, k], S(i, b1, b2)}i∈[n],b1,b2∈{0,1},j,k∈[w]

O receives a list of handles for these elements from M. Let [β]S denote the handle to
(β, S). For a matrix M , let [M ]S denote a matrix of handles such that [M ]S [j, k] is a handle for
(M [j, k], S). Thus, O receives the following handles.

[s̃]Us
, [t̃]Ut

,
{

[Ci,b1,b2 ]S(i,b1,b2)
}
i∈[n],b1,b2∈{0,1}

6This step is identical to the procedure randBP′ described in Section 4.
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Output. O outputs these handles as the obfuscation for the formula F . Given access to the
oracle M, O(F ) can add and multiple handles and test for zero at the universe set.

Now we state our main theorems as follows:

Theorem 8. There exists a obfuscator O which is a virtual black box obfuscator in the idealized
model for the class of all polynomial sized boolean formulae according to Definition 3.

Theorem 9. There exists a obfuscator O which is a virtual black box obfuscator in the idealized
model for the class of all polynomial sized relaxed matrix branching programs (Section 2.3)
according to Definition 3.

Evaluation of O(F ) on input x. Recall that two handles corresponding to the same set
S can be added. If [β]S and [γ]S are two handles, we denote the handle for (β + γ, S) obtained
from M on addition query by [β]S + [γ]S . Similarly, two handles corresponding to S1 and S2

can be multiplied if S1 ∩ S2 = ∅. We denote the handle for (β · γ, S1 ∪ S2) obtained from M
on valid multiplication query on [β]S1

and [γ]S2
by [β]S1

· [γ]S2
. Similarly, we denote the handle

for (M1 ·M2, S1 ∪ S2) by [M1]S1 · [M2]S2 .
Given x ∈ {0, 1}`, to compute F (x), O(F ) computes the handle for the following expression:

h = [s̃]Us ·
n∏
i=1

[
Ci,xinp1(i),xinp2(i)

]
S(i,xinp1(i),xinp2(i))

· [t̃]Ut

Next, O(F ) uses the oracle M to do a zero-test on h. If the zero-test returns a 1, then O(F )
outputs 0 else it outputs 1.

In the next section, define bi1 = xinp1(i) and bi2 = xinp2(i).

Correctness of Evaluation. We will first assume that none of the calls to M fail and
show that O(F ) on x outputs 1 iff F (x) = 1. From the description of the evaluation above,
O(F ) outputs 0 on x if and only if

0 = s̃ ·
n∏
i=1

Ci,bi1,bi2 · t̃

= s̃ ·
n∏
i=1

αi,bi1,bi2 · B̃i,bi1,bi2 · t̃

=

(
(e1 ·R−10 ) ·

n∏
i=1

R(i−1) ·Bi,bi1,bi2 ·R
−1
i · (Rn · ew)

)
·
n∏
i=1

αi,bi1,bi2

=

(
e1 ·

n∏
i=1

Bi,bi1,bi2 · ew

)
·
n∏
i=1

αi,bi1,bi2

= Px[1, w] ·
n∏
i=1

αi,bi1,bi2

From Lemmas 1 and 2, we have that Px[1, w] = 0 if and only if F (x) = 0. Hence, using the
fact that each αi,bi1,bi2 is a non-zero scalar, the correctness of evaluation holds.

Now we are left to show that no call to oracleM fails. To show that none of the oracle calls
made while computing the handle h fail, we need to show that the following sets are disjoint for
any x ∈ {0, 1}`: Us,Ut, {S(i, bi1, b

i
2)}i∈[n].

Note that from the construction of the straddling set system, it holds that for any Sj , and any
two i, i′ ∈ ind(j) and any b ∈ {0, 1}, Sji,b∩S

j
i′,b = ∅. Now disjointness of Us,Ut, {S(i, bi1, b

i
2)}i∈[n]
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holds by using how each S(i, bi1, b
i
2) was constructed and the fact that Us,Ut,U1, . . . ,U` are

disjoint.
To show that the zero testing call to the oracle M does not fail we need to show that the

index set of the elements corresponding to h is the entire universe. Namely, we need to show
that (

n⋃
i=1

S(i, bi1, b
i
2)

)
∪ Us ∪ Ut = U ,

which follows from the following equalities:

⋃
i∈[n]

S(i, bi1, b
i
2) =

⋃
i∈[n]

S
inp1(i)

i,bi1
∪ S inp2(i)

i,bi2
=
⋃
j∈[`]

⋃
k∈ind(j)

Sjk,xj
=
⋃̀
j=1

Uj .

where the first equality follows from definition of S(i, b1, b2), second and third equality follow
from how the straddling set system Sj corresponding to xj is constructed.

8 Proof of Virtual Black Box Obfuscation in the Idealised
Graded Encoding Model

In this section, we prove that the obfuscator O described in Section 7 is a good VBB obfuscator
for polynomial sized formulas in the ideal graded encoding model.

Let F = {F`}`∈N be a formula class such that every formula in F` is of size O(`). We assume
WLOG that all formulas in F` are of the same size (otherwise the formula can be padded). It
follows from Theorem 3 that for any formula F there exists a RMBP represented in the form
of O(|F |) matrices each of width O(|F |). Hence, there exists linear functions n(·) and w(·)
such that O in Section 7 outputs a dual-input oblivious RMBP of size n(|F |) and width w(|F |)
computing on `(|F |) inputs. Hence, O satisfies the polynomial slowdown requirement. We also
showed that O satisfies the functionality requirement and always computes the correct output
(see Section 7). We are now left to show that O satisfies the virtual black box property.

The Simulator Sim. Here we construct a simulator Sim that takes as input 1|F | and de-
scription of the adversary A, and is given oracle access to the formula F . This simulator is
required to simulate the view of the adversary.

The simulator begins by emulating the obfuscator O on F . First, the simulator needs to
compute the RMBP BPF and the matrices Bi,b1,b2 corresponding to the branching program.
Note that the simulator is only given oracle access to the formula F and has no way to compute
these matrices. Thus, Sim initializes the oracle M with formal variables. Also note that the
simulator can compute the evaluation functions inp1 and inp2 and also the system used for
encodings since the RMBPs are oblivious. This would be important when Sim simulates the
oracle queries of A.

More formally, we extend the definition of an element to allow for values that are formal
variables and also expressions over formal variables, instead of just being ring elements. When we
perform an operation ◦ on two elements e1 and e2, that contain formal variables, the resultant
element e1 ◦ e2 is a corresponding arithmetic expression over formal variables. This way we
represent formal expressions as arithmetic circuits. We denote by α(e) the arithmetic expression
over formal variables for element e. An element is called basic element if the corresponding
arithmetic circuit has no gates, i.e. either it is a constant or a formal variable. We say that e′

is a sub-element of e if the circuit corresponding to e′ is a sub-circuit of the circuit for e.
Next, Sim will emulate the oracle M that O accesses as follows: Sim will maintain a table

of handles and corresponding level of encodings that have been initialized so far. As mentioned
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before, Sim will initialize the oracleM with formal variables. Note that Sim can emulate all the
interfaces of M apart from the zero-testing. Note that O does not make any zero-test queries.
Hence, the simulation of the obfuscator O is perfect.

When Sim completes the emulation of O it obtains a simulated obfuscation Õ(F ). Now
Sim has to simulate the view of the adversary on input Õ(F ). Our Sim will use the same
handles table for emulating the oracle calls of both O and A. Hence, Sim can perfectly emulate
all the oracle calls made by A apart from zero-testing. The problem with answering zero-test
queries is that Sim cannot zero-test the expressions involving formal variables. Zero-testing is
the main challenge for simulation, which we describe in the next section. Since the distribution
of handles generated during the simulation and during the real execution are identical, and since
the obfuscation consists only of handles (as opposed to elements), we have that the simulation
of the obfuscation Õ and the simulation of M’s answers to all the queries, except for zero-test
queries, is perfect.

Simulating zero testing queries. In this part we describe how our simulator handles the
zero-test queries made by A. This part is the non-trivial part of the analysis for the following
reason. The handle being zero-tested is an arithmetic circuit whose value depends on the formal
variables which are unknown to the simulator. The real value for these formal variables would
depend on the formula F . At a very high level, we show that these values can be simulated
given oracle access to F .

There are two steps to zero-testing an element. Note that the adversary may have combined
the handles provided in very convoluted manner. More precisely, A may have computed sub-
expressions involving multiple inputs and hence, the value of the element being zero-tested may
depend on formal variables which correspond to using multiple inputs. Hence, the first step is
to decompose this elements into “simpler” elements that we call single-input elements. As the
name suggests, any single input element’s circuit consists of formal variables corresponding to
a distinct input x ∈ {0, 1}`. Namely, it only depends on formal variables in matrices Ci,b1,b2
such that b1 = xinp1(i) and b2 = xinp2(i). In the first step we show that any element e, such
that S(e) = U which is zero-tested can be decomposed into polynomial number of single input
elements.

In the second step, Sim simulates the value of each of the single input elements obtained
via decomposition independently. More formally, we use Theorem 7 to show that value of each
single-input element can be simulated perfectly. But we run into the following problem. We
cannot simulate the value of all the single input elements together as these have correlated
randomness of the obfuscator. Instead we show that it suffices to zero-test each single-input
element individually. For this we use the fact that each of the matrix B̃i,b1,b2 was multiplied
by αi,b1,b2 . Using this we prove that value of each single input element depends on product
of different α’s which is determined by the input being used. Now, we use the fact that the
probability that A creates an element such that non-zero value of two single input elements
cancel each other is negligible. Therefore, it holds that element is zero iff each of the single
input elements are zero independently.

8.1 Decomposition to Single-Input Elements

Next we show how every element can be decomposed into polynomial number of single-input
elements. We start by introducing some notation.

For every element e, we will assign an input-profile Prof(e) ∈ {0, 1, ∗}`∪{⊥}. Intuitevely, if e
is a sub-expression in the evaluation of the obfuscated program on some input x ∈ {0, 1}`, then
Prof(e) is used to represent the partial information about x which can be learnt from formal
variables which occur in e. For example, we say that Prof(e)j is consistent with the bit b if there
exists a basic sub-element e′ of e such that S(e′) = S(i, b1, b2) such that inp1(i) = j and b1 = b
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or inp2(i) = j and b2 = b. Next, for every j ∈ [`] we set Prof(e)j = b iff Prof(e)j is consistent
with b and is not consistent with (1 − b). If Prof(e)j is neither consistent with b nor (1 − b),
we set Prof(e)j = ∗. Finally, we set Prof(e) = ⊥ iff there exists a j ∈ [`] such that Prof(e) is
consistent with both b and (1− b). We call e a single-input element iff Prof(e) 6= ⊥. Finally, if
Prof(e) ∈ {0, 1}`, we say that input-profile of e is complete. Otherwise, we say that input-profile
of e is partial.

We also define the partial symmetric operation � : {0, 1, ∗,⊥} × {0, 1, ∗,⊥} → {0, 1,⊥} as
follows: b�∗ = b for b ∈ {0, 1, ∗,⊥}, b�b = b, and b�(1−b) = ⊥ for b ∈ {0, 1}, and ⊥�⊥ = ⊥.
If � is applied to two vectors, it is performed separately for each position.

Next we describe an algorithm D used by Sim to decompose elements into single-input
elements. Parts of this description have been taken verbatim from [BGK+14]. Given an element
e, D outputs a set of single-input elements with distinct input-profiles such that e =

∑
s∈D(e) s,

where the equality between the elements means that their values compute the same function
(it does not mean that the arithmetic circuits that represent these values are identical). Note
that the above requirement implies that for every s ∈ D(e), S(s) = S(e). Moreover, for each
s ∈ D(e), D also computes the input-profile of s recursively.

The decomposition algorithm D outputs a set of elements and their associated input profile
and is defined recursively, as follows:

• Element e is basic: D outputs the singleton set {e}. Let S(e) = S(i, b1, b2). Then Prof(e)
is as follows: Prof(e)inp1(i) = b1, Prof(e)inp2(i) = b2, and Prof(e)j = ∗ for all j ∈ [`], j 6=
inp1(i), j 6= inp2(i).

• Element e is of the form e1 + e2: D computes recursively L1 = D(e1), L2 = D(e2) and
outputs L = L1 ∪ L2. If there exist elements s1, s2 ∈ L with the same input-profile, D
replaces the two elements with a single element s = s1 + s2 and Prof(s) = Prof(s1). It
repeats this process until all the input-profiles in L are distinct and outputs L.

• Element e is of the form e1 · e2: D computes recursively L1 = D(e1), L2 = D(e2). For
every s1 ∈ L1 and s2 ∈ L2, D adds the expression s1 · s2 to the output set L and
sets Prof(s) = Prof(s1) � Prof(s2). D then eliminates repeating input-profiles from L as
described above, and outputs L.

Remark 2. Note that if s = s1·s2 such that Prof(s1)j = 0 and Prof(s2)j = 1, then Prof(s)j = ⊥.
Hence, multiplication gates can lead to an element with invalid input-profile. This observation
will be used often in the later proofs.

The fact that in the above decomposition algorithm indeed e =
∑
s∈D(e) s, and that the

input profiles are distinct follows from a straightforward induction. Now, we prove a set of
claims and conclude that D(e) runs in polynomial time (see Claim 9). We begin by proving a
claim about the relation between the level of encoding of e and a sub-element e′ of e.

Claim 7. If e′ is a sub-element of e, then there exists a collection of disjoint sets C from our
set systems {Sj}j∈[`], Us and Ut such that the sets in C are disjoint with S(e′) and S(e) =
S(e′) ∪

⋃
S∈C S.

The above claim says that if e′ is a sub-element of e, the set corresponding to the encoding
of e can be seen as being derived from the set used for encoding of e′. Intuitively, this is true
because in obtaining e from e′, the set of encoding never shrinks. It remains same with each
addition and increases as union of two disjoint sets with each multiplication. Thus, there would
exist a collection of sets such that S(e) can be written as the union of this collection of disjoint
sets along with the set of e′. In other words, there exists a cover for S(e) which involves the set
S(e′) and some other disjoint sets from our set system.

Proof. (of Claim 7) We will prove this claim by induction on the size of e. If e = 1, i.e. e
is a basic element, then the claim trivially holds. If e = e1 + e2, then either (1) e′ = e or
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(2) e′ is a sub-element of either e1 or e2. In the first case, the claim is trivially true. In the
second case, let wlog e′ be sub-element of e1. Then by induction hypothesis, there exists a
collection of disjoint sets C from our set systems such that the sets in C are disjoint with S(e′)
and S(e1) = S(e′) ∪

⋃
S∈C S. The claim follows by noting that S(e) = S(e1).

Finally, if e = e1 · e2, either (1) e′ = e or (2) e′ is a sub-element of either e1 or e2. In the first
case, the claim is trivially true. In the second case, let wlog e′ be sub-element of e1. Then by
induction hypothesis, there exists a collection of disjoint sets C1 from our set systems such that
the sets in C1 are disjoint with S(e′) and S(e1) = S(e′)∪

⋃
S∈C1 S. Now, for e2 either (1) e2 is a

basic element or (2) there exists a basic sub-element e′′ of e2. In the first case, C = C1 ∪{S(e2)}
since for valid multiplication S(e1) ∩ S(e2) = ∅. In the second case, we apply the induction
hypothesis on e2, e

′′ and get a collection of sets C2 and C = C1 ∪ (S(e′′) ∪ C2). Note that S(e′′)
is a union of two disjoint sets from our set system.

Next, we prove that for elements which can be zero-tested, i.e. elements at the highest
level of encoding, all the elements output by the procedure D are single input elements. In
this direction, we first observe that adding two elements does not create new input-profiles.
That is, only way to create new profiles is to multiply two elements. As noted in Remark 2,
multiplication of two elements can lead to invalid profiles. Here we use the observation that if
e = e1 · e2 has invalid input profile then computations involving e cannot lead to an element at
the universe set and cannot be zero-tested. Here we crucially use the properties of straddling
sets and Claim 7. More formally,

Claim 8. If U = S(e) then all the elements in D(e) are single-input elements. Namely, for
every s ∈ D(e) we have that Prof(s) 6= ⊥.

Proof. We will prove this claim by contradiction. Let us assume that the claim is false. Then
there exists a sub-element ebad of e such that D(ebad) contains an invalid input-profile but
decomposition of all sub-elements of ebad have valid input-profiles. We now do a case analysis
on the structure of ebad.

ebad cannot be a basic sub-element since input-profile of all basic sub-elements is valid. Also,
ebad cannot be of the form e1 + e2 because input-profiles in D(ebad) is a union of input-profiles
in D(e1) and D(e2). Hence, ebad is of the form e1 · e2.

The only way D(ebad) contains an invalid input-profile when all input profiles in D(e1) and
D(e2) are valid is the following: There exists a s1 ∈ D(e1) and s2 ∈ D(e2) such that Prof(s1) 6= ⊥
and Prof(s2) 6= ⊥ but Prof(s1 · s2) = ⊥. Then, wlog there exists j ∈ [`] such that Prof(s1) = 0
and Prof(s2) = 1. From the description of input profiles, there exists a basic sub-element ê1
of s1 such that S(ê1) ∩ Uj = Sjk,0 ∈ Sj for some k ∈ ind(j). Similarly, there exists a basic

sub-element ê2 of s2 such that S(ê2) ∩ Uj = Sjk′,1 ∈ Sj for some k ∈ ind(j).
Intuitively, using Claim 5, we show that there is no way of combining ê1 and ê2 to form a

valid element e such that S(e) ⊇ Uj . For this, we critically use the properties of the straddling
set system and the fact that the set used for encoding only grows as union of two disjoint sets (as
we do more multiplications). Hence, to obtain e using ê1 and ê2, we need to find a collection of
disjoint sets whose union along with S(ê1) and S(ê2) gives U. This is not possible by properties
of straddling sets. More formally, we have the following:

Since, ê1 is a basic sub-element of s1, by Claim 7, there exists a collection C1 such that S(s1) =
S(ê1) ∪

⋃
S∈C1 S. Similarly, there exists a collection C2 such that S(s2) = S(ê2) ∪

⋃
S∈C2 S.

Since (s1 · s2) is a valid multiplication,
(
S(ê1) ∪

⋃
S∈C1 S

)⋃ (
S(ê2) ∪

⋃
S∈C2 S

)
= S(s1 · s2) =

S(e1 · e2) = S(ebad).
Again, since ebad is a sub-element of e, using Claim 7, there exists a collection C such that

S(ebad) and C form a cover for S(e). This implies that there is an exact cover of U using both
Sjk,0 and Sjk′,1 for some k, k′ ∈ ind(j), j ∈ [`]. This is a contradiction to Claim 5 for straddling

set system Sj for Uj .
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Finally, we prove the main claim of this section that D runs in polynomial time. First observe
that only multiplication can create new input profiles. We show that if e is an element of the
form e1 · e2 and D(e) contains a new input-profile then e must itself be a single-input element
(that is, D(e) will be the singleton set {e}). This means that the number of elements in the
decomposition of e is bounded by the number of sub-elements of e, and therefore is polynomial.
To prove the above we first observe that if D(e) is not a singleton, then either D(e1) or D(e2)
are also not singletons. Then we show that if D(e1) contains more than one input-profile then
all input-profiles in D(e1) must be complete. Here again we use the structure of the straddling
set system and therefore the multiplication e1 · e2 cannot contain any new profiles.

Claim 9. D(e) runs in polynomial time, i.e. number of elements in D(e) is polynomial.

Proof. Observe that the running time of D on e is polynomial in the number of the single-input
elements in D(e). Hence, to show that D runs in polynomial time, we will show that the size of
the set D(e) is bounded by the number of sub-elements of e. More precisely, for each s ∈ D(e),
we show a single-input sub-element e′ of e such that Prof(e′) = Prof(s). Since D(e) has single
input elements with distinct profiles, we get that |D(e)| is polynomial since e has a polynomial
number of sub-elements.

For each s ∈ D(e), let e′ be the first sub-element of e such that D(e′) contains a single
input element with input-profile Prof(s) and decomposition of no sub-element of e′ contains a
single-input element with input-profile Prof(s). Then we claim that e′ is a single input element,
i.e. D(e′) = {e′}. We have the following cases.

e′ is a basic sub-element of e, then by definition, D(e′) = {e′}. Next, if e′ = e1 + e2, then
all the input-profiles in D(e′) are either in e1 or e2. That is, e′ cannot be the first sub-element
of e which contains the input profile Prof(s). Finally, let e′ = e1 · e2. We need to show that
D(e′) = {e′}. Suppose not, that is |D(e′)| > 1. In this case, we will show that D(e′) cannot
contain any new input profiles. Let s′ ∈ D(e′) such that Prof(s) = Prof(s′).

By the definition of D, either |D(e1)| > 1 or D(e2) > 1. Wlog, let us assume that D(e1) > 1,
that is there exists s11, s12 ∈ D(e1) and s2 ∈ D(e2) such that s′ = s11 · s2. By the definition
of D, it holds that S(s11) = S(s12) and since the all the input-profiles in the decompisition
are distinct Prof(s11) 6= Prof(s12). Wlog, there exists a j ∈ [`] such that Prof(s11)j = 0 and
Prof(s12)j ∈ {1, ∗}.

First, we claim that if S(s11) = S(s12) and Prof(s11)j = 0 then Prof(s12)j 6= ∗. By the
definition of input-profiles, S(x) ∩ Uj = ∅ if and only if Prof(x)j = ∗. Hence, if Prof(s11)j = 0
and Prof(s12)j = ∗ then S(s11) ∩ Uj 6= ∅ and S(s12) ∩ Uj = ∅. Then, S(s11) 6= S(s12), which is
a contradiction.

The remaining case is Prof(s11)j = 0 and Prof(s12)j = 1. We claim that there is no basic

sub-element s′11 of s11 such that S(s′11) ∩ Uj = Sjk,1. If this not true, then Prof(s11) = ⊥.

Similarly, for s12, there is no basic sub-element s′12 such that S(s′12) ∩ Uj = Sjk,0. This means
that s11 and s12 have consistently used xj = 0 and xj = 1 in their evaluation. Now, by Claim 6,
for S(s11) = S(s12) it has to be the case that Uj ⊆ S(s11) = S(s12). By Claim 10, Prof(s11) is
complete. But, multiplying an element with complete profile to another element cannot lead to
any new valid profile. Hence, we get a contradiction to the assumption on e′.

Claim 10. If s is a single-input element such that Uj ⊆ S(s) for some j ∈ [`], then Prof(s) is
complete.

Proof. Since s is a single input element, Prof(s)j 6= ⊥. Also, Prof(s)j 6= ∗ because S(s)∩Uj 6= ∅.
Let Prof(s) = b for some b ∈ {0, 1}. Also, since Uj ⊆ S(s), for every i ∈ ind(j) there exists a

basic sub-element si of s such that S(si) ∩ Uj = Sji,b. Moreover, S(si) = S(i, b1, b2) such that
Prof(s)inp1(i) = b1 and Prof(s)inp2(i) = b2.

We will show that for any k ∈ [`], Prof(s)k 6= ∗. By the property of dual input relaxed
matrix branching program, there exists i∗ ∈ [n] such that wlog, (inp1(i∗), inp2(i∗)) = (j, k).
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Since Uj ⊆ S(s), there exists a basic sub-element si∗ of s such that S(si∗) = S(i∗, b1, b2). Since
inp2(i) = k, Prof(s)k 6= ∗.

8.2 Simulation of Zero-testing

We first describe the simulation of the zero-testing at a high level and then will formally describe
the simulation. The simulator uses the decomposition algorithm defined in the previous section
to decompose the element e, that is to be zero tested, into single-input elements. Zero-testing of
e essentially involves zero-testing every element in its decomposition. Then we establish that if
e corresponds to a zero polynomial then indeed every element in the decomposition of e should
correspond to a zero polynomial. The intuition is that every element in its decomposition has
product of α’s which is different for every in its decomposition. And hence, with negligible
probability it happens that the α’s cancel out and yield a zero-polynomial. The only part left is
to show that indeed we can perform zero-testing on every element in decomposition individually.
To perform this we use the simulation algorithm defined in Section 4. We evaluate the polyno-
mial corresponding to the single-input element on the output of the simulation algorithm. We
then argue that the probability that if the single-input element was indeed a non-zero polyno-
mial then with negligible probability the polynomial evaluates to 0. This establishes that if the
polynomial is a non-zero polynomial then we can indeed detect some single-input element in its
decomposition to be non-zero with overwhelming probability.

We now describe zero testing performed by the simulator Sim. Denote the element to be zero
tested to be e and denote the polynomial computed by the circuit α(e) by pe.

1. Sim first executes the decomposition algorithm D described before on e. Denote the set of
resulting single-input elements by D(e). The output of Sim is either “Zero” or “Non-zero”
depending on whether the element is zero or not.

2. For every s ∈ D(e) execute the following steps:

(a) Find the input x that corresponds to the element s. More formally, denote x by
Prof(s). It then queries the F oracle on x to obtain F(x).

(b) Execute SimBP on input (1s,F(x)), where s is the size of the formula F to obtain the
following distribution represented by the random variable VSim

s .{
s̃, B̃i,bi1,bi2 , t̃ : i ∈ [n], bi1 = xinp1(i), b

i
2 = xinp2(i)

}
(c) We evaluate the polynomial ps, which is the polynomial computed by the circuit α(s),

on VSim
s . If the evaluation yields a non-zero result then Sim outputs “Non-zero”.

3. For all s ∈ D(e), if ps(VSim
s ) = 0 then Sim outputs “Zero”.

This completes the description of the zero-testing as performed by the simulator. We now argue
that the simulator runs in polynomial time.

Running time. From Claim 9 it follows that the first step, which is the execution of the decom-
position algorithm, takes polynomial time. We now analyse the running time of the steps (a), (b)
and (c). Step (a) takes linear time. The running time of Step (b) is essentially the running time
of SimBP which is again polynomial. Finally, Step (c) is executed in time which is proportional
to the number of queries made by the adversary to the oracle O(M) which are simulated by the
simulator. Since the number of queries is polynomial, even Step (c) is executed in polynomial
time. Finally we argue that the Steps (a), (b) and (c) are executed polynomially many times.
This follows from Claim 9 which shows that the number of elements in the decomposition is
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polynomial and hence the number of iterations is polynomial. Hence, our simulator runs in
polynomial time.

We prove the following two claims about the structure of the polynomial representing the element
to be zero tested that establishes the correctness of simulation. This will be useful when we will
show later that element is zero iff all the elements obtained by its decomposition are zero.

Claim 11. Consider an element e such that U ⊆ S(e). The polynomial computed by the circuit
α(e), denoted by pe, can be written as follows.

pe =
∑

s∈D(e)

ps =
∑

s∈D(e)

qProf(s) · α̃Prof(s)

where for every s ∈ D(e) the following holds.

1. The value α̃Prof(s) denotes the product
∏
i∈[n]

αi,bi1,bi2 where (bi1, b
i
2) = (Prof(s)inp1(i),Prof(s)inp2(i)).

2. qProf(s) is a polynomial in s̃, t̃ and in the entries of B̃i,bi1,bi2 . Further the degree of every
variable in qProf(s) is 1.

Proof. Consider an element s ∈ D(e). As before denote the circuit representing s by α(s).
Alternately, we view α(s) as a polynomial with the kth monomial being represented by sk.
Moreover, the value sk satisfies the following three properties.

• For every sk we have that S(sk) = S(s) and therefore Uj ⊆ S(sk) for every j ∈ [l].

• The circuit α(sk) contains only multiplication gates.

• The basic sub-elements of each sk are a subset of the basic sub-elements of some s

From the first property and Claim 10, we have that Prof(sk) is complete. Since every basic sub-
element of sk is a also a sub-element of s and also because s is a sinlge-input element we have
that Prof(sk) = Prof(s). Further for every i ∈ [l], there exists a basic sub-element e′ of sk such
that S(e′) = S(i, bi1, b

i
2) for bi1 = Prof(sk)inp1(i) and bi2 = Prof(sk)inp2(i). There can be many such

basic sub-elements but the second property ensures that there is a unique such element. The
only basic elements given to the adversary as part of the obfuscation with index set S(i, bi1, b

i
2)

are the elements αi,bi1,bi2 · B̃i,bi1,bi2 . From this it follows that we can write the polynomial ps as
qProf(s) · α̃Prof(s) where qProf(s) and α̃Prof(s) are described in the claim statement.

Before we describe the next claim we will introduce some notation. Consider a random variable
X. Let g be a polynomial. We say that g(X) ≡ 0 if g is 0 on all the support of X. We define
V real
C to be the distribution of the assignment of the values to pe.

Claim 12. Consider an element e. Let pe be a polynomial of degree poly(n) represented by
α(C). If pe 6≡ 0 then the following holds.

PrV real
C

[pe(V real
C ) = 0] = negl(n)

Proof. The claim would directly follow from Schwartz-Zippel lemma if the distribution corre-
sponding to the random variable V real

C is a uniform distribution or even if the distribution could
be computed by a low degree polynomial over values uniformly distributed over Zp. But this is
not true since the entries in R−1 cannot be expressed as a polynomial in the entries of R. To this
end, we do the following. We transform pe into another polynomial p′e and further transform
V real
C into another distribution Ṽ real

C such that the following holds:

- Pr
V real

C

[pe(V real
C ) = 0] = Pr

Ṽ real
C

[p′e(Ṽ real
C ) = 0]
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- The degree of p′e = poly(n).

- The distribution corresponding to V real
C can be computed by a polynomial over values that

are uniform over Zp.
In order to obtain p′e from pe we essentially replace the matrices R−1i in pe with adjugate matrices
adj(Ri)

∏
j 6=i

det(Rj) where adj(Ri) = R−1i · det(Ri). In a similar way we obtain Ṽ real
C from V real

C by

replacing all the assignment values corresponding to R−1i by assignment values corresponding
to adj(Ri)

∏
j 6=i

det(Rj).

We now argue p′e satisfies all the three properties stated above. The following shows that
the first property is satisfied.

Pr
V real

C

[pe(V real
C ) = 0] = Pr

V real
C

[pe(V real
C )

∏
i∈[n]

det(Rj) = 0] = Pr
Ṽ real

C

[p′e(Ṽ real
C ) = 0]

We now show that the second property is satisfied. The degree of
∏
i∈[n] det(Ri) is at most n ·w

and hence the degree of p′e is at most n ·w times the degree of pe, which is still a polynomial in
n. Finally, we show that that the third property is satisfied. To see this note that adj(Ri) can
be expressed as polynomial with degree at most w in the entries of Ri. Using this, we have that
the distribution corresponding to Ṽ real

C can be computed by a polynomial (of degree at most w)
over values that are uniform over Zp.

Now that we have constructed the polynomial p′e, we will invoke the Schwartz-Zippel lemma
on p′e to obtain the desired result as follows:

Pr
V real

C

[pe(V real
C ) = 0] = Pr

Ṽ real
C

[p′e(Ṽ real
C ) = 0] = negl(n)

We now show that in order to zero-test an element it suffices to individually zero-test all the
elements in its decomposition. This will complete the proof that our simulator satisfies the
correctness property.

Theorem 10. Consider an element e such that U ⊆ S(e) and let pe be the polynomial computed
by the circuit α(e). We have the following:

- If pe is a non-zero polynomial then ps(V real
C ) = 0 with negligible (in n) probability, for some

s ∈ D(e).

- If pe is a zero polynomial then ps(V real
C ) ≡ 0

Proof. We first consider the case when pe is a non-zero polynomial. From Claim 12, we have
that PrV real

C
[pe(V real

C ) = 0] = 0 with negligible probability. Further since pe =
∑
s∈D(e) ps, we

have the following.

PrV real
C

[pe(V real
C ) = 0] = PrV real

C
[∃s ∈ D(e) : ps(V real

C ) = 0] = negl(n)

Further We now move to the case when pe is a zero polynomial. We claim that ps is a zero
polynomial for every s ∈ D(e). From Claim 12 we know that ps can be expressed as qProf(s) ·
α̃i,bi1,bi2 , where (bi1, b

i
2) = (Prof(s)inp1(i),Prof(s)inp2(i)). Observe that the marginal distribution of

α̃Prof(s) is uniform for every s ∈ D(e). Hence, qProf(s) should be zero on all points of its support.
In other words, qProf(s) ≡ 0 and hence, ps ≡ 0 thus proving the theorem

As a consequence of the above theorem, we prove the following corollary.

Corollary 3. Consider an element e such that U ⊆ S(e) and let pe be the polynomial computed
by the circuit α(e). We have the following.

32



- If pe is a non-zero polynomial then ps(VSim
s ) = 0 with negligible (in n) probability, for some

s ∈ D(e).

- If pe is a zero polynomial then ps(VSim
s ) ≡ 0.

The proof of the above corollary follows from the above theorem and the following claim. This
completes the proof of correctness of the simulation of zero-testing.

Claim 13. For every single-input element s such that U ⊆ S we have that the assignment VSim
s ,

which is the distribution output by SimBP, and the assignment to the same subset of variables in
V real
C are identically distributed.

Proof. The distributions of the following variables generated by Sim and O(F) are identical from
Theorem 7:

R0,
{
Bi,bi1,bi2 i ∈ [n], bi1 = Prof(s)inp1(i), b

i
2 = Prof(s)inp2(i)

}
, Rn

Further, the following variables are sampled uniformly at random both by Sim and by O(F):{
αi,bi1,bi2 : i ∈ [n], bi1 = Prof(s)inp1(i), b

i
2 = Prof(s)inp2(i)

}
The claim follows from the fact that the assignment VSim

s generated by Sim and the assignment
to the same subset of variables in V real

C are both computed from the above values in the same
way.
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